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Abstract

The unceasing demand for continuous situational awareradissfor innovative and large-scale signal
processing algorithms, complemented by collaborative aatabtive sensing platforms to accomplish the
objectives of layered sensing and control. Towards thid,gba present paper develops a spline-based
approach to field estimation, which relies on a basis expansiodel of the field of interest. The model
entails known bases, weighted by generic functions estichfiom the field’s noisy samples. A novel field
estimator is developed based on a regularized variati@aaitisquares (LS) criterion that yields finitely-
parameterized (function) estimates spanned by thin-glaliees. Robustness considerations motivate well
the adoption of an overcomplete set of (possibly overlagdasis functions, while a sparsifying regularizer
augmenting the LS cost endows the estimator with the aliitgelect a few of these bases that “better”
explain the data. This parsimonious field representaticoines possible, because the sparsity-aware spline-
based method of this paper induces a group-Lasso estimatdhd coefficients of the thin-plate spline
expansions per basis. A distributed algorithm is also apel to obtain the group-Lasso estimator using
a network of wireless sensors, or, using multiple procesgmibalance the load of a single computational
unit. The novel spline-based approach is motivated bgpactrum cartographypplication, in which
a set of sensing cognitive radios collaborate to estimage distribution of RF power in space and
frequency. Simulated tests corroborate that the estinad@cer spectrum density atlas yields the desired
RF state awareness, since the maps reveal spatial locatlvere idle frequency bands can be reused for

transmission, even when fading and shadowing effects aneopinced.
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. INTRODUCTION

Well-appreciated as a tool for field estimation, thin-pl@moothing) splines find application in areas as
diverse as climatology [27], image processing [9], and aphysiology [21]. Spline-based field estimation
involves approximating a deterministic mgp R™ — R from a finite number of its noisy data samples, by
minimizing a variational least-squares (LS) criterionutegized with a smoothness-controlling functional. In
the dilemma of trusting a model versus trusting the daténepifavor the latter since only a mild regularity
condition is imposed on the derivatives @f which is otherwise treated as a generic function. While thi
generality is inherent to the variational formulation, th@moothness penalty renders the estimated map
unique and finitely parameterized [10, p. 85], [26, p. 31]thAhe variational problem solution expressible
by polynomials and specific kernels, the aforementioned agpoximation task reduces to a parameter
estimation problem. Consequently, thin-plate splinegateeas a reproducing kernel Hilbert space (RKHS)
learning machine in a suitably defined (Sobolev) space [284p

Although splines emerge as variational LS estimatordetdérministicfields, they are also connected to
classes of estimators feaandomfields. The first class assumes that estimators are lineeldyed to the
measured samples, while the second one assumes that fiel@sassian distributed. The first corresponds
to the Kriging method while the second to the Gaussian psooesdel; but in both cases one deals with
a best linear unbiased estimator (BLUE) [24]. Typicallydeiisense stationarity is assumed for the field's
spatial correlation needed to form the BLUE. The so-ternatkgalized covariance model adds a parametric
nonstationary term comprising known functions specifiedriarp[17]. Inspection of the BLUE reveals
that if the nonstationary part is selected to comprise pmiyials, and the spatial correlation is chosen to
be the splines kernel, then the Kriging, Gaussian processspline-based estimators coincide [26, p. 35].

Bearing in mind this unifying treatment of deterministicdarandom fields, the main subjects of this
paper are spline-based estimation, and the practicalljvatetisparse(and thus parsimonious) description
of the wanted field. Toward these goals, the following bagjgaasion model (BEM) is adopted for the

target map

Ny
(x, f) = gu(X)bu(f) @)
v=1

with x € R?, f € R, and theLy—norms{||b,(f)||r, = 1}, normalized to unity.

The bases{b,(f)}.", are preselected, and the functiogs(x) are to be estimated based on noisy
samples ofb. This way, the model-versus-data balance is calibratedhtsgducing a priori knowledge on
the dependence of the ma@pwith respect to (w.r.t.) variablg¢, or more generally a group of variables,

while trusting the data to dictate the functioggx) of the remaining variables.
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Consider selectingV, basis functions using thkeasis pursuitapproach [8], which entails an extensive
set of bases thus rendering, overly large and the model overcomplete. This motivatesrarging the
variational LS problem with a suitable sparsity-encounggienalty, which endows the map estimator with
the ability to discard factorg, (x)b,(f) in (1), only keeping a few bases that “better” explain theadat
This attribute is inherited because the novel sparsityravgpline-based method of this paper induces a
group-Lasso estimator for the coefficients of the optimatdip-parameterized, . Group-Lasso estimators
are known to set groups of weak coefficients to zero (hereNthgroups associated with coefficients per
g,), and outperform the sparsity-agnostic LS estimator bytakging on the sparsity present [29], [22]. An
iterative group-Lasso algorithm is developed that yielldsed-form estimates per iteration. A distributed
version of this algorithm is also introduced for data cdkecby cooperating sensors, or, for computational
load-balancing of multiprocessor architectures. A reladé@proach to model selection in nonparametric
regression is the component selection and smoothing apg@O©SSO) [16]. Different from the approach
followed here, COSSO is limited to smoothing-spline, asshof-variance models, where the target function
is assumed to be expressible by a superpositiartbibgonalcomponent functions. Compared to the single
group-Lasso estimate here, COSSO entails an iterativeitlgny which alternates through a sequence of
smoothing spline [13, p. 151] and nonnegative garrote [Bpsoblems.

The motivation behind the BEM in (1) comes from our interegsispectrum cartography for wireless
cognitive radio(CR) networks, aensingapplication that serves as an illustrating paradigm thihoug the
paper. CR technology holds great promise to address filyitlue perceived dilemma of bandwidth under-
utilization versus spectrum scarcity, which has rendenrestifaccess communication networks inefficient.
Sensing the ambient interference spectrum is of paramogmbritance to the operation of CR networks,
since it enables spatial frequency reuse and allows for @imapectrum allocation; see, e.g., [11], [19]
and references therein. Collaboration among CRs can migrkagrove the sensing performance [23],
and is key to revealing opportunities for spatial frequersmyse [20]. Pertinent existing approaches have
mostly relied on detecting spectrum occupancy per radid,dmnot account for spatio-temporal changes
in the radio frequency (RF) ambiance, especially at intdna@eeiver(s) which may reside several hops
away from the sensed area.

The impact of this paper’s novel field estimators to CR neksads a collaborative sensing scheme
whereby receiving CRs cooperate to estimate the distabuwdf power in space and frequency’, namely
the power spectrum density (PSD) mafx, f) in (1), from local periodogram measurements. The estimator
need not be extremely accurate, but precise enough to figespiectrum holes. This justifies adopting the

known bases to capture the PSD frequency dependence indfar As the spatial dependence is concerned,
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the model must account for path loss, fading, mobility, anddewing effects, all of which vary with the
propagation medium. For this reason, it is prudent to letdhta dictate the spatial component of (1).
Knowing the spectrum at any location allows remote CRs teealynamically idle bands. It also enables
CRs to adapt their transmit-power so as to minimally interfeith licensed transmitters. The spline-based
PSD map here provides an alternative to [4], where known<ase used both in space and frequency.
Different from [1] and [4], the field estimator here does ngume a spatial covariance model or pathloss
channel model. Moreover, it captures general propagati@racteristics including both shadowing and
fading; see also [15].

Notation: Bold uppercase letters will denote matrices, whereas loolgéicase letters will stand for column
vectors. Operators), (.)’, tr(.), rank.), bdiag.), E[-] will denote Kronecker product, transposition, matrix

trace, rank, block diagonal matrix and expectation, rethpsy;

.| will be used for the cardinality of a set,
and the magnitude of a scalar. Tl norm of functionb : R — R is [[b[|7_ := [ b*(f)df, while the
¢, norm of vectorx € R? is ||x|, :== (3_F_, |:ci|p)1/p for p > 1; and | M||r := y/tr ((MM/) is the matrix
Frobenious norm. Positive definite matrices will be dendigd - 0. Thep x p identity matrix will be
represented by, while 0, will denote thep x 1 vector of all zeros, an@,., := 0,0;. The i-th vector

in the canonical basis fdR? will be denoted bye,;, i =1,...,p.

II. BEM FORSPECTRUM CARTOGRAPHY

Consider a set oN, sources transmitting signafs:,(¢)}"*, using portions of the overall bandwidB.
The objective of revealing which of these portions (subesrare available for new systems to transmit,
suggests that the PSD estimate sought does not need to beasgpeate. This motivates modeling the

transmit-PSD of each(¢) as

Ny
Oi(f)=> Oubu(f), s=1,...,N, )
v=1
where the basis, (f) is centered at frequencf,, v = 1,..., N,. The example depicted in Fig. 1 involves

(generallyoverlapping raised cosine bases with supp®t = [f, — (1+p) /2T, f, + (14 p)/2T5], where
T, is the symbol period, ang stands for the roll-off factor. Such bases can model transpdctra of
e.g., multicarrier systems. In other situations, poweicspé masks may dictate sharp transitions between
contiguous sub-bands, cases in which non-overlappingmgatar bases may be more appropriate. All in
all, the set of bases should be selected to accommodaterakgr@wledge about the PSD.

The power transmitted by sourcewill propagate to the locatiox € R? according to a generally
unknown spatial loss functioh(x) : R? — R. The propagation modél(x) not only captures frequency-

flat deterministic pathloss, but also stationary, bloakitig and even frequency-selective Rayleigh channel
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effects, since their statistical moments do not depend erfrégquency variable. In this case, the following
vanishing memory assumption is required on the transmgtgdals for the spatial receive-PSB(x, f)

to be factorizable a& (x)®,(f); see [4] for further details.

N,
s=1

(as) Sources{us(t)} are stationary, mutually uncorrelated, independent of thannels, and have
vanishing correlation per coherence interval; i.es(7) := Efus(t + 7)us(t)] = 0, V|7| > T, — L, where
T, and L represent the coherence interval and delay spread of tharosla, respectively.

Under (as), the contribution of souredo the PSD at poink is /5(x) fo;l 0s,b,(f); and the PSD due
to all sources received at will be given by ®(x, f) = Zf;l ls(x) Z,]/Vi1 0s,b,(f). Such a model can be
simplified by defining the function, (x) := Zf;l 0s,15(x). With this definition and upon exchanging the
order of summation, the spatial PSD model takes the form jnwghere functions{g, (x)}), are to be
estimated. They represent the aggregate distributionwépacross space corresponding to the frequencies
spanned by the basds, }. Observe that the sources are not explicitly present inE¥gn if this model
could have been postulated directly for the cartographly gihand, the previous discussion justifies the

factorization of the®(x, f) map per band in factors depending on each of the variablasd f.

IIl. COOPERATIVE SPLINE-BASED PSD HELD ESTIMATION

The sensing strategy will rely on the periodogram estim;%,t,e(ﬂ at a set of receiving (sampling)
locations X := {x,}", € R?, frequenciesF := {f,})_, € B, and time-slots{r}7_,. In order to
reduce the periodogram variance and mitigate fading esf,feAi;tl(r) is averaged across a window ©f

time-slots [4], to obtain
T
1 ~
Prn = T 7; ¢rn(7)- (3)

Hence, the envisioned setup consistsNgf receiving CRs, which collaborate to construct the PSD map
based on PSD observatiofig,, }. The bulk of processing is performed centrally at a fusiontee(FC),
which is assumed to know the position vectdfof all CRs, and the sensed tones/n The FC receives
over a dedicated control channel, the vector of samples= [, 1,...,¢.n]" € RY taken by node- for
allr=1,...,N,.

While a BEM could be introduced for the spatial loss functigfx) as well [4], the uncertainty on the
source locations and obstructions in the propagation mednay render such a model imprecise. This
will happen, e.g., when shadowing is present. The alteraapproach followed here relies on estimating
the functionsg, (x) based on the datgp,,,}. To capture the smooth portions @{x, f), the criterion for

selectingg, (x) will be regularized using a so termed thin-plate penalty, [2630]. This penalty extends to
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R? the one-dimensional roughness regularization used in gnmgpspline models. Accordingly, functions

{9}, are estimated as

1 N, N N, 2 N,
0.£5) N.N ZZGM—;%(WWM) +A; /R Vg x)llFdx (4)

{§,}0e | := argmin
r=1n=1

where||V2g,||r denotes the Frobenius norm of the Hessiam,of

The optimization is oves, the space of Sobolev functions, for which the penalty isl wefined [10,
p. 85]. The parametex > 0 controls the degree of smoothing. Specifically, fo= 0 the estimates in (4)
correspond taough functions interpolating the data; while as— oo the estimates yield linear functions
(cf. V2§, (x) = 02x2). A smoothing parameter in between these limiting valuds vé selected using a

leave-one-out cross-validation (CV) approach, as disalitaster.

A. Thin-plate splines solution

The optimization problem (4) is variational in nature, angbfinciple requires searching over the infinite-
dimensional functional spac$. It turns out that (4) admits closed-form, finite dimensiomanimizers
gv(x), as presented in the following proposition which providegemeralization of standard thin-plate
splines results; see e.g., [26, p.31], to the multi-dimemasi BEM (1).

Proposition 1: The estimatesggu}fy;l in (4) are thin-plate splines expressible in closed form as

NT
gl/(x) = Z/BVTK(HX_XT’H2) +a:/1x+al/0 (5)
r=1

where K (p) := p?log(p), and B, := [B,1,...,Bun,]" is constrained to the linear subspafe:= {3 €
RN SN 8, =0, Brx, = 02, x, € X} for v =1,..., N,

The proof of this proposition is given in Appendix A.
Remark 1 (Overlapping frequency basis). If the basis functiongb,(f)} have finite supports which
do not overlap, then (4) decouples pgr, and thus the results in [10], [26] can be applied directlye T
novelty of Proposition 1 is that the basis functions withts&dapline coefficients in (1) are allowed to be
overlapping The implication of Proposition 1 is finite parametrizatiohthe PSD map [cf. (5)]. This is
particularly important for non-FDMA based CR networks. e forthcoming Section IV, an overcomplete
set{b,} is adopted in (1), and overlapping bases naturally arisesitie

What is left to determine are the parameters= [a19, @)}, ..., an,0,0y,,] € R*, and 8 :=
[8,...,B),]) € R¥"" in (5). To this end, define the vectgr:= [p11,..., 018, .., 0N, 1,-- -, on.N] €
RN-N containing the network-wide data obtained at all frequesiai 7. Three matrices are also introduced

collecting the regression inputs:T) € RY-*3 with rth rowt/. := [1x.] forr = 1,..., N, andx, € X; ii)
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B € RV*No with nth row b/, := [b1(f,),--.,bn, (fn)] for n =1,..., N; and iii) K € RV >N with jj-th
entry [KJ;; := K (||x; —x,]||) for x;,x; € X. Consider also the QR decompositionsbf= [Q; Q2] [R’ 0]’
andB = [Q; Q][I 0]'.

Upon plugging (5) into (4), it is shown in Appendix B that thptimnal {«, 3} satisfy the following

system of equations

(B® Q)¢ = [(B'B® QyKQz) + N, Ny, (n,—3)] ¥ (6)
T ®@Rla = (2] ®Q))e — (T'® Q1KQy)¥ (7)
B =(Iy, ® Q). (8)

Matrix Q,KQs is positive definite, and raifk @ R) = rankT')rankR); see e.g., [18]. It thus follows
that (6)-(7) admit a unique solution if and only If and R are invertible (correspondingly8 and T
have full column rank). These conditions place practicalst@ints that should be taken into account
at the system design stage. Specifically,has full column rank if and only if the points i, i.e.,
the CR locations, are not aligned. FurthermdBewill have linearly independent columns provided the
basis functions{b,,(f)}]VV;1 comprise a linearly independent and complete set, Be., | J,, B,. Note that
completeness precludes all frequendigs}Y_,; from falling outside the aggregate support of the basis set,
hence preventing undesired all-zero column®in
Remark 2 (Practicality of uniqueness conditions). The condition onX does not introduce an actual
limitation as it can be easily satisfied in practice, esgloighen the CRs are randomly deployed. Likewise,
the basis set is part of the system design, and can be chosatidty the conditions oi. Nonetheless,
these conditions will be bypassed in Section IV by allowing &n overcomplete set of functiogs, }.

The combined results in this section can be summarized ifoll@ving steps constituting the spline-
based spectrum cartography algorithm, which amounts tmatihg ¢ (x, f):

Sl.  Given ¢, solve (6)-(8) foré, 3, after selecting\ as detailed in Appendix D.

S2.  Substitute& and 3 into (5) to obtain{g, (x)})",.

S3.  Use {4, (x)})", in (1) to estimated(x, f).

B. PSD tracker

The real-time requirements on the sensing radios and theeo@nce of an estimator that adapts to
changes in the spectrum map are the motivating reasonsch#t@rPSD tracker introduced in this section.

The spectrum map estimator will be henceforth denote®(y, f, 7), to make its time dependence explicit.

September 27, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 7

Define the vectorggn(r) = [$1n(r), . ,&S\Nm(r)]’ of periodogram samples taken at frequerfgyby
all CRs, and form the supervectg(r) := [¢(7),..., @ ()] € RNV, Per time-slotr = 1,2,..., the

periodograme(T) is averaged using the following adaptive counterpart of (3)
(7)== 3 07T () = dp(r = 1) + (7) ©)
T'=1

which implements an exponentially weighted moving averageration with forgetting facto§ € (0, 1).
For everyr, the online estimato®(x, f,7) is obtained by plugging in (1) the solutio{ﬁ,,(x,T)}]VV;1
of (4), after replacingp,,, with ¢,,(7) [cf. the entries of the vector in (9)]. In addition to mitidgad
fading effects, this adaptive approach can track slowletirarying PSDs because the averaging in (9)
exponentially discards past data.

Suppose that per time-slat, the FC receives raw periodogram sampiAe(s) from the CRs in order
to update®(x, f, 7). The results of Section Il apply for every, meaning that{g;l,(x,7)},&1 are given
by (5), while the optimum coefficientsa(7), 3(r)} are found after solving (6)-(8). Capitalizing on (9),

straightforward manipulations of (6)-(8) show thak(r), 3(7)} are recursively given for alt > 1 by

B(7) = 6B(r — 1) + (Iy, ® Q2)G1$(7) (10)
&(7) = 66(r — 1) + Gah(7) (11)
where thetime-invariantmatricesG; and G, are
G == [(B'B ® QyKQ2) + N, NALy, (v, 3] ' (B®Q))
Gy :=[T®R|™ (2 ©Q)) — (I'® QKQ:)G1].
Recursions (10)-(11) provide a means to update, f, 7) sequentially in time, by incorporating the newly
acquired data from the CRs ﬁ(T). There is no need to separately update) as in (9), yet the desired

averaging takes place. Furthermore, matriégsand G, need to be computed only once, during the startup

phase of the network.

IV. GROUP-LASSO ONSPLINES

An improved spline-based PSD estimator is developed insinigion to fit the unknown spatial functions
{g,}" | in the model> (x, f) = Zf,vil gu(x)by(f), with a large {V;, > N, N), and a possibly overcomplete
set of known basis function&yu}]f;l. These models are particularly attractive when there isnaerent
uncertainty on the transmitters’ parameters, such asaldntiquency and bandwidth of the pulse shapers;

or, e.g., the roll-off factor when raised-cosine pulseseargloyed. In particular, adaptive communication
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schemes rely on frequently adjusting these parameters @h2,9]. A sizeable collection of bases to
effectively accommodate most of the possible cases prevlaedesirable robustness. Still, prior knowledge
available on the incumbent communication technologieagsensed should be exploited to choose the
most descriptive classes of basis functions; e.g., a lsagefsaised-cosine pulses. This knowledge justifies
why known bases are selected to describe frequency chasticeeof the PSD map, while a variational
approach is preferred to capture spatial dependencies.

In this context, the envisioned estimation method shoutdide the CRs with the capability of selecting
afewbases that “better explain” the actual transmitted sigrdsa result, most functiong, are expected
to be identically zero; hence, there is an inherent form afsipy present that can be exploited to improve
estimation. The rationale behind the proposed approacitbeanoted in théasis pursuifprinciple, a term
coined in [8] for finding the most parsimonious sparse signglansion using an overcomplete basis set.
A major differentiating aspect however, is that while tharse coefficients in the basis expansions treated
in [8] are scalars, model (1) here entails bases weightedibgtibnsg,,.

The proposed approach to sparsity-aware spline-basedefsgiitiation from the space-frequency power

spectrum measurements,, [cf. (3)], is to obtain{gu}f,vi1 as

N, N N, 2 N,
ANy . 1 - _ / 2 2
(g} = argmin, NTNZZ(som ;gxxnm(fn)) £AY [ 1%, 0ol

r=1n=1
Ny
1> |19, - 90w, ) - (12)
v=1

Relative to (4), the cost here is augmented with an additicegularization term weighted by a tuning
parametey > 0. Clearly, if © = 0 then (12) boils down to (4). To appreciate the role of the newgity

term, note that the minimization df[g, (x1), ..., g.(xn,)]’||, intuitively shrinks all pointwise functional
values{g,(x1),...,9,(xn,)} to zero for sufficiently large:. Interestingly, it will be shown in the ensuing

section that this is enough to guarantee thdk) = 0 Vx, for u large enough.

A. Estimation using the group-Lasso

Consider the classical problem of linear regression; sag,[#3, p. 11], where a vectgy € R" of
observations is available, along with a matixe R™*? of inputs. The group Lasso estimate for the vector

of features( := [y, ..., )y, ] € R is defined as the solution to [3], [29]

Ny
1
mgm§|!y—XCH§+uZHCqu- (13)

v=1
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This criterion achieves model selection by retaining rafevfactors¢, € RP/™ in which the features
are grouped. In other words, group-Lasso encourages gpatsihe factor level, either by shrinking to
zero all variables within a factor, or by retaining them gé#ther depending on the value of the tuning
parameten, > 0. As u is increased, more sub-vector estimagsbecome zero, and the corresponding
factors drop out of the model. It can be shown from the Karkshn-Tucker optimality conditions that
only for p > fimayx := max; ||Xjy||2 it holds that¢; = ... = {n, = 0,,y,, SO that the values of interest
arey € [0, fimax] [2]-

The connection between (13) and the spline-based field &stir(iL2) builds on Proposition 1, which still
holds in this context. That is, even though criteria (4) ab®) (purposely differ, their respective solutions
J,(x) have the same form in (5). Indeed, the adaptation of the pro&ppendix A to the new case
is straightforward, since the additional penalty term i2)(tlepends ory, evaluated at the knots. The
essential difference manifested by this penalty is rexealeen estimating the parametersand 3 in (5),

as presented in the following proposition.

Proposition 2: The spline-based field estimat(i?) is equivalent to group-Lasdd 3), under the identities

1 1 B oIy,

y ‘= [90/7 0]/7 X = (14)
Ny N NN | 1y, @ {bdiag((N, NAQ,KQ2)'"/2,0)[KQ, T]~'}
with their respective solutions related by
NT
Go(%) =D BurK (|[x = xrl2) + afyx + oo (15)
r=1
8, @]’ = bdiag Q2. I;)[KQ, T] "¢, (16)
where8, := [Bu1,...,0un,.] and ey, := [y, ]
The factors{¢, })\*, in (13) are in one-to-one correspondence with the vedti®s, o,]'}2" | through

the linear mapping (16). This implies that whenever a fa¢tois dropped from the linear regression model
obtained after solving (13), thejy (x) = 0, and the term corresponding &p(f) does not contribute to (1).
Hence, by appropriately selecting the valueugtriterion (12) has the potential of retaining only the most
significant terms inb(x, f) = fo;l 9v(x)b,(f), and thus yields parsimonious PSD map estimates. All in
all, the motivation behind the variational problem (12) @wunravelled. The additional penalty term not
present in (4) renders (12) equivalent to a group-Lassol@nobThis enforces sparsity in the parameters
of the splines expansion feb(x, f) at a factor level, which is exactly what is needed to potdptiaull

the less descriptive functiong,.

Remark 3 (Comparison with the PSD map estimator in Section |11). The sparsity-agnostic LS problem
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(4) will not give rise to identically zero vectofsy,, 3, }, for anyv. Even wheny, is not large, a sparsity-
aware estimator will perform better if the underlying PSDgenerated by a few basis functions. This is
expected since the out-of-band residual error will inceaagken all basis functions enter the model (1); see
also [4] for a related assessment. What is more, when the ewafilbases is sufficiently largévg, > N,.N)
matrix B is fat, and the approach in Section Ill is not applicable . D& dther hand, it is admittedly more
complex computationally to solve (13) than the system aédinequations (6)-(8). Because (12) is not a
linear smoother, a leave-one-out (bi-) CV approach to séfectuning parameters and . does not enjoy
the computational savings detailed in Appendix/-fold CV can be utilized instead, with typical choices
of K =5 or 10, as suggested in [13, p. 242].

The group-Lassoed splines-based approach to spectruoggyhy developed in this section can be
summarized in the following steps to estimate the global P& ¢ (x, f):

Sl.  Giveng and utilizing any group Lasso solver, obtajn= [¢],...,Cl, ] by solving (13).

S2.  Form the estimateé, 3 using the change of variablég/,, &/, = bdiag Q.. I3)[KQ, T]~'(,

forv=1,...,N,.

S3.  Substitute&x and 3 into (15) to obtain{j, (x)})",.

S4. Use{g,(x)})", in (1) to estimated(x, f).

Implementing S1-S4 presumes that CRs communicate theil R8D estimates to a fusion center, which
uses their aggregation ip to estimate the field. But what if an FC is not available fortcalty running
S1-S47? In certain cases, forgoing with an FC is reasonabén e designer wishes to avoid an isolated
point of failure, or, aims at a network topology which scaledl with an increasing number of CRs based
on power considerations (CRs located far away from the FCddin their batteries more to reach the

FC). These reasons motivate well a fully distributed corpatet of S1-S4, which is pursued next.

V. DISTRIBUTED GROUP-LASSO FORIN-NETWORK SPECTRUM CARTOGRAPHY

ConsiderNV,. networked CRs that are capable of sensing the ambient RRrspggerforming some
local computations, as well as exchanging messages amagigboes via dedicated control channels. In
lieu of a fusion center, the CR network is naturally modelsdaa undirected grapf(R,£), where the
vertex setR := {1,..., N,.} corresponds to the sensing radios, and the edgésrepresent pairs of CRs
that can communicate. Radioe R communicates with its single-hop neighborsAf, and the size of
the neighborhood is denoted by, |. The Iocations{x7«}f1\7:T1 := X of the sensing radios are assumed
known to the CR network. To ensure that the measured datadroarbitrary CR can eventually percolate

throughout the entire network, it is assumed that the gi@pé connectedi.e., there exists a (possibly)
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multi-hop communication path connecting any two CRs.
For the purpose of estimating an unknown veafor= [C{,...,C}Vb]' € RP, each radior € R has
available a local vector of observatiops € R as well as its own matrix of inpuX,. € R"*P. Radios

collaborate to form the wanted group-Lasso estimator (@3 distributed fashion, using

N, N,

. L

Cglasso= arg min 5 E lyr — X,€ll5 + p E 1012 (17)
r=1 v=1

wherey := [y/, ...,y ' € R"*! with n := SN n,, andX = (XY, , X'y | € R"*P. The motivation
behind developing a distributed solver of (17) is to tacll2)(based on in-network processing of the local
observationsp,. := [¢,1, ..., prn] available per radio [cf. (3)]. Indeed, it readily followsath(17) can be

used instead of (13) in Proposition 2 when

1 Pr 1 Boey ,

yr = s r-
VNN | o VNN | 1y, @ [bdiag (N, NAQLKQ2)'2,0)[KQ, T]~!]
corresponding to the identifications = N Vr € R, p = N,N,.. Note that because the locatiofs, } are

reR

assumed known to the entire network, €Ran form matriced’, K, and thus, the local regression matrix

X

A. Consensus-based reformulation of the group-Lasso

To distribute the cost in (17), replace tlgbobal variable ¢ which couples the per-agent summands
with local variables{¢, fil representing candidate estimates{gber sensing radio. It is now possible to

reformulate (17) as a convesonstrainedminimization problem
N,

Ny
~ YN B 1 ) 2
{Cr}rzl = argmin > e = Xolell3 + N, VZ:; G ll2 (18)

r=1

st G=CnrEeR TEN, &= [y
The equality constraints directly effect local agreemembss each CR’s neighborhood. Since the commu-
nication graphg is assumed connected, these constraints also egkbal consensus a fortiori, meaning
that¢, = ¢, Vr,7’ € R. Indeed, letP(r,r’) : r,71,79,...,m,, 7’ denote a path og that joins an arbitrary
pair of CRs(r,r’). Because contiguous radios in the path are neighbors byitéefinthe corresponding
chain of equalities, = ¢, = ¢, = ... = (,, = ¢~ dictated by the constraints in (18) impty. = ¢/,
as desired. Thus, the constraints can be eliminated byaieglall the {¢,} with a common(, in which

case the cost in (18) reduces to the one in (17). This arguestablishes the following result.

Lemma 1. If G is a connected graph(17) and (18) are equivalent optimization problems, in the sense

that ég|a550: 67-7 \V/ re R.
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Problem (18) will be modified further for the purpose of reidgcthe computational complexity of the

resulting algorithm. To this end, for a givenc R consider the problem

Ny
!
mingl[CF —a'C+ ) UGl Ci= 1[G G (19)
v=1
and notice that it is separable in th subproblems
1
ming 1613 — al G + iz, a:=|[a},...,ay,]. (20)

Interestingly, each of these subproblems admits a closed-§olution as given in the following lemma.
Lemma 2: The minimizer¢}; of (20) is obtained via the vector soft-thresholding operafx(-) defined

by

¢ = Tu(a) = (lawllz = )¢ (21)

ay
[y (|2
where(-), := max{-,0} .

Problem (19) is an instance of the group-Lasso (13) wKéK = I,,, anda := X'y. As such, result
(21) can be viewed as a particular case of the operators ihgd2@ [28]. However it is worth to prove
Lemma 2 directly, since in this case the special form of (2b)ders the proof neat in its simplicity.

Proof: It will be argued that the solver of (20) takes the fo{fh= ta, for some scalat > 0. This is
because among afl, with the same&/s-norm, the Cauchy-Schwarz inequality implies that the mmazer
of a/,¢, is colinear with (and in the same direction af). Substituting¢,, = ta, into (20) renders the
problem scalar irt > 0, with solutiont* = (||la, || — 1), / (2]|a,[|), which completes the proof. [ |

In order to take advantage of Lemma 2, auxiliary variabjesr = 1, ..., N, are introduced as copies

of ¢,. Upon introducing appropriate constraints = ¢, that guarantee the equivalence of the formulations

along the lines of Lemma 1, problem (18) can be recast as

A% 1§ ) 20
= agmin o -X N 22
¢} ygmin 5 TZ:; Iy = Xolly + - ;HCWHQ (22)

s.to (=4 =¢u, T ER, M EN,
Yr=6Cr, T €R.
The dummy variablesy”" are inserted for technical reasons that will become appanrethe ensuing

section, and will be eventually eliminated.

B. Distributed group-Lasso algorithm
The distributed group-Lasso algorithm is constructed bynuping (22) using the alternating direction

method of multipliers (AD-MoM) [6]. In this direction, assiate Lagrange multipliers,., v andv”" with

T
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the constraintsy, = ¢, ¢,» =~ and(, =~/ , respectively, and consider the augmented Lagrangian with

parameter > 0

N, N, N,
1 20 € —

Le[{Grh v, 0] =5 > lllyr —X,ylls + 5 Z IS llz| + D vi(&r =) + 5 > S =3
r=1 r=1 r=1

N O
Mz

303 [ G =)+ @Y (G )] + (16 =21 + 6 = 1]

%
Il
—
%\
z
S
Il

17reN.,
(23)

where for notational convenience we group the variables {~,, {v" }, e }rer, and multipliers
v = {v,, {‘v’; briens {‘_’:,}r'eNr}reR-
Application of the AD-MoM to the problem at hand consists afy&le of £. minimizations in a block-
coordinate fashion w.r.{.¢, } firstly, and~ secondly, together with an update of the multipliers peatien
k =0,1,2,.... Deferring the details to Appendix E, the four main propestdf this procedure that are

instrumental to the resulting algorithm can be highlightesdfollows.

i) Thanks to the introduction of the local copi€s and the dummy variables’ , the minimizations
of £, w.rt. both {¢,} and v decouple per CR-, thus enabling distribution of the algorithm.
Moreover, the constraints in (22) involve variables of iigring CRs only, which allows the required
communications to be local within each CR’s neighborhood.

i) Introduction of the variablesy, separates the quadratic cdist, — X,~,||3 from the group-Lasso
penalty>™" [|¢. |2 As a result, minimization of (23) w.r.t,. takes the form of (19), which admits
a closed-form solution via the vector soft-thresholdingmpor7,(-) in Lemma 2.

iif) Minimization of (23) w.r.t.« consists of an unconstrained quadratic problem, which tsanbe solved
in closed form. In particular, the optima].” at iterationk takes the valug! (k) = (¢ (k) + ¢ (k) /2,
and thus can be eliminated.

iv) It turns out that it is not necessary to carry out updatethe Lagrange multiplier§v”’, ¥7'},.cn.
separately, but only of their sums which are henceforth tihbyp, := > ..\, (V7 + ¥I'). Hence,

there is one pricg,. per CRr =1,..., N,, which can be updated locally.

Building on these four features, it is established in Apperiel that the proposed AD-MoM scheme

boils down to four parallel recursions run locally per CR:

pr(k) =pr(k—1) +¢ Y [Gr(k) — ¢ (R)] (24)
r'eN,.
Vr(k) = Vr(k - 1) + C[Cr(k) - 7r(k7)] (25)
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Algorithm 1 : DGLasso
All radios r € R initialize {¢,(0),~,(0), p-(—1),v,(—1)} to zero, and locally run:

for k=0,1,...do
Transmit¢,. (k) to neighbors in\.

Updatep, (k) via pr(k) = pr(k — 1) + ¢ 32, [Gr(F) — G ()]
Updatev,.(k) via v,.(k) = v.(k — 1) + ¢[¢- (k) — v, (k)]
Update(, (k + 1) using (26).
Update~, (k + 1) using (27).
end for
TNT rzxk ’ 7‘1/]{7 r’yk_ruk_ruk
Yok +1) = [cI, + X.X,] ™ (X’ yr 4+ ¢ (k+1) + v, (k) . (27)

Recursions (24)-(27) comprise the novel DGLasso algorittatnulated as Algorithm 1.

The algorithm entails the following steps. During iterati® + 1, CR r receives the local estimates
{¢,/ (k) }ren. from the neighboring CRs and plugs them into (24) to evalttegedual price vectop, (k).
The new multiplierv,. (k) is then obtained using the locally available vectpys(k), ¢ (k)}. Subsequently,
vectors{p,(k), v, (k)} are jointly used along wit§¢, (k) }, cn. to obtain(,(k+1) via N, parallel vector
soft-thresholding operation',(-) as in (21). Finally, the updategl.(k + 1) is obtained from (27), and
requires the previously updated quantities along with teetar of local observationg, and regression
matrix X,.. The (k + 1)st iteration is concluded after CRbroadcastg, (k + 1) to its neighbors. Even if
an arbitrary initialization is allowed, the sparse natufr¢he estimator sought suggests the all-zero vectors
as a natural choice. Three additional remarks are now inrorde
Remark 4 (Distributed Lasso algorithm as a special case). When N, = p and there are as many groups
as entries of¢, then the sumZ]VV;1 II¢. || becomes the;-norm of ¢, and group-Lasso reduces to Lasso.
In this case, DGLasso offers a distributed algorithm to edlasso that coincides with the one in [5].
Remark 5 (Centralized Group-Lasso algorithm as a special case). For N,. = 1, the network consists
of a single CR. In this case, DGLasso yields a novel algoritnthe centralized group-Lasso estimator
(17), which is specified as Algorithm 2. Notice that the thi@ding operatof7, in GLasso sets the entire
sub-vector¢, (k + 1) to zero whenevef|cy, (k) — v, (k)||2 does not exceed, in par with the group-
sparsifying property of group-Lasso. Different from [28Lasso can handle a general (not orthonormal)
regression matriX. Compared to the block-coordinate algorithm of [22], Gleadees not require an inner

Newton-Raphson recursion per iteration. If in additi§p = p, then GLasso yields the Lasso estimator.
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Algorithm 2 : GLasso
Initialize {¢(0),~(0),v(—1)} to zero, and run:

for k=0,1,...do
Updatev(k) = v(k — 1) + c[¢(k) — v(k)].
Update¢, (k+ 1) = (1/¢)T, (v (k) — v (k)), v=1,...,Ns.
Updatey(k + 1) = [cI, + X'X] " (X'y + ¢ (k + 1) + v(k)).

end for

Remark 6 (Computational load balancing). Update (27) involves inversion of the<p matrix cI,+X.X,,
that may be computationally demanding for sufficiently é&gsgFortunately, this operation can be carried out
offline before running the algorithm. More importantly, timatrix inversion lemma can be invoked to obtain
L, + X! X, = ¢ 1|, — XL (eI, + X,X.)7! X,n}. In this new form, the dimensionality of the matrix
to invert becomes:, x n,, wheren, is the number of locally acquired data. For highly undendeiteed
casegn, < p), (D)GLasso enjoys considerable computational savingsutir the aforementioned matrix
inversion identity. One also recognizes that the distedutperation parallelizes the numerical computation
across CRs: if GLasso is run at a central unit with all netwoitte data available centrally, then the
matrix to invert has dimension = ) . n,, which increases linearly with the network si2&. Beyond
a networked scenario, DGLasso provides an attractivenaltiee for computational load balancing in
contemporary multi-processor architectures.

To close this section, it is useful to mention that conveogeof Algorithm 1, and thus of Algorithm 2

as well, is ensured by the convergence of the AD-MoM [6]. Tieisult is formally stated next.

Proposition 3: LetG be a connected graph, and consider recursi{®#)-(27) that comprise the DGLasso
algorithm. Then, for any value of the step-size> 0, the iterates¢,(k) converge to the group-Lasso

solution [cf. (17)] as k — o, i.e.,

~

lim ¢ (k) = Cgasso V7 € R, (28)
In words, all local estimate$, (k) achieve consensus asymptotically, converging to a comreotorthat
coincides with the desired estimaté(‘,qaSSO Formally, if the number of parametepsexceeds the number
of datan, then a unigue solution of (13) is not guaranteed for a geémkrsign matrixX. Proposition 3
remains valid however, if the right-hand side of (28) is amgld by the set of minima; that is,

N, Ny
. - 2
Jim ¢ (k) € arg min < ; e = Xel3 + 111Gl

v=1
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VI. NUMERICAL TESTS

Consider a set oV, = 100 CRs uniformly distributed in an area 6Km?, cooperating to estimate the
PSD map generated h¥, = 5 licensed users (sources) located as in Fig. 2 (left). Thetfaesmitted
signals are raised cosine pulses with roll-off facterse {0,1}, and bandwidths¥ < {10,20,30}
MHz. They share the frequency barigl = [100,260] MHz with spectra centered at frequencigs =
105, 140, 185, 215, and 240 MHz, respectively. Fig. 2 (right) depicts the PSD generdigdhe active
transmitters.

The PSD generated by sourgeexperiences fading and shadowing effects in its propagdtmm x,
to any locationx, where it can be measured in the presence of noise. A 6-tajeighynodel is adopted
for the multipath channel/,(f, 7,x) betweenx, andx, whose expected gain adheres to the path-loss law
E(|H|?) = exp(—||xs — x||3/A%), with A = 0.8. A deterministic shadowing effect is generated by a
18m-high and500m-wide wall represented by the black segment in Fig. 2 (ldftproduces a knife-edge
effect on the power emitted by the antennas at a heigh0wi. The simulated tests presented here account

for the shadowing at ground level.

A. Spectrum cartography

When designing the basis functions in (1), it is known a pribat the transmitted signals are indeed
normalized raised cosine pulses with roll-off factpre {0, 1}, and bandwidth$V € {10, 20,30} MHz.
However, the actual combination of bandwidths and rollfafftors used can be unknown, which justifies
why an overcomplete set of bases becomes handy. Transmigedls with bandwidti/ = 10 MHz are
searched over a grid di6 evenly spaced center frequencigsin B. Likewise, forW = 20 and30 MHz,

15 and14 center frequencies are considered, respectively. Thisiatado2 x (16 + 15+ 14) = 90 possible
combinations forp, W, and f., thus N, = 90 bases are adopted.

Each CR computes periodogram sampd?eg(f) at N = 64 frequencies withSNR = —5 dB, and
averages them acrogs = 100 time-slots to formey,.,, n = 1,...,64 as in (3). These network-wide
observations a’ = 100 are collected inp, and following steps S1-S4 at the end of Section IV, the splin
based estimator (12), and thus the PSD nia,a, f) is formed. This map is summed across frequencies,
and the result is shown in Fig. 3 (left) which depicts the fioss of transmitting CRs, as well as the
radially-decaying spectra of four of them (those not afdcby the obstacle). It also identifies the effect
of the wall by “flattening” the spectrum emitted by the fifthusce at the top-left corner. Inspection of the
estimatei)(x, f) across frequency confirms that group-Lasso succeeds ictisgl¢he candidate bases. Fig.

4 (left) shows points representirﬂgf,, 5, v=1,...,N,, where(, is the sub-vector in the solution of the
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group-Lasso estimator (13) associated witlix) andb, (f). They peak at indexes= 1, 28, 46, 51, and

70 (circled in red), which correspond to the “ground-truth” ded since basek;, bog, bss, bs1, and by
match the spectra of the transmitted signals. Even thoughogjmately 75% of the variables drop out of
the model, some spurious coefficients are retained andrbeins are markedly smaller than those of the
“ground-truth” bases. This is expected because based da Samples there is no guarantee that group-
Lasso will recover the exact support, in general. Neveegglthe effectiveness of group-Lasso in revealing
the transmitted bases is apparent when compared to othdariegtion alternatives. Fig. 4 (right) depicts
the counterpart of Fig. 4 (left) when using a sparsity-atjnagg&ge regression scheme instead of (13). In
this case, no basis selection takes place, and the spudotss are magnified up to a level comparable to
three of the “true” basis functioh, (f). To the best of our knowledge, no other basis selection nistiro
the literature are applicable to the nonparametric modet¢hsidered here. In particular, COSSO in [16]
is not applicable since it does not provide a basis seleatietihod and relies on orthogonality assumptions.

In summary, this test case demonstrates that the splired@Estimator can reveal which frequency bands
are (un)occupied at each point in space, thus allowing fati@preuse of the idle bands. For instance,
transmitter TX at the top-right corner is associated with the basis functig(f), the only one of the
transmitted five that occupies tt#30 — 260 MHz sub-band. Therefore, this sub-band can be reused at
locationsx away from the transmission range of JXwvhich is revealed in Fig. 3 (left).

The group-Lasso estimator in S1 was obtained via the GLagguithm developed in Section V (cf.
Algorithm 2). The GLasso output at iteratidgn= 1,000 is compared to previous iteraté€$k) in Fig. 3
(right), which demonstrates the monotone decay of thefeidihce, and thus corroborates convergence to a
limit point. Then, it is verified numerically tha}(1000) satisfies the necessary and sufficient conditions for
optimality of (17), as given in [29]. These two tests togetevide numerical confirmation of Proposition

3 on the convergence of GLasso, and the optimality of thet lpaint.

B. Tuning parameters via cross-validation

Results in Figs. 3 (left) and 4 depend on the judicious selecf parameters andyu in (12). Parameter
A affects smoothness, which translates to congruence am8bgsRmples, allowing the CRs to recover
the radial aspect of the transmit-power. Paramgt@ontrols the sparsity in the solution, which dictates
the number of bases, and thus transmission schemes thastimater considers active.

To select)\ and p jointly so that both smoothness and sparsity are propertpwatted for, one could
consider a two-dimensional grid of candidate pairs, andmiie the CV error over this grid. However, this

is computationally demanding, especially because theifferghtiable cost in (13) renders the shortcuts in
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Appendix D not applicable (see also Remark 3). A three-steprative is followed here. First, estimator
(12) is obtained using an arbitrarily small value of= 1 x 1075, and selecting: = 0.1/tmax, WhEre imay
is given in subsection IV-A. In the second step, only the simg bases are kept, and the sparsifying
penalty is no longer considered, thus reducing the estimatthat of Section IlIl. If the reduced matrix
B, built from the surviving bases, is full rank (otherwise eap the first step with a larger value gj,
the procedure in Appendix D is followed to adjust the value\ofia leave-one-out CV. The result of this
step is illustrated in Fig. 5 (left), where the minimizesy, = 7.9433 x 1076 of the OCV cost is selected.
The final step consists of reconsidering the sparsity eimfgrpgenalty in (12), and selecting using 5-fold
CV. The minimizer of the CV erropcy = 0.0078umax corresponding to this step is depicted in Fig. 5
(right). Using theA¢y and pcy so obtained, the PSD map plotted in Fig. 3 (left) was congtdicThe
rationale behind this approach is that it corresponds toglesistep of a coordinate descent algorithm for
minimizing the CV errorCV (A, ). FunctionC'V (A, u) is typically unimodal, with much higher sensitivity
on . than on), a geometric feature leading the first coordinate descesdteo be close to the optimum.
The importance of an approprigtevalue becomes evident when inspecting how many bases aneeet
by the estimator ag decreases froMimay t0 1 x 104 fimax. The N, lines in Fig. 6 (left) link points
representind|C, (1)||2, asp takes on20 evenly spaced values on a logarithmic scale, comprisingsthe
termed group-Lasspath of solutionsWhen 1 = umax IS Selected, by definition the estimator forces all
¢, to zero, thus discarding all bases. Astends to zero all bases become relevant and eventually enter
the model, which confirms the premise that LS estimatorsesudfbm overfitting when the underlying
model is overcomplete. The cross-validated valde- is indicated with a dashed vertical line that crosses
the path of solutions at the values fo,,Hg. At this point, five sub-vectors corresponding to the fagtor
v =1, 28, 46, 51, and 70 are considerably far away from zero hence showing stronectsif in par
with the results depicted in Fig. 4 (left). Certainly intstieg would be to corroborate the effectiveness
of the proposed PSD map estimator on real data comprisinipbpalistributed RF measurements. Upon

availability of such dataset, this direction will be purduend reported elsewhere.

C. Example with real data

The goal of this section is to demonstrate that the GLassoritlign in Section V can be useful for
applications other than the spline-based BEM for spectramography dealt with in Sections Ill and
IV. This demonstration will rely on the birthweight datagestm [14], considered also by the seminal
group-Lasso work of [29]. The objective is to predict the lambirthweight fromp = 8 factors including

the mother'sage, weight, race, smoke habits, number of previousremature labors, history of
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hypertension, uterineirritability, and number of physiciaisits during the first trimester
of pregnancy. Third-order polynomials were considered taleh nonlinear effects of thege andweight
on the response, augmenting the model size+012 by grouping the polynomial coefficients in two subsets
of three variables.

GLasso is run under this setup, over the sefNof= 189 samples, withu selected via 7-fold CV. Fig. 6

(right) depicts the evolution of the factors’ strength meas by ||, |

2, which — as expected — converge
to the same prediction model as in [29]. Additionally, GLa$s capable of determining that the eighth

factor (visits) is not significant even from the first iterations, allowirg £arly model selection.

VIl. CONCLUDING SUMMARY

A basis expansion approach was introduced in this papertimas a multi-dimensional field, whose
dependence on a subset of its variables is modeled throwselpcted (and generalgywerlapping basis
functions weighted by unknown coefficient-functions of tieenaining variables. The unknown coefficient
functions can be estimated from the field’s noisy samplesdbying a variational LS problem which admits
infinite solutions. Without extra constraints, the estieadfield interpolates perfectly the data samples, at the
price of severely overfitting the true field elsewhere. Thet fiontribution was to regularize this variational
LS cost by a smoothing term, which can afford a unique findeameter spline-based solution. The latter
is expressed in terms of radial kernels and polynomials elpasameters were estimated in closed form.
A recursive PSD tracker was also developed for slowly tirag/ng spectra.

The second main contribution pertains to a robust variatti@function estimator, when an overcomplete
set of bases is adopted to effectively accommodate modelrtaiaties. The novel estimator here minimizes
the variational LS cost regularized by a term that perfobasis selectionand thus yields a parsimonious
description of the field by retaining those few members of lihsis that “better” explain the data. This
attribute is achieved because the added penalty inducesup gG)Lasso estimator on the parameters of
the kernels and polynomials. Even though the number of umksdncreases with overcomplete bases,
most coefficients are zero, meaning that the complexity nesnat an affordable level using the sparsity-
promoting GLasso. Notwithstanding, (group-) Lasso hermtiduced to effect (group-) sparsity in the
space of smooth functions.

The third contribution is a provably convergent GLassaestor developed based on AD-MoM iterations.
It entails parallekclosed-formupdates, which involve simple vector soft-thresholdingragions per factor.
Its fully-distributed counterpart was also developed fee by a network of wireless sensors, or, multiple

processors to balance the load of a computational cludtés. worth stressing that both GLassso and
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DGLasso are standalone tools for sparse linear regresapplicable to a gamut of problems that go
beyond the field estimation context of this paper.

The fourth contribution is in the context of wireless CR netkv sensing (our overarching practical
motivation), where the overcomplete estimated field ersatdegtographing the space-frequency distribution
of power generated by RF sources whose transmit-PSDs apedhey, e.g., raised-cosine pulses with
possibly different roll-off factors, center frequenciasd bandwidths. Using periodogram samples collected
by spatially distributed CRs, the sparsity-aware splinsdal estimator yields an atlas BED mapqone
map per frequency). As corroborated by simulations, thesahables localizing the sources and discerning
their transmission parameters, even in the presence aidrary-selective Rayleigh fading and pronounced
shadowing effects due to e.g., an obstructing wall. Sinedi#sts also illustrated the convergence of Glasso,
and confirmed that the sparsity-promoting regularizatmeffective in selecting those basis functions that
strongly influence the field, when the tuning parameters svssevalidated properly.

Given the existing connections between splines and cilssstimators for both random and deterministic
field models, the spline-based methods developed in thisrgagovide a unifying framework suitable for
both paradigms. The model and the resultant (parsimoniestinates can thus be used in more general
statistical inference and localization problems, when¢kie data admit a basis expansion over a proper
subset of its dimensions. Furthermore, results in this pextend to kernels other than radial basis functions,
whenever the smoothing penalty is replaced by a norm indivoedan RKHS. Also of interest is to quantify
the number of data required to attain a prescribed apprdiamarror, in light of the existing connections

between spline-based reconstruction and Shannon’s sagnpleory [25].
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APPENDIX

A. Proof of Proposition 1: Rewrite (4) as

N, N 9
min [min ZZ (%%1) - gl(Xr)bl(fn)> + /\/R2 |1V2g1(x)|[7-dx

N,
{g.€8},t, $ES r=1n=1

Ny
22X [ 190
= (29)

with gpﬁl) = Opn — Zf,viz 9v(x,)b,(fn). Focusing on the inner minimization w.rg;, fix the set of
functions {gl,}]VVQQ, and note that only the first two terms are relevant (thosbiwithe square brackets).

It follows from [10, Theorem 4 bis] thaj; takes the form in (5), with coefficient8;, @11 and ayq that
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depend orG(-V := {g,(z,), r=1,..., Ny, v =2,...,N,} throughy',,"). The next step is to minimize

(29) w.r.t. go but with {g,}"", fixed, which amounts to

N, N
min 3237 (A = e ()~ atta()) 43 [ 900043 [ 1920
(30)
Wherego,(nf) = Prp — Z,J,Vig gv(%:)by(fr). In the first two summands of the cost in (39), depends on
g2 via G-V, Because?(—1) only involves evaluating, on X, [10, Theorem 4 bis] can be applied again,
and the optimal solutiop, takes the from (5). The same argument carries over to subsegqunimization
steps forv = 3,..., N, establishing that al{ g, (x)} are thin-plate splines as in (5).
B. Proof of (6)-(8): Upon substituting (5) into (4), it will shown next thdtet optimal coefficientétd,ﬁ}

specifying{g, (x) f,Vil are obtained as solutions to the following constrainedylergzed LS problem

. 1
min - ¢ — (BE K)B - (B o T)al; + A8 (Ly, © K)A
s. t. (INb & T/)ﬁ = 03y, . (31)

Observe first that the constraing, € B in Proposition 1 can be expressedB§3, = 03 for each
v=1,...,Ny, orjointly as(Iy, ® T')3 = Osy,. For the optimization objective in (31), note from (5) that
(%) = k.8, + ta,, wherek! andt!. are therth rows of K and T, respectively. The first term in the

cost of (4) can be expressed (up to a fagtdy.N)~!) as

N N, N, 2 N N, ,
Z Z (Sprn - Z bl/(fn)[k;“BI/ + t;“al/]> - Z ((Prn - (bn ® kr),ﬁ - (bn ® tr)/a)
n=1r=1 v=1 n=1r=1

N
= Y len— (b, 9K)B — (b, ® T)a|2
= - (BeK)B- BoT)als.

Consider next the penalty term in the cost of (4). Substituiinto (5), it follows that/,. |[V2g, (x)||F.dx =
B, K3, [26, p. 33]. It thus holds that

Ny N,
/\Z;/R2 ||V2§y(X)||%dx = AZ_:IB',/KIBV — /\IBI(INb ® K)IB

from which (31) follows readily.

Now that the equivalence between (4) and (31) has been istiadh] the latter must be solved farand
3. Even thoughK (hencel y, ® K) is not positive definite, it is still possible to show th#{(Iy, @ K)3 > 0
for any 3 such that(Iy, ® T')3 = O3y, [10, p. 85], implying that (31) is convex. Proceeding alohg t

lines of [26, p. 33], note first that the constraiflty, ® T')3 = 03y, implies the existence of a vector
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~ € RNM(N-=3) satisfying (8). After this change of variables, (31) is 8Bmmed into an unconstrained
quadratic program, which can be solved in closed form{ler~}. Hence, setting both gradients w.&t.
and~} to zero yields (6) and (7).

C. Proof of Proposition 2: After substituting (15) into (12), one finds the optimgk, 3} specifying

{3, (%)}, in (15), as solutions to the following constrained, regiakzd LS problem

Ny
. 1 2 !
mip 7 llo — (B2 K)B - (B® Tal; + A8 Ly, ®K)ﬂ+u; KB, + Tow,||2
s. t. (INb & T/)ﬁ = 03p, . (32)

With reference to (32), consider grouping and reordering variables{a, 3} in the vectoru :=
[uf,...,u)y ], whereu, := [, «;]'. As argued in Section Ill-A, the constrain®'3, = 0 can be
eliminated through the change of variables = bdiag Q2,I3)v, for v = 1,..., N,; or compactly as
u = (I, ® bdiag Q2,I3))v. The next step is to express the three summands in the co32pfn( terms
of the new vector optimization variable Noting thatk!.3, + t/.a,, = [k!. t/]u,, and mimicking the steps

in Appendix A, the first summand is

1 1
vl - BoKB-BeTal; = le - (BeK Thul;
1
=3 e — B2 [KQ, T)v];. (33)

The second summand due to the thin-plate penalty can bessqutes

Nb Nb Nb
A BKB, =AY ubdiagK,0)u, =AY v, bdiag Q,KQy, 0)v,,

v=1 v=1 v=1

= \V/(Iy, ® bdiag Q,KQo, 0))v (34)

while the last term isu 32", KB, + Tew s = p300 K Tl = p32)0 [[KQy Tlvy o
Combining (33) with (34) by completing the squares, probl{@2) is equivalent to

‘P][ B ® [KQ, T] 2

. 1
min

Ny
VNN o vi| Fu)y IKQ, Tivilz  (35)

Iy, ® bdiag (N, NAQ,KQ>)'/?,0) , vl

and becomes (13) under the identities (14), and after thegehaf variableg := [(7,..., (. ] = (I, ®

[KQ, T])v. By definition ofu, v, and¢, the original variables can be recovered through the toansttion
in (16).
D. Selection of the smoothing parameter in (4): The method to be developed builds on the so-termeddeave

one-out CV, which proceeds as follows; see e.g., [26, ChCéhsider removing a single data poipt,
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from the collection of N, N measurements available to the sensing radios. For a givéat i)&_r”) (x, f)
denote theleave-one-ouestimated PSD map, obtained by solving (4) following stefsSS in Section
[lI-A, using the N,. N — 1 remaining data points. The aforementioned estimationquoe is repeatey, N
times by leaving out each of the data poingts,, r = 1,...,N, andn = 1,..., N, one at a time. The
leave-one-out or ordinary CV (OCV) [13, p. 242], [26, p. 4f@r the problem at hand is given by

N, N
OCV(A) = NjN Z Z (@rn - (i)g\_m) (Xra fn))2 (36)

r=1n=1

while the optimum\ is selected as the minimizer of OCV), over a grid of values € [0, Ayax]. Function
(36) constitutes an average of the squared predictionsoeer all data points; hence, its minimization
offers a natural criterion. The method is quite computatigndemanding though, since the system of
linear equations (6)-(8) has to be solveégd N times for each value ok on the grid. Fortunately, this
computational burden can be significantly reduced for tHneybased PSD map estimator considered
here.

Recall the vectorp collecting all data points measured at locatidiand frequencies. Define next a
similar vectory containing the respective predicted values at the giveatimes and frequencies, which is
obtained after solving (4) with all the data ¢ and a given value ok. The following lemma establishes
that the PSD map estimator idimear smootherwhich means that the predicted values are linearly related
to the measurements, i.€,= S, for a \-dependent matri, to be determined. Common examples of
linear smoothers are ridge regressors and smoothing splmeher details are in [13, p. 153]. For linear

smoothers, by virtue of the leave-one-out lemma [26, p. 8] possible to rewrite (36) as
N. N ~ 2
_ 1 - Prn — <D>\(Xr> fn)
OV = 5y 22 ( = [Siln 37

Whereé?A(x, f) stands for the estimated PSD map when all data ere utilized in (4). The beauty of the

leave-one-out lemma stems from the fact that gixeand the main diagonal of matri,, the right-hand
side of (37) indicates that fitting a single model (rathemt?§ NV of them) suffices to evaluate OQY).

The promised lemma stated next specifies the valug,ofiecessary to evaluate (37).

Lemma 3: The PSD map estimator i) is a linear smoother, with smoothing matrix given by

S) = (B®{KQ, - TR'Q|KQ,})[(B'B® Q,KQ3) + N,NXI| (B ® Q))

+Br'o '« TR'Q)). (38)
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Proof: Reproduce the structure ¢f in Section llI-A to form the supervectap := [@),..., @] €
RN-N by stacking each vectap, := [®(x1, fn), ..., Pr(xn., fn)] corresponding to the spatial PSD
predictions at frequency, € F. From (5), it follows thati))\(xr, fn) = (bn®kr)’6 — (b, ®t,) &, where
b/, k.. andt are thenth andrth rows of B, K andT, respectively. By stacking the PSD map estimates,

it follows that ¢,, = (b}, ® K)3 — (b!, ® T)é&, which readily yields

N

¢=BeK)B- (BoT)a. (39)

Because the estimategsi,f}} are linearly related to the measuremegtgcf. (6)-(8)], so is¢ as per (39),

establishing that the PSD map estimator in (4) is indeedeafismoother. Next, solve explicitly f({ﬁ,ﬁ}

in (6)-(8) and substitute the results in (39), to unvelil theicure of the smoothing matri®, such that

@ = S,p. Simple algebraic manipulations lead to the expressioh (38 [ |
The effectiveness of the leave-one-out CV approach is boraged via simulations in Section VI.

E. Proof of (24)(27). Recall the augmented Lagrangian function in (23), and¢let= {¢,},er for

notational brevity. When used to solve (22), the three sietee AD-MoM are given by:

[S1] Local estimate updates:
C(k+1) =arg mgin Lc[¢, (k) v(k)]. (40)

[S2] Auxiliary variable updates:

y(k+1) = argmin L [C(k + 1), 5, v(k)]. (41)
[S3] Multiplier updates:
vr(k+1) = vp(k) + c[¢r (k4 1) = e (k + 1)] (42)
Vi (k4 1) = (k) + G (k1) =, (k+1)] (43)
Vi (k4 1) =97 (k) + c[G (k+1) =) (k+ 1)). (44)

Focusing first on [S2], observe that (23) is separable adtsgollection of variableg~;} and {v"'}
that comprisey. The minimization w.r.t. the latter group reduces to

/

A 1) = argmi |7 = Gk + 1) Gl 1) Jf = (77 () + 97 (1))

= %(Q(k +1) + Gk + 1)) + i (\"?/(k) + ‘“f?'(’f)>

= (G )+ D). (45)
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The result in (45) assumes thaf (k) + v (k) = 0, Vk. A simple inductive argument over (43), (44)
and (45) shows that this is indeed true if the multipliers iaitialized such thaw’ (0) + v (0) = 0.
The remaining minimization in (41) with respect{g, } decouples intaV, quadratic sub-problems [cf.

(23)], that is
o1 c
77‘(]{7 + 1) = arg I%ln 5 HYT - Xr')’r”% - V;(k)‘ﬁ" + 5”@"(1{7 + 1) - 77‘”%

which admit the closed-form solutions in (27).
In order to obtain the update (24) for the priges consider their definition together with (43), (44) and
(45) to obtain
po(k+1) = > (Vi (k+1)+Vi(k+1))
r'eN.

=S (F R+ ®) + X (26 (k1) — 7 (k) — ()

r'eN,. r'eN.,.

= pr(k) tc Z (Cr(k + 1) - Cr/(k + 1))
r'eN,

which coincides with (24).
Towards obtaining the updates for the local variableg,ithe optimization (40) in [S1] can be also split

into N, sub-problems, namely

Nb /
Gk + 1) = arg min {ﬁ S lGrllz +vik)G + 516 —w®@IF+ Y [v ) + 95 (0)] ¢
" " u=1

+g > [HQ — R+ 11 — %’f/(k)H%} }

r’eN,.

N, !
= arg min { % > ell2 — (c > (Q(k:) + C,,/(k:)) + ey, (k) — pr(k) — vr(k‘)> ¢
" " u=1

r'eN.,.
C
+ 5(1 + 2‘NT’)HCTH% } .

Upon dividing byc(142|N;.|) each subproblem becomes identical to problem (19), andah#soposition
2 takes the form of (26).
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Fig. 1. Expansion with overlapping raised cosine pulses.
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Fig. 2. (left) Position of sources and obstructing wallgf) PSD generated by the active transmitters.
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Fig. 3. (left) Aggregate map estimate in dB; (right) erroplexion of the GLasso updates
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(left) Group-Lasso path of solutiofig. ||2 asu varies; (right) factors affecting birthweight, evolutiof GLasso iterates.
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