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Abstract

The unceasing demand for continuous situational awarenesscalls for innovative and large-scale signal

processing algorithms, complemented by collaborative andadaptive sensing platforms to accomplish the

objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based

approach to field estimation, which relies on a basis expansion model of the field of interest. The model

entails known bases, weighted by generic functions estimated from the field’s noisy samples. A novel field

estimator is developed based on a regularized variational least-squares (LS) criterion that yields finitely-

parameterized (function) estimates spanned by thin-platesplines. Robustness considerations motivate well

the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer

augmenting the LS cost endows the estimator with the abilityto select a few of these bases that “better”

explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-

based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline

expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using

a network of wireless sensors, or, using multiple processors to balance the load of a single computational

unit. The novel spline-based approach is motivated by aspectrum cartographyapplication, in which

a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and

frequency. Simulated tests corroborate that the estimatedpower spectrum density atlas yields the desired

RF state awareness, since the maps reveal spatial locationswhere idle frequency bands can be reused for

transmission, even when fading and shadowing effects are pronounced.
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I. INTRODUCTION

Well-appreciated as a tool for field estimation, thin-plate(smoothing) splines find application in areas as

diverse as climatology [27], image processing [9], and neurophysiology [21]. Spline-based field estimation

involves approximating a deterministic mapg : Rn → R from a finite number of its noisy data samples, by

minimizing a variational least-squares (LS) criterion regularized with a smoothness-controlling functional. In

the dilemma of trusting a model versus trusting the data, splines favor the latter since only a mild regularity

condition is imposed on the derivatives ofg, which is otherwise treated as a generic function. While this

generality is inherent to the variational formulation, thesmoothness penalty renders the estimated map

unique and finitely parameterized [10, p. 85], [26, p. 31]. With the variational problem solution expressible

by polynomials and specific kernels, the aforementioned mapapproximation task reduces to a parameter

estimation problem. Consequently, thin-plate splines operate as a reproducing kernel Hilbert space (RKHS)

learning machine in a suitably defined (Sobolev) space [26, p. 34].

Although splines emerge as variational LS estimators ofdeterministicfields, they are also connected to

classes of estimators forrandomfields. The first class assumes that estimators are linearly related to the

measured samples, while the second one assumes that fields are Gaussian distributed. The first corresponds

to the Kriging method while the second to the Gaussian process model; but in both cases one deals with

a best linear unbiased estimator (BLUE) [24]. Typically, wide sense stationarity is assumed for the field’s

spatial correlation needed to form the BLUE. The so-termed generalized covariance model adds a parametric

nonstationary term comprising known functions specified a priori [17]. Inspection of the BLUE reveals

that if the nonstationary part is selected to comprise polynomials, and the spatial correlation is chosen to

be the splines kernel, then the Kriging, Gaussian process, and spline-based estimators coincide [26, p. 35].

Bearing in mind this unifying treatment of deterministic and random fields, the main subjects of this

paper are spline-based estimation, and the practically motivatedsparse(and thus parsimonious) description

of the wanted field. Toward these goals, the following basis expansion model (BEM) is adopted for the

target map

Φ(x, f) =

Nb∑

ν=1

gν(x)bν(f) (1)

with x ∈ R
2, f ∈ R, and theL2−norms{||bν(f)||L2

= 1}Nb

ν=1 normalized to unity.

The bases{bν(f)}Nb

ν=1 are preselected, and the functionsgν(x) are to be estimated based on noisy

samples ofΦ. This way, the model-versus-data balance is calibrated by introducing a priori knowledge on

the dependence of the mapΦ with respect to (w.r.t.) variablef , or more generally a group of variables,

while trusting the data to dictate the functionsgν(x) of the remaining variablesx.
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Consider selectingNb basis functions using thebasis pursuitapproach [8], which entails an extensive

set of bases thus renderingNb overly large and the model overcomplete. This motivates augmenting the

variational LS problem with a suitable sparsity-encouraging penalty, which endows the map estimator with

the ability to discard factorsgν(x)bν(f) in (1), only keeping a few bases that “better” explain the data.

This attribute is inherited because the novel sparsity-aware spline-based method of this paper induces a

group-Lasso estimator for the coefficients of the optimal finitely-parameterizedgν . Group-Lasso estimators

are known to set groups of weak coefficients to zero (here theNb groups associated with coefficients per

gν), and outperform the sparsity-agnostic LS estimator by capitalizing on the sparsity present [29], [22]. An

iterative group-Lasso algorithm is developed that yields closed-form estimates per iteration. A distributed

version of this algorithm is also introduced for data collected by cooperating sensors, or, for computational

load-balancing of multiprocessor architectures. A related approach to model selection in nonparametric

regression is the component selection and smoothing operator (COSSO) [16]. Different from the approach

followed here, COSSO is limited to smoothing-spline, analysis-of-variance models, where the target function

is assumed to be expressible by a superposition oforthogonalcomponent functions. Compared to the single

group-Lasso estimate here, COSSO entails an iterative algorithm, which alternates through a sequence of

smoothing spline [13, p. 151] and nonnegative garrote [7] subproblems.

The motivation behind the BEM in (1) comes from our interest in spectrum cartography for wireless

cognitive radio(CR) networks, asensingapplication that serves as an illustrating paradigm throughout the

paper. CR technology holds great promise to address fruitfully the perceived dilemma of bandwidth under-

utilization versus spectrum scarcity, which has rendered fixed-access communication networks inefficient.

Sensing the ambient interference spectrum is of paramount importance to the operation of CR networks,

since it enables spatial frequency reuse and allows for dynamic spectrum allocation; see, e.g., [11], [19]

and references therein. Collaboration among CRs can markedly improve the sensing performance [23],

and is key to revealing opportunities for spatial frequencyreuse [20]. Pertinent existing approaches have

mostly relied on detecting spectrum occupancy per radio, and do not account for spatio-temporal changes

in the radio frequency (RF) ambiance, especially at intended receiver(s) which may reside several hops

away from the sensed area.

The impact of this paper’s novel field estimators to CR networks is a collaborative sensing scheme

whereby receiving CRs cooperate to estimate the distribution of power in spacex and frequencyf , namely

the power spectrum density (PSD) mapΦ(x, f) in (1), from local periodogram measurements. The estimator

need not be extremely accurate, but precise enough to identify spectrum holes. This justifies adopting the

known bases to capture the PSD frequency dependence in (1). As far as the spatial dependence is concerned,
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the model must account for path loss, fading, mobility, and shadowing effects, all of which vary with the

propagation medium. For this reason, it is prudent to let thedata dictate the spatial component of (1).

Knowing the spectrum at any location allows remote CRs to reuse dynamically idle bands. It also enables

CRs to adapt their transmit-power so as to minimally interfere with licensed transmitters. The spline-based

PSD map here provides an alternative to [4], where known bases are used both in space and frequency.

Different from [1] and [4], the field estimator here does not presume a spatial covariance model or pathloss

channel model. Moreover, it captures general propagation characteristics including both shadowing and

fading; see also [15].

Notation:Bold uppercase letters will denote matrices, whereas bold lowercase letters will stand for column

vectors. Operators⊗, (.)′, tr(.), rank(.), bdiag(.), E[·] will denote Kronecker product, transposition, matrix

trace, rank, block diagonal matrix and expectation, respectively; |.| will be used for the cardinality of a set,

and the magnitude of a scalar. TheL2 norm of functionb : R → R is ||b||2L2

:=
∫∞
−∞ b2(f)df , while the

ℓp norm of vectorx ∈ R
p is ‖x‖p := (

∑p
i=1 |xi|p)

1/p for p ≥ 1; and‖M‖F :=
√

tr (MM′) is the matrix

Frobenious norm. Positive definite matrices will be denotedby M ≻ 0. Thep× p identity matrix will be

represented byIp, while 0p will denote thep × 1 vector of all zeros, and0p×q := 0p0
′
q. The i-th vector

in the canonical basis forRp will be denoted byep,i, i = 1, . . . , p.

II. BEM FOR SPECTRUM CARTOGRAPHY

Consider a set ofNs sources transmitting signals{us(t)}Ns

s=1 using portions of the overall bandwidthB.

The objective of revealing which of these portions (sub-bands) are available for new systems to transmit,

suggests that the PSD estimate sought does not need to be super accurate. This motivates modeling the

transmit-PSD of eachus(t) as

Φs(f) =

Nb∑

ν=1

θsνbν(f), s = 1, . . . , Ns (2)

where the basisbν(f) is centered at frequencyfν, ν = 1, . . . , Nb. The example depicted in Fig. 1 involves

(generallyoverlapping) raised cosine bases with supportBν = [fν − (1+ρ)/2Ts, fν +(1+ρ)/2Ts], where

Ts is the symbol period, andρ stands for the roll-off factor. Such bases can model transmit-spectra of

e.g., multicarrier systems. In other situations, power spectral masks may dictate sharp transitions between

contiguous sub-bands, cases in which non-overlapping rectangular bases may be more appropriate. All in

all, the set of bases should be selected to accommodate a priori knowledge about the PSD.

The power transmitted by sources will propagate to the locationx ∈ R
2 according to a generally

unknown spatial loss functionls(x) : R2 → R. The propagation modells(x) not only captures frequency-

flat deterministic pathloss, but also stationary, block-fading and even frequency-selective Rayleigh channel
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effects, since their statistical moments do not depend on the frequency variable. In this case, the following

vanishing memory assumption is required on the transmittedsignals for the spatial receive-PSDΦ(x, f)

to be factorizable asls(x)Φs(f); see [4] for further details.

(as) Sources{us(t)}Ns

s=1 are stationary, mutually uncorrelated, independent of thechannels, and have

vanishing correlation per coherence interval; i.e.,rss(τ) := E[us(t+ τ)us(t)] = 0, ∀ |τ | > Tc −L, where

Tc andL represent the coherence interval and delay spread of the channels, respectively.

Under (as), the contribution of sources to the PSD at pointx is ls(x)
∑Nb

ν=1 θsνbν(f); and the PSD due

to all sources received atx will be given byΦ(x, f) =
∑Ns

s=1 ls(x)
∑Nb

ν=1 θsνbν(f). Such a model can be

simplified by defining the functiongν(x) :=
∑Ns

s=1 θsν ls(x). With this definition and upon exchanging the

order of summation, the spatial PSD model takes the form in (1), where functions{gν(x)}Nb

ν=1 are to be

estimated. They represent the aggregate distribution of power across space corresponding to the frequencies

spanned by the bases{bν}. Observe that the sources are not explicitly present in (1).Even if this model

could have been postulated directly for the cartography task at hand, the previous discussion justifies the

factorization of theΦ(x, f) map per band in factors depending on each of the variablesx andf .

III. C OOPERATIVE SPLINE-BASED PSD FIELD ESTIMATION

The sensing strategy will rely on the periodogram estimateφ̂rn(τ) at a set of receiving (sampling)

locationsX := {xr}Nr

r=1 ∈ R
2, frequenciesF := {fn}Nn=1 ∈ B, and time-slots{τ}Tτ=1. In order to

reduce the periodogram variance and mitigate fading effects, φ̂rn(τ) is averaged across a window ofT

time-slots [4], to obtain

ϕrn :=
1

T

T∑

τ=1

φ̂rn(τ). (3)

Hence, the envisioned setup consists ofNr receiving CRs, which collaborate to construct the PSD map

based on PSD observations{ϕrn}. The bulk of processing is performed centrally at a fusion center (FC),

which is assumed to know the position vectorsX of all CRs, and the sensed tones inF . The FC receives

over a dedicated control channel, the vector of samplesϕr := [ϕr1, . . . , ϕrN ]′ ∈ R
N taken by noder for

all r = 1, . . . , Nr.

While a BEM could be introduced for the spatial loss functionls(x) as well [4], the uncertainty on the

source locations and obstructions in the propagation medium may render such a model imprecise. This

will happen, e.g., when shadowing is present. The alternative approach followed here relies on estimating

the functionsgν(x) based on the data{ϕrn}. To capture the smooth portions ofΦ(x, f), the criterion for

selectinggν(x) will be regularized using a so termed thin-plate penalty [26, p. 30]. This penalty extends to
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R
2 the one-dimensional roughness regularization used in smoothing spline models. Accordingly, functions

{gν}Nb

ν=1 are estimated as

{ĝν}Nb

ν=1 := argmin
{gν∈S}

1

NrN

Nr∑

r=1

N∑

n=1

(
ϕrn −

Nb∑

ν=1

gν(xr)bν(fn)

)2

+ λ

Nb∑

ν=1

∫

R2

||∇2gν(x)||2F dx (4)

where||∇2gν ||F denotes the Frobenius norm of the Hessian ofgν .

The optimization is overS, the space of Sobolev functions, for which the penalty is well defined [10,

p. 85]. The parameterλ ≥ 0 controls the degree of smoothing. Specifically, forλ = 0 the estimates in (4)

correspond torough functions interpolating the data; while asλ → ∞ the estimates yield linear functions

(cf. ∇2ĝν(x) ≡ 02×2). A smoothing parameter in between these limiting values will be selected using a

leave-one-out cross-validation (CV) approach, as discussed later.

A. Thin-plate splines solution

The optimization problem (4) is variational in nature, and in principle requires searching over the infinite-

dimensional functional spaceS. It turns out that (4) admits closed-form, finite dimensional minimizers

ĝν(x), as presented in the following proposition which provides ageneralization of standard thin-plate

splines results; see e.g., [26, p.31], to the multi-dimensional BEM (1).

Proposition 1: The estimates{ĝν}Nb

ν=1 in (4) are thin-plate splines expressible in closed form as

ĝν(x) =

Nr∑

r=1

βνrK(||x− xr||2) +α′
ν1x+ αν0 (5)

whereK(ρ) := ρ2 log(ρ), and βν := [βν1, . . . , βνNr
]′ is constrained to the linear subspaceB := {β ∈

R
Nr :

∑Nr

r=1 βr = 0,
∑Nr

r=1 βrxr = 02, xr ∈ X} for ν = 1, . . . , Nb.

The proof of this proposition is given in Appendix A.

Remark 1 (Overlapping frequency basis). If the basis functions{bν(f)} have finite supports which

do not overlap, then (4) decouples pergν , and thus the results in [10], [26] can be applied directly. The

novelty of Proposition 1 is that the basis functions with spatial spline coefficients in (1) are allowed to be

overlapping. The implication of Proposition 1 is finite parametrizationof the PSD map [cf. (5)]. This is

particularly important for non-FDMA based CR networks. In the forthcoming Section IV, an overcomplete

set{bν} is adopted in (1), and overlapping bases naturally arise therein.

What is left to determine are the parametersα := [α10,α
′
11, . . . , αNb0,α

′
Nb1

]′ ∈ R
3Nb , and β :=

[β′
1, . . . ,β

′
Nb

]′ ∈ R
NrNb in (5). To this end, define the vectorϕ := [ϕ11, . . . , ϕ1N , . . . , ϕNr1, . . . , ϕNrN ]′ ∈

R
NrN containing the network-wide data obtained at all frequencies inF . Three matrices are also introduced

collecting the regression inputs: i)T ∈ R
Nr×3 with rth row t′r := [1x′

r] for r = 1, . . . , Nr andxr ∈ X ; ii)
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B ∈ R
N×Nb with nth row b′

n := [b1(fn), . . . , bNb
(fn)] for n = 1, . . . , N ; and iii) K ∈ R

Nr×Nr with ij-th

entry [K]ij := K(||xi−xj||) for xi,xj ∈ X . Consider also the QR decompositions ofT = [Q1 Q2] [R
′ 0]′

andB = [Ω1 Ω2] [Γ
′ 0]′.

Upon plugging (5) into (4), it is shown in Appendix B that the optimal {α,β} satisfy the following

system of equations

(B⊗Q′
2)ϕ =

[
(B′B⊗Q′

2KQ2) +NrNλINb(Nr−3)

]
γ̂ (6)

[Γ⊗R]α̂ = (Ω′
1 ⊗Q′

1)ϕ− (Γ⊗Q′
1KQ2)γ̂ (7)

β̂ = (INb
⊗Q2)γ̂. (8)

Matrix Q′
2KQ2 is positive definite, and rank(Γ⊗R) = rank(Γ)rank(R); see e.g., [18]. It thus follows

that (6)-(7) admit a unique solution if and only ifΓ and R are invertible (correspondingly,B and T

have full column rank). These conditions place practical constraints that should be taken into account

at the system design stage. Specifically,T has full column rank if and only if the points inX , i.e.,

the CR locations, are not aligned. Furthermore,B will have linearly independent columns provided the

basis functions{bν(f)}Nb

ν=1 comprise a linearly independent and complete set, i.e.,B ⊆ ⋃ν Bν . Note that

completeness precludes all frequencies{fn}Nn=1 from falling outside the aggregate support of the basis set,

hence preventing undesired all-zero columns inB.

Remark 2 (Practicality of uniqueness conditions). The condition onX does not introduce an actual

limitation as it can be easily satisfied in practice, especially when the CRs are randomly deployed. Likewise,

the basis set is part of the system design, and can be chosen tosatisfy the conditions onB. Nonetheless,

these conditions will be bypassed in Section IV by allowing for an overcomplete set of functions{bν}.

The combined results in this section can be summarized in thefollowing steps constituting the spline-

based spectrum cartography algorithm, which amounts to estimatingΦ(x, f):

S1. Givenϕ, solve (6)-(8) forα̂, β̂, after selectingλ as detailed in Appendix D.

S2. Substituteα̂ and β̂ into (5) to obtain{ĝν(x)}Nb

ν=1.

S3. Use{ĝν(x)}Nb

ν=1 in (1) to estimateΦ(x, f).

B. PSD tracker

The real-time requirements on the sensing radios and the convenience of an estimator that adapts to

changes in the spectrum map are the motivating reasons behind the PSD tracker introduced in this section.

The spectrum map estimator will be henceforth denoted byΦ(x, f, τ), to make its time dependence explicit.
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Define the vector̂φn(τ) := [φ̂1n(τ), . . . , φ̂Nrn(τ)]
′ of periodogram samples taken at frequencyfn by

all CRs, and form the supervector̂φ(τ) := [φ̂′
1(τ), . . . , φ̂

′
N (τ)]′ ∈ R

NrN . Per time-slotτ = 1, 2, . . ., the

periodogramφ̂(τ) is averaged using the following adaptive counterpart of (3):

ϕ(τ) :=

τ∑

τ ′=1

δτ−τ ′

φ̂(τ ′) = δϕ(τ − 1) + φ̂(τ) (9)

which implements an exponentially weighted moving averageoperation with forgetting factorδ ∈ (0, 1).

For everyτ , the online estimatorΦ(x, f, τ) is obtained by plugging in (1) the solution{ĝν(x, τ)}Nb

ν=1

of (4), after replacingϕrn with ϕrn(τ) [cf. the entries of the vector in (9)]. In addition to mitigating

fading effects, this adaptive approach can track slowly time-varying PSDs because the averaging in (9)

exponentially discards past data.

Suppose that per time-slotτ , the FC receives raw periodogram samplesφ̂(τ) from the CRs in order

to updateΦ(x, f, τ). The results of Section III apply for everyτ , meaning that{ĝν(x, τ)}Nb

ν=1 are given

by (5), while the optimum coefficients{α̂(τ), β̂(τ)} are found after solving (6)-(8). Capitalizing on (9),

straightforward manipulations of (6)-(8) show that{α̂(τ), β̂(τ)} are recursively given for allτ ≥ 1 by

β̂(τ) = δβ̂(τ − 1) + (INb
⊗Q2)G1φ̂(τ) (10)

α̂(τ) = δα̂(τ − 1) +G2φ̂(τ) (11)

where thetime-invariantmatricesG1 andG2 are

G1 :=
[
(B′B⊗Q′

2KQ2) +NrNλINb(Nr−3)

]−1
(B⊗Q′

2)

G2 := [Γ⊗R]−1
[
(Ω′

1 ⊗Q′
1)− (Γ⊗Q′

1KQ2)G1

]
.

Recursions (10)-(11) provide a means to updateΦ(x, f, τ) sequentially in time, by incorporating the newly

acquired data from the CRs in̂φ(τ). There is no need to separately updateϕ(τ) as in (9), yet the desired

averaging takes place. Furthermore, matricesG1 andG2 need to be computed only once, during the startup

phase of the network.

IV. GROUP-LASSO ONSPLINES

An improved spline-based PSD estimator is developed in thissection to fit the unknown spatial functions

{gν}Nb

ν=1 in the modelΦ(x, f) =
∑Nb

ν=1 gν(x)bν(f), with a large (Nb ≫ NrN ), and a possibly overcomplete

set of known basis functions{bν}Nb

ν=1. These models are particularly attractive when there is an inherent

uncertainty on the transmitters’ parameters, such as central frequency and bandwidth of the pulse shapers;

or, e.g., the roll-off factor when raised-cosine pulses areemployed. In particular, adaptive communication
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schemes rely on frequently adjusting these parameters [12,Ch. 9]. A sizeable collection of bases to

effectively accommodate most of the possible cases provides the desirable robustness. Still, prior knowledge

available on the incumbent communication technologies being sensed should be exploited to choose the

most descriptive classes of basis functions; e.g., a large set of raised-cosine pulses. This knowledge justifies

why known bases are selected to describe frequency characteristics of the PSD map, while a variational

approach is preferred to capture spatial dependencies.

In this context, the envisioned estimation method should provide the CRs with the capability of selecting

a few bases that “better explain” the actual transmitted signals. As a result, most functionsgν are expected

to be identically zero; hence, there is an inherent form of sparsity present that can be exploited to improve

estimation. The rationale behind the proposed approach canbe rooted in thebasis pursuitprinciple, a term

coined in [8] for finding the most parsimonious sparse signalexpansion using an overcomplete basis set.

A major differentiating aspect however, is that while the sparse coefficients in the basis expansions treated

in [8] are scalars, model (1) here entails bases weighted by functionsgν .

The proposed approach to sparsity-aware spline-based fieldestimation from the space-frequency power

spectrum measurementsϕrn [cf. (3)], is to obtain{ĝν}Nb

ν=1 as

{ĝν}Nb

ν=1 := argmin
{gν∈S}

1

NrN

Nr∑

r=1

N∑

n=1

(
ϕrn −

Nb∑

ν=1

gν(xr)bν(fn)

)2

+ λ

Nb∑

ν=1

∫

R2

||∇2gν(x)||2F dx

+µ

Nb∑

ν=1

∥∥[gν(x1), . . . , gν(xNr
)]′
∥∥
2
. (12)

Relative to (4), the cost here is augmented with an additional regularization term weighted by a tuning

parameterµ ≥ 0. Clearly, if µ = 0 then (12) boils down to (4). To appreciate the role of the new penalty

term, note that the minimization of
∥∥[gν(x1), . . . , gν(xNr

)]′
∥∥
2

intuitively shrinks all pointwise functional

values{gν(x1), . . . , gν(xNr
)} to zero for sufficiently largeµ. Interestingly, it will be shown in the ensuing

section that this is enough to guarantee thatĝν(x) ≡ 0 ∀x, for µ large enough.

A. Estimation using the group-Lasso

Consider the classical problem of linear regression; see, e.g. [13, p. 11], where a vectory ∈ R
n of

observations is available, along with a matrixX ∈ R
n×p of inputs. The group Lasso estimate for the vector

of featuresζ := [ζ ′1, . . . , ζ
′
Nb

]′ ∈ R
p is defined as the solution to [3], [29]

min
ζ

1

2
‖y−Xζ‖22 + µ

Nb∑

ν=1

‖ζν‖2. (13)
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This criterion achieves model selection by retaining relevant factorsζν ∈ R
p/Nb in which the features

are grouped. In other words, group-Lasso encourages sparsity at the factor level, either by shrinking to

zero all variables within a factor, or by retaining them altogether depending on the value of the tuning

parameterµ ≥ 0. As µ is increased, more sub-vector estimatesζν become zero, and the corresponding

factors drop out of the model. It can be shown from the Karush-Kuhn-Tucker optimality conditions that

only for µ ≥ µmax := maxi ‖X′
iy‖2 it holds thatζ1 = . . . = ζNb

= 0p/Nb
, so that the values of interest

areµ ∈ [0, µmax] [2].

The connection between (13) and the spline-based field estimator (12) builds on Proposition 1, which still

holds in this context. That is, even though criteria (4) and (12) purposely differ, their respective solutions

ĝν(x) have the same form in (5). Indeed, the adaptation of the proofin Appendix A to the new case

is straightforward, since the additional penalty term in (12) depends ongν evaluated at the knots. The

essential difference manifested by this penalty is revealed when estimating the parametersα andβ in (5),

as presented in the following proposition.

Proposition 2: The spline-based field estimator(12) is equivalent to group-Lasso(13), under the identities

y :=
1√
NrN

[ϕ′, 0]′, X :=
1√
NrN


 B⊗ INr

INb
⊗
{

bdiag((NrNλQ′
2KQ2)

1/2,0)[KQ2 T]−1
}


 (14)

with their respective solutions related by

ĝν(x) =

Nr∑

r=1

βνrK(||x− xr||2) +α′
ν1x+ αν0 (15)

[
β′
ν ,α

′
ν

]′
= bdiag(Q2, I3)[KQ2 T]−1ζ̂ν (16)

whereβν := [βν1, . . . , βνNr
]′ andαν := [αν0,α

′
ν1]

′.

The factors{ζν}Nb

ν=1 in (13) are in one-to-one correspondence with the vectors{[β′
ν ,α

′
ν ]

′}Nb

ν=1 through

the linear mapping (16). This implies that whenever a factorζν is dropped from the linear regression model

obtained after solving (13), then̂gν(x) ≡ 0, and the term corresponding tobν(f) does not contribute to (1).

Hence, by appropriately selecting the value ofµ, criterion (12) has the potential of retaining only the most

significant terms inΦ(x, f) =
∑Nb

ν=1 gν(x)bν(f), and thus yields parsimonious PSD map estimates. All in

all, the motivation behind the variational problem (12) is now unravelled. The additional penalty term not

present in (4) renders (12) equivalent to a group-Lasso problem. This enforces sparsity in the parameters

of the splines expansion forΦ(x, f) at a factor level, which is exactly what is needed to potentially null

the less descriptive functionsgν .

Remark 3 (Comparison with the PSD map estimator in Section III). The sparsity-agnostic LS problem
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(4) will not give rise to identically zero vectors{αν ,βν}, for anyν. Even whenNb is not large, a sparsity-

aware estimator will perform better if the underlying PSD isgenerated by a few basis functions. This is

expected since the out-of-band residual error will increase when all basis functions enter the model (1); see

also [4] for a related assessment. What is more, when the number of bases is sufficiently large (Nb ≫ NrN )

matrix B is fat, and the approach in Section III is not applicable . On the other hand, it is admittedly more

complex computationally to solve (13) than the system of linear equations (6)-(8). Because (12) is not a

linear smoother, a leave-one-out (bi-) CV approach to select the tuning parametersλ andµ does not enjoy

the computational savings detailed in Appendix D.K-fold CV can be utilized instead, with typical choices

of K = 5 or 10, as suggested in [13, p. 242].

The group-Lassoed splines-based approach to spectrum cartography developed in this section can be

summarized in the following steps to estimate the global PSDmapΦ(x, f):

S1. Givenϕ and utilizing any group Lasso solver, obtain̂ζ := [ζ̂ ′1, . . . , ζ̂
′
Nb

]′ by solving (13).

S2. Form the estimateŝα, β̂ using the change of variables[β̂′
ν , α̂

′
ν ]

′ = bdiag(Q2, I3)[KQ2 T]−1ζ̂ν

for ν = 1, . . . , Nb.

S3. Substituteα̂ and β̂ into (15) to obtain{ĝν(x)}Nb

ν=1.

S4. Use{ĝν(x)}Nb

ν=1 in (1) to estimateΦ(x, f).

Implementing S1-S4 presumes that CRs communicate their local PSD estimates to a fusion center, which

uses their aggregation inϕ to estimate the field. But what if an FC is not available for centrally running

S1-S4? In certain cases, forgoing with an FC is reasonable when the designer wishes to avoid an isolated

point of failure, or, aims at a network topology which scaleswell with an increasing number of CRs based

on power considerations (CRs located far away from the FC will drain their batteries more to reach the

FC). These reasons motivate well a fully distributed counterpart of S1-S4, which is pursued next.

V. D ISTRIBUTED GROUP-LASSO FORIN-NETWORK SPECTRUM CARTOGRAPHY

ConsiderNr networked CRs that are capable of sensing the ambient RF spectrum, performing some

local computations, as well as exchanging messages among neighbors via dedicated control channels. In

lieu of a fusion center, the CR network is naturally modeled as an undirected graphG(R, E), where the

vertex setR := {1, . . . , Nr} corresponds to the sensing radios, and the edges inE represent pairs of CRs

that can communicate. Radior ∈ R communicates with its single-hop neighbors inNr, and the size of

the neighborhood is denoted by|Nr|. The locations{xr}Nr

r=1 := X of the sensing radios are assumed

known to the CR network. To ensure that the measured data froman arbitrary CR can eventually percolate

throughout the entire network, it is assumed that the graphG is connected; i.e., there exists a (possibly)
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multi-hop communication path connecting any two CRs.

For the purpose of estimating an unknown vectorζ :=
[
ζ ′1, . . . , ζ

′
Nb

]′ ∈ R
p, each radior ∈ R has

available a local vector of observationsyr ∈ R
nr as well as its own matrix of inputsXr ∈ R

nr×p. Radios

collaborate to form the wanted group-Lasso estimator (13) in a distributed fashion, using

ζ̂glasso= arg min
ζ

1

2

Nr∑

r=1

‖yr −Xrζ‖22 + µ

Nb∑

ν=1

‖ζν‖2 (17)

wherey := [y′
1, . . . ,y

′
Nr

]′ ∈ R
n×1 with n :=

∑Nr

r=1 nr, andX := [X′
1, . . . ,X

′
Nr

]′ ∈ R
n×p. The motivation

behind developing a distributed solver of (17) is to tackle (12) based on in-network processing of the local

observationsϕr := [ϕr1, . . . , ϕrN ]′ available per radio [cf. (3)]. Indeed, it readily follows that (17) can be

used instead of (13) in Proposition 2 when

yr :=
1√
NrN


 ϕr

0


 , Xr :=

1√
NrN


 B⊗ e′Nr,r

INb
⊗
[
bdiag((NrNλQ′

2KQ2)
1/2,0)[KQ2 T]−1

]


 , r ∈ R

corresponding to the identificationsnr = N ∀r ∈ R, p = NbNr. Note that because the locations{xr} are

assumed known to the entire network, CRr can form matricesT, K, and thus, the local regression matrix

Xr.

A. Consensus-based reformulation of the group-Lasso

To distribute the cost in (17), replace theglobal variable ζ which couples the per-agent summands

with local variables{ζr}Nr

r=1 representing candidate estimates ofζ per sensing radio. It is now possible to

reformulate (17) as a convexconstrainedminimization problem

{
ζ̂r

}Nr

r=1
= arg min

{ζr}

1

2

Nr∑

r=1

[
‖yr −Xrζr‖22 +

2µ

Nr

Nb∑

ν=1

‖ζrν‖2
]

(18)

s. t. ζr = ζr′ , r ∈ R, r′ ∈ Nr, ζr :=
[
ζ ′r1, . . . , ζ

′
rNb

]′
.

The equality constraints directly effect local agreement across each CR’s neighborhood. Since the commu-

nication graphG is assumed connected, these constraints also ensureglobal consensus a fortiori, meaning

thatζr = ζr′ , ∀r, r′ ∈ R. Indeed, letP (r, r′) : r, r1, r2, . . . , rn, r
′ denote a path onG that joins an arbitrary

pair of CRs(r, r′). Because contiguous radios in the path are neighbors by definition, the corresponding

chain of equalitiesζr = ζr1 = ζr2 = . . . = ζrn = ζr′ dictated by the constraints in (18) implyζr = ζr′ ,

as desired. Thus, the constraints can be eliminated by replacing all the{ζr} with a commonζ, in which

case the cost in (18) reduces to the one in (17). This argumentestablishes the following result.

Lemma 1: If G is a connected graph,(17) and (18) are equivalent optimization problems, in the sense

that ζ̂glasso= ζ̂r, ∀ r ∈ R.
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Problem (18) will be modified further for the purpose of reducing the computational complexity of the

resulting algorithm. To this end, for a givena ∈ R
p consider the problem

min
ζ

1

2
||ζ||22 − a′ζ + µ

Nb∑

ν=1

‖ζν‖2, ζ := [ζ ′1, . . . , ζ
′
Nb

]′ (19)

and notice that it is separable in theNb subproblems

min
ζν

1

2
||ζν ||22 − a′νζν + µ‖ζν‖2, a := [a′1, . . . ,a

′
Nb

]′. (20)

Interestingly, each of these subproblems admits a closed-form solution as given in the following lemma.

Lemma 2: The minimizerζ⋆ν of (20) is obtained via the vector soft-thresholding operatorTµ(·) defined

by

ζ⋆ν = Tµ(aν) :=
aν

‖aν‖2
(‖aν‖2 − µ)+ (21)

where(·)+ := max{·, 0} .

Problem (19) is an instance of the group-Lasso (13) whenX′X = Ip, anda := X′y. As such, result

(21) can be viewed as a particular case of the operators in [22] and [28]. However it is worth to prove

Lemma 2 directly, since in this case the special form of (20) renders the proof neat in its simplicity.

Proof: It will be argued that the solver of (20) takes the formζ⋆ν = taν for some scalart ≥ 0. This is

because among allζν with the sameℓ2-norm, the Cauchy-Schwarz inequality implies that the maximizer

of a′νζν is colinear with (and in the same direction of)aν . Substitutingζν = taν into (20) renders the

problem scalar int ≥ 0, with solutiont⋆ = (‖aν‖ − µ)+ / (2‖aν‖), which completes the proof.

In order to take advantage of Lemma 2, auxiliary variablesγr, r = 1, . . . , Nr are introduced as copies

of ζr. Upon introducing appropriate constraintsγr = ζr that guarantee the equivalence of the formulations

along the lines of Lemma 1, problem (18) can be recast as

{
ζ̂r

}Nr

r=1
= argmin

{ζr ,γr,γr′

r
}

1

2

Nr∑

r=1

[
‖yr −Xrγr‖22 +

2µ

Nr

Nb∑

ν=1

‖ζrν‖2
]

(22)

s. to ζr = γr′
r = ζr′ , r ∈ R, r′ ∈ Nr

γr = ζr, r ∈ R.

The dummy variablesγr′
r are inserted for technical reasons that will become apparent in the ensuing

section, and will be eventually eliminated.

B. Distributed group-Lasso algorithm

The distributed group-Lasso algorithm is constructed by optimizing (22) using the alternating direction

method of multipliers (AD-MoM) [6]. In this direction, associate Lagrange multipliersvr, v̄
r′
r andv̆r′

r with
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the constraintsγr = ζr, ζr′ = γr′
r andζr = γr′

r , respectively, and consider the augmented Lagrangian with

parameterc > 0

Lc [{ζr},γ, v ] =
1

2

Nr∑

r=1

[
‖yr −Xrγr‖22 +

2µ

Nr

Nb∑

ν=1

‖ζrν‖2
]
+

Nr∑

r=1

v′
r(ζr − γr) +

c

2

Nr∑

r=1

‖ζr − γr‖22

+

Nr∑

r=1

∑

r′∈Nr

[
(v̆r′

r )
′(ζr − γr′

r ) + (v̄r′

r )
′(ζr′ − γr′

r )
]
+

c

2

Nr∑

r=1

∑

r′∈Nr

[
‖ζr − γr′

r ‖22 + ‖ζr′ − γr′

r ‖22
]

(23)

where for notational convenience we group the variablesγ := {γr, {γr′
r }r′∈Nr

}r∈R, and multipliers

v := {vr, {v̆r′
r }r′∈Nr

, {v̄r′
r }r′∈Nr

}r∈R.

Application of the AD-MoM to the problem at hand consists of acycle ofLc minimizations in a block-

coordinate fashion w.r.t.{ζr} firstly, andγ secondly, together with an update of the multipliers per iteration

k = 0, 1, 2, . . .. Deferring the details to Appendix E, the four main properties of this procedure that are

instrumental to the resulting algorithm can be highlightedas follows.

i) Thanks to the introduction of the local copiesζr and the dummy variablesγr′
r , the minimizations

of Lc w.r.t. both {ζr} and γ decouple per CRr, thus enabling distribution of the algorithm.

Moreover, the constraints in (22) involve variables of neighboring CRs only, which allows the required

communications to be local within each CR’s neighborhood.

ii) Introduction of the variablesγr separates the quadratic cost‖yr − Xrγr‖22 from the group-Lasso

penalty
∑Nb

ν=1 ‖ζrν‖2. As a result, minimization of (23) w.r.t.ζr takes the form of (19), which admits

a closed-form solution via the vector soft-thresholding operatorTµ(·) in Lemma 2.

iii) Minimization of (23) w.r.t.γ consists of an unconstrained quadratic problem, which can also be solved

in closed form. In particular, the optimalγr′
r at iterationk takes the valueγr′

r (k) = (ζr(k) + ζr′(k)) /2,

and thus can be eliminated.

iv) It turns out that it is not necessary to carry out updates of the Lagrange multipliers{v̄r′
r , v̆r′

r }r′∈Nr

separately, but only of their sums which are henceforth denoted bypr :=
∑

r′∈Nr

(
v̄r′
r + v̆r′

r

)
. Hence,

there is one pricepr per CRr = 1, . . . , Nr, which can be updated locally.

Building on these four features, it is established in Appendix E that the proposed AD-MoM scheme

boils down to four parallel recursions run locally per CR:

pr(k) = pr(k − 1) + c
∑

r′∈Nr

[ζr(k)− ζr′(k)] (24)

vr(k) = vr(k − 1) + c[ζr(k)− γr(k)] (25)
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Algorithm 1 : DGLasso
All radios r ∈ R initialize {ζr(0),γr(0),pr(−1),vr(−1)} to zero, and locally run:

for k = 0, 1,. . . do

Transmitζr(k) to neighbors inNr.

Updatepr(k) via pr(k) = pr(k − 1) + c
∑

r′∈Nr
[ζr(k)− ζr′(k)].

Updatevr(k) via vr(k) = vr(k − 1) + c[ζr(k)− γr(k)].

Updateζr(k + 1) using (26).

Updateγr(k + 1) using (27).

end for

ζrν(k + 1) =
Tµ
(
Nr

(
cγrν(k) + c

∑
r′∈Nr

[ζrν(k) + ζr′ν(k)] − prν(k)− vrν(k)
))

cNr(2|Nr|+ 1)
, ν = 1, . . . , Nb (26)

γr(k + 1) =
[
cIp +X′

rXr

]−1 (
X′

ryr + cζr(k + 1) + vr(k)
)
. (27)

Recursions (24)-(27) comprise the novel DGLasso algorithm, tabulated as Algorithm 1.

The algorithm entails the following steps. During iteration k + 1, CR r receives the local estimates

{ζr′(k)}r′∈Nr
from the neighboring CRs and plugs them into (24) to evaluatethe dual price vectorpr(k).

The new multipliervr(k) is then obtained using the locally available vectors{γr(k), ζr(k)}. Subsequently,

vectors{pr(k),vr(k)} are jointly used along with{ζr′(k)}r′∈Nr
to obtainζr(k+1) via Nb parallel vector

soft-thresholding operationsTµ(·) as in (21). Finally, the updatedγr(k + 1) is obtained from (27), and

requires the previously updated quantities along with the vector of local observationsyr and regression

matrix Xr. The (k + 1)st iteration is concluded after CRr broadcastsζr(k + 1) to its neighbors. Even if

an arbitrary initialization is allowed, the sparse nature of the estimator sought suggests the all-zero vectors

as a natural choice. Three additional remarks are now in order.

Remark 4 (Distributed Lasso algorithm as a special case). WhenNb = p and there are as many groups

as entries ofζ, then the sum
∑Nb

ν=1 ‖ζν‖ becomes theℓ1-norm of ζ, and group-Lasso reduces to Lasso.

In this case, DGLasso offers a distributed algorithm to solve Lasso that coincides with the one in [5].

Remark 5 (Centralized Group-Lasso algorithm as a special case). For Nr = 1, the network consists

of a single CR. In this case, DGLasso yields a novel algorithmfor the centralized group-Lasso estimator

(17), which is specified as Algorithm 2. Notice that the thresholding operatorTµ in GLasso sets the entire

sub-vectorζν(k + 1) to zero whenever‖cγν(k) − vν(k)‖2 does not exceedµ, in par with the group-

sparsifying property of group-Lasso. Different from [29],GLasso can handle a general (not orthonormal)

regression matrixX. Compared to the block-coordinate algorithm of [22], GLasso does not require an inner

Newton-Raphson recursion per iteration. If in additionNb = p, then GLasso yields the Lasso estimator.

September 27, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 15

Algorithm 2 : GLasso
Initialize {ζ(0),γ(0),v(−1)} to zero, and run:

for k = 0, 1,. . . do

Updatev(k) = v(k − 1) + c[ζ(k)− γ(k)].

Updateζν(k + 1) = (1/c)Tµ (cγν(k)− vν(k)) , ν = 1, . . . , Nb.

Updateγ(k + 1) = [cIp +X′X]
−1

(X′y + cζ(k + 1) + v(k)).

end for

Remark 6 (Computational load balancing). Update (27) involves inversion of thep×p matrix cIp+X′
rXr,

that may be computationally demanding for sufficiently largep. Fortunately, this operation can be carried out

offline before running the algorithm. More importantly, thematrix inversion lemma can be invoked to obtain

[cIp +X′
rXr]

−1 = c−1
[
Ip −X′

r (cInr
+XrX

′
r)

−1
Xr

]
. In this new form, the dimensionality of the matrix

to invert becomesnr × nr, wherenr is the number of locally acquired data. For highly underdetermined

cases(nr ≪ p), (D)GLasso enjoys considerable computational savings through the aforementioned matrix

inversion identity. One also recognizes that the distributed operation parallelizes the numerical computation

across CRs: if GLasso is run at a central unit with all network-wide data available centrally, then the

matrix to invert has dimensionn =
∑

r∈R nr, which increases linearly with the network sizeNr. Beyond

a networked scenario, DGLasso provides an attractive alternative for computational load balancing in

contemporary multi-processor architectures.

To close this section, it is useful to mention that convergence of Algorithm 1, and thus of Algorithm 2

as well, is ensured by the convergence of the AD-MoM [6]. Thisresult is formally stated next.

Proposition 3: Let G be a connected graph, and consider recursions(24)-(27) that comprise the DGLasso

algorithm. Then, for any value of the step-sizec > 0, the iteratesζr(k) converge to the group-Lasso

solution [cf. (17)] as k → ∞, i.e.,

lim
k→∞

ζr(k) = ζ̂glasso, ∀ r ∈ R. (28)

In words, all local estimatesζr(k) achieve consensus asymptotically, converging to a common vector that

coincides with the desired estimatorζ̂glasso. Formally, if the number of parametersp exceeds the number

of datan, then a unique solution of (13) is not guaranteed for a general design matrixX. Proposition 3

remains valid however, if the right-hand side of (28) is replaced by the set of minima; that is,

lim
k→∞

ζr(k) ∈ arg min
ζ

1

Nr

Nr∑

r=1

‖yr −Xrζ‖22 + µ

Nb∑

ν=1

‖ζν‖2.
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VI. N UMERICAL TESTS

Consider a set ofNr = 100 CRs uniformly distributed in an area of1Km2, cooperating to estimate the

PSD map generated byNs = 5 licensed users (sources) located as in Fig. 2 (left). The fivetransmitted

signals are raised cosine pulses with roll-off factorsρ ∈ {0, 1}, and bandwidthsW ∈ {10, 20, 30}
MHz. They share the frequency bandB = [100, 260] MHz with spectra centered at frequenciesfc =

105, 140, 185, 215, and 240 MHz, respectively. Fig. 2 (right) depicts the PSD generatedby the active

transmitters.

The PSD generated by sources experiences fading and shadowing effects in its propagation from xs

to any locationx, where it can be measured in the presence of noise. A 6-tap Rayleigh model is adopted

for the multipath channelHs(f, τ,x) betweenxs andx, whose expected gain adheres to the path-loss law

E(|Hs|2) = exp(−||xs − x||22/∆2), with ∆ = 0.8. A deterministic shadowing effect is generated by a

18m-high and500m-wide wall represented by the black segment in Fig. 2 (left). It produces a knife-edge

effect on the power emitted by the antennas at a height of20m. The simulated tests presented here account

for the shadowing at ground level.

A. Spectrum cartography

When designing the basis functions in (1), it is known a priori that the transmitted signals are indeed

normalized raised cosine pulses with roll-off factorsρ ∈ {0, 1}, and bandwidthsW ∈ {10, 20, 30} MHz.

However, the actual combination of bandwidths and roll-offfactors used can be unknown, which justifies

why an overcomplete set of bases becomes handy. Transmittedsignals with bandwidthW = 10 MHz are

searched over a grid of16 evenly spaced center frequenciesfc in B. Likewise, forW = 20 and30 MHz,

15 and14 center frequencies are considered, respectively. This amounts to2×(16+15+14) = 90 possible

combinations forρ, W , andfc, thusNb = 90 bases are adopted.

Each CR computes periodogram samplesφ̂rn(τ) at N = 64 frequencies withSNR = −5 dB, and

averages them acrossT = 100 time-slots to formϕrn, n = 1, . . . , 64 as in (3). These network-wide

observations atT = 100 are collected inϕ, and following steps S1-S4 at the end of Section IV, the spline-

based estimator (12), and thus the PSD mapΦ̂(x, f) is formed. This map is summed across frequencies,

and the result is shown in Fig. 3 (left) which depicts the positions of transmitting CRs, as well as the

radially-decaying spectra of four of them (those not affected by the obstacle). It also identifies the effect

of the wall by “flattening” the spectrum emitted by the fifth source at the top-left corner. Inspection of the

estimateΦ̂(x, f) across frequency confirms that group-Lasso succeeds in selecting the candidate bases. Fig.

4 (left) shows points representing‖ζ̂ν‖2, ν = 1, . . . , Nb, whereζ̂ν is the sub-vector in the solution of the
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group-Lasso estimator (13) associated withgν(x) andbν(f). They peak at indexesν = 1, 28, 46, 51, and

70 (circled in red), which correspond to the “ground-truth” model, since basesb1, b28, b46, b51, and b70

match the spectra of the transmitted signals. Even though approximately 75% of the variables drop out of

the model, some spurious coefficients are retained and theirnorms are markedly smaller than those of the

“ground-truth” bases. This is expected because based on finite samples there is no guarantee that group-

Lasso will recover the exact support, in general. Nevertheless, the effectiveness of group-Lasso in revealing

the transmitted bases is apparent when compared to other regularization alternatives. Fig. 4 (right) depicts

the counterpart of Fig. 4 (left) when using a sparsity-agnostic ridge regression scheme instead of (13). In

this case, no basis selection takes place, and the spurious factors are magnified up to a level comparable to

three of the “true” basis functionbν(f). To the best of our knowledge, no other basis selection methods in

the literature are applicable to the nonparametric model (1) considered here. In particular, COSSO in [16]

is not applicable since it does not provide a basis selectionmethod and relies on orthogonality assumptions.

In summary, this test case demonstrates that the spline-based estimator can reveal which frequency bands

are (un)occupied at each point in space, thus allowing for spatial reuse of the idle bands. For instance,

transmitter TX5 at the top-right corner is associated with the basis function b46(f), the only one of the

transmitted five that occupies the230 − 260 MHz sub-band. Therefore, this sub-band can be reused at

locationsx away from the transmission range of TX5, which is revealed in Fig. 3 (left).

The group-Lasso estimator in S1 was obtained via the GLasso algorithm developed in Section V (cf.

Algorithm 2). The GLasso output at iterationk = 1, 000 is compared to previous iteratesζ(k) in Fig. 3

(right), which demonstrates the monotone decay of their difference, and thus corroborates convergence to a

limit point. Then, it is verified numerically thatζ(1000) satisfies the necessary and sufficient conditions for

optimality of (17), as given in [29]. These two tests together provide numerical confirmation of Proposition

3 on the convergence of GLasso, and the optimality of the limit point.

B. Tuning parameters via cross-validation

Results in Figs. 3 (left) and 4 depend on the judicious selection of parametersλ andµ in (12). Parameter

λ affects smoothness, which translates to congruence among PSD samples, allowing the CRs to recover

the radial aspect of the transmit-power. Parameterµ controls the sparsity in the solution, which dictates

the number of bases, and thus transmission schemes that the estimator considers active.

To selectλ andµ jointly so that both smoothness and sparsity are properly accounted for, one could

consider a two-dimensional grid of candidate pairs, and minimize the CV error over this grid. However, this

is computationally demanding, especially because the nondifferentiable cost in (13) renders the shortcuts in
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Appendix D not applicable (see also Remark 3). A three-step alternative is followed here. First, estimator

(12) is obtained using an arbitrarily small value ofλ = 1× 10−6, and selectingµ = 0.1µmax, whereµmax

is given in subsection IV-A. In the second step, only the surviving bases are kept, and the sparsifying

penalty is no longer considered, thus reducing the estimator to that of Section III. If the reduced matrix

B, built from the surviving bases, is full rank (otherwise repeat the first step with a larger value ofµ),

the procedure in Appendix D is followed to adjust the value ofλ via leave-one-out CV. The result of this

step is illustrated in Fig. 5 (left), where the minimizerλCV = 7.9433× 10−6 of the OCV cost is selected.

The final step consists of reconsidering the sparsity enforcing penalty in (12), and selectingµ using5-fold

CV. The minimizer of the CV errorµCV = 0.0078µmax corresponding to this step is depicted in Fig. 5

(right). Using theλCV andµCV so obtained, the PSD map plotted in Fig. 3 (left) was constructed. The

rationale behind this approach is that it corresponds to a single step of a coordinate descent algorithm for

minimizing the CV errorCV (λ, µ). FunctionCV (λ, µ) is typically unimodal, with much higher sensitivity

on µ than onλ, a geometric feature leading the first coordinate descent update to be close to the optimum.

The importance of an appropriateµ value becomes evident when inspecting how many bases are retained

by the estimator asµ decreases fromµmax to 1 × 10−4µmax. The Nb lines in Fig. 6 (left) link points

representing‖ζ̂ν(µ)‖2, asµ takes on20 evenly spaced values on a logarithmic scale, comprising theso-

termed group-Lassopath of solutions. Whenµ = µmax is selected, by definition the estimator forces all

ζ̂ν to zero, thus discarding all bases. Asµ tends to zero all bases become relevant and eventually enter

the model, which confirms the premise that LS estimators suffer from overfitting when the underlying

model is overcomplete. The cross-validated valueµCV is indicated with a dashed vertical line that crosses

the path of solutions at the values of‖ζ̂ν‖2. At this point, five sub-vectors corresponding to the factors

ν = 1, 28, 46, 51, and 70 are considerably far away from zero hence showing strong effects, in par

with the results depicted in Fig. 4 (left). Certainly interesting would be to corroborate the effectiveness

of the proposed PSD map estimator on real data comprising spatially distributed RF measurements. Upon

availability of such dataset, this direction will be pursued and reported elsewhere.

C. Example with real data

The goal of this section is to demonstrate that the GLasso algorithm in Section V can be useful for

applications other than the spline-based BEM for spectrum cartography dealt with in Sections III and

IV. This demonstration will rely on the birthweight datasetfrom [14], considered also by the seminal

group-Lasso work of [29]. The objective is to predict the human birthweight fromp = 8 factors including

the mother’sage, weight, race, smoke habits, number of previouspremature labors, history of
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hypertension, uterineirritability, and number of physicianvisits during the first trimester

of pregnancy. Third-order polynomials were considered to model nonlinear effects of theage andweight

on the response, augmenting the model size top = 12 by grouping the polynomial coefficients in two subsets

of three variables.

GLasso is run under this setup, over the set ofN = 189 samples, withµ selected via 7-fold CV. Fig. 6

(right) depicts the evolution of the factors’ strength measured by‖ζν‖22, which – as expected – converge

to the same prediction model as in [29]. Additionally, GLasso is capable of determining that the eighth

factor (visits) is not significant even from the first iterations, allowing for early model selection.

VII. C ONCLUDING SUMMARY

A basis expansion approach was introduced in this paper to estimate a multi-dimensional field, whose

dependence on a subset of its variables is modeled through preselected (and generallyoverlapping) basis

functions weighted by unknown coefficient-functions of theremaining variables. The unknown coefficient

functions can be estimated from the field’s noisy samples, bysolving a variational LS problem which admits

infinite solutions. Without extra constraints, the estimated field interpolates perfectly the data samples, at the

price of severely overfitting the true field elsewhere. The first contribution was to regularize this variational

LS cost by a smoothing term, which can afford a unique finite-parameter spline-based solution. The latter

is expressed in terms of radial kernels and polynomials whose parameters were estimated in closed form.

A recursive PSD tracker was also developed for slowly time-varying spectra.

The second main contribution pertains to a robust variant ofthe function estimator, when an overcomplete

set of bases is adopted to effectively accommodate model uncertainties. The novel estimator here minimizes

the variational LS cost regularized by a term that performsbasis selection, and thus yields a parsimonious

description of the field by retaining those few members of thebasis that “better” explain the data. This

attribute is achieved because the added penalty induces a group (G)Lasso estimator on the parameters of

the kernels and polynomials. Even though the number of unknowns increases with overcomplete bases,

most coefficients are zero, meaning that the complexity remains at an affordable level using the sparsity-

promoting GLasso. Notwithstanding, (group-) Lasso here isintroduced to effect (group-) sparsity in the

space of smooth functions.

The third contribution is a provably convergent GLasso estimator developed based on AD-MoM iterations.

It entails parallelclosed-formupdates, which involve simple vector soft-thresholding operations per factor.

Its fully-distributed counterpart was also developed for use by a network of wireless sensors, or, multiple

processors to balance the load of a computational cluster. It is worth stressing that both GLassso and
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DGLasso are standalone tools for sparse linear regression,applicable to a gamut of problems that go

beyond the field estimation context of this paper.

The fourth contribution is in the context of wireless CR network sensing (our overarching practical

motivation), where the overcomplete estimated field enables cartographing the space-frequency distribution

of power generated by RF sources whose transmit-PSDs are shaped by, e.g., raised-cosine pulses with

possibly different roll-off factors, center frequencies,and bandwidths. Using periodogram samples collected

by spatially distributed CRs, the sparsity-aware spline-based estimator yields an atlas ofPSD maps(one

map per frequency). As corroborated by simulations, the atlas enables localizing the sources and discerning

their transmission parameters, even in the presence of frequency-selective Rayleigh fading and pronounced

shadowing effects due to e.g., an obstructing wall. Simulated tests also illustrated the convergence of Glasso,

and confirmed that the sparsity-promoting regularization is effective in selecting those basis functions that

strongly influence the field, when the tuning parameters are cross-validated properly.

Given the existing connections between splines and classical estimators for both random and deterministic

field models, the spline-based methods developed in this paper provide a unifying framework suitable for

both paradigms. The model and the resultant (parsimonious)estimates can thus be used in more general

statistical inference and localization problems, whenever the data admit a basis expansion over a proper

subset of its dimensions. Furthermore, results in this paper extend to kernels other than radial basis functions,

whenever the smoothing penalty is replaced by a norm inducedfrom an RKHS. Also of interest is to quantify

the number of data required to attain a prescribed approximation error, in light of the existing connections

between spline-based reconstruction and Shannon’s sampling theory [25].
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APPENDIX

A. Proof of Proposition 1: Rewrite (4) as

min
{gν∈S}

N
b

ν=2

[
min
g1∈S

Nr∑

r=1

N∑

n=1

(
ϕ(−1)
rn − g1(xr)b1(fn)

)2
+ λ

∫

R2

||∇2g1(x)||2F dx
]
+ λ

Nb∑

ν=2

∫

R2

||∇2gν(x)||2F dx

(29)

with ϕ
(−1)
rn := ϕrn −∑Nb

ν=2 gν(xr)bν(fn). Focusing on the inner minimization w.r.t.g1, fix the set of

functions{gν}Nb

ν=2, and note that only the first two terms are relevant (those within the square brackets).

It follows from [10, Theorem 4 bis] that̂g1 takes the form in (5), with coefficientsβ1,α11 andα10 that
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depend onG(−1) := {gν(xr), r = 1, . . . , Nr, ν = 2, . . . , Nb} throughϕ(−1)
rn . The next step is to minimize

(29) w.r.t. g2 but with {gν}Nb

ν=3 fixed, which amounts to

min
g2∈S

Nr∑

r=1

N∑

n=1

(
ϕ(−2)
rn − ĝ1(xr)b1(fn)− g2(xr)b2(fn)

)2
+ λ

∫

R2

||∇2ĝ1(x)||2F dx+ λ

∫

R2

||∇2g2(x)||2F dx

(30)

whereϕ(−2)
rn := ϕrn −∑Nb

ν=3 gν(xr)bν(fn). In the first two summands of the cost in (30),ĝ1 depends on

g2 via G(−1). BecauseG(−1) only involves evaluatingg2 on X , [10, Theorem 4 bis] can be applied again,

and the optimal solution̂g2 takes the from (5). The same argument carries over to subsequent minimization

steps forν = 3, . . . , Nb, establishing that all{ĝν(x)} are thin-plate splines as in (5).

B. Proof of (6)-(8): Upon substituting (5) into (4), it will shown next that the optimal coefficients{α̂, β̂}
specifying{ĝν(x)}Nb

ν=1 are obtained as solutions to the following constrained, regularized LS problem

min
α,β

1

NrN
‖ϕ− (B⊗K)β − (B⊗T)α‖22 + λβ′(INb

⊗K)β

s. t. (INb
⊗T′)β = 03Nb

. (31)

Observe first that the constraintsβν ∈ B in Proposition 1 can be expressed asT′βν = 03 for each

ν = 1, . . . , Nb, or jointly as(INb
⊗T′)β = 03Nb

. For the optimization objective in (31), note from (5) that

ĝν(xr) = k′
rβν + t′rαν , wherek′

r andt′r are therth rows ofK andT, respectively. The first term in the

cost of (4) can be expressed (up to a factor(NrN)−1) as

N∑

n=1

Nr∑

r=1

(
ϕrn −

Nb∑

ν=1

bν(fn)[k
′
rβν + t′rαν ]

)2

=

N∑

n=1

Nr∑

r=1

(
ϕrn − (bn ⊗ kr)

′β − (bn ⊗ tr)
′α
)2

=

N∑

n=1

∥∥ϕn − (b′
n ⊗K)β − (b′

n ⊗T)α
∥∥2
2

= ‖ϕ− (B⊗K)β − (B⊗T)α‖22 .

Consider next the penalty term in the cost of (4). Substituting into (5), it follows that
∫
R2 ||∇2ĝν(x)||2F dx =

β′
νKβν [26, p. 33]. It thus holds that

λ

Nb∑

ν=1

∫

R2

||∇2ĝν(x)||2F dx = λ

Nb∑

ν=1

β′
νKβν = λβ′(INb

⊗K)β

from which (31) follows readily.

Now that the equivalence between (4) and (31) has been established, the latter must be solved forα and

β. Even thoughK (henceINb
⊗K) is not positive definite, it is still possible to show thatβ′(INb

⊗K)β > 0

for anyβ such that(INb
⊗T′)β = 03Nb

[10, p. 85], implying that (31) is convex. Proceeding along the

lines of [26, p. 33], note first that the constraint(INb
⊗ T′)β = 03Nb

implies the existence of a vector
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γ ∈ R
Nb(Nr−3) satisfying (8). After this change of variables, (31) is transformed into an unconstrained

quadratic program, which can be solved in closed form for{α,γ}. Hence, setting both gradients w.r.t.α

andγ} to zero yields (6) and (7).

C. Proof of Proposition 2: After substituting (15) into (12), one finds the optimal{α,β} specifying

{ĝν(x)}Nb

ν=1 in (15), as solutions to the following constrained, regularized LS problem

min
α,β

1

NrN
‖ϕ− (B⊗K)β − (B⊗T)α‖22 + λβ′(INb

⊗K)β + µ

Nb∑

ν=1

‖Kβν +Tαν‖2

s. t. (INb
⊗T′)β = 03Nb

. (32)

With reference to (32), consider grouping and reordering the variables{α,β} in the vectoru :=

[u′
1, . . . ,u

′
Nb

]′, whereuν := [β′
ν α′

ν ]
′. As argued in Section III-A, the constraintsT′βν = 0 can be

eliminated through the change of variablesuν = bdiag(Q2, I3)vν for ν = 1, . . . , Nb; or compactly as

u = (INb
⊗ bdiag(Q2, I3))v. The next step is to express the three summands in the cost of (32) in terms

of the new vector optimization variablev. Noting thatk′
rβν + t′rαν = [k′

r t′r]uν , and mimicking the steps

in Appendix A, the first summand is

1

NrN
‖ϕ− (B⊗K)β − (B⊗T)α‖22 =

1

NrN
‖ϕ− (B⊗ [K T])u‖22

=
1

NrN
‖ϕ− (B⊗ [KQ2 T])v‖22 . (33)

The second summand due to the thin-plate penalty can be expressed as

λ

Nb∑

ν=1

β′
νKβν = λ

Nb∑

ν=1

u′
νbdiag(K,0)uν = λ

Nb∑

ν=1

v′
νbdiag(Q′

2KQ2,0)vν

= λv′(INb
⊗ bdiag(Q′

2KQ2,0))v (34)

while the last term isµ
∑Nb

ν=1 ‖Kβν + Tαν‖2 = µ
∑Nb

ν=1 ‖[K T]uν‖2 = µ
∑Nb

ν=1 ‖[KQ2 T]vν‖2.
Combining (33) with (34) by completing the squares, problem(32) is equivalent to

min
v

1

NrN

∥∥∥∥∥∥


 ϕ

0


−


 B⊗ [KQ2 T]

INb
⊗ bdiag((NrNλQ′

2KQ2)
1/2,0)


v

∥∥∥∥∥∥

2

2

+ µ

Nb∑

ν=1

‖[KQ2 T]vν‖2 (35)

and becomes (13) under the identities (14), and after the change of variablesζ := [ζ ′1, . . . , ζ
′
Nb

]′ = (INb
⊗

[KQ2T])v. By definition ofu, v, andζ, the original variables can be recovered through the transformation

in (16).

D. Selection of the smoothing parameter in (4): The method to be developed builds on the so-termed leave-

one-out CV, which proceeds as follows; see e.g., [26, Ch. 4].Consider removing a single data pointϕrn
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from the collection ofNrN measurements available to the sensing radios. For a givenλ, let Φ̂(−rn)
λ (x, f)

denote theleave-one-outestimated PSD map, obtained by solving (4) following steps S1-S3 in Section

III-A, using theNrN−1 remaining data points. The aforementioned estimation procedure is repeatedNrN

times by leaving out each of the data pointsϕrn, r = 1, . . . , Nr andn = 1, . . . , N , one at a time. The

leave-one-out or ordinary CV (OCV) [13, p. 242], [26, p. 47],for the problem at hand is given by

OCV(λ) =
1

NrN

Nr∑

r=1

N∑

n=1

(
ϕrn − Φ̂

(−rn)
λ (xr, fn)

)2
(36)

while the optimumλ is selected as the minimizer of OCV(λ), over a grid of valuesλ ∈ [0, λmax]. Function

(36) constitutes an average of the squared prediction errors over all data points; hence, its minimization

offers a natural criterion. The method is quite computationally demanding though, since the system of

linear equations (6)-(8) has to be solvedNrN times for each value ofλ on the grid. Fortunately, this

computational burden can be significantly reduced for the spline-based PSD map estimator considered

here.

Recall the vectorϕ collecting all data points measured at locationsX and frequenciesF . Define next a

similar vectorϕ̂ containing the respective predicted values at the given locations and frequencies, which is

obtained after solving (4) with all the data inϕ and a given value ofλ. The following lemma establishes

that the PSD map estimator is alinear smoother, which means that the predicted values are linearly related

to the measurements, i.e.,ϕ̂ = Sλϕ for a λ-dependent matrixSλ to be determined. Common examples of

linear smoothers are ridge regressors and smoothing splines; further details are in [13, p. 153]. For linear

smoothers, by virtue of the leave-one-out lemma [26, p. 50] it is possible to rewrite (36) as

OCV(λ) =
1

NrN

Nr∑

r=1

N∑

n=1

(
ϕrn − Φ̂λ(xr, fn)

1− [Sλ]ii

)2

(37)

whereΦ̂λ(x, f) stands for the estimated PSD map when all data inϕ are utilized in (4). The beauty of the

leave-one-out lemma stems from the fact that givenλ and the main diagonal of matrixSλ, the right-hand

side of (37) indicates that fitting a single model (rather than NrN of them) suffices to evaluate OCV(λ).

The promised lemma stated next specifies the value ofSλ necessary to evaluate (37).

Lemma 3: The PSD map estimator in(4) is a linear smoother, with smoothing matrix given by

Sλ = (B⊗ {KQ2 −TR−1Q′
1KQ2})[(B′B⊗Q′

2KQ2) +NrNλI]−1(B′ ⊗Q′
2)

+ (BΓ−1Ω−1
1 ⊗TR−1Q′

1). (38)
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Proof: Reproduce the structure ofϕ in Section III-A to form the supervector̂ϕ := [ϕ̂′
1, . . . , ϕ̂

′
N ]′ ∈

R
NrN , by stacking each vector̂ϕn := [Φ̂λ(x1, fn), . . . , Φ̂λ(xNr

, fn)]
′ corresponding to the spatial PSD

predictions at frequencyfn ∈ F . From (5), it follows thatΦ̂λ(xr, fn) = (bn⊗kr)
′β̂− (bn⊗ tr)

′α̂, where

b′
n, k′

r andt′r are thenth andrth rows ofB, K andT, respectively. By stacking the PSD map estimates,

it follows that ϕ̂n = (b′
n ⊗K)β̂ − (b′

n ⊗T)α̂, which readily yields

ϕ̂ = (B⊗K)β̂ − (B⊗T)α̂. (39)

Because the estimates{α̂, β̂} are linearly related to the measurementsϕ [cf. (6)-(8)], so isϕ̂ as per (39),

establishing that the PSD map estimator in (4) is indeed a linear smoother. Next, solve explicitly for{α̂, β̂}
in (6)-(8) and substitute the results in (39), to unveil the structure of the smoothing matrixSλ such that

ϕ̂ = Sλϕ. Simple algebraic manipulations lead to the expression (38).

The effectiveness of the leave-one-out CV approach is corroborated via simulations in Section VI.

E. Proof of (24)-(27): Recall the augmented Lagrangian function in (23), and letζ := {ζr}r∈R for

notational brevity. When used to solve (22), the three stepsin the AD-MoM are given by:

[S1] Local estimate updates:

ζ(k + 1) = arg min
ζ

Lc [ζ,γ(k), v (k)] . (40)

[S2] Auxiliary variable updates:

γ(k + 1) = argmin
γ

Lc [ζ(k + 1),γ, v (k)] . (41)

[S3] Multiplier updates:

vr(k + 1) = vr(k) + c[ζr(k + 1)− γr(k + 1)] (42)

v̆r′

r (k + 1) = v̆r′

r (k) + c[ζr(k + 1)− γr′

r (k + 1)] (43)

v̄r′
r (k + 1) = v̄r′

r (k) + c[ζr′(k + 1)− γr′
r (k + 1)]. (44)

Focusing first on [S2], observe that (23) is separable acrossthe collection of variables{γj} and{γr′
r }

that compriseγ. The minimization w.r.t. the latter group reduces to

γr′
r (k + 1) = argmin

γr′

r

c‖γr′
r ‖2 − c

(
ζr(k + 1) + ζr′(k + 1)

)
γr′
r −

(
v̄r′
r (k) + v̆r′

r (k)
)
γr′
r

=
1

2

(
ζr(k + 1) + ζr′(k + 1)

)
+

1

2c

(
v̄r′
r (k) + v̆r′

r (k)
)

=
1

2

(
ζr(k + 1) + ζr′(k + 1)

)
. (45)
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The result in (45) assumes thatv̄r′
r (k) + v̆r′

r (k) = 0, ∀k. A simple inductive argument over (43), (44)

and (45) shows that this is indeed true if the multipliers areinitialized such that̄vr′
r (0) + v̆r′

r (0) = 0.

The remaining minimization in (41) with respect to{γr} decouples intoNr quadratic sub-problems [cf.

(23)], that is

γr(k + 1) = arg min
γr

1

2
‖yr −Xrγr‖22 − v′

r(k)γr +
c

2
‖ζr(k + 1)− γr‖22

which admit the closed-form solutions in (27).

In order to obtain the update (24) for the pricespr, consider their definition together with (43), (44) and

(45) to obtain

pr(k + 1) =
∑

r′∈Nr

(
v̆r′
r (k + 1) + v̄r

r′(k + 1)
)

=
∑

r′∈Nr

(
v̆r′
r (k) + v̄r

r′(k)
)
+
∑

r′∈Nr

c
(
2ζr(k + 1)− γr′

r (k)− γr
r′(k)

)

= pr(k) + c
∑

r′∈Nr

(ζr(k + 1)− ζr′(k + 1))

which coincides with (24).

Towards obtaining the updates for the local variables inζ, the optimization (40) in [S1] can be also split

into Nr sub-problems, namely

ζr(k + 1) = arg min
ζr

{
µ

Nr

Nb∑

ν=1

‖ζrν‖2 + v′
r(k)ζr +

c

2
‖ζr − γr(k)‖22 +

∑

r′∈Nr

[
v̆r′

r (k) + v̄r
r′(k)

]′
ζr

+
c

2

∑

r′∈Nr

[
‖ζr − γr′

r (k)‖22 + ‖ζr − γr
r′(k)‖22

]}

= arg min
ζr

{
µ

Nr

Nb∑

ν=1

‖ζrν‖2 −
(
c
∑

r′∈Nr

(
ζr(k) + ζr′(k)

)
+ cγr(k)− pr(k)− vr(k)

)′

ζr

+
c

2
(1 + 2|Nr|)‖ζr‖22

}
.

Upon dividing byc(1+2|Nr|) each subproblem becomes identical to problem (19), and thusby Proposition

2 takes the form of (26).
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Fig. 1. Expansion with overlapping raised cosine pulses.
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Fig. 2. (left) Position of sources and obstructing wall; (right) PSD generated by the active transmitters.
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Fig. 3. (left) Aggregate map estimate in dB; (right) error evolution of the GLasso updates
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Fig. 4. (left) Frequency bases selected by the group-Lassoed spline-based estimator; (right) and by ridge regression.
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Fig. 5. (left) Minimization of the CV error overλ; (right) and overµ.
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