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Abstract

In this paper, we consider a Partial Interference Alignnmaent Interference Detection (PIAID)
design for K -user quasi-static MIMO interference channels with digcenstellation inputs. Each
transmitter has\/ antennas and transmifs independent data streams to the desired receiver with
N receive antennas. We focus on the case where nak'all 1 interfering transmitters can be
aligned at every receiver. As a result, there will be rediéhiarference at each receiver that cannot
be aligned. Each receiver detects and cancels the residigaference based on the constellation
map. However, there is a window ahfavorable interference profilet the receiver for Interference
Detection (ID). In this paper, we propose a low complexitytidhlnterference Alignment scheme
in which we dynamically select the user set for IA so as to ter@gfavorable interference profile
for ID at each receiver. We first derive the average symbadareate (SER) by taking into account
of the non-Guassian residual interference due to discaatstellation. Using graph theory, we then
devise a low complexity user set selection algorithm for B&ID scheme, which minimizes the
asymptotically tight bound for the average end-to-end SERgpmance. Moreover, we substantially
simplify interference detection at the receiver using SBwiinite Relaxation (SDR) techniques. It
is shown that the SER performance of the proposed PIAID sehleas significant gain compared

with various conventional baseline solutions.

The authors are with the Department of Electronic and Coergahgineering (ECE), Hong Kong University of Science
and Technology (HKUST), Hong Kong.
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I. INTRODUCTION

Interference has been a very difficult problem in wirelessnemnications.. For instance, the
capacity region of two-user Gaussian interference charrasd been an open problem for over 30 years
[1]. Recently, there are some progress made in understanigéninterference [2]/ [3] and extensive
studies have been done regarding thderference AlignmenflA) [3]. For instance, IA is a signal
processing approach that attempts to simultaneously dligninterference on a lower dimension
subspace at each receiver so that the desired signals camrtsenitted on thenterference-free
dimensions. In[[4], the authors show that IA (using infiniieneénsion symbol extension in time or
frequency selective fading channels) is optimal in Degafesreedom (DoF) sense. Inl[5] the authors
propose a variation of the IA scheme, the ergodic alignmeheme, fork -user time or frequency-
selective interference channels. In practice, since ibtgnssible to realize infinite dimension symbol
extensions, there are a number of works [6]—-[8] and the eefsr therein that consider IA in the
spatial domain, without symbol extensions, in tReuser quasi-static MIMO interference channels.
Furthermore, the authors inl[9] investigate the asympimdidormance of these different IA solutions.
However, for quasi-static (or constant) channels, congrat IA might be infeasible depending on
the system parameters. For example, it is conjectured_ihtfi@ conventional IA on quasi-static
MIMO (M transmit andN receive antennas) interference channels is not feasibdeh@®ve a per
user DoF greater tha@%. As a result, we cannot rely on IA to eliminate all interfezerin quasi-
static MIMO interference channels especially whignis large. There are other works that consider
IA over signal scale in[[11]£[14]. In_[11] and [12], signalade alignment schemes are introduced
for the many-to-one interference channel and fully coreeatterference networks, respectively. In
[13], [14], the authors propose a lattice alignment scheondsf-user MIMO interference channels.
However, the scheme requires infinite SNR and serves only gsa@f of concept. It is not clear
whether this approach can be applied at finite SNR.

Due to the fact that not all the interferers can be alignegeaheeceiver, there will be residual inter-
ference at the receiver. In this paper, we assume the redggdnterference detection (ID) capability.
Specifically, the receiver detects and cancels the residteaference based on the constellation map
derived from the discrete constellation inputs. Howevere is a window ofinfavorable interference
profile for ID at the receiver. For instance, ID at the receiver is eneffective when the interference
is stronger than the desired signall[14],][15]. Inl[15],][16]e authors propose an ID scheme for
guasi-static interference channels based on lattices.eMemthe proposed scheme can only work
under idealized assumptions such as the symmetric SIS@erdace channels (where all cross links
have the same fading coefficients) or a specialized classuskB SISO interference channels (where

the product of fading coefficients is assumed to be rational)
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In fact, IA and ID are complementary approaches to deal withrference in quasi-static MIMO
interference channels. The IA approEMan be used to first eliminate some interference and the ID
approach can be used to deal with the residual interfereneach receiver. While we can potentially
benefit from the concepts of IA and ID approaches in dealint witerference, there are still some
key technical challenges to be addressed.

« Feasibility Issue of IA and Path Loss Effects: Sometimes brute-force IA in quasi-static
MIMO interference channels (without symbol extensionsptmibe infeasible depending on
system parameters. Furthermore, existing literature baspketely ignored the effects of path
loss, which may also be exploited when dealing with intenee. For instance, nodes with large
path loss may not need to be interference-aligned and hénseémportant to jointly consider
the feasibility issue and the path loss effects.

« Coupling between IA and ID: While both IA and ID are effective means to mitigate inteeface,
their designs are coupled together in an intricate manrarirfstance, the performance of 1D
at the receiver depends heavily on the interference praofidémce, IA can potentially contribute
to creating a more desirable interference profile for ID byefid selecting a subset of users
for IA. However, the problem of user selection in IA to optamithe symbol error rate (SER)
performance is very complicated. First, the optimizatipace is combinatorial and brute force
exhaustive search is not viable. Second, even if we candaffar search complexity, obtaining
the search metric is highly non-trivial because it is alsgyvehallenging to analyze the closed
form average SER under non-Gaussian interferences.

In this paper, we propose a low complexigrtial Interference Alignmerand Interference Detec-
tion (PIAID) scheme forK-user quasi-static MIMO interference channels with discnstellation
inputs. We consider QPSK constellatigm the inputs of thel transmitters and each transmit-receive
pair may have different path losses. The proposed PIAIDmehdynamically selects thaterference
alignment setat each receiver based on the path loss information to ceefateorable interference
profile at each receiver for ID processing as illustrated in Elg.n2erference alignment is applied
only to the members of the alignment set. We derive the age&gR by taking into account the
non-Guassian residual interference due to discrete dtatgir. Using graph theory, we transform
the combinatorial problem into a linear programming (LR)ldem and obtain a low complexity user
set selection algorithm for the PIAID scheme, which miniesizhe asymptotically tight bound for the

average end-to-end SER performance. Furthermore, usimisSefinite Relaxation (SDR) technique
1 In the remaining papers, the mentioned IA approach spekyficefers to the signal space alignment approach.

2 QPSK constellations are easier to analyze. However, theopesl framework can be extended to QAM constellations

easily.
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[17]-[20], we propose a low complexity ID algorithm at theceéser. The SER performance of
the proposed PIAID scheme is shown to have significant gampaoed with various conventional
baseline solutions.

Outline The rest of this paper is organized as follows. In Sedfibnvé outline the system model
and the proposed PIAID scheme. In Secfioh I, we discussfitienization of the IA user selection. In
Sectior(1V, we derive the average SER by taking into accduminibn-Guassian residual interference
and propose a low complexity ID algorithm at the receivet thses SDR technique. The numerical
simulation results are illustrated in Sectioh V. Finally e@nclude with a brief summary in Section
\VAJ

I[l. SYSTEM MODEL
A. K-user Quasi-Static MIMO Interference Channels

We considerK-user quasi-static MIMO Gaussian interference channeldlusdrated in Fig.[l.
Specifically, eachM -antenna transmitter, tries to communicate to its cornedpmy N-antenna re-
ceiver. The channel output at theth receive node is described as follows:

i = > VPBLHLX: + 7, 1)

ek

where K = {1,--- | K}, Hy; € CV*M is the MIMO complex fading coefficients from theth
transmitter to thek-th receiver,L;; is the long term path gain from thieth transmitter to the:-th
receiver, andP; is the average transmit power of thigh transmitter. In[(1)x; € CM*! is the
complex signal vector transmitted by transmit nadendz, € CV*! is the circularly symmetric
Additive White Gaussian Noise (AWGN) vector at receive nadeNe assume all noise terms are
i.i.d zero mean complex Gaussian Wiz, (z )] = 2Iy. Furthermore, the assumption on channel
model is given as follows:

Assumption 1 (Assumption on Channel Modell [2MYe assume that the long term path gain is
given by Ly; = wd,;.'y, wheredy,; is the distance between transmit nadend receive nodg, w is the
Log-normal shadow fading with a standard deviatign and~ is the path loss exponent. Furthermore,
we assume that the entries Hf;; for all &, are i.i.d. complex Gaussian random variables given by
[Hyi (nm) ~ CN(0,1) for all k,i,n,m, where[Hy;](, ) denotes then, m)™" element ofH;;. =

In this paper, we assume that théh transmit node transmit® < min(M, N) independent QPSK
data streamgz!, - -, zP} to thei-th receive node where! € S = {¥2(1+j), Y2(1—j), L2 (~1+
5), %2 (=1 — j)},vd € {1,---,D}. Let v¢ (||v¥|| = 1, where|| - || denotes the Frobenius norm.)

denote the precoder for the symbol. Hence, the transmitted vector at tht@ transmitter is given
by x; = >, vizd.
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B. Partial Interference Alignment and Interference Deimtti(PIAID) Scheme

The proposed PIAID scheme consists of two major componaatsely thePartial Interference
Alignment(PIA) at the transmitters and theterference DetectiofID) at the receivers as illustrated
in Fig.[2.

1) Overview of PIA:PIA is motivated by the feasibility isst the MIMO interference alignment
without symbol extension_[6], [10]. For instance, it is cectured in [[10] that only wheny <
w — 1, the K — 1 interfering transmitters can be aligned at every receiagten As a result, not
all the K — 1 interfering transmitters can be aligned at every receieeterfor largeX . Furthermore,
existing 1A schemes do not consider or exploit the effectsliferent path losses between transmit
and receive pairs. When the path loss effects are taken omneideration, not all transmitters will
contribute the same effect at the receiver and hence, thewddbe different priority in determining
which nodes should be aligned given the feasibility comstr&ig.[3 illustrates an example of 4-user
interference channels wheld = N = 2 and D = 1. Using the feasibility condition of MIMO |A
in [1Q], only two transmitters can be aligned at each reecef@embining with the path costs (which
depend on the path gains and transmit power), it is obvicatstthnsmitters 2 and 3 should be aligned
at receiver 1 as indicated in the Fig. 3.

Motivated by the above example, the proposed PIAID schemnmamijcally selectsy transmitters
to be aligned at each receiver node based on the path cogtsndéx of the aligned transmitters at
each receiver is given by a PIA set with cardinality Specifically, the PIA set is defined below.

Definition 1 (PIA Set):A PIA set is defined asl = { A, Vk}, where A, = {ki, ka2, , ko # k}
denotes the index of aligned transmitters at the recdivier some constant:. |

Only the transmit nodes that belong #, will have to align their transmit signals by choosing

the precoders and equalizers according to the traditiohaédquiremelJ[A [10], [22]

(U H,V, = 0,Vie A,

(Up) Hp V. = diaghy, -, Ap),Vk ()
where ()T denotes the Hermitian transpose, diag - - - , \p) denotes a diagonal matrix with diagonal

entriesAy, - -+, Ap, Uy = [u}, -+ ,ul] are theN x D decorrelators at receivérwith |[ul|| = 1,V,

andV; = [v},---,vP] are theM x D precoders at transmittérwith ||v!|| = 1,vI. Based on the

% For constant MIMO interference channels, it is not alwayssjfle to completely align all thé& — 1 interferers at

each receiver.
4 Note that the requirement is equivalent to that used in [[@3], i.e., choosing the precoders and equalizers satigfyi
rank((Uy) Hy, Vi) = D, VE.
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conjecture in[[10], a sufficient conditiBrfor a feasible PIA setd is given by [10]:

M+ N

a(A) < min < -2, K — 1) and Zk 1(i € Ax) = a(A), Vi (3)

wherel(-) is the indicator functione(.A) = |.Ax| is the cardinality of4, (i.e., the number of aligned
interferers at each receiver). The requirement as per (Anmthat each transmitter should be selected
by a(A) receivers. The IA se#d is a design parameter in the proposed PIA scheme, and how to
choose the IA set is presented in Secfion IlI.

Remark 1 (Feasibility Condition)Note that the feasibility conditions foll(2) are still opanthe
literature. Since the feasibility condition and computatof {Uy, Vi, Yk} are not the focus of the
paper, we have adopted the results[inl [10] to derive a sufti@endition [[). While this condition
restricts the choice of the feasible sdf it introduces graph structure for the optimization w.r.t.
A. Furthermore, as shown in Figl 6, the proposed PIA algorithith condition [3) has similar
performance as the solution obtained by brute-force exivausearch (without((3)). [ |

2) Overview of ID: In this paper, we focus on the case where not all khe- 1 interferers can
be aligned at each receivers. As a result, there will be vasiciterference at every receiver. The ID
processing at the receiver first estimates the aggregatddargnce signal by using the constellation
maps derived from the QPSK inputs. The desired signal isctedeafter subtracting the estimated

aggregate interference. For instance, the normalizedvextsignal at thek-th receiver is given by:

Y = VP LigHpvi ol + Zdﬂ V/ Py Ly Hypviad

inter-stream interference (4)
+ Z%Ak;d v/ PZ'LMH]“‘VZC-ICC? + Z vV Pszszngx? 2.

non-aligned interferers aligned interferers

1€AL;d

We adopt linear processing at the receiver and the deteptimeess forl-th data stream at thie-th
receiver is divided into two stages, namely thggregate interference detection sta@age ) and
the desired signal detection stagstage Il). The two stages are elaborated below:
« Stage | Processing:Using thel-th column of U, in (@), uﬁg, as the decorrelator, the post-
processed signal of thieth stream is given by:

vk = (W)Tye = VP LinHyah + > /Pl Hdad +(u}) 2, 5)
igAk;d

~
non-aligned interferers

® From [10], we know that the total number of equations for tAeréquirement{(U,) H,; V; = 0,Vi € Ay, Vk} is
Ne =3, |Ax|D? = aK D?, and the total number of variables %, = 3", D(M + N —2D) = KD(M + N — 2D).
When each transmitter is selected dyeceivers, the feasibility condition is simply given By, < N, [10], i.e.,a(A) <

min(w -2, K — 1).
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whereH}¢ = (u!)TH,,v¢ is the equivalent channel gain for thieh data stream of transmitteat
receiverk. Note that the inter-stream interference and the intemfsgecontributed by users in the
IA set A;, are completely eliminated due to the PIA requiremenfin 2t Q) = {i : P,Ly; >
Py Ly, Vi & Ax,i # k} C{1,---, K} denotes the set aftrong residual interferenceSince ID
at the receiver is more effective when the interferencegmger than the desired signal [14], [15],
the first stage processing estimatesaggregate strong interferendg = >, o ., vV/PiLri Hjlx!
using the following nearest neighbor detection rule.

Algorithm 1 (Stage | Interference Detection AlgorithnBased on the decorrelator outptg;g,

the detected aggregate strong interferefﬁcc’s given by:

(f,i)* = arg min |y§§ — ¢, (6)

ceTl
whereZ} = { > /PBLyHjs¢: s¢ € S} is the set of possible values the strong interference
from Q, can tﬁ(%jd [ |
Note that wherQ,, = ), there will be no stage | decoding for the desired data str;e?n‘n this
case, the proposed PIAID scheme reduces to the conventixgiler with one-stage decoding.
Stage Il Processing:The estimated aggregate strong interfere(r:f@* is first subtracted from
the decorrelator outpt@}}~C as illustrated:

Uk = Uk — = V/PeLiHyy, + I, — (1) Z PiLyi Higaf +(ap) 'z, (7)
ZEOk d

residual interference

where O = {i : PiLy; < PpL,Vi & Ag,i # k} C {1,---,K} denotes the set ofleak
residual interferenceand obviously we havé, | J Qx| Ax U{k} = K. In turn, the desired
signal for receivelk is detected based @i using the following algorithm.

Algorithm 2 (Stage Il Signal Detection Algorithm)hel-th data symbol at the-th receiverz},

is detected based aj}, according to the minimum-distance rule given by:

R I Rt S B A T L
_g else —72 else

(8)

|

Note that the performance of the ID processing depends lgeavithe interference profile which

contains the relative power of the residual interferencthatreceiver. Fig.14 illustrates the average

end-to-end SER performance of the ID detector versus therfamence power. Observe that there

is a window of unfavorable interference power for which thefprmance of the ID is quite poor.

As such, the user selection of the PIA stage can contrib@eifsiantly to the end-to-end SER

performance of the PIAID scheme. Intuitively, the user sdédion.4 of PIAID should not aim at
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removing thestrongest interferencedn the contrary, it should remove thmfavorable interference
characterized by the ID stage requirement (similar to HigA4 a result, the PIA and ID processing

are complementary approaches to combat interference airddsigns are tightly coupled together.

I1l. DYNAMIC IA SET SELECTION IN PARTIAL INTERFERENCEALIGNMENT

In this section, we shall formulate the dynamic selectioRI# set as a combinatorial optimization

problem, and derive a low complexity optimal solution usgrgph theory and linear programming.

A. Problem Formulation

Due to heterogeneous path losses and transmit powerdenatece links have different contributions
to the average end-to-end SER of the PIAID scheme. We shstllfirmulate the dynamic PIA set
selection problem using a general cost meftie- {cx;, Vk,i}. In the next section, we shall obtain a
specialized cost metric related to the end-to-end SER dPtA¢D. The PIA set optimization problem
is summarized below.

Problem 1 (MaxPIA Problem)Given a general cost matrix of the interference ligks {cy;, vk, i},
the MaxPIA prolbem is given by:

MaxPIA: A* = arg maXZ ckil(i € Ap), 9)
AecA fi
where A* is the solution to the MaxPIA problem, and denotes the collection of all the PIA sets

that satisfies the IA feasibility conditionl(3). [ |

B. Optimal Solution of the Dynamic PIA Set Selection

Optimization problem(9) is a constrained combinatorigirajzation problem, which is difficult in
general. Solving problem(9) using brute force exhaustarch has a high complexity 6f(exp(K))
and is not viable in practice. In this section, we shall eitpecific problem structure and visualize
the optimization problem if{9) using graph theory.

We first review some preliminaries on graph theory froml [J3#] and the reference therein. A
graph G is defined by a paig = (W, ), whereWV is a finite set ofnodesand¢ is a finite set of
edges Specifically, the nodes iV are denoted asy,ws,--- ,wpy|, and an edge i connecting
nodesw; andwy, is denoted asw;, wy]. If an edgee = [wy,w9] € &, then we say that is incident
uponw; (andw-). Thedegreeof a nodew of W is the number of edges incident upen A bipartite
graphis a graphs = (W, £) such thaty can be partitioned into two setgy; andW,, and each
edge in& has one node iNV; and one node iNV,. The bipartite graph is usually denoted by

B = (W, Ws, ). An example of a bipartite graph is illustrated in Hig. 3.
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In fact, interference networks can be represented by athigagraphB = (R, T,£), whereR =
{r1,--- ,rx} is the set of the receive nodeg,= {t1,--- ,tx} is the set of the transmit nodes, and
E ={[rk,t:],Vk,i and k # i} is the set of the edges. A feasible PIA skts equivalent to a subset of
the edge<s with the property that the degree of each receive and transmdie ofG, = (7, R, Es)
is a(A), and G, is called aa-factor of graphg.

Example 1 (Graph lllustration of the PIA setBuppose the PIA set is given bt = {A4; =
{2,3}, A2 = {3,4}, A3 = {4,1}, As = {1,2}}, the corresponding subset of edgésis given
by & = {[r1,t2], [r1,ts], [re, t3], [r2, ta], [r3, ta], [3, t1], [ra, 1], [ra, t2]} as illustrated in Figl]3. =

Let ¢;; denote the cost of eddey, t;] € £. Probleni1 is equivalent to finding@factor of G with
the largest sum of costs. Hence, the MaxPIA probleri]in (9)ndlar to a matching problem (finding
a “best” 1-factor of graphy) on a bipartite graph, and exploiting this equivalence wallstherive
a low complexity optimal solution. Le¢ = {ex;, Vk,i} be a set of variables. If the edge;, t;] is
included in thea-factor (i.e. the transmit nodeis chosen as one of the aligned interferers at receive

nodek) thene,; = 1, otherwisee,; = 0. As a result, the probleid 1 is equivalent to

arg max,, Zm CLiCli

. s.t e = a,Vk

{erit = o (10)
Y g Chi =, Vi

ek € {07 1}7Vk72

wherea = min (w -2, K — 1).

The above problem is a non-convex problem due to the nonesotwnstrainky; € {0,1}. To get
a low complexity solution, we first relax the constrairis € {0,1} to 0 < ex; < 1. As a result,
(10) becomes a standard LP problem, which can be solvedeeffigiby the well known simplex
algorithm [23], [24]. The following Lemma summarizes thetiopality of this relaxation.

Lemma 1 (Optimality of the LP Relaxation)he optimal solution of the LP relaxation problem is
also the optimal solution of (10), i.€;, € {0,1} wheree}, is the optimal solution of the LP relaxed
problem. [ |

Proof: Please refer to Appendix]A. [ |

IV. SER ANALYSIS AND Low COMPLEXITY ID PROCESSING

In this section, we first derive the average SER of the PlAlBesge for a given PIA setl and
the path gaing Ly; P;,Vk,i}. Based on the SER results, we obtain an equivalent costarfetrihe
PIA set selection optimization problem in_{10), which is er@ptimal w.r.t. the average end-to-end

SER. Finally, we propose a low complexity ID algorithm usBBR technique.
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A. SER Analysis of ID with Non-Gaussian Residual Interfegen

Unlike standard SER analysis in existing literaturel [22E]] a key challenge of SER analysis in
the PIAID scheme is that the residual interference in thgestaand stage Il ID processing are non-
Gaussian due to the discrete constellation inputs. As dty@geifocus on deriving an asymptotically

tight SER expression for the interference dominated regifheoreni L summarizes our main results.

Theorem 1 (Average SER of the Two Stage PIAID Processkmy):a given PIA set4, the SER
of the [-th data stream at thie-th receiver in the interference limited regime of the PIAdEheme is
given by

SER.(A) 2 Ey [SER.(A H)] 2 Ey [z  Pr{al} Pr{al # ol |zt, A H}
= © (Zz‘er Il){é:k + Zzeok Iljkéik)
where’H = {Hy,;,Vk,i}. g(z) = O(f(x)) denoteslimsup,,_,, 9@) < ¢ andliminf,_o 42 > ¢

() (z)
for some constant§’ > ¢ > 0. [ |

(11)

Proof: Please refer to the AppendiX B. [ |
Remark 2:In this paper, the precoders and decorrelatp¥s,, Uy, Vk} are determined based
on the 1A requirements in{2). Hence, they are only dependenthe channels in the set for
which interference is aligned. Since the interference fithimse channels involved are nulled, the
remaining interference has a random channel matrix evemgtndg is now projected on the space
U,. Furthermore, the SER il_(IL1) is averaged over realizatifrtee channels and noise. |
Remark 3 (Interpretation of Theordm 1The result in [(1]l) indicates that the SER of the PIAID
scheme favors either very strong or very weak residualfegrence. In other words, there is always an
unfavorablewindow of residual interferencess illustrated in Figil4. The role of PIA is to eliminate
these unfavorable windows of interferences so that the l@cgssing is given a more favorable
interference profile. |

Motivated by Theorerall, we set the interference cost metrihé PIA set optimization problem

as
-C if i+ =k
cri = Dl else if Ly > PyLy -k €K (12)
PiLy; 1
P otherwise

whereC > 0 is a large constant (a sufficiently largé can be chosen ag! > Zk,i;ﬁk |cki|). Based

on these interference cost metrics, the PIA set selectitutiens solved by the LP relaxation is
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10

order-optim£ w.r.t. the following problem:

A* = arg min ﬁ{(.ﬁl) (13)

B. Low Complexity ID

Note that the complexity of decoding algorittiin 1 in the sthgeocessing is exponential w.r.t. the
cardinality of the set of strong residual interferences, jQ|. Using the SDR techniqué [17]=[20],
we shall derive a low complexity ID algorithm, which has paodynial complexity w.r.t.|Qx|. The
SDR technique has been widely used in multiuser detectidh [18] and MIMO systems [19]/ [20]
to derive low complexity suboptimal detectors. It has beeowa that the SDR detector can provide
better performance compared with other suboptimal detecto

To utilize the SDR technique, we first simplify equatian (5)fallows:

vk = (ho)"xo + VPl Hygal + Y/ PiliiHiad + (u}) 'z, (14)
iEOk;d
o
wherexg = [z} -+, &), xj,,- - ,al|]T € SPL*lis DQ interference symbols, ar@ = |Qy| is the

cardinality of Qy. ho = [\/Py, Lxi, Hyy s - s /Pi iy Hip /P L HiY s+ 5 \/Pig Liig Hpi) 1™
€ CP@*1 s the channel gain for the interference symhbals Furthermore, the real valued form of

(@4) can be expressed as:

son] =[S “aten] bagl ool @

whereyr € R?*!, Hr € R>*2PQ xp € {£112P@%1 andny € R?>*!. Decoding algorithni]l in

stage | processing is equivalent to

(xr)"= argmin [[yr — Hgrxgl|, (16)
xpe{£1}2Pex1

such that the detected aggregate strong interfereﬁqé: (ho)(x0)*, where(xg)* is determined
from (xp)* as indicated in[(I5). The above problem](16) can be equitiglerpressed as

argmin trac§ WS)
S

s" = s.t dIaQS) = IQDQJrl (17)

S = ss?

6 It can be observed from the following fact. From Theorerh] 1, wbhave A* =

i PrpLyk PiLp; - i P Lk T, _
argmmAeA(')(Zk,ier PiLy; +Zk,ie(’)k Prlun = argminge, © (3, i PiLy; (Pilgki > PylLyk)

DkicA, 1;%:? 1(PiLki > PrLik) + D5 iz %1(]31’[%1' < PeLkk) = 2pica, %1(Pil/ki < Pkka)) =
arg max 4 ¢ (C] (Zk,iEAk %%I(lez)ﬂ > Pkka) + Zk,iEAk %I(PZLM < Pkka)) Hence, the

(Zk,iegk %%f‘*‘zmeok %ﬁﬁ:) is an asymptotically tight bound for SER Wh& Ly.s, > P;L; O Py Ly << PiLy;

for all {k,:}, and an order-optimal solution means that it minimizes thargtotically tight bound for the SER.

September 5, 2018 DRAFT



11

where ()T denotes the transpose,

W = (Hp)' Hr —(Hn)'yr and s= [XR} : (18)
—(yr)"Hr 0 1

By means of SDR, we relax the constra®it= ss’ by S = 0 (i.e., S € C"*" is positive-
semidefinite), and problerh {1L7) degenerates into the fatigu@emi-Definite Program (SDP) that can
be solved efficiently inD(Q3) time [17]-[20], e.g., using the interior-point optimizati technique
[27]:

argsmin trac§ WS)
S" = st diadS) = Lopg 1 (19)
S > 0.
If the optimal valueS* of the above probleni_(19) is rank one, then the relaxatioight,tand the
optimal solution of the(xr)* is given by [17]-[19]:
el == 1 TEEEY wcn ey e
-1 else
wherer is the eigenvector 08* associated with the only one non-zero eigenvalue.

On the other hand, §* is not rank one, then we shall approximéste;)* based or8*. Specifically,
there are a few standard techniques to deterring*, e.g.,RandomizationRank-1 approximation
and Dominant eigenvector approximatidf7]—[19].

To further improve the quality of the approximation, we psep a SDR-SID algorithm based on
the dominant eigenvector approximation as follows (angsitated in Fig[155).

Algorithm 3 (SDR-SID Algorithm):

- Step O: Set active set\ = {zj,---,z,zj,---, 2>} that containsall the decoding data
streams, and the cardinality }s= |A| = DQ.
Repeat

« Step 1:According to the active set, solve optimization probleni_(19) to obta8i.

« Step 2:If S* is rank one, determingxy)* from (20) and terminate.

« Step 3:Extract thex dominant eigenvectors &, {ry,--- ,ry}. ComputeX;], 1) = fx (ri;n)
from 20)Vi € {1,--- ,A\} andVn € {1,--- ,2A}.

o Step 4: ComputeS; = [%;,1]7 [%;,1], Vi € {1,---,A}. Choose(xp)* = %X;, wherei* =
argminc gy ... 5y tracgW's;).

« Step 5:Determinez? from (xpz)*, where{i*, d*} = arg max; 4 |v/PiLy; Hi¢|1(z¢ € A).

. Step 6:Setyl =yt — /Li- Hi% 2%, deletexd” from the active sef\ and set\ = A — 1.

Until the active sef\ is empty. |
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Example 2 (lllustration of Algorithrll3)Supposey!. in @4) is given byy! = /P Ly H 1 +
VP LigHZ2Y + ng with |VPLioHZ| > |V/PiLiHY|. The details of the implementation of
Algorithm [3 are given below.

« Step 0: Set active sef\ = {z},z1} and\ = 2.

o Step 1: Supposes* is not rank one. Go to step 3.

« Step 3: Extract the 2 dominant eigenvectors $f, {r,r>}, and obtain{x;, %2} from (20).

« Step 4:Suppose trad@l’S;) < tracéW'S,), we choosgxpr)* = X;.

o Step 5:Since|\/P,LyoH3| > |v/PiLiH}} |, we determine} from (xg)*, i.e., a3 = [(xr)*] 2,1+

jl(xr)*](4,1), which by definitionxg = [21, z}].

o Step 6:Sety} =yt — VP LioHlbal = /P LinHi 2t + ng, A = {1} and A = 1. Repeat

from step 1 to obtain:}. |

Algorithm [3 is motivated from the intuition that the erroropability of decoding symbat?, Vi €

Qk, Vd is small if its channel gaia/ﬂTmH,i‘f is large. Note that the complexity of Algorithii 3 is
mainly determined by the complexity of solving the optintiaa problem [(19) in the step 1. Since
the complexity for step 1 is only i®(Q3°) time [L7]-[20], the overall complexity of Algorithril 3
is O(Q*?). Furthermore, it can be easily generalized to other appration techniques by simply
modifying the way to determing; in step 3. Finally, using simulation, we illustrate that thesrage

end-to-end SER performance of the low complexity SDR-Skpathm is similar to the performance

of Algorithm 1.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the prop&&iD scheme via numerical simu-
lations. In particular, we compare the performance of th@ppsed schemes against various baseline
schemes:

« Proposed Scheme 1: PIAID with Algorithm[d (PIAID Algl)

— The PIA set optimization stage tries to align the unfavarahterference links by setting
the interference cost metric according fal(12).

— ID processing is adopted at each of thereceivers after PIA. Specifically, Algorithid 1
and[2 are applied at stage | and stage Il processing, resplgcti

o Proposed Scheme 2: PIAID with SDR-SID (PIAID Alg3)

— The PIA set optimization stage tries to align the unfavagahterference links by setting
the interference cost metric according fal(12).

— ID processing is adopted at each of thereceivers after PIA. Specifically, Algorithid 3
and[2 are applied at stage | and stage Il processing, resplgcti
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« Baseline 1: Randomized PIA (Randomized PIA)

— The PIA setA is chosen randomly fromd, i.e., the collection of all the PIA sets that
satisfies the IA feasibility conditior{3).

— ID processing is adopted at each of thereceivers after PIA. Specifically, Algorithid 1
and[2 are applied at stage | and stage Il processing, resplgcti

Baseline 2: Iterative interference alignment (lterative 1A) [6, Algorithm 1]

— Alternating optimization is utilized to minimize the weigd sum leakage interference.
— Conventional one-stage decoding is adopted at each oKthmeceivers by treating all the
interference as noise.
« Baseline 3: Maximizing SINR (Max SINR) [6, Algorithm 2]
— Alternating optimization is utilized to maximize the SINRthe receivers.
— Conventional one-stage decoding is adopted at each oithleceivers by treating all the

interference as noise.

Baseline 4: Maximizing Sum-Rate (Max Sum-Rate]7|

— A gradient ascent approach combined with the alternatirtgmigation is utilized to maxi-
mize the sum-rate of the receivers.
— Conventional one-stage decoding is adopted at each oithleceivers by treating all the
interference as noise.
« Baseline 5: Minimizing Mean Square Error (Min MSE) [8]
— A joint design to minimize the sum of the MSE of the receivers.
— Conventional one-stage decoding is adopted at each oithleceivers by treating all the
interference as noise. |
In the simulations, all the transmit and receive nodes asaraed randomly distributed in2km x
1km rectangular area as shown in Hi@j. 1. The channel model@&diy Assumptiof]1l. Specifically,
we set the log-normal shadowing standard deviatiomas= 12 dB and the path loss exponent as
~ = 6 as per ITU-R recommendation M.1225 [21]. Each transmit&divdrs a single strearfD = 1)

of QPSK symbols. The transmit power of each node is assumbd the same.

A. Performance w.r.t. Receivg; /Ny

Fig.[8 and Fig[l illustrate the average end-to-end SER peence per data stream versus receive
E/Ny (dB) of the desired link foiX = 5 and K’ = 6 respectively. The number of transmit and receive
antennas is given byM = 3, N = 2}. The number of aligned users for the feasible interference
alignment isa. = 3. The average SER performance is evaluated with realizations of noise,

complex fading coefficient§Hy;, Vk, i} and path losg Ly, Vk,i}. Observe that the average SER of
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all the schemes decreases as the recgiy€V, increases, and there is significant performance gain
of the proposed schemes compared to all baselines, eveowotdmplexity PIAID with SDR-SID
(Algorithm[3). The performance gain is contributed by thernselection of the PIA stage that moves
the ID processing out of the unfavorable interference modié shown in Figl]4. Furthermore, it
can also be observed that PIAID with SDR-SID (Algorittiuin 3) lamilar performance as PIAID
(Algorithm[I). Finally, Fig[6 shows that the proposed Plgaithm with condition[(B) has similar

performance as the solution obtained by brute-force exivausearch (without (3)).

B. Cumulative Distribution Function (CDF) of the SER

Fig.[8 and Fig[P illustrate the Cumulative Distribution [Etion (CDF) of the SER per data stream
with receive E5/Ny = 25dB for K = 5 and K = 6 respectively, where the randomness of SER is
induced by{Hy;, Vk,i} and{Ly;, Vk,i}. The number of transmit and receive antennas is given by
{M =3, N = 2}. The number of aligned users for the feasible interferetigaraent isa = 3. The
CDF performance is evaluated with” realizations of noise, complex fading coefficiefif;, Vk, 1}
and path los§ Ly;, Vk, i}. It can also be verified that the proposed scheme achievesihoa smaller

average SER but also a smaller SER percentile compared gthaselines.

VI. CONCLUSIONS

In this paper, we propose a low complexity and novel Partitdrference Alignment (PIA) and
Interference Detection (PIAID) scheme fdf-user quasi-static MIMO interference channels with
general irrational channel coefficients. Based on the mathihformation, the proposed PIAID scheme
dynamically selects the IA interferers at each receivehghat it moves the ID processing out of the
unfavorable interference profiles. We derive the average BEtaking into account the non-Guassian
residual interference, and obtain a low complexity usesestdction algorithm for the PIAID scheme,
which minimizes the asymptotically tight bound for the ags end-to-end SER performance. The
SER performance of the proposed PIAID scheme is shown to higwvéficant gain compared with

various conventional baseline solutions.

APPENDIX A
PROOF OFLEMMA [1]
By introducing the slack variables,;, the LP relaxation problem of (10) becomes
argmax,,. D ; CkiCki
s.t >oieki = o, Yk
{er:t = Y op ki =, Vi (21)
er; + sk = 1,Vk, 1

€ki > 07 Ski > 07Vk7Z
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and it is equivalent to the following matrix form

arg maxe cle
{e*} = st Ae=b (22)
e~ 0
wheree = [eq1, -+ ,e1x, €21, -+ ,€KK,S11, - ,S1K, 521, - ,Skk| . is formed by the optimization
variablesb = [a,--- ,a,1,--- 1], ¢ = [e11, -+ , 1k, C21, -+ ,CKK,0,---,0]T is formed by the
] [c11 1K, C21 KK ] Yy
2K K2 K2
path costs, and the matriX is given by
11><K 01><K 01><K
01><K 11><K 01><K
B | 0y : A N e
A= atAlu L (23)
Ik- Ik- O1xxk Oixx -+ lixk
IK IK . IK
L IKZ IKZ i

where0,, ., denotes am x m matrix of zeros and,, denotes am x n identity matrix.
Note that the feasible set for the LP122) is given by the ppgtR(A) = {Ae = b,e = 0}. If
all the vertices ofR(A) are integers, there exists an optimal solution such thahalloptimization
variables are integers, and hence the LB (22) will alwayd teaan integer optimum when solved by
the well known simplex algorithm. Sinee,; < 1,Vk, i, if ex; is an integer, we havey; € {0,1}. As
a result, it is equivalent to proving that all the verticestloé polytopeR(A) are integers. We first
defineTotally Unimodular(TUM) as follows.
Definition 2 (Definition of Totally Unimodular)An integer matrixZ is totally unimodular if the
determinant of each square submatrixzofs equal to 0,1, or -1. |
It has been shown in [23] that & is TUM, then all the vertices oR(A) are integers. Therefore,
the proof reduces to proving that is TUM. Note that the matriB satisfies the following conditions:
o Bis a{0,1} matrix with no more than two nonzero elements in each column.
« Each column contains two nonzero elements that have the semgewhere one element is in
a row contained in the subsgy = {1,--- , K} and the other element is in a row contained in
the subsef)o = {K +1,--- ,2K}.
Therefore B is TUM [24]. It is easy to verify that the matri€ = [B”,I)7 is also TUM. LetD be

a square, nonsingular submatrix Af The rows ofD can be permuted so that it can be written as
E|O
D= , (24)
F|I
whereE is a square submatrix of, and possibly with its rows permuted. Therefodet(D) =

det(B) = +1, which completes the proof.
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APPENDIX B

PROOF OFTHEOREM[I
A. Upper Bound of the Average SER Performance

In this subsection, we shall obtain an upper bound of thea@mSE@#c(A). Specifically, we
shall first obtain an upper bound of the SER under a given adaealization, i.e., an upper bound
of SER,(A, H).

1) Upper bound of SERA, H): Let H, = {H!¢ Vi, d} denotes the set of equivalent channel
gains after applying the equalizef, when decoding the desired signa| at the receivek, & =
I,i — f,i denotes the difference between the real and estimated gaigrstrong interference, and
¢k = Yico,.n VP LriH%z] denotes the aggregate weak residual interference. Spdigifiwe start

to consider the two stage decoding separately.

« Stage Il decoding:In stage Il decodinggfg in (@) is given by:

@zzﬁ—ih=VHLMH&%+vb+d+o¢ﬁm, (25)
Given Hl and supposéﬁ{xk} = X2 the error rate of decodln@{xk} is given by [26]:

Pr{?ﬁ{iﬁc} £ 2 |R{zl} = @,z,g,f,g,yg} = Pr{R{ ol } < OR{al} = 2,1}, 7L ) |
=@ <( + %{\/%}}{ilk })|VPkkaHIlclk|) =Q <§|VPkkaHilglk| + R{e (8} + C;lg)}2 ;

26)
where Q(z) = \/ﬂfoo e*/2dz denotes tha&)-function, ande 7¢ = ‘\/\/%HZ:‘ Similarly,
we have

PriR{ak} £ — R R{ek} = -2 1L 1L 1L} = Q (PIVPLHE| - Rie (5} + ¢}
Pr{S{a}} # i\o{xk} =g I;iJ;iﬂ b= Q (RIVRLwH} +3{e (0, +¢D} ) |
Pr{S{af} # —R2IS{ak) = =2 1L 1L 1) = Q (RIVATwHEL| — e (6, + ¢} )

(27)
Then the error rate of decodinzg’;C is given by:

Pr{gt # ot |ab 1L 1L HEY

< Pr{R{a}} # R{a }R{al }, 1L IL HL Y + Pri{S{al} # S{alS{al} IL 1L HE Y (28)
<2Q ( 2|/ PoLeHY | — 101, — ’C/i’) .

« Stage | decoding:In the stage | decodingy; in (B) is given by:
Yk = Ik + / PeLix Hygwy + G + (u)) 2. (29)

Note that when the detected aggregate strong interferébcg I, an upper bound of the
probability that the estimated aggregate strong intem’cema’sf,fC is given by

Pr{itlat, Ik, 1} < Pr{f} # Iilak, 1LY < 2Q (1041/2 — [VPeLucHikl — Ichl) - (30)
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wherePr{I} # I'|z}, 1!, 7} is the conditional probability thatl, # I, whenT! is transmitted.
Therefore, we can follow the same way @sl (26) and (28), whiathin the conditional probability
that#! # «} whenz} is transmitted. When the detected aggregate strong intexde /! = I,

obviously we have following expression at interferenceittth regime
Pr{fl|al, I}t ) = Pr{ll|at, 1L, #HLY < 2Q <_| PeLopHU | — |g,g|) ~2. (31)

As a result, the probability that the estimated aggregatmgtinterference isf}C in the stage |

decoding is given by

From the upper bound é%lpf“és’é g@(ﬂ%%ﬁ(yﬁ in the @taﬁf ﬁ ge%’“@ecodmg, respegtlv)ely,

an upper bound of the SER under a given channel realizatid®}, SE H) is given by

SE%C(A’%) = Zx LeS Pr{xk}Pr{xk # $k|5'3k’7'[ }

S es Priat) (zp ez, PrIL} Pr{al, # ohlof, 1L ML}

Sapes Priak} (e Sien Prifiy Prifhlal, 1, 1) Pria) # aflaf, 1}, If, i}
T Dates rtert iter @ (\52\/2 — WP L HiL | =[G -

Q (RIWPLwcH}Y| - 18] - I})

IN

(33)
2) Upper bound of SE’,RA): From [(33), the average SER is given by
?!,C(A) 2 [y, [SER, (A, H)]
< B | Sren Siyen 10341/2 ~ WAL} - Icf] < 0) )

LCRIVRTHL - 18] - 14 < o)]
T Liier, Lijer, Pf{%%ﬂﬁk\ — |Gl < 104 < 2(VPe L Hig| — \C;i\)}-
Therefore, from the above equatidn i(34), we shall discussftfiowing two cases given by:
successful stage | decoding = I! (i.e., &, = 0) and unsuccessful stage | decodifjg # I}
(i.e., oL #0).
« Successful stage | decoding}, = I!. (6. = 0): Note thatH}¢ = (u})"H,,v¢, and the aggregate

weak residual interfereno{e‘,C is given by

G = Yicopa VPLuHe! = Yico, o VPiLki(u)) Hyvia]

= Yicor VPiLii X nl(0) 1) Bkl n,m) 2 alvied)om,1)-

Since {ul,v?,Vi € O, Vd} are determined by the channel gains from the aligned linksryi
by {Hy;, Vi € A, Vk} [10], [22], they are independent of the random varialflBs,;, Vi € Oy }.
From Assumptiof]1[Hy], ) ~ CN(0,1), and hence givedul, vézd Vi € Oy, Vd}, L is a

(35)
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complex Gaussian variable with zero mean and variance

0% = Yo, Pilki X |[(0})] (1 n)\ (| Zalviadom))®
= Yico. PiLki X (| Zalviad] m ) D <D Zie@k PiLyi) (Zd | Vi) m) ‘2)

= D*X o, Pilki,
(36)

because ofjul|| = |[vézd|| = 1. From ¢} is a complex Gaussian variable with zero mean and
? is given

variances?, and the probability density function of the random varmaBl = ]
Therefore, whenﬁfg = 0 the conditional probability is given by:

Hll

by fz(2) = -
Pr{ Z|VPLwH{,| - || < 0lu}, viad, vi € Oy, vd | = Pr{Zke < 2} -
— 1/(Pkka +1) < 1/( Pkka -+ H=0(>, Pili )
ie ZEOk Pkka

Oy,

In turn, the probability of the even§|\/PkkaH}jk| < |¢l| is given by
Pr{ 2|VATwHL 1l <0} < © (Sico, H52). (38)

Unsuccessful stage | decoding!, # I} (6} # 0): GivenI! = 3", o ., VPiLiH[dd, where

i € S, 8 is given by:
O = Il —IL =Y co,a VPiLri(u) Hyvi (af — 29)

Zzer m&n n[(uk) ] 1n)[Hlm](nm Zd[v i ] m,1)>
whereyd = z¢ — 3¢ € {0, £v2 £ jV/2, £v/2,+jv2}. Given{ul,viyd, Vi € Qy,Vd}, 6 is a

complex Gaussian variable with zero mean and variance gJyen

(39)

2 2
02 = Yicor Bilki Yo [0 N1 || X alvidd om,1y | (40)
2 2
Sicon Pilki Yo | o alv8 iy |7 = P Liis Y ico, Som | 2oalvVibd |

wherei* = arg min;cz P, Ly;, and= = {i : 3, [1:¢] # 0}, since|[u}|| = 1 and||viy?|| = [1:].
Therefore, Wherasz = 0, the conditional probability is given by
Pr{ 2V LHlY| — 1G] < 104] < 21V P LYY — G |, vivd, vi € @, ¥d )
< Pr{0 <o}l < AVALwH|} = Pr{0 < | hr? < ks )

4Pkka/U < 4P, Ly,
4P Lyr [o?+1 o2 (1)

In turn, the unconditional probability is given by:
Pr{ VAL, - il < 10| < 20VPIweHf | - I } 2

4P, L P L
[45s] — O

S By vegr
whereC' = Eyt yayo [4/(Zz‘egk S| Zd[vfzpﬂ%ml))} is a positive constant.
Finally, substitute[(38) and (42) intd (34), we have

SER(A) < © (Tico, bt + Tico, k). “

DRAFT
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B. Lower Bound of the Average SER Performance

In this subsection, we shall obtain a lower bound of the m&ERSEI%C(A). Specifically, we
shall proveSER,(A) > O(£444),Vi € O and SER,(A) > O (£t Vi € Qy, respectively.

« Proof of SERZ(A) @(PLM) Vi € Oy: Suppose receivek has perfect knowledge of all
the data streams excepf,w € O, Vd. After cancelling the known data streams in stage |l

decoding,j in (@) is given by:

U = VPl H 2t + /PLi H2d 4 (ul) Tz, (44)
SupposeRr{zt} = @ the error rate of decoding{z.} is given by (cf. [26)):
Pr{R{aL} £ R{sfHR{o)} = 2}
S ares Pr{et}Q (R IVPRTmHL | + Rie VP LHidxd})

wheree/? = |\/—V£’“§“Z’;{“| Note thatR{e Y Hl9z¢} € N'(0,30?), and hence the average error
kkdd g

rate of decodln@%{xk} is given by:
E [PriR{} # R{zk}R{zl} = 2} = Pr{ 2|VALpHL| + R VP L Hdad} < 0}
= Pr {‘ V Pk Lk Hj k‘ < VFiLgir } % ( \ 1+PiLk1/Pkka) 4Ff)’kli/kkk + 0(11:;25%;) = @(gﬁzz)’

(45)

(46)
wherex € N(0,0%) and |HY, | € Rayleigh{(c?). Similarly, we have
E [Pr{R{a}} # R{zl R{eh} = —}]
= Pr{Q|VA L~ R{e VPRIl < 0} = ©(fdes),
E [Pr{S{a}} # S{e} ISz} = 2} )
= Pr{ZVRLwH| + S{e P LgH 2} < 0} = ©(F4),
E [Pr{S{}} # S{ek}IS{al) = -}

= Pr{R|VPLHY| - S{e VP L Hidad} < 0} = ©( k).
Therefore, given that receivér has perfect knowledge of all the data streams exeépti <
Ok, Vd, the average SER of decoding is given by
SER 2B |, Pr(ab) Priah £ akleh) | =@ (3175), (48)
and obviously we hav8ER,(A) > SER = © (%) Vi € Oy.
o Proof of Sﬁ%ﬁc(A) > @(%),Vz‘ € Q;: Using similar arguments above and suppose receiver
k has perfect knowledge of all the data streams exeépti € Qy,Vd. After cancelling the

known data streams in the stage | decod'gigin @) is given by:

= /Py Ly HiL 2l + /Pl Hidzd + (ul) Tz, (49)
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Given R{zl} = L2 R{z¢} = ¥2, the error rate of decoding{«} is given by

Pr {R{a}} # R{efHR{e]}, R{af} |

> Pr{R{af} # R{z{H R} } R{ad} ) Pr{R{aL} # Rl HR{L), R}, R{a} )
— Q (RIVPLuHE +Re VP LxHf\ 2} ) -
Q (GIVALwHY |+ R{e " PLHiV3} )
(50)
where e/? = %,ew = %,0 = # — 9. The probability density function of
Z = \g—%\? is given by fz(z) = ﬁ andd follows the uniform distribution betwee® and

2m. As a result, the average error rate of decod}t{gsﬁg} is given by

E[Pr {R{aL} # R{alHR{z}}, R} ]
Pr { gk WP TGHY < |VPiTmHL| < cos(9)|PmH | (51)

_ w/4 cos?(9)—1/(4 cos®*(9))) P Lik /P; Lis _ Py Ly

Y

Furthermore, given that receivérhas perfect knowledge of all the data streams exe@pti €

Qr,Vd, the average error rate of decodimg is given by
P;Ly;

ﬁl £ E [Pr {ifk # SCH:CZ,x?}] > @ (Lelur)y, (52)

Obviously we havéSER,(A) > SER > ©(£iLe), vi € 0.

Finally, from the results of upper and lower bound, we canctmfe that

SER.(A) 2 Ex [SER(A.7)] 2 © (Ticq, 2 + Cico, £42). (53
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Fig. 1. Quasi-statid{-user MIMO complex Gaussian interference channels. Bdehntenna transmitter tries to transmit
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D independent data streams to its correspondiiigntenna receiver. All the nodes are randomly distributethé a x b

rectangular area.

September 5, 2018

DRAFT



23

Partial Interference Alignment (PIA)

Precoder Vi

I
e PIA Set Selection: A = { A, vk}
Choosing the P1A set by solving a LP program

Transmitted Signal V

. I
M Equalizer W,
Via Interference Interference Detection (1D)
Channels
Stage | Processing: ; Stage Il Processing: ;
Detecting the aggregate interference fk Detecting the desired signal X
z !
; -
v Decoding I via Algorithm 1 % i e
P ,|PDecoding J7 via Algorithm 1 or P Decoding X via Aleorithm 2
Received Signal ¥ ——¢g low complexity Algorithm 3 N ecoding X via Algorithm

Fig. 2. System level block diagram of the proposed PIAID Sobe

4-users Interference Channels Aligned Transmitters at Each Receiver
(a Bipartite Graph) {a 2-factor)
5] I 8] r
&) Iy 1> )
t_:; I3 l_'; Iy
U Iy Ly r4
O—— O Pathcost: 2 O (O Path cost: 1

Fig. 3.  An example of 4-user interference channels whgre= N = 2 and D = 1. Using the feasibility condition of
MIMO IA in [10], only two transmitters can be aligned at eadteiver. Specifically, the 4-user interference channels ar
represented by a bipartite grapph= (R, T, &), whereR = {ry,--- ,r4} is the set of the receive nodeg,= {t1,--- ,t4}

is the set of the transmit nodes, afid= {[r«, t:], Vk,? andk # i} is the set of the edges. Furthermore, the PIA set is
given by A = {A; = {2,3}, A2 = {3,4}, As = {4, 1}, A4 = {1,2}} and the corresponding subset of edges is given by
Es =A{lr1,tal, [r1, 8], [r2, t], [r2, tal, [ra, ta], [rs, 0], [ra, 0], [ra, B2]}
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Fig. 4. Average end-to-end SER performance of the ID detaasus the interference power at the interference limited
regime. Specifically, the input to the ID detector is givenyoy: Hiz1 + /P2 Hoxo, Wherex; € S is the desired signall,
zo € S is the interferenceH:, H» ~ CN(0, 1), and the interference power 3. The average end-to-end SER is given
by SERP2) £ 32, Pr{#1 # x|y, P2}
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Average end-to-end SER performance versus theveeégi/ Ny (dB). The setup is given b = 5 (number of

users),{M = 3, N = 2} (number of transmit and receive antennd3)= 1 (number of data stream), ard= 3 (number

of aligned users for feasible interference alignment).
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Fig. 7. Average end-to-end SER performance versus theveeégi/ Ny (dB). The setup is given b = 6 (number of
users),{M = 3, N = 2} (number of transmit and receive antennd3)= 1 (number of data stream), ard= 3 (number

of aligned users for feasible interference alignment).
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Fig. 8. Cumulative Distribution Function (CDF) of the SERr glata stream with receiv&, /Ny = 25dB. The setup is
given by K = 5 (number of users{M = 3, N = 2} (number of transmit and receive antennd3)= 1 (number of data

stream), andx = 3 (number of aligned users for feasible interference aligmjne
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Fig. 9. Cumulative Distribution Function (CDF) of the SERr glata stream with receivé&, /Ny = 25dB. The setup is
given by K = 6 (number of users{M = 3, N = 2} (number of transmit and receive antennd3)= 1 (number of data

stream), andx = 3 (number of aligned users for feasible interference aligmjne
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