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Abstract

In this paper, we consider a Partial Interference Alignmentand Interference Detection (PIAID)

design forK-user quasi-static MIMO interference channels with discrete constellation inputs. Each

transmitter hasM antennas and transmitsL independent data streams to the desired receiver with

N receive antennas. We focus on the case where not allK − 1 interfering transmitters can be

aligned at every receiver. As a result, there will be residual interference at each receiver that cannot

be aligned. Each receiver detects and cancels the residual interference based on the constellation

map. However, there is a window ofunfavorable interference profileat the receiver for Interference

Detection (ID). In this paper, we propose a low complexity Partial Interference Alignment scheme

in which we dynamically select the user set for IA so as to create a favorable interference profile

for ID at each receiver. We first derive the average symbol error rate (SER) by taking into account

of the non-Guassian residual interference due to discrete constellation. Using graph theory, we then

devise a low complexity user set selection algorithm for thePIAID scheme, which minimizes the

asymptotically tight bound for the average end-to-end SER performance. Moreover, we substantially

simplify interference detection at the receiver using Semi-Definite Relaxation (SDR) techniques. It

is shown that the SER performance of the proposed PIAID scheme has significant gain compared

with various conventional baseline solutions.

The authors are with the Department of Electronic and Computer Engineering (ECE), Hong Kong University of Science

and Technology (HKUST), Hong Kong.
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I. INTRODUCTION

Interference has been a very difficult problem in wireless communications.. For instance, the

capacity region of two-user Gaussian interference channels has been an open problem for over 30 years

[1]. Recently, there are some progress made in understanding the interference [2], [3] and extensive

studies have been done regarding theInterference Alignment(IA) [3]. For instance, IA is a signal

processing approach that attempts to simultaneously alignthe interference on a lower dimension

subspace at each receiver so that the desired signals can be transmitted on theinterference-free

dimensions. In [4], the authors show that IA (using infinite dimension symbol extension in time or

frequency selective fading channels) is optimal in Degrees-of-Freedom (DoF) sense. In [5] the authors

propose a variation of the IA scheme, the ergodic alignment scheme, forK-user time or frequency-

selective interference channels. In practice, since it is not possible to realize infinite dimension symbol

extensions, there are a number of works [6]–[8] and the reference therein that consider IA in the

spatial domain, without symbol extensions, in theK-user quasi-static MIMO interference channels.

Furthermore, the authors in [9] investigate the asymptoticperformance of these different IA solutions.

However, for quasi-static (or constant) channels, conventional IA might be infeasible depending on

the system parameters. For example, it is conjectured in [10] that conventional IA on quasi-static

MIMO (M transmit andN receive antennas) interference channels is not feasible toachieve a per

user DoF greater thanM+N
K+1 . As a result, we cannot rely on IA to eliminate all interference in quasi-

static MIMO interference channels especially whenK is large. There are other works that consider

IA over signal scale in [11]–[14]. In [11] and [12], signal scale alignment schemes are introduced

for the many-to-one interference channel and fully connected interference networks, respectively. In

[13], [14], the authors propose a lattice alignment scheme for K-user MIMO interference channels.

However, the scheme requires infinite SNR and serves only as aproof of concept. It is not clear

whether this approach can be applied at finite SNR.

Due to the fact that not all the interferers can be aligned at each receiver, there will be residual inter-

ference at the receiver. In this paper, we assume the receiver has interference detection (ID) capability.

Specifically, the receiver detects and cancels the residualinterference based on the constellation map

derived from the discrete constellation inputs. However, there is a window ofunfavorable interference

profile for ID at the receiver. For instance, ID at the receiver is more effective when the interference

is stronger than the desired signal [14], [15]. In [15], [16], the authors propose an ID scheme for

quasi-static interference channels based on lattices. However the proposed scheme can only work

under idealized assumptions such as the symmetric SISO interference channels (where all cross links

have the same fading coefficients) or a specialized class of 3-user SISO interference channels (where

the product of fading coefficients is assumed to be rational).
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In fact, IA and ID are complementary approaches to deal with interference in quasi-static MIMO

interference channels. The IA approach1 can be used to first eliminate some interference and the ID

approach can be used to deal with the residual interference at each receiver. While we can potentially

benefit from the concepts of IA and ID approaches in dealing with interference, there are still some

key technical challenges to be addressed.

• Feasibility Issue of IA and Path Loss Effects: Sometimes brute-force IA in quasi-static

MIMO interference channels (without symbol extensions) might be infeasible depending on

system parameters. Furthermore, existing literature has completely ignored the effects of path

loss, which may also be exploited when dealing with interference. For instance, nodes with large

path loss may not need to be interference-aligned and hence,it is important to jointly consider

the feasibility issue and the path loss effects.

• Coupling between IA and ID: While both IA and ID are effective means to mitigate interference,

their designs are coupled together in an intricate manner. For instance, the performance of ID

at the receiver depends heavily on the interference profile.Hence, IA can potentially contribute

to creating a more desirable interference profile for ID by careful selecting a subset of users

for IA. However, the problem of user selection in IA to optimize the symbol error rate (SER)

performance is very complicated. First, the optimization space is combinatorial and brute force

exhaustive search is not viable. Second, even if we can afford the search complexity, obtaining

the search metric is highly non-trivial because it is also very challenging to analyze the closed

form average SER under non-Gaussian interferences.

In this paper, we propose a low complexityPartial Interference Alignmentand Interference Detec-

tion (PIAID) scheme forK-user quasi-static MIMO interference channels with discrete constellation

inputs. We consider QPSK constellations2 at the inputs of theK transmitters and each transmit-receive

pair may have different path losses. The proposed PIAID scheme dynamically selects theinterference

alignment setat each receiver based on the path loss information to createa favorable interference

profile at each receiver for ID processing as illustrated in Fig. 2. Interference alignment is applied

only to the members of the alignment set. We derive the average SER by taking into account the

non-Guassian residual interference due to discrete constellation. Using graph theory, we transform

the combinatorial problem into a linear programming (LP) problem and obtain a low complexity user

set selection algorithm for the PIAID scheme, which minimizes the asymptotically tight bound for the

average end-to-end SER performance. Furthermore, using Semi-Definite Relaxation (SDR) technique

1 In the remaining papers, the mentioned IA approach specifically refers to the signal space alignment approach.

2 QPSK constellations are easier to analyze. However, the proposed framework can be extended to QAM constellations

easily.
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[17]–[20], we propose a low complexity ID algorithm at the receiver. The SER performance of

the proposed PIAID scheme is shown to have significant gain compared with various conventional

baseline solutions.

Outline: The rest of this paper is organized as follows. In Section II, we outline the system model

and the proposed PIAID scheme. In Section III, we discuss theoptimization of the IA user selection. In

Section IV, we derive the average SER by taking into account the non-Guassian residual interference

and propose a low complexity ID algorithm at the receiver that uses SDR technique. The numerical

simulation results are illustrated in Section V. Finally weconclude with a brief summary in Section

VI.

II. SYSTEM MODEL

A. K-user Quasi-Static MIMO Interference Channels

We considerK-user quasi-static MIMO Gaussian interference channels asillustrated in Fig. 1.

Specifically, eachM -antenna transmitter, tries to communicate to its correspondingN -antenna re-

ceiver. The channel output at thek-th receive node is described as follows:

yk =
∑

i∈K

√
PiLkiHkixi + zk, (1)

whereK = {1, · · · ,K}, Hki ∈ CN×M is the MIMO complex fading coefficients from thei-th

transmitter to thek-th receiver,Lki is the long term path gain from thei-th transmitter to thek-th

receiver, andPi is the average transmit power of thei-th transmitter. In (1),xi ∈ CM×1 is the

complex signal vector transmitted by transmit nodei, and zk ∈ CN×1 is the circularly symmetric

Additive White Gaussian Noise (AWGN) vector at receive nodek. We assume all noise terms are

i.i.d zero mean complex Gaussian withE[zk(zk)H ] = 2IN . Furthermore, the assumption on channel

model is given as follows:

Assumption 1 (Assumption on Channel Model [21]):We assume that the long term path gain is

given byLki = ωd−γki , wheredki is the distance between transmit nodei and receive nodek, ω is the

Log-normal shadow fading with a standard deviationσω, andγ is the path loss exponent. Furthermore,

we assume that the entries ofHki for all k, i are i.i.d. complex Gaussian random variables given by

[Hki](n,m) ∼ CN (0, 1) for all k, i, n,m, where[Hki](n,m) denotes the(n,m)th element ofHki.

In this paper, we assume that thei-th transmit node transmitsD ≤ min(M,N) independent QPSK

data streams{x1i , · · · , xDi } to thei-th receive node wherexdi ∈ S = {
√
2
2 (1+ j),

√
2
2 (1− j),

√
2
2 (−1+

j),
√
2
2 (−1 − j)},∀d ∈ {1, · · · ,D}. Let vdi (||vdi || = 1, where || · || denotes the Frobenius norm.)

denote the precoder for thexdi symbol. Hence, the transmitted vector at thei-th transmitter is given

by xi =
∑

d v
d
i x

d
i .
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B. Partial Interference Alignment and Interference Detection (PIAID) Scheme

The proposed PIAID scheme consists of two major components,namely thePartial Interference

Alignment(PIA) at the transmitters and theInterference Detection(ID) at the receivers as illustrated

in Fig. 2.

1) Overview of PIA:PIA is motivated by the feasibility issue3 of the MIMO interference alignment

without symbol extension [6], [10]. For instance, it is conjectured in [10] that only whenK ≤
M+N
D − 1, theK − 1 interfering transmitters can be aligned at every receiver node. As a result, not

all theK− 1 interfering transmitters can be aligned at every receiver node for largeK. Furthermore,

existing IA schemes do not consider or exploit the effects ofdifferent path losses between transmit

and receive pairs. When the path loss effects are taken into consideration, not all transmitters will

contribute the same effect at the receiver and hence, there should be different priority in determining

which nodes should be aligned given the feasibility constraint. Fig. 3 illustrates an example of 4-user

interference channels whereM = N = 2 andD = 1. Using the feasibility condition of MIMO IA

in [10], only two transmitters can be aligned at each receiver. Combining with the path costs (which

depend on the path gains and transmit power), it is obvious that transmitters 2 and 3 should be aligned

at receiver 1 as indicated in the Fig. 3.

Motivated by the above example, the proposed PIAID scheme dynamically selectsα transmitters

to be aligned at each receiver node based on the path costs. The index of the aligned transmitters at

each receiver is given by a PIA set with cardinalityα. Specifically, the PIA set is defined below.

Definition 1 (PIA Set):A PIA set is defined asA = {Ak,∀k}, whereAk = {k1, k2, · · · , kα 6= k}
denotes the index of aligned transmitters at the receiverk for some constantα.

Only the transmit nodes that belong toAk will have to align their transmit signals by choosing

the precoders and equalizers according to the traditional IA requirement4 [10], [22]

(Uk)
†HkiVi = 0,∀i ∈ Ak

(Uk)
†HkkVk = diag(λ1, · · · , λD),∀k (2)

where (·)† denotes the Hermitian transpose, diag(λ1, · · · , λD) denotes a diagonal matrix with diagonal

entriesλ1, · · · , λD, Uk = [u1
k, · · · ,uDk ] are theN×D decorrelators at receiverk with ||ulk|| = 1,∀l,

andVi = [v1
i , · · · ,vDi ] are theM ×D precoders at transmitteri with ||vli|| = 1,∀l. Based on the

3 For constant MIMO interference channels, it is not always possible to completely align all theK − 1 interferers at

each receiver.

4 Note that the requirement is equivalent to that used in [10],[22], i.e., choosing the precoders and equalizers satisfying

rank((Uk)
†
HkkVk) = D, ∀k.
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conjecture in [10], a sufficient condition5 for a feasible PIA setA is given by [10]:

α(A) ≤ min

(
M +N

D
− 2,K − 1

)
and

∑
k
1(i ∈ Ak) = α(A),∀i (3)

where1(·) is the indicator function,α(A) = |Ak| is the cardinality ofAk (i.e., the number of aligned

interferers at each receiver). The requirement as per (3) means that each transmitter should be selected

by α(A) receivers. The IA setA is a design parameter in the proposed PIA scheme, and how to

choose the IA set is presented in Section III.

Remark 1 (Feasibility Condition):Note that the feasibility conditions for (2) are still open in the

literature. Since the feasibility condition and computation of {Uk,Vk,∀k} are not the focus of the

paper, we have adopted the results in [10] to derive a sufficient condition (3). While this condition

restricts the choice of the feasible setA, it introduces graph structure for the optimization w.r.t.

A. Furthermore, as shown in Fig. 6, the proposed PIA algorithmwith condition (3) has similar

performance as the solution obtained by brute-force exhaustive search (without (3)).

2) Overview of ID: In this paper, we focus on the case where not all theK − 1 interferers can

be aligned at each receivers. As a result, there will be residual interference at every receiver. The ID

processing at the receiver first estimates the aggregate interference signal by using the constellation

maps derived from the QPSK inputs. The desired signal is detected after subtracting the estimated

aggregate interference. For instance, the normalized received signal at thek-th receiver is given by:

yk =
√
PkLkkHkkv

l
kx

l
k +

∑
d6=l

√
PkLkkHkkv

d
kx

d
k

︸ ︷︷ ︸
inter-stream interference

+
∑

i 6∈Ak;d

√
PiLkiHkiv

d
i x

d
i

︸ ︷︷ ︸
non-aligned interferers

+
∑

i∈Ak;d

√
PiLkiHkiv

d
i x

d
i

︸ ︷︷ ︸
aligned interferers

+zk.
(4)

We adopt linear processing at the receiver and the detectionprocess forl-th data stream at thek-th

receiver is divided into two stages, namely theaggregate interference detection stage(stage I) and

the desired signal detection stage(stage II). The two stages are elaborated below:

• Stage I Processing:Using the l-th column ofUk in (2), ulk, as the decorrelator, the post-

processed signal of thel-th stream is given by:

ylk = (ulk)
†yk =

√
PkLkkH

ll
kkx

l
k +

∑

i 6∈Ak;d

√
PiLkiH

ld
kix

d
i

︸ ︷︷ ︸
non-aligned interferers

+(ulk)
†zk, (5)

5 From [10], we know that the total number of equations for the IA requirement{(Uk)
†
HkiVi = 0, ∀i ∈ Ak,∀k} is

Ne =
∑

k
|Ak|D2 = αKD2, and the total number of variables isNv =

∑

k
D(M +N − 2D) = KD(M +N − 2D).

When each transmitter is selected byα receivers, the feasibility condition is simply given byNe ≤ Nv [10], i.e.,α(A) ≤
min

(

M+N

D
− 2, K − 1

)

.
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whereH ld
ki = (ulk)

†Hkiv
d
i is the equivalent channel gain for thed-th data stream of transmitteri at

receiverk. Note that the inter-stream interference and the interference contributed by users in the

IA setAk are completely eliminated due to the PIA requirement in (2).Let Qk = {i : PiLki ≥
PkLkk,∀i 6∈ Ak, i 6= k} ⊆ {1, · · · ,K} denotes the set ofstrong residual interference. Since ID

at the receiver is more effective when the interference is stronger than the desired signal [14], [15],

the first stage processing estimates theaggregate strong interferenceI lk =
∑

i∈Qk;d

√
PiLkiH

ld
kix

d
i

using the following nearest neighbor detection rule.

Algorithm 1 (Stage I Interference Detection Algorithm):Based on the decorrelator output,ylk,

the detected aggregate strong interferenceÎ lk is given by:

(Î lk)
∗ = argmin

c∈Il
k

|ylk − c|, (6)

whereI lk =
{ ∑
i∈Qk;d

√
PiLkiH

ld
kis

d
i : s

d
i ∈ S

}
is the set of possible values the strong interference

from Qk can take.

Note that whenQk = ∅, there will be no stage I decoding for the desired data streamxlk. In this

case, the proposed PIAID scheme reduces to the conventionalreceiver with one-stage decoding.

• Stage II Processing:The estimated aggregate strong interference(Î lk)
∗ is first subtracted from

the decorrelator outputylk as illustrated:

ỹlk = ylk − (Î lk)
∗ =

√
PkLkkH

ll
kkx

l
k + I lk − (Î lk)

∗ +
∑

i∈Ok;d

√
PiLkiH

ld
kix

d
i

︸ ︷︷ ︸
residual interference

+(ulk)
†zk, (7)

where Ok = {i : PiLki < PkLkk,∀i 6∈ Ak, i 6= k} ⊆ {1, · · · ,K} denotes the set ofweak

residual interference, and obviously we haveOk
⋃Qk

⋃Ak
⋃{k} = K. In turn, the desired

signal for receiverk is detected based oñylk using the following algorithm.

Algorithm 2 (Stage II Signal Detection Algorithm):The l-th data symbol at thek-th receiverxlk

is detected based oñylk according to the minimum-distance rule given by:

ℜ{(x̂lk)∗} =





√
2
2 if ℜ

{
ỹlk√

PkLkkHll
kk

}
≥ 0

−
√
2
2 else

ℑ{(x̂lk)∗} =





√
2
2 if ℑ

{
ỹlk√

PkLkkHll
kk

}
≥ 0

−
√
2
2 else

(8)

Note that the performance of the ID processing depends heavily on the interference profile, which

contains the relative power of the residual interference atthe receiver. Fig. 4 illustrates the average

end-to-end SER performance of the ID detector versus the interference power. Observe that there

is a window of unfavorable interference power for which the performance of the ID is quite poor.

As such, the user selection of the PIA stage can contribute significantly to the end-to-end SER

performance of the PIAID scheme. Intuitively, the user set selectionA of PIAID should not aim at
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removing thestrongest interference. On the contrary, it should remove theunfavorable interference

characterized by the ID stage requirement (similar to Fig. 4). As a result, the PIA and ID processing

are complementary approaches to combat interference and their designs are tightly coupled together.

III. D YNAMIC IA SET SELECTION IN PARTIAL INTERFERENCEALIGNMENT

In this section, we shall formulate the dynamic selection ofPIA set as a combinatorial optimization

problem, and derive a low complexity optimal solution usinggraph theory and linear programming.

A. Problem Formulation

Due to heterogeneous path losses and transmit powers, interference links have different contributions

to the average end-to-end SER of the PIAID scheme. We shall first formulate the dynamic PIA set

selection problem using a general cost metricC = {cki,∀k, i}. In the next section, we shall obtain a

specialized cost metric related to the end-to-end SER of thePIAID. The PIA set optimization problem

is summarized below.

Problem 1 (MaxPIA Problem):Given a general cost matrix of the interference linksC = {cki,∀k, i},

the MaxPIA prolbem is given by:

MaxPIA: A∗ = argmax
A∈A

∑

k,i

cki1(i ∈ Ak), (9)

whereA∗ is the solution to the MaxPIA problem, andA denotes the collection of all the PIA sets

that satisfies the IA feasibility condition (3).

B. Optimal Solution of the Dynamic PIA Set Selection

Optimization problem (9) is a constrained combinatorial optimization problem, which is difficult in

general. Solving problem (9) using brute force exhaustive search has a high complexity ofO(exp(K))

and is not viable in practice. In this section, we shall exploit specific problem structure and visualize

the optimization problem in (9) using graph theory.

We first review some preliminaries on graph theory from [23],[24] and the reference therein. A

graph G is defined by a pairG = (W, E), whereW is a finite set ofnodesandE is a finite set of

edges. Specifically, the nodes inW are denoted asw1, w2, · · · , w|W|, and an edge inE connecting

nodeswi andwk is denoted as[wi, wk]. If an edgee = [w1, w2] ∈ E , then we say thate is incident

uponw1 (andw2). Thedegreeof a nodew of W is the number of edges incident uponw. A bipartite

graph is a graphB = (W, E) such thatW can be partitioned into two sets,W1 andW2, and each

edge inE has one node inW1 and one node inW2. The bipartite graph is usually denoted by

B = (W1,W2, E). An example of a bipartite graph is illustrated in Fig. 3.

September 5, 2018 DRAFT
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In fact, interference networks can be represented by a bipartite graphB = (R,T , E), whereR =

{r1, · · · , rK} is the set of the receive nodes,T = {t1, · · · , tK} is the set of the transmit nodes, and

E = {[rk, ti],∀k, i andk 6= i} is the set of the edges. A feasible PIA setA is equivalent to a subset of

the edgesEs with the property that the degree of each receive and transmit node ofGs = (T ,R, Es)
is α(A), and Gs is called aα-factor of graphG.

Example 1 (Graph Illustration of the PIA set):Suppose the PIA set is given byA = {A1 =

{2, 3},A2 = {3, 4},A3 = {4, 1},A4 = {1, 2}}, the corresponding subset of edgesEs is given

by Es = {[r1, t2], [r1, t3], [r2, t3], [r2, t4], [r3, t4], [r3, t1], [r4, t1], [r4, t2]} as illustrated in Fig. 3.

Let cki denote the cost of edge[rk, ti] ∈ E . Problem 1 is equivalent to finding aα-factor ofG with

the largest sum of costs. Hence, the MaxPIA problem in (9) is similar to a matching problem (finding

a “best” 1-factor of graphG) on a bipartite graph, and exploiting this equivalence we shall derive

a low complexity optimal solution. Lete = {eki,∀k, i} be a set of variables. If the edge[rk, ti] is

included in theα-factor (i.e. the transmit nodei is chosen as one of the aligned interferers at receive

nodek) theneki = 1, otherwiseeki = 0. As a result, the problem 1 is equivalent to

{e∗ki} =





argmaxeki

∑
k,i ckieki

s.t
∑

i eki = α,∀k
∑

k eki = α,∀i
eki ∈ {0, 1},∀k, i

(10)

whereα = min
(
M+N
D − 2,K − 1

)
.

The above problem is a non-convex problem due to the non-convex constrainteki ∈ {0, 1}. To get

a low complexity solution, we first relax the constraintseki ∈ {0, 1} to 0 ≤ eki ≤ 1. As a result,

(10) becomes a standard LP problem, which can be solved efficiently by the well known simplex

algorithm [23], [24]. The following Lemma summarizes the optimality of this relaxation.

Lemma 1 (Optimality of the LP Relaxation):The optimal solution of the LP relaxation problem is

also the optimal solution of (10), i.e.̃e∗ki ∈ {0, 1} whereẽ∗ki is the optimal solution of the LP relaxed

problem.

Proof: Please refer to Appendix A.

IV. SER ANALYSIS AND LOW COMPLEXITY ID PROCESSING

In this section, we first derive the average SER of the PIAID scheme for a given PIA setA and

the path gains{LkiPi,∀k, i}. Based on the SER results, we obtain an equivalent cost metric for the

PIA set selection optimization problem in (10), which is order-optimal w.r.t. the average end-to-end

SER. Finally, we propose a low complexity ID algorithm usingSDR technique.
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A. SER Analysis of ID with Non-Gaussian Residual Interference

Unlike standard SER analysis in existing literature [25], [26], a key challenge of SER analysis in

the PIAID scheme is that the residual interference in the stage I and stage II ID processing are non-

Gaussian due to the discrete constellation inputs. As a result, we focus on deriving an asymptotically

tight SER expression for the interference dominated regime. Theorem 1 summarizes our main results.

Theorem 1 (Average SER of the Two Stage PIAID Processing):For a given PIA setA, the SER

of the l-th data stream at thek-th receiver in the interference limited regime of the PIAIDscheme is

given by

SER
l
k(A) , EH

[
SERlk(A,H)

]
, EH

[∑
xl
k
Pr{xlk}Pr{x̂lk 6= xlk|xlk,A,H}

]

= Θ
(∑

i∈Qk

PkLkk

PiLki
+
∑

i∈Ok

PiLki

PkLkk

)
,

(11)

whereH = {Hki,∀k, i}. g(x) = Θ(f(x)) denoteslim supx→0
g(x)
f(x) ≤ C and lim infx→0

g(x)
f(x) ≥ c

for some constantsC ≥ c ≥ 0.

Proof: Please refer to the Appendix B.

Remark 2: In this paper, the precoders and decorrelators{Vk,Uk,∀k} are determined based

on the IA requirements in (2). Hence, they are only dependenton the channels in the setA for

which interference is aligned. Since the interference fromthese channels involved are nulled, the

remaining interference has a random channel matrix even though it is now projected on the space

Uk. Furthermore, the SER in (11) is averaged over realizationsof the channels and noise.

Remark 3 (Interpretation of Theorem 1):The result in (11) indicates that the SER of the PIAID

scheme favors either very strong or very weak residual interference. In other words, there is always an

unfavorablewindow of residual interferencesas illustrated in Fig. 4. The role of PIA is to eliminate

these unfavorable windows of interferences so that the ID processing is given a more favorable

interference profile.

Motivated by Theorem 1, we set the interference cost metric in the PIA set optimization problem

as

cki =





−C if i = k

PkLkk

PiLki
else ifPiLki ≥ PkLkk

PiLki

PkLkk
otherwise

,∀k ∈ K (12)

whereC > 0 is a large constant (a sufficiently largeC can be chosen as:C >
∑

k,i 6=k |cki|). Based

on these interference cost metrics, the PIA set selection solutions solved by the LP relaxation is
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order-optimal6 w.r.t. the following problem:

A∗ = argmin
A∈A

∑

k,l

SER
l
k(A). (13)

B. Low Complexity ID

Note that the complexity of decoding algorithm 1 in the stageI processing is exponential w.r.t. the

cardinality of the set of strong residual interferences, i.e., |Qk|. Using the SDR technique [17]–[20],

we shall derive a low complexity ID algorithm, which has polynomial complexity w.r.t.|Qk|. The

SDR technique has been widely used in multiuser detection [17], [18] and MIMO systems [19], [20]

to derive low complexity suboptimal detectors. It has been shown that the SDR detector can provide

better performance compared with other suboptimal detectors.

To utilize the SDR technique, we first simplify equation (5) as follows:

ylk = (hQ)
TxQ +

√
PkLkkH

ll
kkx

l
k +

∑

i∈Ok;d

√
PiLkiH

ld
kix

d
i + (ulk)

†zk

︸ ︷︷ ︸
n0

, (14)

wherexQ = [x1i1 , · · · , xDi1 , x1i2 , · · · , xDiQ ]T ∈ SDQ×1 is DQ interference symbols, andQ = |Qk| is the

cardinality ofQk. hQ = [
√
Pi1Lki1H

l1
ki1
, · · · ,

√
Pi1Lki1H

lD
ki1
,
√
Pi2Lki2H

l1
ki2
, · · · ,√PiQLkiQH

lD
kiQ

]T

∈ CDQ×1 is the channel gain for the interference symbolsxQ. Furthermore, the real valued form of

(14) can be expressed as:
[ℜ{ylk}
ℑ{ylk}

]

︸ ︷︷ ︸
yR

=

[ℜ{(hQ)T } − ℑ{(hQ)T }
ℑ{(hQ)T } ℜ{(hQ)T }

]

︸ ︷︷ ︸
HR

[ℜ{xQ}
ℑ{xQ}

]

︸ ︷︷ ︸
xR

+

[ℜ{n0}
ℑ{n0}

]

︸ ︷︷ ︸
nR

, (15)

whereyR ∈ R2×1, HR ∈ R2×2DQ, xR ∈ {±1}2DQ×1 andnR ∈ R2×1. Decoding algorithm 1 in

stage I processing is equivalent to

(xR)
∗ = argmin

xR∈{±1}2DQ×1

||yR −HRxR||, (16)

such that the detected aggregate strong interference(Î lk)
∗ = (hQ)T (xQ)∗, where(xQ)∗ is determined

from (xR)
∗ as indicated in (15). The above problem (16) can be equivalently expressed as

s∗ =





argmin
s

trace(WS)

s.t diag(S) = I2DQ+1

S = ssT

(17)

6 It can be observed from the following fact. From Theorem 1, wehave A∗ =

argminA∈A
Θ

(

∑

k,i∈Qk

PkLkk

PiLki
+

∑

k,i∈Ok

PiLki

PkLkk

)

= argminA∈A
Θ

(

∑

k,i6=k

PkLkk

PiLki
1(PiLki ≥ PkLkk) −

∑

k,i∈Ak

PkLkk

PiLki
1(PiLki ≥ PkLkk) +

∑

k,i6=k

PiLki

PkLkk
1(PiLki < PkLkk) −

∑

k,i∈Ak

PiLki

PkLkk
1(PiLki < PkLkk)

)

=

argmaxA∈A
Θ

(

∑

k,i∈Ak

PkLkk

PiLki
1(PiLki ≥ PkLkk) +

∑

k,i∈Ak

PiLki

PkLkk
1(PiLki < PkLkk)

)

. Hence, the
(

∑

k,i∈Qk

PkLkk

PiLki
+
∑

k,i∈Ok

PiLki

PkLkk

)

is an asymptotically tight bound for SER whenPkLkk ≫ PiLki or PkLkk ≪ PiLki

for all {k, i}, and an order-optimal solution means that it minimizes the asymptotically tight bound for the SER.
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where(·)T denotes the transpose,

W =



 (HR)
THR −(HR)

TyR

−(yR)
THR 0



 and s =
[xR
1

]
. (18)

By means of SDR, we relax the constraintS = ssT by S � 0 (i.e., S ∈ Cn×n is positive-

semidefinite), and problem (17) degenerates into the following Semi-Definite Program (SDP) that can

be solved efficiently inO(Q3.5) time [17]–[20], e.g., using the interior-point optimization technique

[27]:

S∗ =





argmin
s

trace(WS)

s.t diag(S) = I2DQ+1

S � 0.

(19)

If the optimal valueS∗ of the above problem (19) is rank one, then the relaxation is tight, and the

optimal solution of the(xR)∗ is given by [17]–[19]:

[(xR)
∗](n,1) = fx (r, n) =





1 if [r](n,1)

[r](|r|,1)
≥ 0

−1 else
, ∀n ∈ {1, · · · , |r| − 1} (20)

wherer is the eigenvector ofS∗ associated with the only one non-zero eigenvalue.

On the other hand, ifS∗ is not rank one, then we shall approximate(xR)
∗ based onS∗. Specifically,

there are a few standard techniques to determine(xR)
∗, e.g.,Randomization, Rank-1 approximation

andDominant eigenvector approximation[17]–[19].

To further improve the quality of the approximation, we propose a SDR-SID algorithm based on

the dominant eigenvector approximation as follows (and illustrated in Fig. 5).

Algorithm 3 (SDR-SID Algorithm):

• Step 0: Set active setΛ = {x1i1 , · · · , xDi1 , x1i2 , · · · , xDiQ} that containsall the decoding data

streams, and the cardinality isλ = |Λ| = DQ.

Repeat

• Step 1: According to the active setΛ, solve optimization problem (19) to obtainS∗.

• Step 2: If S∗ is rank one, determine(xR)∗ from (20) and terminate.

• Step 3:Extract theλ dominant eigenvectors ofS∗, {r1, · · · , rλ}. Compute[x̂i](n,1) = fx (ri, n)

from (20) ∀i ∈ {1, · · · , λ} and∀n ∈ {1, · · · , 2λ}.

• Step 4: ComputeSi = [x̂i, 1]
T [x̂i, 1], ∀i ∈ {1, · · · , λ}. Choose(xR)∗ = x̂i∗ , where i∗ =

argmini∈{1,··· ,λ} trace(WSi).

• Step 5: Determinexd
∗

i∗ from (xR)
∗, where{i∗, d∗} = argmaxi,d |

√
PiLkiH

ld
ki|1(xdi ∈ Λ).

• Step 6: Setylk = ylk −
√
Lki∗H

ld∗

ki∗x
d∗
i∗ , deletexd

∗

i∗ from the active setΛ and setλ = λ− 1.

Until the active setΛ is empty.
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Example 2 (Illustration of Algorithm 3):Supposeylk in (14) is given byylk =
√
P1Lk1H

l1
k1x

1
1 +

√
P2Lk2H

l2
k2x

1
2 + n0 with |√P2Lk2H

l2
k2| > |√P1Lk1H

l1
k1|. The details of the implementation of

Algorithm 3 are given below.

• Step 0: Set active setΛ = {x11, x12} andλ = 2.

• Step 1: SupposeS∗ is not rank one. Go to step 3.

• Step 3: Extract the 2 dominant eigenvectors ofS∗, {r1, r2}, and obtain{x̂1, x̂2} from (20).

• Step 4: Suppose trace(WS1) < trace(WS2), we choose(xR)∗ = x̂1.

• Step 5:Since|√P2Lk2H
l2
k2| > |√P1Lk1H

l1
k1|, we determinex12 from (xR)

∗, i.e.,x12 = [(xR)
∗](2,1)+

j[(xR)
∗](4,1), which by definitionxQ = [x11, x

1
2].

• Step 6: Set ylk = ylk −
√
P2Lk2H

l1
k2x

1
2 =

√
P1Lk1H

l1
k1x

1
1 + n0, Λ = {x11} andλ = 1. Repeat

from step 1 to obtainx11.

Algorithm 3 is motivated from the intuition that the error probability of decoding symbolxdi ,∀i ∈
Qk,∀d is small if its channel gain

√
PiLkiH

ld
ki is large. Note that the complexity of Algorithm 3 is

mainly determined by the complexity of solving the optimization problem (19) in the step 1. Since

the complexity for step 1 is only inO(Q3.5) time [17]–[20], the overall complexity of Algorithm 3

is O(Q4.5). Furthermore, it can be easily generalized to other approximation techniques by simply

modifying the way to determinêxi in step 3. Finally, using simulation, we illustrate that theaverage

end-to-end SER performance of the low complexity SDR-SID algorithm is similar to the performance

of Algorithm 1.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposedPIAID scheme via numerical simu-

lations. In particular, we compare the performance of the proposed schemes against various baseline

schemes:

• Proposed Scheme 1: PIAID with Algorithm 1 (PIAID Alg1)

– The PIA set optimization stage tries to align the unfavorable interference links by setting

the interference cost metric according to (12).

– ID processing is adopted at each of theK receivers after PIA. Specifically, Algorithm 1

and 2 are applied at stage I and stage II processing, respectively.

• Proposed Scheme 2: PIAID with SDR-SID (PIAID Alg3)

– The PIA set optimization stage tries to align the unfavorable interference links by setting

the interference cost metric according to (12).

– ID processing is adopted at each of theK receivers after PIA. Specifically, Algorithm 3

and 2 are applied at stage I and stage II processing, respectively.
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• Baseline 1: Randomized PIA (Randomized PIA)

– The PIA setA is chosen randomly fromA, i.e., the collection of all the PIA sets that

satisfies the IA feasibility condition (3).

– ID processing is adopted at each of theK receivers after PIA. Specifically, Algorithm 1

and 2 are applied at stage I and stage II processing, respectively.

• Baseline 2: Iterative interference alignment (Iterative IA) [6, Algorithm 1]

– Alternating optimization is utilized to minimize the weighted sum leakage interference.

– Conventional one-stage decoding is adopted at each of theK receivers by treating all the

interference as noise.

• Baseline 3: Maximizing SINR (Max SINR) [6, Algorithm 2]

– Alternating optimization is utilized to maximize the SINR at the receivers.

– Conventional one-stage decoding is adopted at each of theK receivers by treating all the

interference as noise.

• Baseline 4: Maximizing Sum-Rate (Max Sum-Rate)[7]

– A gradient ascent approach combined with the alternating optimization is utilized to maxi-

mize the sum-rate of the receivers.

– Conventional one-stage decoding is adopted at each of theK receivers by treating all the

interference as noise.

• Baseline 5: Minimizing Mean Square Error (Min MSE) [8]

– A joint design to minimize the sum of the MSE of the receivers.

– Conventional one-stage decoding is adopted at each of theK receivers by treating all the

interference as noise.

In the simulations, all the transmit and receive nodes are assumed randomly distributed in a2km×
1km rectangular area as shown in Fig. 1. The channel model is given by Assumption 1. Specifically,

we set the log-normal shadowing standard deviation asσω = 12 dB and the path loss exponent as

γ = 6 as per ITU-R recommendation M.1225 [21]. Each transmitter delivers a single stream(D = 1)

of QPSK symbols. The transmit power of each node is assumed tobe the same.

A. Performance w.r.t. ReceiveEs/N0

Fig. 6 and Fig. 7 illustrate the average end-to-end SER performance per data stream versus receive

Es/N0 (dB) of the desired link forK = 5 andK = 6 respectively. The number of transmit and receive

antennas is given by{M = 3, N = 2}. The number of aligned users for the feasible interference

alignment isα = 3. The average SER performance is evaluated with107 realizations of noise,

complex fading coefficients{Hki,∀k, i} and path loss{Lki,∀k, i}. Observe that the average SER of
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all the schemes decreases as the receiveEs/N0 increases, and there is significant performance gain

of the proposed schemes compared to all baselines, even for low complexity PIAID with SDR-SID

(Algorithm 3). The performance gain is contributed by the user selection of the PIA stage that moves

the ID processing out of the unfavorable interference profile as shown in Fig. 4. Furthermore, it

can also be observed that PIAID with SDR-SID (Algorithm 3) has similar performance as PIAID

(Algorithm 1). Finally, Fig. 6 shows that the proposed PIA algorithm with condition (3) has similar

performance as the solution obtained by brute-force exhaustive search (without (3)).

B. Cumulative Distribution Function (CDF) of the SER

Fig. 8 and Fig. 9 illustrate the Cumulative Distribution Function (CDF) of the SER per data stream

with receiveEs/N0 = 25dB for K = 5 andK = 6 respectively, where the randomness of SER is

induced by{Hki,∀k, i} and{Lki,∀k, i}. The number of transmit and receive antennas is given by

{M = 3, N = 2}. The number of aligned users for the feasible interference alignment isα = 3. The

CDF performance is evaluated with107 realizations of noise, complex fading coefficients{Hki,∀k, i}
and path loss{Lki,∀k, i}. It can also be verified that the proposed scheme achieves notonly a smaller

average SER but also a smaller SER percentile compared with the baselines.

VI. CONCLUSIONS

In this paper, we propose a low complexity and novel Partial Interference Alignment (PIA) and

Interference Detection (PIAID) scheme forK-user quasi-static MIMO interference channels with

general irrational channel coefficients. Based on the path loss information, the proposed PIAID scheme

dynamically selects the IA interferers at each receiver such that it moves the ID processing out of the

unfavorable interference profiles. We derive the average SER by taking into account the non-Guassian

residual interference, and obtain a low complexity user setselection algorithm for the PIAID scheme,

which minimizes the asymptotically tight bound for the average end-to-end SER performance. The

SER performance of the proposed PIAID scheme is shown to havesignificant gain compared with

various conventional baseline solutions.

APPENDIX A

PROOF OFLEMMA 1

By introducing the slack variablesski, the LP relaxation problem of (10) becomes

{e∗ki} =





argmaxeki

∑
k,i ckieki

s.t
∑

i eki = α,∀k
∑

k eki = α,∀i
eki + ski = 1,∀k, i
eki ≥ 0, ski ≥ 0,∀k, i

(21)
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and it is equivalent to the following matrix form

{e∗} =





argmaxe cTe

s.t Ae = b

e � 0

(22)

wheree = [e11, · · · , e1K , e21, · · · , eKK , s11, · · · , s1K , s21, · · · , sKK]T is formed by the optimization

variables,b = [α, · · · , α︸ ︷︷ ︸
2K

, 1, · · · , 1︸ ︷︷ ︸
K2

]T , c = [c11, · · · , c1K , c21, · · · , cKK , 0, · · · , 0︸ ︷︷ ︸
K2

]T is formed by the

path costs, and the matrixA is given by

A =



 B 02K×K2

IK2 IK2



 =




11×K 01×K · · · 01×K

01×K 11×K · · · 01×K
...

...
...

...

01×K 01×K · · · 11×K

IK IK · · · IK

02K×K2

IK2 IK2




. (23)

where0n×m denotes ann×m matrix of zeros andIn denotes ann× n identity matrix.

Note that the feasible set for the LP (22) is given by the polytopeR(A) = {Ae = b, e � 0}. If

all the vertices ofR(A) are integers, there exists an optimal solution such that allthe optimization

variables are integers, and hence the LP (22) will always lead to an integer optimum when solved by

the well known simplex algorithm. Sinceeki ≤ 1,∀k, i, if eki is an integer, we haveeki ∈ {0, 1}. As

a result, it is equivalent to proving that all the vertices ofthe polytopeR(A) are integers. We first

defineTotally Unimodular(TUM) as follows.

Definition 2 (Definition of Totally Unimodular):An integer matrixZ is totally unimodular if the

determinant of each square submatrix ofZ is equal to 0,1, or -1.

It has been shown in [23] that ifA is TUM, then all the vertices ofR(A) are integers. Therefore,

the proof reduces to proving thatA is TUM. Note that the matrixB satisfies the following conditions:

• B is a {0, 1} matrix with no more than two nonzero elements in each column.

• Each column contains two nonzero elements that have the samesign, where one element is in

a row contained in the subsetΩ1 = {1, · · · ,K} and the other element is in a row contained in

the subsetΩ2 = {K + 1, · · · , 2K}.

Therefore,B is TUM [24]. It is easy to verify that the matrixC = [BT , I]T is also TUM. LetD be

a square, nonsingular submatrix ofA. The rows ofD can be permuted so that it can be written as

D =



 E 0

F I



 , (24)

whereE is a square submatrix ofC, and possibly with its rows permuted. Therefore,det(D) =

det(B) = ±1, which completes the proof.
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APPENDIX B

PROOF OFTHEOREM 1

A. Upper Bound of the Average SER Performance

In this subsection, we shall obtain an upper bound of the average SERSER
l
k(A). Specifically, we

shall first obtain an upper bound of the SER under a given channel realization, i.e., an upper bound

of SERlk(A,H).

1) Upper bound of SERlk(A,H): Let Hl
k = {H ld

ki,∀i, d} denotes the set of equivalent channel

gains after applying the equalizerulk when decoding the desired signalxlk at the receiverk, δlk =

I lk − Î lk denotes the difference between the real and estimated aggregate strong interference, and

ζ lk =
∑

i∈Ok,n

√
PiLkiH

ld
kix

d
i denotes the aggregate weak residual interference. Specifically, we start

to consider the two stage decoding separately.

• Stage II decoding: In stage II decoding,̃ylk in (7) is given by:

ỹlk = ylk − Î lk =
√
PkLkkH

ll
kkx

l
k + δlk + ζ lk + (ulk)

†zk, (25)

GivenHl
k and supposeℜ{xlk} =

√
2
2 , the error rate of decodingℜ{xlk} is given by [26]:

Pr
{
ℜ{x̂lk} 6=

√
2
2 |ℜ{xlk} =

√
2
2 , I

l
k, Î

l
k,Hl

k

}
= Pr

{
ℜ
{ ỹlk√

PkLkkHll
kk

}
≤ 0|ℜ{xlk} =

√
2
2 , I

l
k, Î

l
k,Hl

k

}

= Q
((√

2
2 +ℜ{ δlk+ζ

l
k√

PkLkkHll
kk

}
)
|√PkLkkH ll

kk|
)
= Q

(√
2
2 |√PkLkkH ll

kk|+ ℜ{e−jθ(δlk + ζ lk)}
)
,

(26)

whereQ(x) = 1√
2π

∫∞
x e−x

2/2dx denotes theQ-function, ande−jθ =
√
PkLkkHll

kk

|
√
PkLkkHll

kk|
. Similarly,

we have

Pr{ℜ{x̂lk} 6= −
√
2
2 |ℜ{xlk} = −

√
2
2 , I

l
k, Î

l
k,Hl

k} = Q
(√

2
2 |√PkLkkH ll

kk| − ℜ{e−jθ(δlk + ζ lk)}
)
,

Pr{ℑ{x̂lk} 6=
√
2
2 |ℑ{xlk} =

√
2
2 , I

l
k, Î

l
k,Hl

k} = Q
(√

2
2 |√PkLkkH ll

kk|+ ℑ{e−jθ(δlk + ζ lk)}
)
,

Pr{ℑ{x̂lk} 6= −
√
2
2 |ℑ{xlk} = −

√
2
2 , I

l
k, Î

l
k,Hl

k} = Q
(√

2
2 |√PkLkkH ll

kk| − ℑ{e−jθ(δlk + ζ lk)}
)
.

(27)

Then the error rate of decodingxlk is given by:

Pr{x̂lk 6= xlk|xlk, I lk, Î lk,Hl
k}

≤ Pr{ℜ{x̂lk} 6= ℜ{xlk}|ℜ{xlk}, I lk, Î lk,Hl
k}+Pr{ℑ{x̂lk} 6= ℑ{xlk}|ℑ{xlk}, I lk, Î lk,Hl

k}
≤ 2Q

(√
2
2 |√PkLkkH ll

kk| − |δlk| − |ζ lk|
)
.

(28)

• Stage I decoding:In the stage I decoding,ylk in (5) is given by:

ylk = I lk +
√
PkLkkH

ll
kkx

l
k + ζ lk + (ulk)

†zk. (29)

Note that when the detected aggregate strong interferenceÎ lk 6= I lk, an upper bound of the

probability that the estimated aggregate strong interference is Î lk is given by

Pr{Î lk|xlk, I lk,Hl
k} ≤ Pr{Î lk 6= I lk|xlk, I lk,Hl

k} ≤ 2Q
(
|δlk|/2− |

√
PkLkkH

ll
kk| − |ζ lk|

)
, (30)
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wherePr{Î lk 6= I lk|xlk, I lk,Hl
k} is the conditional probability that̂I lk 6= I lk whenI lk is transmitted.

Therefore, we can follow the same way as (26) and (28), which obtain the conditional probability

that x̂lk 6= xlk whenxlk is transmitted. When the detected aggregate strong interferenceÎ lk = I lk,

obviously we have following expression at interference limited regime

Pr{Î lk|xlk, I lk,Hl
k} = Pr{I lk|xlk, I lk,Hl

k} ≤ 2Q
(
−|

√
PkLkkH

ll
kk| − |ζ lk|

)
≈ 2. (31)

As a result, the probability that the estimated aggregate strong interference iŝI lk in the stage I

decoding is given by

Pr{Î lk|xlk, I lk,Hl
k} ≤ 2Q

(
|δlk|/2 − |

√
PkLkkH

ll
kk| − |ζ lk|

)
. (32)

From the upper bound expressions (32) and (28) in the stage I and stage II decoding, respectively,

an upper bound of the SER under a given channel realization SERlk(A,H) is given by

SERlk(A,H) ,
∑

xl
k∈S Pr{xlk}Pr{x̂lk 6= xlk|xlk,Hl

k}
=

∑
xl
k∈S Pr{xlk}

(∑
Ilk∈Il

k
Pr{I lk}Pr{x̂lk 6= xlk|xlk, I lk,Hl

k}
)

=
∑

xl
k∈S Pr{xlk}

(∑
Ilk∈Il

k

∑
Îlk∈Il

k

Pr{I lk}Pr{Î lk|xlk, I lk,Hl
k}Pr{x̂lk 6= xlk|xlk, I lk, Î lk,Hl

k}
)

≤ 1
|Ik|

∑
xl
k∈S

∑
Ilk∈Il

k

∑
Îlk∈Il

k

Q
(
|δlk|/2 − |√PkLkkH ll

kk| − |ζ lk|
)
·

Q
(√

2
2 |√PkLkkH ll

kk| − |δlk| − |ζ lk|
)
.

(33)

2) Upper bound of SERlk(A): From (33), the average SER is given by

SER
l
k(A) , EH

[
SERlk(A,H)

]

≤ 1
|Ik|EHl

k

[∑
Ilk∈Il

k

∑
Îlk∈Il

k

1
(
|δlk|/2− |√PkLkkH ll

kk| − |ζ lk| < 0
)
·

1
(√

2
2 |√PkLkkH ll

kk| − |δlk| − |ζ lk| < 0
)]

= 1
|Ik|

∑
Ilk∈Il

k

∑
Îlk∈Il

k

Pr
{√

2
2 |√PkLkkH ll

kk| − |ζ lk| ≤ |δlk| ≤ 2(|√PkLkkH ll
kk| − |ζ lk|)

}
.

(34)

Therefore, from the above equation (34), we shall discuss the following two cases given by:

successful stage I decodinĝI lk = I lk (i.e., δlk = 0) and unsuccessful stage I decodingÎ lk 6= I lk

(i.e., δlk 6= 0).

• Successful stage I decodinĝI lk = I lk (δlk = 0): Note thatH ld
ki = (ulk)

†Hkiv
d
i , and the aggregate

weak residual interferenceζ lk is given by

ζ lk =
∑

i∈Ok,d

√
PiLkiH

ld
kix

d
i =

∑
i∈Ok,d

√
PiLki(u

l
k)

†Hkiv
d
i x

d
i

=
∑

i∈Ok

√
PiLki

∑
m,n[(u

l
k)

†](1,n)[Hki](n,m)

∑
d[v

d
i x

d
i ](m,1).

(35)

Since{ulk,vdi ,∀i ∈ Ok,∀d} are determined by the channel gains from the aligned links given

by {Hki,∀i ∈ Ak,∀k} [10], [22], they are independent of the random variables{Hki,∀i ∈ Ok}.

From Assumption 1,[Hki](n,m) ∼ CN (0, 1), and hence given{ulk,vdi xdi ,∀i ∈ Ok,∀d}, ζ lk is a
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complex Gaussian variable with zero mean and variance

σ2 =
∑

i∈Ok
PiLki

∑
m,n

∣∣[(ulk)†](1,n)
∣∣2 (∣∣∑

d[v
d
i x

d
i ](m,1)

∣∣)2

=
∑

i∈Ok
PiLki

∑
m

(∣∣∑
d[v

d
i x

d
i ](m,1)

∣∣)2 ≤ D
∑

i∈Ok
PiLki

∑
m

(∑
d

∣∣[vdi xdi ](m,1)
∣∣2
)

= D2
∑

i∈Ok
PiLki,

(36)

because of||ulk|| = ||vdi xdi || = 1. From ζ lk is a complex Gaussian variable with zero mean and

varianceσ2, and the probability density function of the random variable Z = | ζlk
σHll

kk

|2 is given

by fZ(z) = 1
(z+1)2 . Therefore, whenδlk = 0 the conditional probability is given by:

Pr
{√

2
2 |√PkLkkH ll

kk| − |ζ lk| ≤ 0
∣∣ulk,vdi xdi ,∀i ∈ Ok,∀d

}
= Pr{PkLkk

2σ2 ≤ Z}
= 1/(PkLkk

2σ2 + 1) ≤ 1/( PkLkk

4D
∑

i∈Ok
PiLki

+ 1) = Θ
(∑

i∈Ok

PiLki

PkLkk

)
.

(37)

In turn, the probability of the event
√
2
2 |√PkLkkH ll

kk| ≤ |ζ lk| is given by

Pr
{√

2
2 |√PkLkkH ll

kk| − |ζ lk| ≤ 0
}
≤ Θ

(∑
i∈Ok

PiLki

PkLkk

)
. (38)

• Unsuccessful stage I decodinĝI lk 6= I lk (δlk 6= 0): Given Î lk =
∑

i∈Qk;d

√
PiLkiH

ld
kix̂

d
i , where

x̂di ∈ S, δlk is given by:

δlk = I lk − Î lk =
∑

i∈Qk;d

√
PiLki(u

l
k)

†Hkiv
d
i (x

d
i − x̂di )

=
∑

i∈Qk

√
PiLki

∑
m,n[(u

l
k)

†](1,n)[Hki](n,m)

∑
d[v

d
i ψ

d
i ](m,1),

(39)

whereψdi = xdi − x̂di ∈ {0,±
√
2± j

√
2,±

√
2,±j

√
2}. Given{ulk,vdi ψdi ,∀i ∈ Qk,∀d}, δlk is a

complex Gaussian variable with zero mean and variance givenby

σ2 =
∑

i∈Qk
PiLki

∑
m,n

∣∣[(ulk)†](1,n)
∣∣2∣∣∑

d[v
d
i ψ

d
i ](m,1)

∣∣2

=
∑

i∈Qk
PiLki

∑
m

∣∣∑
d[v

d
i ψ

d
i ](m,1)

∣∣2 ≥ Pi∗Lki∗
∑

i∈Qk

∑
m

∣∣∑
d[v

d
i ψ

d
i ](m,1)

∣∣2,
(40)

wherei∗ = argmini∈Ξ PiLki, andΞ = {i : ∑d |ψdi | 6= 0}, since||ulk|| = 1 and ||vdi ψdi || = |ψdi |.
Therefore, whenδlk 6= 0, the conditional probability is given by

Pr
{√

2
2 |√PkLkkH ll

kk| − |ζ lk| ≤ |δlk| ≤ 2(|√PkLkkH ll
kk| − |ζ lk|)

∣∣ulk,vdi ψdi ,∀i ∈ Qk,∀d
}

≤ Pr
{
0 ≤ |δlk| ≤ 2|√PkLkkH ll

kk|
}
= Pr

{
0 ≤ | δlk

σHll
kk

|2 ≤ 4PkLkk

σ2 )
}

= 4PkLkk/σ2

4PkLkk/σ2+1 <
4PkLkk

σ2 .
(41)

In turn, the unconditional probability is given by:

Pr
{√

2
2 |√PkLkkH ll

kk| − |ζ lk| ≤ |δlk| ≤ 2(|√PkLkkH ll
kk| − |ζ lk|)

}

≤ Eul
k,v

d
iψ

d
i

[
4PkLkk

σ2

]
= C PkLkk
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,

(42)

whereC = Eul
k,v

d
iψ

d
i

[
4/(

∑
i∈Qk

∑
m |∑d[v

d
i ψ

d
i ]

2
(m,1))

]
is a positive constant.

Finally, substitute (38) and (42) into (34), we have

SER
l
k(A) ≤ Θ

(∑
i∈Qk

PkLkk

PiLki
+
∑

i∈Ok

PiLki

PkLkk

)
. (43)
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B. Lower Bound of the Average SER Performance

In this subsection, we shall obtain a lower bound of the average SERSER
l
k(A). Specifically, we

shall proveSER
l
k(A) ≥ Θ( PiLki

PkLkk
),∀i ∈ Ok andSER

l
k(A) ≥ Θ(PkLkk

PiLki
),∀i ∈ Qk, respectively.

• Proof of SER
l
k(A) ≥ Θ( PiLki

PkLkk
),∀i ∈ Ok: Suppose receiverk has perfect knowledge of all

the data streams exceptxdi ,∀i ∈ Ok,∀d. After cancelling the known data streams in stage II

decoding,̃ylk in (7) is given by:

ỹlk =
√
PkLkkH

ll
kkx

l
k +

√
PiLkiH

ld
kix

d
i + (ulk)

†zk (44)

Supposeℜ{xlk} =
√
2
2 , the error rate of decodingℜ{xlk} is given by (cf. (26)):

Pr
{
ℜ{x̂lk} 6= ℜ{xlk}|ℜ{xlk} =
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2
2

}

=
∑

xd
i∈S Pr{xdi }Q
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whereejθ =
√
PkLkkHll

kk

|
√
PkLkkHll

kk|
. Note thatℜ{e−jθH ld

kix
d
i } ∈ N (0, 12σ

2), and hence the average error

rate of decodingℜ{xlk} is given by:
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i L
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2
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) = Θ( PiLki
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(46)

whereκ ∈ N (0, σ2) and |H ll
kk| ∈ Rayleigh(σ2). Similarly, we have

E

[
Pr{ℜ{x̂lk} 6= ℜ{xlk}|ℜ{xlk} = −
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2
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]

= Pr{
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d
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(47)

Therefore, given that receiverk has perfect knowledge of all the data streams exceptxdi ,∀i ∈
Ok,∀d, the average SER of decodingxlk is given by

SER
d
i , E

[∑
xl
k∈S

Pr{xlk}Pr{x̂lk 6= xlk|xlk}
]
= Θ

( PiLki
PkLkk

)
, (48)

and obviously we haveSER
l
k(A) ≥ SER

d
i = Θ

(
PiLki

PkLkk

)
, ∀i ∈ Ok.

• Proof of SER
l
k(A) ≥ Θ(PkLkk

PiLki
),∀i ∈ Qk: Using similar arguments above and suppose receiver

k has perfect knowledge of all the data streams exceptxdi ,∀i ∈ Qk,∀d. After cancelling the

known data streams in the stage I decoding,ylk in (5) is given by:

ylk =
√
PkLkkH

ll
kkx

l
k +

√
PiLkiH

ld
kix

d
i + (ulk)

†zk. (49)
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Givenℜ{xlk} =
√
2
2 ,ℜ{xdi } =

√
2
2 , the error rate of decodingℜ{xlk} is given by
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{
ℜ{x̂lk} 6= ℜ{xlk}|ℜ{xlk},ℜ{xdi }

}
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(50)

where ejθ =
√
PkLkkHll

kk

|
√
PkLkkHll

kk|
, ejψ =

√
PiLkiHld

ki

|
√
PiLkiHld

ki|
, ϑ = θ − ψ. The probability density function of

Z = |Hll
kk

Hld
ki

|2 is given byfZ(z) = 1
(z+1)2 , andϑ follows the uniform distribution between0 and

2π. As a result, the average error rate of decodingℜ{xlk} is given by

E

[
Pr

{
ℜ{x̂lk} 6= ℜ{xlk}|ℜ{xlk},ℜ{xdi }

}]
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{

1
2 cos(ϑ) |
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=
∫ π/4
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(51)

Furthermore, given that receiverk has perfect knowledge of all the data streams exceptxdi ,∀i ∈
Qk,∀d, the average error rate of decodingxlk is given by

SER
d
i , E

[
Pr

{
x̂lk 6= xlk|xlk, xdi

}]
≥ Θ(PkLkk

PiLki
). (52)

Obviously we haveSER
l
k(A) ≥ SER

d
i ≥ Θ(PkLkk

PiLki
), ∀i ∈ Qk.

Finally, from the results of upper and lower bound, we can conclude that

SER
l
k(A) , EH

[
SERlk(A,H)

]
, Θ

(∑
i∈Qk

PkLkk

PiLki
+
∑
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)
. (53)
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Fig. 1. Quasi-staticK-user MIMO complex Gaussian interference channels. EachM -antenna transmitter tries to transmit

D independent data streams to its correspondingN -antenna receiver. All the nodes are randomly distributed in thea × b

rectangular area.
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Fig. 2. System level block diagram of the proposed PIAID Scheme.

Fig. 3. An example of 4-user interference channels whereM = N = 2 andD = 1. Using the feasibility condition of

MIMO IA in [10], only two transmitters can be aligned at each receiver. Specifically, the 4-user interference channels are

represented by a bipartite graphB = (R, T , E), whereR = {r1, · · · , r4} is the set of the receive nodes,T = {t1, · · · , t4}
is the set of the transmit nodes, andE = {[rk, ti],∀k, i andk 6= i} is the set of the edges. Furthermore, the PIA set is

given byA = {A1 = {2, 3},A2 = {3, 4},A3 = {4, 1},A4 = {1, 2}} and the corresponding subset of edges is given by

Es = {[r1, t2], [r1, t3], [r2, t3], [r2, t4], [r3, t4], [r3, t1], [r4, t1], [r4, t2]}.
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Fig. 4. Average end-to-end SER performance of the ID detector versus the interference power at the interference limited

regime. Specifically, the input to the ID detector is given byy = H1x1 +
√
P2H2x2, wherex1 ∈ S is the desired signal,

x2 ∈ S is the interference,H1,H2 ∼ CN (0, 1), and the interference power isP2. The average end-to-end SER is given

by SER(P2) ,
∑

x1
Pr{x̂1 6= x1|x1, P2}.
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Fig. 5. Illustration of Algorithm 3 (SDR-SID Algorithm).
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Fig. 6. Average end-to-end SER performance versus the receive Es/N0 (dB). The setup is given byK = 5 (number of

users),{M = 3, N = 2} (number of transmit and receive antennas),D = 1 (number of data stream), andα = 3 (number

of aligned users for feasible interference alignment).
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Fig. 7. Average end-to-end SER performance versus the receive Es/N0 (dB). The setup is given byK = 6 (number of

users),{M = 3, N = 2} (number of transmit and receive antennas),D = 1 (number of data stream), andα = 3 (number

of aligned users for feasible interference alignment).
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Fig. 8. Cumulative Distribution Function (CDF) of the SER per data stream with receiveEs/N0 = 25dB. The setup is

given byK = 5 (number of users),{M = 3, N = 2} (number of transmit and receive antennas),D = 1 (number of data

stream), andα = 3 (number of aligned users for feasible interference alignment).
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Fig. 9. Cumulative Distribution Function (CDF) of the SER per data stream with receiveEs/N0 = 25dB. The setup is

given byK = 6 (number of users),{M = 3, N = 2} (number of transmit and receive antennas),D = 1 (number of data

stream), andα = 3 (number of aligned users for feasible interference alignment).
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