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Abstract

We study the Gaussian MIMO wiretap channel with a transmitter, a legitimate receiver, an eaves-

dropper and an external helper, each equipped with multipleantennas. The transmitter sends confidential

messages to its intended receiver, while the helper transmits jamming signals independent of the source

message to confuse the eavesdropper. The jamming signal is assumed to be treated as noise at both

the intended receiver and the eavesdropper. We obtain a closed-form expression for the structure of

the artificial noise covariance matrix that guarantees no decrease in the secrecy capacity of the wiretap

channel. We also describe how to find specific realizations ofthis covariance matrix expression that

provide good secrecy rate performance, even when there is nonon-trivial null space between the helper

and the intended receiver. Unlike prior work, our approach considers the general MIMO case, and is not

restricted to SISO or MISO scenarios.
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I. INTRODUCTION

Recent information-theoretic research on secure communication has focused on enhancing security

at the physical layer. The wiretap channel, first introducedand studied by Wyner [1], is the most

basic physical layer model that captures the problem of communication security. This work led to the

development of the notion of perfect secrecy capacity, which quantifies the maximum rate at which a

transmitter can reliably send a secret message to its intended recipient, without it being decoded by an

eavesdropper. The Gaussian wiretap channel, in which the outputs of the legitimate receiver and the

eavesdropper are corrupted by additive white Gaussian noise, was studied in [2]. The secrecy capacity of

a Gaussian wiretap channel, which is in general a difficult non-convex optimization problem, has been

addressed and solved for in [3]-[7]. The secrecy capacity under an average power constraint is treated in

[4] and [5], where in [4] a beamforming approach, based on thegeneralized singular value decomposition

(GSVD), is proposed that achieves the secrecy capacity in the high SNR regime. In [5], we propose an

optimal power allocation that achieves the secrecy capacity of the GSVD-based multiple-input, multiple-

output (MIMO) Gaussian wiretap channel for any SNR. In [7], aclosed-form expression for the secrecy

capacity is derived under a certain power-covariance constraint.

It was shown in [8] that, for a wiretap channel without feedback, a non-zero secrecy capacity can

only be obtained if the eavesdropper’s channel is of lower quality than that of the intended recipient.

Otherwise, it is infeasible to establish a secure link underWyner’s wiretap channel model. In such

situations, one approach is to exploit user cooperation in facilitating the transmission of confidential

messages from the source to the destination. In [9]-[13], for example, a four-terminal relay-eavesdropper

channel is considered, where a source wishes to send messages to a destination while leveraging the

help of a relay/helper node to hide the messages from the eavesdropper. While the relay can assist in the

transmission of confidential messages, its computational cost may be prohibitive and there are difficulties

associated with the coding and decoding schemes at both the relay and the intended receiver. Alternatively,

a cooperating node can be used as a helper that simply transmits jamming signals, independent of the

source message, to confuse the eavesdropper and increase the range of channel conditions under which

secure communications can take place. The strategy of usinga helper to improve the secrecy of the source-

destination communication is generally known as cooperative jamming [9], [11] or noise-forwarding [12]

in prior work.

In [9], the scenario where multiple single-antenna users communicate with a common receiver (i.e.,

the multiple access channel) in the presence of an eavesdropper is considered, and the optimal transmit
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power allocation that achieves the maximum secrecy sum-rate ia obtained. The work of [9] shows that

any user prevented from transmitting based on the obtained power allocation can help increase the secrecy

rate for other users by transmitting artificial noise to the eavesdropper (cooperative jamming). In [11], a

source-destination system in the presence of multiple helpers and multiple eavesdroppers is considered,

where the helpers can transmit weighted jamming signals to degrade the eavesdropper’s ability to decode

the source. While the objective is to select the weights so asto maximize the secrecy rate under a total

power constraint, or to minimize the total power under a secrecy rate constraint, the results in [11] yield

sub-optimal weights for both single and multiple eavesdroppers, due to the assumption that the jamming

signal must be nulled at the destination. The noise forwarding scheme of [12] requires that the interferer’s

codewords be decoded by the intended receiver. A generalization of [9], [11] and [12] is proposed in

[13], in which the helper’s codewords do not have to be decoded by the receiver.

The prior work in [9]-[13] assumes single antenna nodes and models single-input, single-output (SISO)

or multiple-input, single-output (MISO) cases. A more general MIMO case with multiple cooperative

jammers was studied in [14], in which the jammers aligned their interference to lie within a pre-specified

“jamming subspace” at the receiver, but the dimensions of the subspace and the power allocation were

not optimized. In this paper, we also address the general MIMO case, where the transmitter, legitimate

receiver, eavesdropper and helper are in general all equipped with multiple antennas. The transmitter

sends confidential messages to its intended receiver, whilethe helper node assists the transmitter by

sending jamming signals independent of the source message to confuse the eavesdropper. While the

previous work on this problem shows the fundamental role of jamming as a means to increase secrecy

rates, it also emphasizes the fact that that non-carefully designed jamming strategies can preclude secure

communication [15].

In this work, we derive a closed-form expression for the structure of the artificial noise covariance

matrix of a cooperating jammer that guarantees no decrease in the secrecy capacity of the wiretap channel,

assuming the jamming signal from the helper is treated as noise at both the intended receiver and the

eavesdropper. We describe algorithms for finding specific realizations of this covariance expression that

provide good secrecy rate performance, and show that even when there is no non-trivial nullspace between

the helper and the intended receiver, the helper can still transmit artificial noise that does not impact

the mutual information between the transmitter and the intended receiver, while decreasing the mutual

information between the transmitter and the eavesdropper.Hence, the secrecy level of the confidential

message is increased. The situation we consider is different from the one in [16], where the transmitter

itself rather than an external helper broadcasts artificialnoise to degrade the eavesdropper’s channel.
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However, both approaches are able to achieve a positive perfect secrecy rate in scenarios where the

secrecy capacity in the absence of jamming is zero.

The remainder of the paper is organized as follows. In Section II, we describe the system model for

the helper-assisted Gaussian MIMO wiretap channel and formulate the problem to be solved. In Sections

III and IV, we derive the artificial noise covariance matrix that guarantees no decrease in the secrecy

capacity of the wiretap channel. Numerical results in Section V are presented to illustrate the proposed

solution. Finally, Section VI concludes the paper.

Notation: Throughout the paper, we use boldface uppercase letters to denote matrices. Vector-valued

random variables are written with non-boldface uppercase letters (e.g., X), while the corresponding

lowercase boldface letter (x) denotes a specific realization of the random variable. Scalar variables are

written with non-boldface (lowercase or uppercase) letters. We use(.)T to represent matrix transposition,

(.)H the Hermitian (i.e., conjugate) transpose, Tr(.) the matrix trace,E the expectation operator,I the

identity matrix, and0 a matrix or vector with all zeros. Mutual information between the random variables

A andB is denoted byI(A;B), andCN (0, 1) represents the complex circularly symmetric Gaussian

distribution with zero mean and unit variance.

II. SYSTEM MODEL

We consider a MIMO wiretap channel that includes a transmitter, an intended receiver, a helping

interferer and an eavesdropper, withnt, nr, nh andne antennas, respectively. The transmitter sends a

confidential message to the intended receiver with the aid ofthe helper, in the presence of an eavesdropper.

We assume that the helper does not know the confidential message and transmits only a Gaussian jamming

signal which is not known at the intended receiver nor the eavesdropper and which is treated as noise at

both receivers. The mathematical model for this scenario isgiven by:

y1 = H1x1 +G2x2 + z1 (1)

y2 = H2x2 +G1x1 + z2 , (2)

wherex1 is a zero-meannt × 1 transmitted signal vector,x2 is a zero-meannh × 1 jamming vector

transmitted by the helper, andz1 ∈ Cnr×1, z2 ∈ Cne×1 are additive white Gaussian noise (AWGN) vectors

at the intended receiver and the eavesdropper, respectively, with i.i.d. entries distributed asCN (0, 1). The

matricesH1,G1 represent the channels from the transmitter to the intendedreceiver and eavesdropper,

respectively, whileH2,G2 are the channels from the helper to the eavesdropper and intended receiver,

respectively. The channels are assumed to be independent ofeach other and full rank with arbitrary
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dimensions. We also assume that the transmitter has full channel state information and is aware of the

effective noise covariance at both receivers, where the effective noise is the background noise plus the

received artificial noise. Both the helper and the eavesdropper are also aware of all channel matrices as

well.

The jamming signal transmitted by the helper satisfies an average power constraint:

Tr(E{X2X
H
2 }) = Tr(Kw) ≤ Ph (3)

whereX2 is the random variable associated with the specific realization x2 andKw is the corresponding

covariance matrix. The channel input is subject to a matrix power constraint [7], [17]

E{X1X
H
1 } = Kx � S (4)

whereKx is the input covariance matrix,S is a positive semi-definite matrix, and “�” denotes that

S−Kx is positive semi-definite. Note that (4) is a rather general power constraint that subsumes many

other important power constraints, including the average total and per-antenna power constraints as special

cases. The approach developed in this paper will assume thatPh andS (or Tr(S) ≤ Pt) are fixed, and

that power is not allocated jointly between the transmitterand helper. The numerical results presented

later, however, will illustrate the trade-off associated with the power allocation whenPh + Pt is fixed.

As mentioned before, we assume Gauusian signaling for the helper. Thus the effective noise at both

receivers is Gaussian and consequently the above MIMO wiretap channel model is Gaussian. For this

case, a Gaussian input signal is the optimal choice [6], [17]. Hence, the general optimization problem is

equivalent to finding the matricesKx � 0 andKw � 0 that allow the secrecy capacity of the network

to be obtained. A matrix characterization of this optimization problem is given by:

Csec = max
Kx�0,Kw�0

[I(X1;Y1)− I(X1;Y2)]

= max
Kx�0,Kw�0

log |KxH
H
1 (G2KwG

H
2 + I)−1H1 + I|

− log |KxG
H
1 (H2KwH

H
2 + I)−1G1 + I| , (5)

where the non-convex maximization problem in carried out under the power constraints given in (3)

and (4).

Lemma 1: For a givenKw, the maximum of (5) is given by

Csec(S) =

ρ
∑

i=1

log γi (6)

whereγi, i = 1, · · · , ρ, are the generalized eigenvalues of the pencil

(S
1

2HH
1 (G2KwG

H
2 + I)−1H1S

1

2 + I, S
1

2GH
1 (H2KwH

H
2 + I)−1G1S

1

2 + I) (7)
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that are greater than 1.

Proof: When the optimization problem in (5) is performed overKx under the matrix power constraint (4)

for a givenKw, it is equivalent to a simple MIMO Gaussian wiretap channel without a helper, where the

noise covariance matrices at the receiver and the eavesdropper are(G2KwG
H
2 + I) and(H2KwH

H
2 + I),

respectively. The above lemma is a natural extension of [7] and [17, Theorem 3] for the standard MIMO

Gaussian wiretap channel.

Note that since both elements of the pencil (7) are strictly positive definite, all of the generalized

eigenvalues are real and positive [17], [18]. In (6), a totalof ρ of them are assumed to be greater than

one. Clearly, if there are no such eigenvalues, then the information signal received at the intended receiver

is a degraded version of that of the eavesdropper, and in thiscase the secrecy capacity is zero. Note

also that Lemma 1 only provides the secrecy capacity for the optimal Kx, but does not give an explicit

expression for thisKx. A general expression for the maximizingKx will be given in the next section.

To solve the general optimization problem in (5), we would need to find theKw that maximizes (6).

Unfortunately, this appears to be a very difficult problem tosolve without resorting to some type of

ad hoc search. In the following we obtain a sub-optimal closed-form solution for the artificial noise

covariance matrixKw that guarantees no decrease in the mutual information between the transmitter and

the intended receiver compared with the case whereKw = 0, while maintaining the power constraint

in (5). Hence, the new non-zeroKw will only interfere with the eavesdropper, and the secrecy level of

the confidential message will be increased. Once such aKw is found, additional improvement in the

secrecy rate can be achieved if the transmitter updates its covariance matrixKx for the obtainedKw.

The final secrecy rate for this method is obtained by simply computing (6) and (7) for the resultingKw.

Note that we will not propose an iterative algorithm that would further alternate between calculatingKx

andKw. We will see in the next section that there is no clear way to updateKw from a known non-zero

value.

III. A NALYTICAL METHOD

We begin with the case where the helper transmits no signal(Kw = 0). In this case, the communication

system is reduced to a simple MIMO Gaussian wiretap channel without helper. Based on Lemma 1, the

maximum of (5) whenKw = 0 is obtained by applying the generalized eigenvalue decomposition to the

following two Hermitian positive definite matrices [7], [17]:

S
1

2HH
1 H1S

1

2 + I, S
1

2GH
1 G1S

1

2 + I .

June 4, 2018 DRAFT
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In particular, there exists an invertible generalized eigenvector matrixC such that [18]

CH
[

S
1

2GH
1 G1S

1

2 + I
]

C = I (8)

CH
[

S
1

2HH
1 H1S

1

2 + I
]

C = Λ (9)

whereΛ = diag{λ1, ..., λnt
} is a positive definite diagonal matrix andλ1, ..., λnt

represent the generalized

eigenvalues. Without loss of generality, we assume the generalized eigenvalues are ordered as

λ1 ≥ ... ≥ λb > 1 ≥ λb+1 ≥ ... ≥ λnt
> 0

so that a total ofb (0 ≤ b ≤ nt) are assumed to be greater than 1. Hence, we can writeΛ as

Λ =





Λ1 0

0 Λ2



 (10)

whereΛ1 = diag{λ1, ..., λb} andΛ2 = diag{λb+1, ..., λnt
}. Also, we can writeC as

C = [C1 C2] (11)

whereC1 is thent× b submatrix representing the generalized eigenvectors corresponding to{λ1, ..., λb}

and C2 is the nt × (nt − b) submatrix representing the generalized eigenvectors corresponding to

{λb+1, ..., λnt
}.

For the case ofKw = 0, the secrecy capacity of (5) under the matrix power constraint (4) is given by

(Lemma 1 or [17, Theorem 3]):

Csec =

b
∑

i=1

log λi = log |Λ1| (12)

and the input covariance matrixK∗
x that maximizes (5) is given by ([7], [17]):

K∗
x = S

1

2C





(CH
1 C1)

−1 0

0 0



CHS
1

2 . (13)

Note that (13) is a general expression for theKx that optimizes (5) for a givenKw even whenKw 6= 0,

although in this case theC will be the generalized eigenvector matrix of the pencil (7). From (9) we

note thatHH
1 H1 can be written as

HH
1 H1 = S−1/2



C−H





Λ1 0

0 Λ2



C−1 − I



S−1/2 . (14)

The following lemma gives the mutual informationI(X1;Y1) between the transmitter and the intended

receiver whenKw = 0 andKx is given by (13).

Lemma 2: The following equality holds:

I(X1;Y1)|Kw=0,Kx=K∗

x
= log

∣

∣K∗
xH

H
1 H1 + I

∣

∣ = log
∣

∣(CH
1 C1)

−1Λ1

∣

∣ . (15)
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Proof: Following the same steps as the proof of [7, App. D] and using (13) and (14), we have

∣

∣K∗
xH

H
1 H1 + I

∣

∣ =

∣

∣

∣

∣

∣

∣

S
1

2C





(CH
1 C1)

−1 0

0 0



CH ×



C−H





Λ1 0

0 Λ2



C−1 − I



S−1/2 + I

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣





(CH
1 C1)

−1 0

0 0



×





Λ1 0

0 Λ2



−





(CH
1 C1)

−1 0

0 0



CHC+ I

∣

∣

∣

∣

∣

∣

(16)

=

∣

∣

∣

∣

∣

∣





(CH
1 C1)

−1Λ1 0

0 0



−





I (CH
1 C1)

−1CH
1 C2

0 0



+ I

∣

∣

∣

∣

∣

∣

(17)

=

∣

∣

∣

∣

∣

∣





(CH
1 C1)

−1Λ1 −(CH
1 C1)

−1CH
1 C2

0 I





∣

∣

∣

∣

∣

∣

=
∣

∣(CH
1 C1)

−1Λ1

∣

∣ (18)

where (16) follows from the fact that|AB+ I| = |BA+ I|, and (17) follows since

CHC = [C1 C2]
H [C1 C2] =





CH
1 C1 CH

1 C2

CH
2 C1 CH

2 C2



 .

We now return to the general optimization problem in (5) withnon-zeroKw. As the helper begins to

broadcast artificial noise, both the mutual information between the transmitter and the intended receiver

I(X1;Y1) and the mutual information between the transmitter and the eavesdropperI(X1;Y2) are in

general decreased. Both of these functions are non-increasing in Kw since

|A+B|

|B|
≥

|A+B+△|

|B+△|

when A, △ � 0 and B ≻ 0 [20]. A favorable choice forKw would be one that reducesI(X1;Y2)

more thanI(X1;Y1). Since the optimal solution to (5) is intractable, we propose a suboptimal approach

that introduces an additional constraint; namely, we search among thoseKw matrices that guarantee no

decrease in the favorable termI(X1;Y1) while the power constraint (3) is satisfied. It should be noted

that this approach is more general than the cooperative jamming schemes proposed in [10], [11] for the

MISO case where the jamming signal is nulled out at the destination. Clearly, such sub-optimal solutions

are restricted to the case where there exists a null space between the helper and the intended receiver.

In the following, we obtain an expression that represents all Kw � 0 matrices with the power constraint

Tr(Kw) = Ph that do not impact the mutual information between the transmitter and the intended receiver;

i.e.,

I(X1;Y1)|Kw�0,Kx=K∗

x
= I(X1;Y1)|Kw=0,Kx=K∗

x
,

June 4, 2018 DRAFT
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or from (15)

log
∣

∣K∗
xH

H
1 (G2KwG

H
2 + I)−1H1 + I

∣

∣ = log
∣

∣K∗
xH

H
1 H1 + I

∣

∣ = log
∣

∣(CH
1 C1)

−1Λ1

∣

∣ . (19)

Note that, without loss of generality, we have used an equality power constraint Tr(Kw) = Ph since for

the desiredKw the best performance is in general obtained when helper transmits at maximum power.

Theorem 1: All Kw � 0 matrices for whichlog
∣

∣K∗
xH

H
1 (G2KwG

H
2 + I)−1H1 + I

∣

∣ = log
∣

∣K∗
xH

H
1 H1 + I

∣

∣ =

log
∣

∣(CH
1 C1)

−1Λ1

∣

∣ satisfy the following relation:

HH
1 (G2KwG

H
2 + I)−1H1 = S−1/2



C−H





Λ1 0

0 N



C−1 − I



S−1/2 (20)

where
Λ22 � N � Λ2

Λ22 = CH
2 C2 +CH

2 C1(Λ1 −CH
1 C1)

−1CH
1 C2

(21)

andΛ1, Λ2, C, C1 andC2 are defined in (8)-(11).

Proof: In Appendix A, using similar steps as those used to obtain (18), we show that allΣ � 0

matrices for whichlog |K∗
xΣ+ I| = log

∣

∣(CH
1 C1)

−1Λ1

∣

∣ must have the following form

Σ = S−1/2



C−H





Λ1 M

MH N



C−1 − I



S−1/2 . (22)

In the following, we obtain matricesN � 0 andM and complete the proof by considering the following

specific choice forΣ:

Σ = HH
1 (G2KwG

H
2 + I)−1H1 . (23)

For the specificΣ in (23), it is evident that

0 � Σ � HH
1 H1. (24)

By applying the constraintΣ � HH
1 H1 on (22) and using (14), it is enough to show that:




Λ1 M

MH N



 �





Λ1 0

0 Λ2





or equivalently that




0 −M

−MH Λ2 −N



 � 0 .

June 4, 2018 DRAFT
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By applying the Schur Complement Lemma [18], the above relationship is trueiff Λ2 − N � 0 and

−M(Λ2 −N)−1MH � 0, which in turn is true only when

M = 0 (25)

Λ2 −N � 0 . (26)

Applying the results of (25) and (26) in (22) for the specific choice ofΣ = HH
1 (G2KwG

H
2 + I)−1H1,

we have:

Σ = S−1/2



C−H





Λ1 0

0 N



C−1 − I



S−1/2 . (27)

Based on (24), we also need to show thatΣ � 0. From (27), it is enough to show that




Λ1 0

0 N



−CHC =





Λ1 −CH
1 C1 −CH

1 C2

−CH
2 C1 N−CH

2 C2



 � 0 .

By applying the Schur Complement Lemma, the above relationship is true iff Λ1 − CH
1 C1 � 0 and

N−CH
2 C2 −CH

2 C1(Λ1 −CH
1 C1)

−1CH
1 C2 � 0. Using Eqs. (8)-(10), it is evident that

Λ1 −CH
1 C1 = CH

1

[

S
1

2HH
1 H1S

1

2 + I
]

C1 −CH
1 C1 = CH

1 S
1

2HH
1 H1S

1

2C1 � 0

and finally the lower bound forN is given byN � CH
2 C2+CH

2 C1(Λ1−CH
1 C1)

−1CH
1 C2 ≻ 0 , which

completes the proof.

It should be noted that asN → Λ22, we have Tr(Kw) → ∞. Moreover, Tr(Kw) = 0 is achieved by

N = Λ2. Hence, for each scalarPh, there always exists anN in the rangeΛ22 � N � Λ2 that will lead

to aKw that satisfies (20) with Tr(Kw) = Ph.

Thus far, we have not made any assumption on the number of antennas at each node. But it is clear

from (20) that, for example whenG2 has more columns than rows, for a fixedN in the acceptable range

(21) there will be an infinite number ofKw matrices that satisfy (20) and consequently do not decrease

I(X1;Y1). In fact, in this example, a common policy for the helper is tosimply transmit artificial noise

in the null space ofG2. A more interesting case occurs when no such null space exists, i.e., when the

number of antennas at the helper is less than or equal to that of the intended receiver (nh ≤ nr). The

above result demonstrates the non-trivial fact that even when nh ≤ nr, it is possible to find a non-zero

jamming signal that does not impactI(X1;Y1) even when the jamming signal can not be nulled by the

channel. In the next section, we find more constructive expressions for theKw matrices that satisfy (20)

for various combinations of the number of antennas at different nodes. In particular, we show that when

nh ≤ nr, a closed-form expression forKw can be found.

June 4, 2018 DRAFT
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IV. RESULTS FORDIFFERENT SCENARIOS

In this section, we consider all possible combinations of the number of antennas at the transmitter,

helper and intended receiver, and obtain constructive methods for computing specificKw matrices that

satisfy (20). SuchKw will have no impact onI(X1;Y1), but will in general decreaseI(X1;Y2), the

mutual information between the transmitter and the eavesdropper, compared with the case that there

is no helper. Hence, the secrecy level of the confidential message is increased. As mentioned before,

additional improvement in the secrecy rate can be achieved if the transmitter updates its covariance

matrix Kx onceKw is computed. Note, however, that such an iterative process will not be pursued

beyond updatingKx; unlike the first step, whereKw was updated from its initial value of zero, there is

no guarantee that finding a newKw will reduceI(X1;Y2). Hence, the final secrecy rate for the proposed

method is obtained by simply computing (6) and (7) for the resulting Kw matrices derived in this section.

A. Case 1: nh ≤ min{nr, nt}

We show here that for the case wherenh ≤ min{nr, nt} and for a fixedN in the acceptable range

(21), there is only oneKw matrix that satisfies (20) and consequently does not decrease I(X1;Y1). Using

the matrix inversion lemma, Eq. (20) can be written as:

HH
1 (G2KwG

H
2 + I)−1H1 = HH

1 H1 −HH
1 G2(G

H
2 G2 +K−1

w )−1GH
2 H1

= S−1/2



C−H





Λ1 0

0 N



C−1 − I



S−1/2 .

ReplacingHH
1 H1 with (14), we have:

HH
1 G2(G

H
2 G2 +K−1

w )−1GH
2 H1 = S−1/2C−H





0 0

0 Λ2 −N



C−1S−1/2 . (28)

Since we have assumed that the channels are full rank, in the case ofnh ≤ nr ≤ nt or nh ≤ nt ≤ nr, it

is clear that rank(GH
2 H1) = nh. Thus, from (28) we have:

(GH
2 G2 +K−1

w )−1 = OHS−1/2C−H





0 0

0 Λ2 −N



C−1S−1/2O (29)

whereO is the right inverse ofGH
2 H1, which, for example whennh ≤ nr ≤ nt, can be written as

O = HH
1 (H1H

H
1 )−1G2(G

H
2 G2)

−1. The following lemma is a direct result of Eqs. (28) and (29).

Lemma 3: For the case ofnh ≤ min{nr, nt} and for a fixedN in the acceptable range (21), the

Kw � 0 matrix for which (20) is satisfied andI(X1;Y1) is not decreased is given by

Kw = Q−QGH
2 (G2QGH

2 − I)−1G2Q (30)
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whereQ is the RHS of (29).

Proof: After applying the matrix inversion lemma on the LHS of (29),a straightforward computation

yields (30).

As is evident from Eqs. (29)-(30), we still have a design parameter,N, that should be chosen in its

acceptable rangeΛ22 � N � Λ2 such that the power constraint Tr(Kw) = Ph is satisfied. Finding the

optimal N that minimizesI(X1;Y2) whenKx andKw are given by (13) and (30), respectively, is as

intractable as the general optimization problem in (5). Instead, we simply restrict theN we consider to

those that can be linearly parameterized within the acceptable range, as follows:

N = Λ22 + t (Λ2 −Λ22) . (31)

Consequently the termΛ2 −N in Eq. (30) becomes

Λ2 −N = (1− t) (Λ2 −Λ22)

where the scalar0 ≤ t ≤ 1 is chosen such that the power constraint Tr(Kw) = Ph is satisfied. Note that

as t → 0 (N → Λ22) then Tr(Kw) → ∞, and ast → 1 (N → Λ2) then Tr(Kw) → 0. Thus, we are

guaranteed that an acceptableN can be found in this way.

B. Case 2: nh > min{nr, nt}

As mentioned before, for the case ofnh > nr and for a fixedN in the acceptable range (21), there are

manyKw matrices that satisfy (20) and consequently do not decreaseI(X1;Y1). A common policy for

the helper in this case is to transmit artificial noise in the null space ofG2. However, as (20) shows, this

policy is sufficient but it is not necessary. In other words, it is possible that the optimalKw satisfying

(20) has elements outside the null space ofG2. Because of the non-linear constraint in (20), finding the

optimalKw is intractable. A similar discussion applies for the case ofnt < nh ≤ nr.

In this section, we present an approach for computing a suitableKw. Consider the following jamming

signal covariance matrix:

Kw = ΓΠΓH , (32)

whereΠ is ad×d positive semidefinite matrix, andΓ is annh×d matrix. For the case ofnt < nh ≤ nr

or nh > nr, we can chooseΓ such thatG2 Γ is orthogonal toH1 K
∗
x

1

2 , i.e., K∗
x

1

2HH
1 G2 Γ = 0

¯
. For

example,Γ can be chosen as thed right singular vectors in the nullspace ofK∗
x

1

2HH
1 G2. SinceKx will

often be rank deficient, the value ofd will typically be larger thannh−nt for the case ofnt < nh ≤ nr,

and larger thannh − nr for the case ofnh > nr. For this choice ofΓ, the resultingKw in (32) satisfies
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(20), and doesn’t decreaseI(X1;Y1) for N = Λ2, as is clear from (20). GivenΓ, the choice ofΠ can be

made to maximize the transfer of the “information” in the helper’s jamming signal to the eavesdropper.

In particular, note that at the eavesdropper, the covariance of the helper’s jamming signal will be given

by H2ΓΠΓHHH
2 . If the eigenvalue decomposition ofΓHHH

2 H2Γ is written as

ΓHHH
2 H2Γ = UDUH

with U unitary andD square and diagonal, thenΠ can be found via waterfilling; i.e.,

Π = U∆UH ,

where∆ =
[

ηI−D−1
]+

, the operation[A]+ zeros out any negative elements, and the water-filling level

η is chosen such that Tr(Kw) = Tr(∆) = Ph.

V. NUMERICAL RESULTS

In this section, we present numerical results to illustrateour theoretical findings. In all of the following

figures, channels are assumed to be quasi-static flat Rayleigh fading and independent of each other. The

channel matricesH1 ∈ Cnr×nt and G2 ∈ Cnr×nh have i.i.d. entries distributed asCN (0, σ2
d), while

G1 ∈ Cne×nt andH2 ∈ Cne×nh have i.i.d. entries distributed asCN (0, σ2
c ). In each figure, values for

the number of antennas at each node, as well asσ2
d andσ2

c , will be depicted. Unless otherwise indicated,

results are calculated based on an average of at least 500 independent channel realizations.

In the first example, Fig. 1, we randomly generate positive definite matricesS such that Tr(S) ≤ Pt.

For eachS, we compute the secrecy capacity of the MIMO Gaussian wiretap channel without helper

(Kw = 0
¯
) as given by (12). Next, using (30), we obtain aKw with the average power constraint

Tr(Kw) = Ph that does not decreaseI(X1;Y1), and then updateKx and computeCsec(S), using (6)

and (7), accordingly. Fig. 1 compares the secrecy capacity of the wiretap channel with (solid lines) and

without (dotted lines) the helper. Note that the vertical difference between the solid curves (about 0.6

bps/channel use) represents the role of the transmit powerPt on the secrecy capacity with helper when

Pt changes from 100 to 150 andPh = 20. This relatively small difference indicates that, in this example,

Pt does not have a big impact on the secrecy capacity. Its role iseven more negligible whenPh = 0,

where only an increase of0.3 bps/channel use is obtained asPt increases from 100 to 150. The role of

the helper on the other hand is significantly more important;increasingPh from 0 to 20 while holding

Pt fixed results in an increase on the order of 3 bps/channel use.Furthermore, the use of the helper with

a total power of only 120 (Pt = 100, Ph = 20) provides significantly better secrecy performance than

not using the helper and transmitting with total power equalto 150 (Pt = 150, Ph = 0).

June 4, 2018 DRAFT



14

In the next examples, we calculate the secrecy capacity of the proposed algorithms under the assumption

of an average power constraintPt at the transmitter, and under the constraint that the helperdoes not

reduce the mutual information between the transmitter and receiver. While Eqs. (6) and (7) provide the

performance for a specificS, one must solve [17], [20, Lemma 1]

Csec(Pt) = max
S�0,Tr(S)≤Pt

Csec(S) (33)

to find the secrecy capacity over allS that satisfy the average power constraint. In the examples that

follow, we perform a numerical search to solve (33) and compute the secrecy capacity.

Fig. 2 shows the secrecy capacity versusPh for a fixed total average powerPt+Ph = 110. In this figure,

we consider a situation in whichσc > σd, or in other words where the channel between the transmitter

and the intended receiver is weaker than the channel betweenthe transmitter and the eavesdropper, and

the channel between the helper and the intended receiver is weaker than the channel between the helper

and the eavesdropper. The arrow in the figure shows the secrecy capacity without the helper(Ph = 0).

The figure shows that a helper with just a single antenna can provide a dramatic improvement in secrecy

rate with very little power allocated to the jamming signal;in fact, the optimal rate is obtained whenPh

is less than 2% of the total available transmit power. If the number of antennas at the helper increases,

a much higher secrecy rate can be obtained, but at the expenseof allocating more power to the helper

and less to the signal for the desired user.

In Fig. 3, we consider a situation in which, unlike the above example, we haveσd > σc. Thus,

the intended receiver, in comparison with the eavesdropper, receives a weaker information signal and a

stronger jamming signal than the eavesdropper. It might seem that in this situation, the helper cannot be

very useful, but the figure shows that even in this case we can have a notable improvement in the secrecy

rate (about 4 bps/channel use) by increasing the number of antennas at the helper, and with an appropriate

power assignment between the transmitter and the helper, without requiring extra total transmit power

for the helper node.

In Fig. 4, we consider a specific scenario where the secrecy capacity in the absence of the helper

node is zero. While channel matricesH2 andG2 are generated randomly with i.i.d. entries distributed

asCN (0, σ2
c ) andCN (0, σ2

d), respectively, we assume the following specific choices forH1 andG1:

H1 =





−0.25 + 0.5i −0.35 −1.25− 0.9i

−0.4 + 0.1i −0.2 + 0.75i −i




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G1 =











2 + 0.25i 1.5 + 0.5i 2i

0.25 + 0.25i −0.7 + 1.5i 0.5 + 0.33i

−1.5 −0.5− i −2.9i











.

SinceHH
1 H1 � GH

1 G1, all the generalized eigenvalues of the pencil
(

S
1

2HH
1 H1S

1

2 + I
)

− γ
(

S
1

2GH
1 G1S

1

2 + I
)

are zero for allS � 0 and consequently, the secrecy capacity without helper willbe zero. In this example,

we also assume that not only is the total power fixed atPt + Ph = 110, but also the total number of

transmit antennas is fixed atnt + nh = 3. As in the other examples, the secrecy rate of the wiretap

channel is considerably improved with the helper. In this case, the best performance is obtained when

the helper has only a single antenna.

Finally, in Fig. 5, we consider the role of number of antennasat the helper,nh, in the secrecy rate for

the specific matrix power constraintS = Pt

nt

I. Note that the solution of Section IV-A applies fornh ≤ 3,

while the solution of Section IV-B holds fornh > 3. In all cases, we see that the secrecy rate increases

considerably asnh increases.

VI. CONCLUSIONS

In this paper, we have studied the Gaussian MIMO Wiretap channel in the presence of an external

jammer/helper, where the helper node assists the transmitter by sending artificial noise independent of

the source message to confuse the eavesdropper. The jammingsignal from the helper is not required

to be decoded by the intended receiver and is treated as noiseat both the intended receiver and the

eavesdropper. We obtained a closed-form relationship for the structure of the helper’s artificial noise

covariance matrix that guarantees no decrease in the mutualinformation between the transmitter and the

intended receiver. We showed how to find appropriate solutions within this covariance matrix framework

that provide very good secrecy rate performance, even when there is no non-trivial null space between

the helper and the intended receiver. The proposed scheme isshown to achieve a notable improvement in

secrecy rate even for a fixed average total power and a fixed total number of antennas at the transmitter

and the helper, without requiring extra power or antennas tobe allocated to the helper node.

APPENDIX A

We are interested in finding a relationship that represents all matricesΣ ≻ 0 for which

log |K∗
xΣ+ I| = log

∣

∣(CH
1 C1)

−1Λ1

∣

∣ , (34)
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where

K∗
x = S

1

2C





(CH
1 C1)

−1 0

0 0



CHS
1

2 . (35)

Using the fact that|AB+ I| = |BA+ I|, it is clear thatΣ will have the formΣ = S− 1

2C−HXC−1S− 1

2

for some matrixX = XH . Substituting this expression forΣ into (34) results in the following equation

that must be solved forX:

log

∣

∣

∣

∣

∣

∣





(CH
1 C1)

−1 0

0 0



X+ I

∣

∣

∣

∣

∣

∣

= log
∣

∣(CH
1 C1)

−1Λ1

∣

∣ . (36)

Write X asX =





X1 X2

XH
2 X3



 so that we have





(CH
1 C1)

−1 0

0 0



X+ I =





(CH
1 C1)

−1X1 + I (CH
1 C1)

−1X2

0 I



 ,

and note that the determinant of the above matrix is given by
∣

∣(CH
1 C1)

−1X1 + I
∣

∣. By comparing this

result with (34), we see thatX1 = Λ1 − (CH
1 C1). Consequently, we have:

Σ = S−
1

2C−H





Λ1 − (CH
1 C1) X2

XH
2 X3



C−1S−
1

2 (37)

whereX2 andX3 are still unknown and must be found as described in the text. It is clear that (37) and

(22) are equivalent.
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Fig. 1. Comparison of secrecy capacity for MIMO Gaussian wiretap channel with and without helper for differentPt andPh.
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different number of antennas at the helper,Pt +Ph = 110, assuming the eavesdropper’s channels are stronger than those of the
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d = 1, σ2
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