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Abstract

We study the Gaussian MIMO wiretap channel with a transmittdegitimate receiver, an eaves-
dropper and an external helper, each equipped with multiplennas. The transmitter sends confidential
messages to its intended receiver, while the helper traagamming signals independent of the source
message to confuse the eavesdropper. The jamming signakisnad to be treated as noise at both
the intended receiver and the eavesdropper. We obtain adsfosm expression for the structure of
the artificial noise covariance matrix that guarantees roedese in the secrecy capacity of the wiretap
channel. We also describe how to find specific realizationshisf covariance matrix expression that
provide good secrecy rate performance, even when there indrivial null space between the helper
and the intended receiver. Unlike prior work, our approamhsiders the general MIMO case, and is not
restricted to SISO or MISO scenarios.
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. INTRODUCTION

Recent information-theoretic research on secure comratioit has focused on enhancing security
at the physical layer. The wiretap channel, first introduecedl studied by Wyner [1], is the most
basic physical layer model that captures the problem of comication security. This work led to the
development of the notion of perfect secrecy capacity, Whjoantifies the maximum rate at which a
transmitter can reliably send a secret message to its iaterekipient, without it being decoded by an
eavesdropper. The Gaussian wiretap channel, in which tiyutsuof the legitimate receiver and the
eavesdropper are corrupted by additive white Gaussiare s studied in [2]. The secrecy capacity of
a Gaussian wiretap channel, which is in general a difficutt-aonvex optimization problem, has been
addressed and solved for in [3]-[7]. The secrecy capacitieuan average power constraint is treated in
[4] and [B], where in[[4] a beamforming approach, based orgtreeralized singular value decomposition
(GSVD), is proposed that achieves the secrecy capacityarhiph SNR regime. In_[5], we propose an
optimal power allocation that achieves the secrecy capatithe GSVD-based multiple-input, multiple-
output (MIMO) Gaussian wiretap channel for any SNR.[In [7laesed-form expression for the secrecy
capacity is derived under a certain power-covariance cainst

It was shown in[[8] that, for a wiretap channel without feeclhaa non-zero secrecy capacity can
only be obtained if the eavesdropper’s channel is of lowaliyuthan that of the intended recipient.
Otherwise, it is infeasible to establish a secure link undgmner's wiretap channel model. In such
situations, one approach is to exploit user cooperationagilifating the transmission of confidential
messages from the source to the destinatior.]In[[9]-[13]ef@mple, a four-terminal relay-eavesdropper
channel is considered, where a source wishes to send mesgagedestination while leveraging the
help of a relay/helper node to hide the messages from theséegper. While the relay can assist in the
transmission of confidential messages, its computatiargtimay be prohibitive and there are difficulties
associated with the coding and decoding schemes at botkItheand the intended receiver. Alternatively,
a cooperating node can be used as a helper that simply trigngmiming signals, independent of the
source message, to confuse the eavesdropper and increassgie of channel conditions under which
secure communications can take place. The strategy of adwetper to improve the secrecy of the source-
destination communication is generally known as coopergdimming [9], [11] or noise-forwarding [12]
in prior work.

In [9], the scenario where multiple single-antenna useraroanicate with a common receiver (i.e.,

the multiple access channel) in the presence of an eavegshr@pconsidered, and the optimal transmit

June 4, 2018 DRAFT



power allocation that achieves the maximum secrecy suenizabbtained. The work of [9] shows that
any user prevented from transmitting based on the obtaioegpallocation can help increase the secrecy
rate for other users by transmitting artificial noise to tlagesdropper (cooperative jamming). Inl[11], a
source-destination system in the presence of multiplednelpnd multiple eavesdroppers is considered,
where the helpers can transmit weighted jamming signaletpatie the eavesdropper’s ability to decode
the source. While the objective is to select the weights stw asaximize the secrecy rate under a total
power constraint, or to minimize the total power under aeggcrate constraint, the results in [11] yield
sub-optimal weights for both single and multiple eavesgesp, due to the assumption that the jamming
signal must be nulled at the destination. The noise forwgrdcheme of [12] requires that the interferer’s
codewords be decoded by the intended receiver. A gendiatizaf [9], [11] and [12] is proposed in
[13], in which the helper’'s codewords do not have to be dedduethe receiver.

The prior work in [9]-[13] assumes single antenna nodes aodeis single-input, single-output (SISO)
or multiple-input, single-output (MISO) cases. A more gahéVIMO case with multiple cooperative
jammers was studied in_[14], in which the jammers alignedt thésrference to lie within a pre-specified
“jamming subspace” at the receiver, but the dimensions efsilbspace and the power allocation were
not optimized. In this paper, we also address the generalMiddse, where the transmitter, legitimate
receiver, eavesdropper and helper are in general all egdipgth multiple antennas. The transmitter
sends confidential messages to its intended receiver, whdlehelper node assists the transmitter by
sending jamming signals independent of the source messagenfuse the eavesdropper. While the
previous work on this problem shows the fundamental roleanfming as a means to increase secrecy
rates, it also emphasizes the fact that that non-carefelbjgthed jamming strategies can preclude secure
communication[[15].

In this work, we derive a closed-form expression for the cgtrre of the artificial noise covariance
matrix of a cooperating jammer that guarantees no decradbke secrecy capacity of the wiretap channel,
assuming the jamming signal from the helper is treated asenai both the intended receiver and the
eavesdropper. We describe algorithms for finding specitiizations of this covariance expression that
provide good secrecy rate performance, and show that even thiere is no non-trivial nullspace between
the helper and the intended receiver, the helper can sitismit artificial noise that does not impact
the mutual information between the transmitter and thenihée receiver, while decreasing the mutual
information between the transmitter and the eavesdropfmmce, the secrecy level of the confidential
message is increased. The situation we consider is différem the one in[[16], where the transmitter

itself rather than an external helper broadcasts artific@te to degrade the eavesdropper’s channel.
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However, both approaches are able to achieve a positiveqiesEcrecy rate in scenarios where the
secrecy capacity in the absence of jamming is zero.

The remainder of the paper is organized as follows. In Sedfjowe describe the system model for
the helper-assisted Gaussian MIMO wiretap channel anduiaitien the problem to be solved. In Sections
[MMand [Vl we derive the artificial noise covariance matrhat guarantees no decrease in the secrecy
capacity of the wiretap channel. Numerical results in ®&dlf| are presented to illustrate the proposed
solution. Finally, Sectiob YI concludes the paper.

Notation: Throughout the paper, we use boldface uppercase lettersniotel matrices. Vector-valued
random variables are written with non-boldface uppercasiers €.9., X), while the corresponding
lowercase boldface lettex) denotes a specific realization of the random variable.&oadriables are
written with non-boldface (lowercase or uppercase) Isttéfe usg.)” to represent matrix transposition,
()" the Hermitian (i.e., conjugate) transpose, Tr(.) the matce, E the expectation operator,the
identity matrix, andd a matrix or vector with all zeros. Mutual information betwetbe random variables
A and B is denoted byl (A; B), andCN(0,1) represents the complex circularly symmetric Gaussian

distribution with zero mean and unit variance.

I[l. SYSTEM MODEL

We consider a MIMO wiretap channel that includes a trangmitn intended receiver, a helping
interferer and an eavesdropper, with, n.., n;, andn. antennas, respectively. The transmitter sends a
confidential message to the intended receiver with the dildeofielper, in the presence of an eavesdropper.
We assume that the helper does not know the confidential gessal transmits only a Gaussian jamming
signal which is not known at the intended receiver nor theesdropper and which is treated as noise at

both receivers. The mathematical model for this scenargivien by:

y1 = Hixi+ Goxa+2z; (1)
y2 = Hoxo+Gix1 +22, (2)

wherex; is a zero-meam; x 1 transmitted signal vector, is a zero-meam,; x 1 jamming vector
transmitted by the helper, arg € C"*!, z, ¢ C"<*! are additive white Gaussian noise (AWGN) vectors
at the intended receiver and the eavesdropper, respgcinigh i.i.d. entries distributed a@\V (0, 1). The
matricesH1, G; represent the channels from the transmitter to the intemnelegiver and eavesdropper,
respectively, whileHs, G2 are the channels from the helper to the eavesdropper antladereceiver,

respectively. The channels are assumed to be independezachf other and full rank with arbitrary
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dimensions. We also assume that the transmitter has fulinéiastate information and is aware of the
effective noise covariance at both receivers, where thectfe noise is the background noise plus the
received artificial noise. Both the helper and the eavegmopre also aware of all channel matrices as
well.

The jamming signal transmitted by the helper satisfies anageepower constraint:
Tr(E{X,XH}) =Tr(K,) < P, (3)

where X5 is the random variable associated with the specific re@izat, andK,, is the corresponding

covariance matrix. The channel input is subject to a matowey constraint[[[7],[[17]
B{X:X{"} =K, =8 (4)

where K, is the input covariance matriX§ is a positive semi-definite matrix, and<” denotes that

S — K, is positive semi-definite. Note thdil (4) is a rather genecalgr constraint that subsumes many
other important power constraints, including the averatgd ind per-antenna power constraints as special
cases. The approach developed in this paper will assumethanhd S (or Tr(S) < P,) are fixed, and
that power is not allocated jointly between the transmitted helper. The numerical results presented
later, however, will illustrate the trade-off associateithvthe power allocation whe®, + P; is fixed.

As mentioned before, we assume Gauusian signaling for theehé& hus the effective noise at both
receivers is Gaussian and consequently the above MIMO apirehannel model is Gaussian. For this
case, a Gaussian input signal is the optimal chaice [[6],. [Héhce, the general optimization problem is
equivalent to finding the matricds, >~ 0 andK,, > 0 that allow the secrecy capacity of the network

to be obtained. A matrix characterization of this optimi@atproblem is given by:

Csec - max [I(Xl,Yi) _I(X13Y2)]
K.>0,K,>0
= HI T+n'H
Kzznol%?wtol()g K. H (G2K,,Gy' + 1) 1+ 1]
—log K, G (H.K, ,HY +1)'Gy +1], (5)

where the non-convex maximization problem in carried ouesnthe power constraints given inl (3)

and [4).
Lemma 1: For a givenK,,, the maximum of[(b) is given by
Cec(S) = i log 7; (6)
where~v;, i =1,--- , p, are the generalized eigenv;_llljes of the pencil
(S:HY(GyK,GY + )7TH S: +1, S:GHHK, HY +1)71G4S: +1) @)
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that are greater than 1.

Proof: When the optimization problem ifl(5) is performed o¥&y under the matrix power constraiff (4)
for a givenK,,, it is equivalent to a simple MIMO Gaussian wiretap channigheut a helper, where the
noise covariance matrices at the receiver and the eaveseirape(GoK,, G +1) and (Ho K, HY +1),
respectively. The above lemma is a natural extensiohlofrid][&7, Theorem 3] for the standard MIMO
Gaussian wiretap channel.

Note that since both elements of the pencll (7) are strictgitive definite, all of the generalized
eigenvalues are real and positive [[17],1[18]. [ (6), a tatdp of them are assumed to be greater than
one. Clearly, if there are no such eigenvalues, then therrdtion signal received at the intended receiver
is a degraded version of that of the eavesdropper, and incdse the secrecy capacity is zero. Note
also that Lemma 1 only provides the secrecy capacity for fhtenal K, but does not give an explicit
expression for thid,. A general expression for the maximizii§, will be given in the next section.

To solve the general optimization problem [ (5), we woul@dé¢o find theK,, that maximizes[(6).
Unfortunately, this appears to be a very difficult problemstdve without resorting to some type of
ad hoc search. In the following we obtain a sub-optimal closedrfaolution for the artificial noise
covariance matridK,, that guarantees no decrease in the mutual information leetive transmitter and
the intended receiver compared with the case wi€ge= 0, while maintaining the power constraint
in (§). Hence, the new non-zeil§,, will only interfere with the eavesdropper, and the secresgl of
the confidential message will be increased. Once su#f,ais found, additional improvement in the
secrecy rate can be achieved if the transmitter updatevigriance matrixiK, for the obtainedk,,.
The final secrecy rate for this method is obtained by simpinmating [6) and[{[7) for the resulting,,.
Note that we will not propose an iterative algorithm that Vdofwrther alternate between calculatiibd,
andK,,. We will see in the next section that there is no clear way watpK,, from a known non-zero

value.

1. ANALYTICAL METHOD

We begin with the case where the helper transmits no si@al= 0). In this case, the communication
system is reduced to a simple MIMO Gaussian wiretap chaniitkbut helper. Based on Lemma 1, the
maximum of [5) wherlK,, = 0 is obtained by applying the generalized eigenvalue decsitipo to the

following two Hermitian positive definite matrices! [7], [[t7

S:HIH,S: +1, S:GIGiSz+1.
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In particular, there exists an invertible generalized migetor matrixC such that[[18]
cH [S%G{{G185+I}C:I @)
ct [S%H{{Hls%Jrl} C=A ©)
whereA = diag{\1, ..., A, } IS @ positive definite diagonal matrix and, ..., \,,, represent the generalized

eigenvalues. Without loss of generality, we assume thergbned eigenvalues are ordered as
M2 2>120 0220, >0

so that a total ob (0 < b < n;) are assumed to be greater than 1. Hence, we can Wris

A 0O
A= (10)
0 A

whereA; = diag{\1, ..., \p} and Ay = diag{ A\p+1, ..., A, }. Also, we can writeC as
C=[C; Gy (11)

whereC; is then; x b submatrix representing the generalized eigenvectoresponding to{ A4, ..., Ay }
and Cy is the n; x (n; — b) submatrix representing the generalized eigenvectorsegponding to
{>\b+17 ) /\nt}

For the case oK, = 0, the secrecy capacity dfl(5) under the matrix power congti@) is given by

(Lemma 1 or[[17, Theorem 3]):
b

Csec = Z 10g /\2 = IOg |A1| (12)
i=1
and the input covariance matri* that maximizes[(5) is given by[([7]. [17]):

) clic)™t o 1
K* = SiC (Crey cHss . (13)
0 0
Note that[(IB) is a general expression for e that optimizes[(b) for a giveilK,, even wherK,, # 0,
although in this case th€ will be the generalized eigenvector matrix of the perlcil. f#om [9) we

note thatH!H; can be written as
A O
0 A

The following lemma gives the mutual informatidii.X;;Y;) between the transmitter and the intended

HIH, =s~Y/2|c™# cl—i|s1/2. (14)

receiver wherK,, = 0 andK, is given by [1B).

Lemma 2: The following equality holds:
I(X1;Y1)|K, =0, —k: = log |[KiH{TH; + 1| =log|(C{'Cy)'Ay4] . (15)
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Proof: Following the same steps as the proof(af [7, App. D] and udii®) and [(14), we have

\ ciAcyp)t o Al O
|K;H{{H1—|—I| _ S3C ( 1 1) CH > C—H 1 C—l_l S_1/2+|
0 0 0 Ay
[ (cHcy)-! o A, 0 [ (cHC)! 0
_ (Ci'Cy) e | (CrCy) cicii| (6
0 0 0 A, 0 0
[ (CHCy) A, 0 | (cHcy)-lcHc
_ || erC)T A B (CrC)=Crcy || a7
0 0 0 0
_ || @eyTiar —(cffe)Tici G
0 I
— |(clfcy) Ay (18)

where [(16) follows from the fact thaAB + I| = |BA + I|, and [17) follows since
clic, cic,
clic, cic,

We now return to the general optimization problem[ih (5) witn-zeroK,,. As the helper begins to

clic=[c, Ccl[C; Cy =

broadcast artificial noise, both the mutual informatiorw®sn the transmitter and the intended receiver
I(X1;Y1) and the mutual information between the transmitter and thesdroppet (X;;Y3) are in
general decreased. Both of these functions are non-iringeasK,, since

A+B|_ [A+B+A
Bl —  [B+A4]

when A, A > 0 andB > 0 [20]. A favorable choice forK,, would be one that reducef Xi;Y>)

more thanl(Xy;Y7). Since the optimal solution t1(5) is intractable, we prapassuboptimal approach
that introduces an additional constraint; namely, we $eamong thosd&,, matrices that guarantee no
decrease in the favorable terfhiX; Y1) while the power constraint](3) is satisfied. It should be dote
that this approach is more general than the cooperative jaghathemes proposed in [10], [11] for the
MISO case where the jamming signal is nulled out at the dattin. Clearly, such sub-optimal solutions
are restricted to the case where there exists a null spasebetthe helper and the intended receiver.

In the following, we obtain an expression that representKal = 0 matrices with the power constraint
Tr(K,,) = P, that do not impact the mutual information between the trattsnand the intended receiver;
ie.,

I(X1;Y) |k, -0K.=K: = 1(X1;Y1) |k, 0K, =K>
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or from (15)
log |K;H{! (GoK, Gy +1)'Hy +1I| =log |K;H{'H; +I| =log|(C{'C1) 'A1].  (19)

Note that, without loss of generality, we have used an etyupiwer constraint TiK,,) = P, since for

the desiredK,, the best performance is in general obtained when helpesrtriag at maximum power.
Theorem 1: All K, = 0 matrices for whichog |K:HY (G2 K, G4 +I)7'H; + I| = log |K;HI'H; + 1| =

log |(C4 Cy)~1A,| satisfy the following relation:

Ar O
0 N

H(G,K,GY +1)7'H, =87 1/2 |Cc™#

c - |] S—1/2 (20)

where
Ay =N <Ay

Ag = CECy+ CHCy (A — CHCy)TICHC,
andAq, A;, C, C; andC, are defined in[(8):(11).

(21)

Proof: In Appendix A, using similar steps as those used to obfaif), (@ show that all>X > 0

matrices for whichiog |[K;X + I| = log |(C¥ C;)~*A;| must have the following form
A M
»=512|cH| ! clo1|s 12, (22)
MA N
In the following, we obtain matrice®B > 0 andM and complete the proof by considering the following

specific choice forx:
> =HI(GK, G +T)7'H; . (23)

For the specificz in (23), it is evident that
0= =<H[H,. (24)
By applying the constrainE < HH; on (22) and using(14), it is enough to show that:

A1M<A10
MZ N | | 0 A,

0 -M
= 0.
{MH AQN}

or equivalently that
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By applying the Schur Complement Lemma |[18], the above io#lahip is trueiff A, — N > 0 and
—~M(Ay — N)~!M* = 0, which in turn is true only when

M = 0 (25)

As—N > 0. (26)

Applying the results ofl(25) and (26) il (22) for the specifibice of ¥ = H (GoK,, G + 1)~ 'Hy,

we have:
Ay 0

0 N

»=s12|CcH cl—1|sl2, (27)

Based on[(24), we also need to show that 0. From [27), it is enough to show that

Av 0| o |M-cfcr —cfc
0 N —clc, N-clc,

By applying the Schur Complement Lemma, the above relatipnis trueiff A; — CH#C; = 0 and
N — ClCy — CHCy (A — CHCy)~ICHC, = 0. Using Eqgs.[(B)ET0), it is evident that

A, —CHc, =cCH [S%H{fﬂls% n '} C, - CHC, = CHSTHIH,S:C, = 0

and finally the lower bound foN is given byN = C¥Cy + CLC1(A; — CHCy)"1CHC, = 0, which
completes the proof.

It should be noted that asl — A, we have T(K,,) — co. Moreover, T(K,,) = 0 is achieved by
N = A,. Hence, for each scaldt,, there always exists aN in the rangeAss < N < A, that will lead
to aK,, that satisfies[(20) with TK,,) = P,.

Thus far, we have not made any assumption on the number ofirsageat each node. But it is clear
from (20) that, for example whe@- has more columns than rows, for a fixddin the acceptable range
(21) there will be an infinite number d&,, matrices that satisfy (20) and consequently do not decrease
I(X1;Y7). In fact, in this example, a common policy for the helper istmply transmit artificial noise
in the null space ofG,. A more interesting case occurs when no such null spacesexist, when the
number of antennas at the helper is less than or equal to ththedntended receivemf, < n,). The
above result demonstrates the non-trivial fact that eveanwh, < n,., it is possible to find a non-zero
jamming signal that does not impaktX;;Y;) even when the jamming signal can not be nulled by the
channel. In the next section, we find more constructive esgio@s for thek,, matrices that satisfy (20)
for various combinations of the number of antennas at diffenodes. In particular, we show that when

ny < n,, a closed-form expression fa€,, can be found.
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IV. RESULTS FORDIFFERENT SCENARIOS

In this section, we consider all possible combinations & Mlumber of antennas at the transmitter,
helper and intended receiver, and obtain constructive oaistfior computing specifii,, matrices that
satisfy [20). SuchK,, will have no impact on/(X7;Y;), but will in general decreasé(X;;Y3), the
mutual information between the transmitter and the eawgguhr, compared with the case that there
is no helper. Hence, the secrecy level of the confidentialsags is increased. As mentioned before,
additional improvement in the secrecy rate can be achielvéldei transmitter updates its covariance
matrix K, onceK,, is computed. Note, however, that such an iterative procabsnet be pursued
beyond updatind<..; unlike the first step, wherK,, was updated from its initial value of zero, there is
no guarantee that finding a nds,, will reduce(X;;Y>). Hence, the final secrecy rate for the proposed

method is obtained by simply computirid (6) ahH (7) for theultesy K., matrices derived in this section.

A. Case 1: nj < min{n,,n:}
We show here that for the case wherg < min{n,,n;} and for a fixedN in the acceptable range

(21)), there is only on&,, matrix that satisfies (20) and consequently does not dezigas ; Y71). Using

the matrix inversion lemma, Ed._(20) can be written as:

HY(GK,GY +1)"'H, = HIH, - HIGy(GIG, +K))'GIH,

s lon | M e | g
0 N
ReplacingH! H; with (14), we have:
0 0
HIGy(GYGy+ K ) 'GEH, =s71/2Cc~H cls71/2, (28)
0 A;—N

Since we have assumed that the channels are full rank, inabe afny, < n, < n; or n, < ny < n,, it
is clear that rankG4'H;) = ny,. Thus, from [28) we have:

0 0
0 A2 —N

(GHG,+K ;) ' =0fls 1/2cH c~'s7'20 (29)

where O is the right inverse ofGﬁIHl, which, for example whem; < n, < n;, can be written as
O = HI/(H;H)~1G5 (G G3) 1. The following lemma is a direct result of EqE.128) ahd] (29).
Lemma 3: For the case ofi;, < min{n,,n;} and for a fixedN in the acceptable rangé (21), the

K., = 0 matrix for which [20) is satisfied anfi X;Y;) is not decreased is given by
K, = Q- QGJ(G:QGY —-1)7'G»Q (30)
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whereQ is the RHS of[(Z2D).

Proof: After applying the matrix inversion lemma on the LHS Dbf](28)straightforward computation
yields (30).

As is evident from Eqgs[(29)-(30), we still have a design paater,N, that should be chosen in its
acceptable rangd,, < N < A, such that the power constraint(K,,) = P, is satisfied. Finding the
optimal N that minimizes/(X;;Y2) whenK, andK,, are given by[(1IB) and_(30), respectively, is as
intractable as the general optimization problem[in (5)tdad, we simply restrict th& we consider to

those that can be linearly parameterized within the acbéptange, as follows:
N=Aypn+t(Ay—Ag) . (31)
Consequently the term; — N in Eqg. (30) becomes
Ay —N=(1-1)(Ay — As)

where the scalab <t < 1 is chosen such that the power constraintily,) = P, is satisfied. Note that
ast — 0 (N — Ag) then T(K,,) — oo, and ast -+ 1 (N — A») then T(K,,) — 0. Thus, we are

guaranteed that an acceptablecan be found in this way.

B. Case 2: nj, > min{n,,n:}

As mentioned before, for the caserf > n, and for a fixedN in the acceptable range (21), there are
many K,, matrices that satisfyf (20) and consequently do not decr&@se, Y7). A common policy for
the helper in this case is to transmit artificial noise in thél space ofG,. However, as[(20) shows, this
policy is sufficient but it is not necessary. In other wordsisipossible that the optimd,, satisfying
(20) has elements outside the null spacésef Because of the non-linear constraint[inl(20), finding the
optimal K, is intractable. A similar discussion applies for the caseo& nj, < n,.

In this section, we present an approach for computing alsaild,,. Consider the following jamming
signal covariance matrix:

K,=T1mrf (32)

wherell is ad x d positive semidefinite matrix, andl is ann; x d matrix. For the case of; < n; < n,

or ny > n,, we can choos& such thatGs T" is orthogonal toH; K;ﬁ, ie., K;,%H{{GQI‘ = Q. For
example I can be chosen as thkright singular vectors in the nullspace Kfj;%H{ng. SinceK, will
often be rank deficient, the value @fwill typically be larger tham;, — n; for the case oh; < nj, < n,,

and larger tham,, — n, for the case of., > n,.. For this choice ofl’, the resultingK,, in (32) satisfies
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(20), and doesn’t decreagéX;Y;) for N = Ay, as is clear from[(20). GiveR, the choice oflI can be
made to maximize the transfer of the “information” in thepgels jamming signal to the eavesdropper.
In particular, note that at the eavesdropper, the covagiafiche helper's jamming signal will be given

by Ho,T'TIT”HY . If the eigenvalue decomposition & HL H,T is written as
r“\l|v,r = unpUu?
with U unitary andD square and diagonal, thdd can be found via waterfilling; i.e.,
IMI=UAU",

whereA = [771 — D‘l] * the operatioA]*™ zeros out any negative elements, and the water-filling level

7n is chosen such that TK,,) = Tr(A) = Py.

V. NUMERICAL RESULTS

In this section, we present numerical results to illust@atetheoretical findings. In all of the following
figures, channels are assumed to be quasi-static flat Rhyfieiing and independent of each other. The
channel matriced; € C™*™ and Gy € C™*™ have i.i.d. entries distributed a\ (0,c3), while
G, € C*>*™ andH, € C**™ have i.i.d. entries distributed a&V'(0,c2). In each figure, values for
the number of antennas at each node, as waﬂflamdag, will be depicted. Unless otherwise indicated,
results are calculated based on an average of at least 58pendent channel realizations.

In the first example, Fig. 1, we randomly generate positiinde matricesS such that T¢S) < P,.

For eachS, we compute the secrecy capacity of the MIMO Gaussian wireteannel without helper
(K, = Q) as given by [(IR). Next, usind (B0), we obtainks, with the average power constraint
Tr(K,,) = P, that does not decreadé¢ X;;Y7), and then updat&, and compute’;..(S), using [(6)
and [7), accordingly. Fig. 1 compares the secrecy capatithieowiretap channel with (solid lines) and
without (dotted lines) the helper. Note that the verticdfedence between the solid curves (about 0.6
bps/channel use) represents the role of the transmit péwen the secrecy capacity with helper when
P, changes from 100 to 150 arfg, = 20. This relatively small difference indicates that, in thieple,

P, does not have a big impact on the secrecy capacity. Its robés more negligible whe#, = 0,
where only an increase 03 bps/channel use is obtained Bsincreases from 100 to 150. The role of
the helper on the other hand is significantly more importardreasingP, from 0 to 20 while holding

P, fixed results in an increase on the order of 3 bps/channelFusthermore, the use of the helper with
a total power of only 120K, = 100, P, = 20) provides significantly better secrecy performance than

not using the helper and transmitting with total power edqa&l50 (P, = 150, P, = 0).
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In the next examples, we calculate the secrecy capacityegithposed algorithms under the assumption
of an average power constraint?; at the transmitter, and under the constraint that the helpes not
reduce the mutual information between the transmitter aediver. While Eqs[{6) andl(7) provide the

performance for a specifi8, one must solve [17]/[20, Lemma 1]

Csec P) = Csec S 33
(F1) S0 T (S) (33)

to find the secrecy capacity over @l that satisfy the average power constraint. In the examplas t
follow, we perform a numerical search to sol¥el(33) and cammplie secrecy capacity.

Fig. 2 shows the secrecy capacity verglygor a fixed total average powét+ P, = 110. In this figure,
we consider a situation in whichk,. > o4, or in other words where the channel between the transmitter
and the intended receiver is weaker than the channel bettheemansmitter and the eavesdropper, and
the channel between the helper and the intended receivezdkexs than the channel between the helper
and the eavesdropper. The arrow in the figure shows the secapacity without the helpefP, = 0).
The figure shows that a helper with just a single antenna cavidge a dramatic improvement in secrecy
rate with very little power allocated to the jamming signalfact, the optimal rate is obtained whét
is less than 2% of the total available transmit power. If thienber of antennas at the helper increases,
a much higher secrecy rate can be obtained, but at the expémdlecating more power to the helper
and less to the signal for the desired user.

In Fig. 3, we consider a situation in which, unlike the abowaraple, we haver; > o.. Thus,
the intended receiver, in comparison with the eavesdroppeeives a weaker information signal and a
stronger jamming signal than the eavesdropper. It mighingat in this situation, the helper cannot be
very useful, but the figure shows that even in this case we age & notable improvement in the secrecy
rate (about 4 bps/channel use) by increasing the numbenefiaas at the helper, and with an appropriate
power assignment between the transmitter and the helptroutirequiring extra total transmit power
for the helper node.

In Fig. 4, we consider a specific scenario where the secrepgcity in the absence of the helper
node is zero. While channel matricék, and G, are generated randomly with i.i.d. entries distributed

asCN(0,02) andCN(0,032), respectively, we assume the following specific choicesHgrand G:

—0.25 + 0.5¢ —0.35 —1.25-0.9¢
—04+012 —-0.2+0.75¢ —1
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240.25¢ 1.5+ 0.5¢ 23
Gi=| 0254025 —0.7+15 0.5+0.33¢
—-1.5 —0.5—1 —2.9¢
SinceHH; < G G4, all the generalized eigenvalues of the pencil
(S*HIHS: +1) — o (S:GIGiSt +1)
are zero for alS > 0 and consequently, the secrecy capacity without helperbsiltero. In this example,
we also assume that not only is the total power fixed’at- P, = 110, but also the total number of
transmit antennas is fixed a + n;, = 3. As in the other examples, the secrecy rate of the wiretap
channel is considerably improved with the helper. In thisecahe best performance is obtained when
the helper has only a single antenna.
Finally, in Fig. 5, we consider the role of number of antenagthe helperpn,, in the secrecy rate for
the specific matrix power constrait= %I. Note that the solution of Section TVtA applies fay, < 3,

while the solution of Section IV-B holds fat;, > 3. In all cases, we see that the secrecy rate increases

considerably as;, increases.

V1. CONCLUSIONS

In this paper, we have studied the Gaussian MIMO Wiretap blim the presence of an external
jammer/helper, where the helper node assists the traesrijt sending artificial noise independent of
the source message to confuse the eavesdropper. The jarsigmg from the helper is not required
to be decoded by the intended receiver and is treated as abigeth the intended receiver and the
eavesdropper. We obtained a closed-form relationship Herstructure of the helper’s artificial noise
covariance matrix that guarantees no decrease in the muofoahation between the transmitter and the
intended receiver. We showed how to find appropriate salatigithin this covariance matrix framework
that provide very good secrecy rate performance, even whene tis no non-trivial null space between
the helper and the intended receiver. The proposed schesheue to achieve a notable improvement in
secrecy rate even for a fixed average total power and a fixatlnamber of antennas at the transmitter

and the helper, without requiring extra power or antennasetallocated to the helper node.

APPENDIXA

We are interested in finding a relationship that represdhtaatrices> > 0 for which
log |K33 +1I| = log|(C{'Cy)'A4] , (34)
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where
(cffcy)~t 0

0 0

K* =S:C clss . (35)

Using the fact thatAB +I| = [BA +1|, it is clear thats will have the form® = S~:C~#XC~!S~:
for some matrixX = X*. Substituting this expression f& into (34) results in the following equation

that must be solved foX:

cicpyt o
log (Groy X +1I| =log|(C{'C1) ' Aq] . (36)
0 0
. X; Xz
Write X asX = so that we have
Xﬁf X3
(CfCl)‘l 0 X 41— (CfCl)‘le +1 (C{{Cl)‘ng
0 0 0 I ’

and note that the determinant of the above matrix is giverﬁ(ﬁl{fcl)‘lxl + I|. By comparing this

result with [34), we see tha&; = A; — (C’C;). Consequently, we have:

A —(CHCy) X,
X X3

»=S5:CH cls: (37)

whereX, and X3 are still unknown and must be found as described in the teid.dlear that[(3[7) and

(22) are equivalent.
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Fig. 1. Comparison of secrecy capacity for MIMO Gaussiaretaip channel with and without helper for differefit and Py,.
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Fig. 2. Comparison of the secrecy capacity for the MIMO Grmssviretap channel with and without a helper vergsfor
different number of antennas at the helpBr+ P, = 110, assuming the eavesdropper’s channels are stronger ths@ tffi the

receiver §2 = 1,02 = 5).
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Fig. 3. Comparison of the secrecy capacity for the MIMO Grmssviretap channel with and without a helper vergsfor
different number of antennas at the helpBr,+ P, = 110, assuming the receiver’s channels are stronger than thote o
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Fig. 4. Comparison of the secrecy capacity for the MIMO Grumssviretap channel with and without a helper vergtsfor

different number of antennas at the helpBr4 P, = 110, andn; + ny = 3.
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