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Abstract

Coping with outliers contaminating dynamical processesfisnajor importance in various appli-
cations because mismatches from nominal models are notmmoa in practice. In this context, the
present paper develops novel fixed-lag and fixed-intervalahing algorithms that are robust to outliers
simultaneously present in the measurementd in the state dynamics. Outliers are handled through
auxiliary unknown variables that are jointly estimatedrglownith the state based on the least-squares
criterion that is regularized with thig-norm of the outliers in order to effect sparsity controleTiesultant
iterative estimators rely on coordinate descent and therraiting direction method of multipliers, are
expressed in closed form per iteration, and are provablyemgent. Additional attractive features of
the novel doubly robust smoother include: i) ability to higntoth types of outliers; ii) universality
to unknown nominal noise and outlier distributions; iii)xleility to encompass maximum a posteriori
optimal estimators with reliable performance under nomamaditions; and iv) improved performance

relative to competing alternatives at comparable compleas corroborated via simulated tests.
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. INTRODUCTION

Estimating the state of dynamical systems is of paramoupoitance in various applications including
tracking and navigation. A major challenge in these appiboa is deviation from nominal conditions,
which gives rise to outliers in the observations and stateadyics. Outliers in the state may come from
abrupt changes in the target position due to, e.g., uneggdatbulence, and velocity variations due to
target maneuvering. Outliers in the observations typjaadicur because of clutter, and glint noisel[26]. In
addition, both types of outliers can arise after lineagzihe emergent nonlinearities, as in the extended
Kalman filter (EKF) [4], [24]. The clairvoyant Kalman filteKF) and smoother (KS) can not handle
state and/or measurement outliers [3],/[27], because bathbe viewed as minimizers of a weighted
least-squares (WLS) criterion, which is known to be sevesito outliers [22].

Robustification of KF and KS dates back to the '70s [27], bmta@s an active area of research until
today [33], [35], continuously leveraging advances in @noptimization[[3],[5]. Despite these advances,
existing robust KF and KS approaches have several limitatiGome consider outliers only in the
measurements [33], while others can handle either type titmialone but not both simultaneously [27].
Most approaches capitalize on robust e.g., M-estimalds§ [Bhich rely on Huber's and other outlier-
resilient criteria [[20, App. A6.8]. They require knowledgéthe nominal distribution, and are effective
only when the nominal noise is independent across obsengmtnd state entries [23, Chap. 7]. In the
presence of correlated Gaussian noise, pre-whitenings/iadependent noise entries, which is required
for M-estimates to be applicable [35]. However, pre-whitgnspreads the outliers to non-contaminated
measurements. Approaches to doubly robust fixed-lag srimgptaly on heuristics to determine whether
outliers are present in the state or the measurement eqUyaép

A recent scheme for robust fixed-interval (but not fix-lag)osthing is reported in_[3], treating non-
linearities in the state and measurement equations sefyafi@m robustness issues. In the development,
nonlinearities are linearized, and the measurement ngiaesumed to follow the so-termédLaplacian
(or a Huber) distribution parameterized by a matfix The choice ofR (and likewise that of Huber
thresholds) critically affects smoothing performance, $gstematic means of selecting these parameters
was left open in[[B]. Finally, a class of robust schemes papinl computer vision for linear regression
settings comprises the so-termed random sample conseRANSAC)-based algorithms [14], [20].

If the outlier distributions are known and the model is lineaad Gaussian (when conditioned on the
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outliers), efficient sequential Monte Carlo (SMC) smooshkeased on Rao-Blackwellization! [9] as well
as deterministic algorithms based on pruning techniquesh as the interacting multiple model (IMM)
method [11], will offer viable alternatives. Unfortunatehccurate description of the outlier distribution
can be hard to obtain in practice. In addition, the compjesit SMC methods can be prohibitive for
medium-to-large size problems due to the curse of dimeaéitgr{12].

In the present work, outliers are handled through auxiliarknown variables that afeintly estimated
along with the state. The resultant estimators rely on caimhg the degree of outlier scarcity through
norm regularization, which is imposed on the auxiliary &btés to enableparsitycontrol. The proposed
robust smoothers: i) can handle both types of outliers sanebusly (hence referred to as doubly robust);
i) are universal, meaning they can operate even when thighdisons of the nominal noise and outliers
are unknown; iii) possess maximum a posteriori (MAP) oplitpaunder specific assumptions on the
outlier and nominal noise distributions; iv) perform wetider nominal conditions (i.e., with no outliers
present); and v) outperform RANSAC- and Huber-based rofmnstothers.

Unlike ordinary KS, the novel robust estimators are nomlinfinctions of the data, and rely on the
alternating direction method of multipliers (AD-MoM) or calinate descent iterations. Closed-form
expressions render the bulk of complexity per iteration parable to that of KS, which is linear in the
observation time. Few iterations of the coordinate desoetD-MoM-based algorithms are required in
practice to obtain satisfactory results. Numerical testsionstrate that the developed methods can reject
state and measurement outliers, and outperform RANSAC arnmki-based techniques.

The rest of the paper is organized as follows. Section Il @iost preliminaries and the problem
statement. Fixed-interval doubly robust smoothing (DRS)ntroduced in Section I, where the link
between robustness and sparsity is also established.tielext the regularization parameters is the
subject of Section IV. The coordinate descent based DRSitidgois developed in Section V. Fixed-lag
DRS is dealt with in Section VI. An alternative formulationrfgeneral linear state-space models is
developed in Section VII. Simulations are presented iniSedfIll, and conclusions in Sectidn1X.
Notation: Column vectors (matrices) are denoted with lower- (uppexge boldface letters;)” stands
for transposition0y is the N x 1 column vector with all zeros; anBly is the N x N identity matrix.

Given a setS ¢ RY, the indicator function is defined ds;(x) = 1 if x € S, andls(x) = 0, otherwise.
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[I. PROBLEM STATEMENT AND PRELIMINARIES

Consider the followingputlier-aware state-space model
x, = Fpxp1+wp+o0,p, n=1,...,N (1a)
yn = Hpx,+vy,+o0y,, n=1,....N (1b)

wherex, € RP- andy, € RP» denote the state and measurement vectors at timespectively;
w, andv, are mutually independent, zero-mean nominal noise veotarsh independent across time,
and from the initial statexy, with respective covariance matricéQn,Rn}ﬁzl; xo has meanmg and
covarianceX; and{o, »,0,,}Y | represent the unknown state and measurement outlier sector
Given {F,,,H,,Q,, R,,y.}_;, my, andX, the goal offixed-intervalDRS is to estimatgx,, }/V_;
and{o.n, 0, }2_,. Different from [3], [27], [33], [35], note that the outlisiare explicitly introduced and
treated as unknown variables to be estimated. This prob&mbe cast as one of linear regression, since
x, = Fpx,_14+0,,+w, can be viewed as an extra “zero measurement’ —x,,+F,x,,_1+0, ,+wWp;
and similarly for the initial condition asmgy = —x( + wg, Wherew is zero-mean with covariancg.

Thus, [1) can be expressed in a matrix-vector form as

[ —I ] [ 0 ] [ Wo ] [ —I1 ]
F, -1 [ xo | 0n1 w1 0
X1
Fy -I xg |+ |lown |+ | wn |=] 0 2)
0 H; ; Oy,1 Vi Y1
L XN .
| 0 Hy | | oyN | | VN | YN

or in a more compact form (with obvious definitions) as
Ax+o+w=y 3)

where matrixA is tall, and vectow has block diagonal covariance matfi, := diag(Xo, Q1, - - ., Qn,
Ri,...,Ry). Since bothx ando are unknown, the linear system i (2) is clearly under-aweiteed.

When there are no outliers (ef.= 0) andA is full rank, the WLS estimate [cfI3} := arg miny(y—
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Ax)TQ; ' (y — Ax) yields the KS. Substituting fronfill(2), this estimate can ddsowritten as[[1, p. 189]

N N
1 1 1
~KS .
K85 = arg min 5 2:1 [y — Hox, |2 ot §||x0 - m0||§51 +3 Z:l %, — ann_lHé;l 4)
n= n=

where || x|, := xTMx. The estimates®S is also known as the Rauch-Tung-Striebel (RTS) smoother
[3Q]. It is both minimum mean-square error (MMSE) and maxima posteriori (MAP) optimal if the
initial state and all nominal noise vectors are Gaussidmertise, it is linear (L)MMSE optimal. In fact,
adding to the WLS cost in{4) a ridge regularization tekix|% to constrain the/s norm of x, the
resultant ridge WLS, as well as the (L)MMSE and MAP, all yigldunique estimate (even for under-
determined models), and can be rendered equivalent deygendi the assumptions and corresponding
optimality claims one is willing to make. The exposition keforth is centered around the (regularized)
WLS approach, because it is universal with respect to (Me)underlying probability density functions.

With o = 0 (or known for that matter), the state can be clearly estith&ie solving the equations
(ATQ'A)x = ATQ,'(y — o), where the matrixAT”Q_'A has ablock tridiagonal structure [cf.
(@) and [(3)]. This allows obtaining the solution in batchrfoat complexity which is linear inV [19,
p. 174]. Alternatively, one can use the forward-backwagbathm in e.g.,[[1, p. 189] or [30] to solve
(@) recursively. The forward direction is a KF followed byetbackward run, which smooths the filtered
estimates. The forward-backward algorithm also exhiliesdr complexity inV. In a nutshell, both batch
and recursive solvers dfl(2)}(4) exhibit low complexityn@ar in N) wheno is known.

If unknown outlierso are present in[{3), and one chooses to ignore them and rurireogknt KS
as if o were absent, the MSE performance will be poor because th&Wjiterion is known to be
severely affected by outliers [23]. This mandates dealiith e outliers in[(B) explicitly — a challenge

addressed in the next section by exploiting sparsity caimgs ono.

I1l. ROBUSTNESS BY CONTROLLINGOUTLIER SPARSITY

The under-determinacy ifil(3) whenis unknown, raises non-uniqueness and thus state ideiiiifiab
issues. Ridge WLS, (L)MMSE, and MAP estimators cannot recdkie exactk, a fact confirmed by
the nominal-noise-free setup [ok = 0 in (3)], where one faces an under-determined system ofrinea
equations generally admitting infinite solutions. Key ta@bsing this issue is the degree spfarsity

(number of nonzero entries) of the vecter— an attribute offering the potential for solving uniquely
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under-determined systems of linear equations, as ediablisecently in the context of compressive
sampling [10]. This motivates recovery of a controllablasge estimate a by effecting sparsity through

an /y-(pseudo)norm regularization term. Specifically, the ps®z robust smoother aims at
L 1 2
[%,0] ;= arg min S|y — Ax — o5, + Allo]lo (5)
x,0 2 w

where the scalai is used to control the degree of sparsitydnThe level of outlier sparsity can be
selected by tuning\, and the outliers can then be estimated jointly with theest@d [3). Unfortunately,
the £o-norm renders the problem non-convex and in fact NP-hardglwbluggests a convex relaxation

using the closestonvexapproximation to the&y-norm, namely the/;-norm [10], [37].

Using an/;-norm regularization and defining, := [o] ,,...,0] y]", o, :=[o],,...,0] y]" , the
novel DRS approach amounts to [df] (L}-(5)]
1 1
XPRS5,,6,] = argxrcl)li% {5 Z lyn — Hpxp — oyvn\\%{;l + 3 Z | %, — Fnxp_1 — ox,an;]
It n=1 n=1
) N
+5llxo = mo[[51 + > Dellogalln + /\ylloy,n\lﬂ} (6)
n=1

where )\, and ), are introduced in[{6) to allow individual control of spayslevels ino, , ando, ..
Viewing the cost in[(b) as a Lagrangian function, allows icasthis unconstrainedninimization problem
as a constrained one. Indeed, sufficiency of the Lagrangépier theory implies that[[6, Sec. 3.3.4]:

using the solutioro,, 0, of (6) for given multipliersi,, A, > 0 and letting7, := ||0,|

1 7y o= [[0y]1,
the equivalentonstrainedminimization problem entails the WLS cost (quadratic teimgg)) subject
to the constrainto,|; < 7., and|o,|[; < 7,. Note however, thad,(),) in (@), and likewiser,(7,) in
its constrained equivalent, are tuning parameters and ptghization variables.

The DRS state estimate inl (6) can cope with outljeirstly present in the state and in the measurements.
In addition, it isuniversalbecause it does not require knowing the distribution of thminal noise or
the outlier vectors. (The choice of, and )\, discussed in the next section will not follow from the
distribution of a contaminating model but will be data driveDifferent from [2] and([38] which enforce
sparsity in the state, DRS controls sparsity in the outliereffect robustness. At this point, it is worth
recalling thato in smoothing dynamical processes is indeed sparse, sinoediéls abrupt changes (target
maneuvers) in the state which cannot be too many in the asalyisdow, and glint noise giving rise to

large-magnitude observations which occur rarely too. kigneéxplained why it is meaningful to expect

June 12, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (REVISED) 7

only few nonzero entries im, it is also useful to clarify that this is not necessary. (@ited tests in
Section VIII will allow for outlier contamination as high &%.) Although smoothing performance
degrades as the number of nonzero entries increases, all the proposed approach needs is a handle
on the percentage of outliers without requiring this petaga to be necessarily low.

The WLS cost can be also replaced by other functions (e.g/;tmorm of the error), and alternative
regularization terms (e.g., the&-norm of the outliers) can be employed instead of, or, in @oidito
the ¢/1-norm [18]. Non-convex costs and regularizers are alsoiples$ut they are not recommended as
stand-alone solvers df](6) because they cannot guarantwergence to the global optimum. In contrast,
it will be seen in Sections V and VI thdtl(6) and variants imadg /; and/, norms can afford not only
globally convergent but also computationally efficientveos.

Having clarified that the ensuing developments will rely @), (vhich is meaningful regardless of
the {w, v, o} distributions, it is natural to ask the following questidinder what assumptions on these
distributions can one claim MAP optimality of the resultatate and outlier estimators? The ensuing
proposition (proved in AppendIx]A) asserts that this is fgaesf the nominal noise vectors are Gaussian
and the additive outliers are known to be Laplacian distetu
Proposition 1. Supposev,, andv,, are Gaussian distributed, mutually independent, and iedejgnt from
o, ando, ,, respectively. Furthermore, assurog, has Laplacian distributed entries, ,, 4 that are
independent from past states, past state outliers, meammeoutliers, and across different dimensions;
that is, 0, ,.4 @and o, ,, o are independent fod # d'. Similarly, o, ,, has Laplacian distributed entries
oy.n,q that are independent from past states, past measuremdigreustate outliers, and across different
dimensions; then the estimators obtained ag@hare MAP optimal.

Albeit simple to prove, the usefulness of Proposition 1 isfodd: (a) it allows for a side-by-side
comparison with the MAP optimality offered by the clairvayaksS in (4); and (b) it positions the
proposed approach in the context of related MAP-optimaksws adopting;-error based smoothers;
see e.g.,[[3] and references therein. Specifically, diffef@m the multivariate Laplacian in Proposition
1 described by the two scalay, and A\, parameters, thé,-Laplacian model in[[3] entails &, x D,
matrix of parameters that are assumed known.

Next, robustness of the estimatok$ (6) is established. ifsgaly, the ensuing proposition proved in

Appendix[B, shows that DRS subsumes Huber’s M-estimator sizeaial case.
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Proposition 2. When{Q,,, R,,})_, and X, are all identity matrices, the DRS @@) boils down to solving

the following Huber M-estimator problem

D N D, N

X = arg min SN o, na— b xa) + Y | (@ow —moa)? + Y pa (@na — £ axa1)|p (7)
d=1n=1 d'=1 n=1

wherey,, := [yn,l,yn72,...,yn7Dy]T, X, = [mn,l,xn,g,...,xn,DI]T, X = [xr{,xg,...,x%]T, H, =

hy1,... ,hnvDy]T, F, = [f,1, ...,fn,Dw]T, and p, denotes the Huber cost [23]

32, if |7] <A
pa(r) = , _
Alr| — 4, otherwise.

Proposition 2 generalizes to dynamical systems the linkvéen [6) and[{7) established in [17] for
linear regression models. As a result, DRS also inheritsréteistness attributes associated with the
Huber M-estimators. Figurgl 1 depicts Huber’s cost alondh lite quadratic one. For small residuals
(i.e., |r| < A), pa(r) coincides with the quadratic one. But fp1l > A\, Huber’s cost grows only linearly
with r, which allows for down-weighting large errors. Therefavatliers which are responsible for large
errors will be weighted less in the overall objective fuonti Clearly, for large values of, Huber's cost
coincides with the quadratic one. As a consequence, a largwer of outliers in the observations and
state is effected through small, and )., respectively. Finally, it should be mentioned that the etub
function is not the only one enabling robustness. A gamuelaited robust costs can be found in elg.] [20,
Appendix A6.8] with different properties. The most conuimg reason for exploiting sparsity constraints
under the/;-norm of the outlier vectors is to leverage recent advancesampressive sampling to
develop the computationally efficient and globally conegrigsolvers presented in Section V.

While DRS inherits the robustness features of Huber’'s Nivestor, it enjoys several advantages over
it, as detailed in the following two remarks.

Remark 1. As mentioned earlier, the universality of DRS pertains atsdhe regularization term. If
outliers are present iall entries ofx,, or y,, this form of group sparsitycan be effected by replacing
loy.nll1 @and|log |1 in @) with |jo, |2 and|o, |2, respectively. Using the latter regularization, either
oyn = 0p, (0z,» = Op,), orall the entries ob,,,, (o,,,) are nonzero, signifying the presence of outliers
in all measurement (state) variables at timeThe cost function resulting from,-norm regularization

is still convex [41], and its minimization can be carried auging solvers similar to those dfl(6) to
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be presented in Sections V and VI. For this reason, diptporm regularization will be considered
henceforth.
Remark 2. In addition to universal robustness, the novel approachR& & also flexible in three counts.
First, Huber estimators fix, or )\, a fortiori based on knowledge of the nominal distribution and the
contamination model, e.g., for thecontaminated class with Gaussian nominal, it follows that A\, =
1.345 [23]. In contrast, DRS does not assume any specific modelheroutliers’ distribution. From
this viewpoint, M -estimators are subsumed by the present formulation asatmases corresponding
to specific values of\, and )\,. In addition, DRS can accommodate colored noise [df. (6}]jictv is
formidable for the robust estimators 6f [27] and|[35] be@pe-whitening in[(7) witrQ,, %> andR,, -
spreads the outliers to non-contaminated measurementsly=-iIDRS not only allows one to apply KS
on outlier-free data but also reveals the outliers — a feahot available to Huber-based approaches,
which only implicitly incorporate the outliers.

The next section presents systematic means of adjustingnd A\, to accommodate fully nominal
settings (i.e., no outliers), fully contaminated scemgrind all cases in between, even when the degree

of contamination is unknown.

IV. SELECTING A, AND

Parameters,, and A, control the level of sparsity in the estimated outlier vegt@nd their judicious
selection is crucial for the successful operation of DRS Terge a value for these parameters reverts
DRS back to the KS, which is non-robust. On the other handy semall values give rise to many
spurious state and measurement outliers, thus degradirtg pRformance. Standard cross-validation
techniques[[31], are not effective when outliers are prefgs]. Toward choosing proper values af
and )\,, the next proposition provides computable bounds so tha, it /_\y and \, > \,, then DRS
coincides with KS. (See AppendiX C for the proof.)

Proposition 3. The DRS estimate i) coincides with KS estimate®S if

>\y > /_\y = 1£n11a<XN HREI(Yn - Hnﬁgs)uw (8a)
Ao > Ay o= max 1Q,  (®F® = Foxi®))|| - (8b)

Having established the upper boundsih (8), desirable sdhre\, and), will be points in the rectangle

[0, A;] x [0, A,]. Consider a two-dimensional grid on this rectangle and gty chosen cost generated
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by each grid point. Depending on the information availabléhe designer, the “bes, and\, will be

those values minimizing either one of two costs presentdtienensuing subsections.

A. Known percentage of outliers

Here the percentage of (non-)zero entries of the outlietoveds assumed (at least approximately)
known; denote them as, . andm,,. Consider the 2-D grid of0, \,] x [0, \,], comprisingZ, points
along the), axis andI, points along the\, axis. Let(i,, i,), with 1 <, < I, and1 <4, < I,, be the
grid point corresponding to values;(i;) and A, (i,). For the given(i,, i), solve [6) with\, = A, (i)
and \, = \,(iy), to obtainXx(iy, iy), 0z (iz, iy) andoy(iz,i,). With supgx) representing the non-zero
entries ofx, and|x| the number of entries at, the “best’\.(i;) and \,(iy) are found as those with

|supgo,( zx,zy ]‘}

[0y (g, 1y)|

|SUPHO. 7z, y))|

102 (i )|

(9)

Te,o —

|

[iz: 1] = argmi.n{

o,y

y70

Finding A\, (i) and A, (i) as in [9), appears to require solvirld (6) for all palis,,) of the two-
dimensional grid. The associated computational cost cangveed as the “price paid” for the universality
attribute of DRS elaborated in Section lll. Instead of t,, A, ), recall that the number of parameters
(and thus dimensionality of the search space had those bdemwn) in [3] is (’)(Dg). Of course, this
is not an issue in_[3] where these parameters are assumechknow

Fortunately, the special structure of the optimizationbtem in [8) allows for solvers at complexity
lower than running’, 1, robust smoothers, one peY,, \,) point on the grid. Indeed.[6) can be formulated
as a quadratic program (QP), and its form can leverage reckminces in computing the so-termed least-
absolute shrinkage and selection operator (Lasso), atlgideveloped for static linear regressions; see
e.g., [21]. As will be detailed in Section V, Lasso can be asploited for the DRS dynamical model
considered here. General-purpose QP solvers incur polgh@mmplexity up toO(D35) per iteration,
whereD is the number of optimization variables involved [8]; hete= N (2D,+ D,+1). The reduction
to O(D) per iteration afforded by Lasso-based solvers becomeshpedsy starting from\ := (A, \y)
(sparsest initialization) and solving successively ovecrdasing\-points on the grid, using coordinate
descent iterations. Qualitatively speaking, about oneamentry ofo emerges pei-point on the grid,
and its value is used to initialize the iteration for the npwint on the grid (warm start) [15][ [40].

Especially for large problem dimension® (), it has been demonstrated that such Lasso solutions
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for the entire so-termedegularization path(corresponding to al\-points on the grid), can be more

computationally efficient than solving Lasso even for a kirfixed pointA on the grid; see alsol [16].

B. Known covariance of nominal noise vectors

The key observation here is that if the estimaigs (i,, i,,) ando, , (i, %,) are accurate, thex, (i, i) —
F,X,—1(iz,%y) — 0zn(iz,iy) should have the same statistics &s; and likewise, the statistics of
Vn —HyXp (i, 9y) — 0y 0 iz, iy) should coincide with those of,,. Focusing for instance on second-order
statistics, if these estimated residuals are pre-whitgbgdeft-multiplication with Q,,°° and R,,°),
they should have zero mean and unit variance. Thus, upowipitening and averaging, their sample

variance should approach 1. As a consequence, the “Degét;) and )\, (iy) are found as those with

[iz,iy] = argmin |1 —62(iz,iy)| (10)

Tayly

—~ .. N ~ .. ~ ..
W0 (e i)+ + X |9 i i)l + WG )3,

Oeliasiy) = ND, + (N +1)D,
where
Vi (iz, iy) = Yo — HnXp(ia, Z'y) - 6ym(ixa Z'y)
Wiz, iy) = Xn(iz,iy) — FaXn-1(iz, iy) — Oxnliz, iy)
Wo(ig,iy) = Xo(ig,1y) — my.

The number of grid point$, and, should be chosen large enough to ensure that a point in tivétyic
of the global minimum of[(10) is obtained. The grid need notunéorm. Indeed, simulations confirm
that the search is more efficient if grid points are choserhenlag scale; see alsb [16]. This parameter
tuning method, will be henceforth referred to as absolutgamae deviation (AVD). Since DRS iii(6)
requires knowledge of nominal noise covariances, the AVileste needs no additional assumption; and
similar to the method of the previous subsection, it cantedipe on Lasso coordinate descent based

schemes to lower the computational complexity of solvidga@r grid point, as detailed next.

V. DRSVIA COORDINATE DESCENT

While general purpose QP solvers can be utilized to sélvevi{) polynomial complexity inV, their

complexity can still be too high whe#V is large. A reduced-complexity alternative is developedthis
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section to solve[{6) using block coordinate descent itenati LettingC'(x, o, 0,/) denote the cost i {6)
and j indexing coordinate descent iterations, the following-pufiblems are solved per iteratignand

coordinate dimensiod

x0) = arg min C/(x, o™, o1 (11a)
OQde—arggmnd Clx (])703)1,”‘,0% 170331” ) Oy © ffnb)HD 7097;)1, ..,O;J;J—Vl),o?sj—l))(llb)
;]1)“1 = arg min C(x(”,og)ﬁiﬁa-.-70% 1705311[1 1 %,n,d, O ;nil)JrlD ’O?(/]"Jlr)l""’og&l)) (1)

where [11b) is solved fon = 1,...,N andd = 1,..., D,, while (11¢) is solved forn =1,..., N and
d=1,...,D,. The initial conditions are)gco) = O0ynp, and 050) =0np,.
The optimization in[(1dla) can be explicitly written as

j—1
o

: 1
x) := arg min {—
x 2

12 1
ann—l_ O;j,n 2 HQ,#_ 5 HXO_mOHZEO} : (12)

Solving [12) is equivalent to finding the KS estimate for ategswith outlier-compensated measurements
yn—oé n b , and outlier-compensated stazt,e—o(] b . Therefore, either the batch or the forward-backward
recursive algorithms reviewed in Section Il can be adoptesioive [12) with linear complexity V.

Focusing on[(11b), one should solve

) ’
J
O:c,n,l:d—l

il .
o= arg min o lx-Foxl = | o, + Aol0zndl (13)
G-1)

Om,n,d+1:Dz Q!

for everyd = 1,...,D, andn = 1,..., N. The scalar probleni{13) is solved using the Lasso, which

can afford a closed-form solution [21]. Indeeld,1(13) can feielently expressed as

. 1 N
O(J) nd = arg min 3 <Om,n,d — ’Y:E:J,ZL,d> + Apnd| 0z dl (14)

Oz,n,d

where

)R-
Tznd = x, ankd Ok — Z q”kd:cnk

q"dd h=d+1

amj,zz = Qr_zl (ngj) ang) 1) >\:c,n,d = /\x/Qn,d,d
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andQ,," has entriegQ;,'i v := gk The solution to[(TH) is given by
. + H ]
oD =9 = Aana] sian (1))

x,n,d
where[z]* := max(z,0) and sigri-) denotes the sign operator.

(4)

xnd

A similar closed-form solution becomes available for {1 Xshce

2
(J)

1 y n,l:d—1
0(’ ) nd "= AT Min oy — H,x) — Oyn.d + Ayloy,n,al- (15)
oY
y,n d+1:D, R
for everyd=1,...,D, andn=1,...,N.
Problem [(I5) can be alternatively written as
i 1
0(]7)1 d = arg Orilig 5 <0y,n d— 753 d) + /\y,n,d|0y,n,d| (16)
where
@ .
7y7n,d' T yn Zrnkdoynk Z Tnkdoynk
dd k=d+1
a?(f% = RT_L1 (yn — an£3'>> , Aymd = Ay/Tndd

andR;;! has entrie§R,; ]y x := 7, 14 The solution to[(I¥) is given by

(J +

ynd_ H’Yynd

)\y,md] sign (’Yg(,j)@d)
Global convergence of thé (12)-(15) iterates is guaranteed the results in[[38], as summarized next.
Proposition 4. For any initial valuesx(®) o; ),og(/o), the iterates in(12), (I3) and (I5) are all convergent.
Furthermore, every limit point of the sequence®, ox , ogf) solves(@).

Note that [(IR) contains the bulk of computation per iteratjp and its complexity is equivalent to
that of KS, which is linear inN. This should be contrasted with the general purpose conwkers
whose complexity is polynomial inV (worst-case of orde®(N?3%); see e.g., [[8]). As mentioned

earlier, the complexity reduction is due to the unique prige of Lasso-related problems, namely

variable separability, closed-form thresholding per able, and warm starts. Coordinate descent solvers
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capitalize on these properties, and have been documentedgerform competing alternatives, including
off-the-shelf QP solvers [15][ [16], [40].

Remark 3. This section’s efficient solvers of th§-norm based convex cost ifil (6) will converge to
estimates generally not coinciding with the global optimoeimthe ultimate /,-norm based sparsity-

promoting cost in[{(5). This motivatemncaveregularization terms, which offer improved approximagon

of the /p-norm relative to that offered by thg-norm [25]. One such alternative leads to solving

N D, N D,
[X,0] := arg mln—”y Ax— OHQ—I + Az ZZlog |0z.m,d] +02) + Ay ZZlog (loy,n,al +6y) (17)
n=1d=1 n=1d=1

whered, (6,) are small positive constants to ensure that the argumethieolbgarithm stays away from
zero. Since the cost il (IL7) is non-convex, it is recommendeditialize its iterative minimization with
the efficient convex solver of (6). Starting with such aniatization (x(*), 0(9)), the logarithm can be
successively linearized around thth iterate usindog(t+6) ~ log(t®) +8)+ (t—t1)/(t"V +6) to arrive
at a convex cost, which can be readily optimized to obtainetitenates at iteratiofi + 1). Specifically,
at iteration/ one solves

x®,00] = arg mln—Hy Ax —ofgr + A Zzwmdmmdux ZZwynd|0ynd| (18)

n=1d=1 n=1d=1
where

wl) 4= (lolo 0 +8:) Lol = (loSml +6,) "

Note that[(IB) is similar to the DRS one [0 (6) except that thigies of vectoro in the regularization are
weighted non-uniformly. Being convex, (18) can be solvecktasily as[(6). With reliable initialization
offered by the solution of{6), one reason behind the enhapaé offered by[(18) is the bias correction
to Lasso, which is known to yield reliable estimates of ¢heupport but biased estimates of its nonzero
entries [21]. Beside$ (18), alternative means to mitigatthias effects is to retain only the outlier-free
measurements, after identifying them through the zeraesnfo, and use them to re-run the clairvoyant
KS which is unbiased. The improvement offered by these réfastimates and those obtained by solving

(I8) will be corroborated via simulated tests.

VI. FIXED-LAG DRSFOR ONLINE OPERATION

The major limitation offixed-intervalsmoothing is that the whole batdly, }/_, has to be available

prior to estimating{x, }_,. This is useful for applications such as processing eleotephalograms
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[36], but not for target tracking. In many tracking applicas, state smoothing has to be performed
online and stringent delay (“lag”) constraints are impobsetiveen the smoothed state instant and the
time state estimates are formed. Online smoothing is algmwitant in applications where the state is
affected by abrupt changes since these events may be théestation of, e.g., system failures [28].
When the outliers are absent [0 (1), optimal fixed-lag KS camdgarded as a special case of fixed-
interval KS [1, p. 176]. The goal here is to estimatg, relying upon observations up to time+ ¢,
where ¢ denotes the estimation lag. Supposing that a KF has beenpua time n to yield the state

and covariance estimates,,, andX,,, fixed-lag KS can be accomplished using

n+t

~KS .
Xninte = aIg m}:n {5 E HYn’ —H,xy

1
%{*} + §”Xn - xn\n”zz;;‘ln
n'=n+1 "

+0

+l nE %7 = Frrxpr—1[[G-1 (19)

2 Q.
n/=n+1

wherexXS = [(XES)T,..., (x2,)T]T. Observe that fixed-lag KS ifi{1L9) is a special case of fixed-
interval KS, when the initial condition on the state, namgl,yn and X is given by the KF, and
the state is smoothed over the interyaln + ¢|. Thus, the solution of[{19) can be found with either
one of the two algorithms of Section Il. However, sincel (16gsl not account for outliers, the resulting

estimator is not robust. To address this issue, a fixed-la§ BRleveloped next.

A. Fixed-lag DRS

In the previous section, the fixed-lag KS was regarded as ciadpmse of the fixed-interval KS with
properly chosen smoothing interval and initial conditiofsirthermore, in Section ]Il a fixed-interval
DRS was developed, which is extended here to robustify theglfiag KS in [(1D). Mimicking the steps
followed in SectiorlIll to robustify[(I9) is challenged byettact that the initial conditions,,,, and
3,1, are evaluated by the clairvoyant (and thus non-robust) iFoviercome this obstacle, the fixed-lag

KS will be recast in a form entailing the interval — w, n + ¢]; that is,

n+¢
+KS

. 1
Xy, yen ¢ = AIg Min {5 g lyn — Hn/xn/”%(,l + §\|xn_w - Xn—w\n—w”%j .
s " = wln—w
n+4

1
+5 > Hxn/—Fn,xn/_lﬂgn}}. (20)

n'=n—w+1
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The formulation in [(2D) is equivalent to that ¢f{19) in thense thatxkS = xKS, It also suggests that
the fixed-lag KS estimate at time and lag¢ can also be obtained by initializing its recursions with the
KF estimatesx,, _,—, and,,_,,—,, for arbitraryw. The fixed-lag DRS is obtained by robustifying

the fixed-lag KS[(Z20) in a fashion similar to that used in Sediil} that is,

+DRS - L
[Xn—w:n—',-év Oz n—w:n+ls Oy,n—w:n—i—Z] =

n+4 1
arg X’I(I)lj’l(l)y {5 Z » ”yn’ - Hn/xn/ - Oy,n/”%{;} + §Hxn—w - xn—w\n—w”%};iw‘niw
n’'=n—w

1 n+¢ n+¢
t3 2 e —Fuxwo —onwlga+ Y] [Ayuoy,wul+Axuox,n/m}.(21)

n'=n—w+1 n'=n—w+1

Observe that eventual errorsx} _,|,,,, and¥,,_,,,_,, due to the non-robust KF do not severely affect
the estimates at time provided thatw is sufficiently large. Certainly, the larger the, the larger the
number of nuisance variables involved.

The major limitation of the fixed-lag DRS in_(R1) is that a cervoptimization problem has to be
solved at each time to obtainx?®S. As a consequence, the associated computational burdesivo s
the fixed-lag DRS in[(21) is not comparable with that of thendtad fixed-lag KS. This motivates
approximating the fixed-lag approach [n}(21) to enable @RS at complexity comparable to that of

standard fixed-lag KS and state-of-the-art non-linear shers.

B. Online fixed-lag DRS

The coordinate descent-based fixed-interval algorithmeictiSn[M is properly modified in this section
in order to solve the fixed-lag DRS problem formulated[inl (D¢spite the fact that convergence to a
solution of [21) is provably guaranteed asymptoticallg.(ifor infinite iterations), satisfactory estimates
can be obtained with only a few coordinate descent iteration

Suppose that between two consecutive observationsr(say andn + ¢ + 1), the affordable delay
allows for J coordinate descent iterations to be implemented. Furthexpfor a limited number of
iterations, initializing Withoi?i_wm% and Og(/(,)zz—w:n-i-é close to their global optimum values provides a

“warm start-up” considerably improving the performancésérve that for estimating the state at time

fixed-lag DRS entails smoothing over the interjfal-w, n+¢], and after.J coordinate descent iterations,
()

r,n—w:n+L

(J)

yn—wnre DECOME available. Since fixed-lag DRS at time- 1

the variables<(‘])

n—w:n+0? o

o
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entails smoothing over the interval — w + 1,n + ¢ + 1], the variable&i%_wmw oéozl_meM

can be initialized tmgg_w;nu andoﬁ_wm% obtained from the previous iterations, which provides
the aforementioned warm start-up. Granted, when the windas smaller, the effect of the non-robust
initialization is more pronounced. Even though no anahltiesults are claimed on the performance
as a function ofw, the simulated RMSE comparisons in Section VIII with conmpgtalternatives of
comparable complexity, speak for the merits of this setionline algorithm.

The novel fixed-lag DRS scheme amounts to sequentially ngnhiKS’s and combining their outputs.

Interestingly, several non-linear smoothers includingsth based on SMC and IMM approaches also

combine the outputs of several fixed-lag KS’s, which alloasd fair comparison of these techniques.

VIlI. GENERALIZED LINEAR STATE-SPACE MODEL

Consider the more general linear state-space model, giygaf b(dd)]
xp =Fuxp1 +Gwy, + 050, Yn=1,...,N. (22)

where{G,, })_, are known matrices. If matriG,, is tall, G,,GI is rank deficient, which prevents one
from writing the WLS state error as ifil(4). Instead, KS candmenulated as a constrained optimization
problem, and likewise for the corresponding fixed-interaal fixed-lag DRS. Specifically, the novel

fixed-interval DRS can be obtained as

DRSS &~ = : DRS —
%>, %.8,,8,] = arg min CYY (x,%,0s,0,)
subjectto x, =F,x,1 +G,w, +0,p, Vn=1,...,N (23)
wherew = [w!,wl, ..., w]]T and
1 1 1
OV%S (x,W,0,,0,) = 3 Z llyn — Hpxp, — Oy7n”%{;l + §on - mOHZEfl + 5 Z [ |2 -1
n=1 n=1
N
+ > Nallownll + Aylloy -
n=1

Due to the constrained nature of the problem[inl (23), coatdilescent iterations can not be directly
applied. However, it is possible to develop iterations dase the alternating direction method of

multipliers (AD-MoM) [7]]. These iterations are simple if eintroduces the auxiliary variables = o, ,,
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andb,, = o, ,, which imply additional constraints. Then, the augmentedraagian can be written as

N N N
1 1 1
Lo = 33 e~ Huxe —oyaliis + lixo—mof s+ 2 S Iwals + 3 Dy llbalh + Al
n=1 n=1 n=1

N
K
+ Z [XZ(Xn -F.xp-1 — Gpywy, — Om,n) + —||Xn -Foxp1 — Gyw, — Ox,nH%]

2
n=1
N
K
3 [ 0y = ba) + 5 0y — bu3] +Z (020 = an) + 502 — an[3]. (24)
n=1

where {xn, mn, vn}_, denote the Lagrange multipliers andis a positive constant. Setting the

derivatives ofL,, with respect tox,, equal to zero, yields the following AD-MoM iteration [cf 4}

, . 1 1
U= argm,:n{gDm—ann o+ + 5lixo — mo .
-

N
+ Z g”xn —Foxpo1 — ang_l) - Oggj;r_Ll) (J nt /63 ] }

n=1

Clearly, this problem is equivalent tb] (4), which can be edlin a batch or recursive form at complexity

that is linear inV. Likewise, the remaining variables are updated as follows:

W%j) = (Q;1+RGZGn)_1Gg(X,(1j_1)+/<;ng)—anx;)l—moggl)), n=1,...,N

o) = (R +#Ip,) (R (yn — Hyx@) — p 0" 4 50 Y), n=1,....N

off) = %(xﬁf‘”/ﬁﬂﬁf)—an” —Guw) 12l 0V k), n=1,... N

b = %m (I50) 4+ Y3V = Ay 0)sign(kol)  + p7Y), n=1,... N, d=1,...,D,
ag’)d = %max(\mogzhd—kur(j;l)]—)\I,O)Sign(/wgi’d+1/7(l{;1)), n=1,....,N,d=1,...,D,
9 = x4 k(xd) - an() —G,wY) — o(J}L), n=1,...,N

wl = w7 k(o) = b)), n=1,....N

D = A o) - o), n= L

Invoking the results in[[7, p. 256], guarantees global cogerce of these iterations as asserted next.
Proposition 5. For any x > 0 and arbitrary initial valuesw(®,0{”, 0" b® a® x(© ;,© 1O the
AD-MoM iterates are all convergent. Furthermore, everyitipoint of the sequences"), w(?), oéj),

oY) is a solution of the problem i23).
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Although global convergence of the coordinate descent dxdVdM iterates is ensured by Propositions
4 and 5, respectively, no analytical results are availableptimization theory regarding their rate of
convergence — a challenging subject going well beyond tbpesof the present work.

For AD-MoM iterations too, the bulk of computations is in theder of a KS, which grows linearly in
N. The rest involves closed-form evaluations. In a nutsHetlthe general linear model in_(P2) the AD-
MoM iterations replace those of the coordinate descentritiigo with the same order of computational
complexity. Some of the simulations in the ensuing sectidhtest this AD-MoM based fixed-interval
DRS approach, which also has a fixed-lag counterpart tailéwe online operation under the general
linear state-space model. Its derivation follows closélgt tof the coordinate descent for fixed-interval

DRS, and is omitted for brevity.

VIII. SIMULATED TESTS: MANEUVERING TARGET TRACKING WITH GLINT

In this section, the developed robust smoothers are siguifisr maneuvering target tracking in the
presence of glint noise. First, DRS performance is tested sample target trajectory, and then sample

averaged performance metrics for DRS are compared agamshain competing alternatives.

A. DRS on a Sample Trajectory

The model in[(2R) is simulated with,, := [pZ, s, p1, sh]T, wherep? andp;, denote the target position

n

in the z andy coordinates, respectively; and correspondingyand s, denote the target velocity in the

x andy directions; thusD, = 4. The matrices in[(Ib) and_(P2) are invariant

1 700 =0
01 00 T 0 1 000
F, = , G, = R H, = (25)
0 01 7 0 5 0010
0 0 0 1 0 7

and = denotes the sampling period. Sin€g, is tall, this so-termed discrete white noise acceleration
(DWNA) model [4, p. 273], can only be handled by the geneealilinear state-space model of Section
VII. The form of H,, in (25), shows thay,, comprises noisy position measurements, ano= 2.

A total of N = 100 observations are collected,= 1, R,, = 150?15, Q,, = 0.5, my = 04, and

¥ = diag(50,5,50,5). The target trajectory starts from positidt, 0], and evolves according to the
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DWNA model with the specified parameters from time= 1 to n = 29. At timesn = 30 and 31
the target turns right and follows again the DWNA model fram= 32 to 59. At time n = 60 and61
the target turns left and then proceeds with the DWNA modél un= N. The true target trajectory
is depicted in Fig[1l2 with solid line. The circles represem facquired position measurements. Three
outliers (not depicted in the figure) yield erroneous positieports, at. = 15, 50, and 80.

Figure[3 depicts the clairvoyant fixed-interval KS estim@eéserve that KS is not robust to outliers in
the observations and state. The fixed-interval DRS estsrsitewn in Figl ¥ fon\, = 0.01, and)\, = 0.05
(which approximately correspond % of the critical A, and \, in Proposition 3), demonstrate that
DRS can effectively cope with outliers, and has merits oter ion-robust KS even when\;, \,) are
not systematically estimated as [d (9) brl(10). Figures 5@rmikpict estimates of the fixed-lag KS in
(19), and DRS in[(21) for lag = 10, respectively. Again, the KS estimates are strongly ad@diy
outliers. On the other hand, the fixed-lag DRS estimatesgnl@iforw = ¢, A\, = 0.01, and\, = 0.05,

are only minimally affected by outliers.

B. Online Fixed-lag DRS versus Rao-Blackwellized SMC

The root mean-square error (RMSE) of the position estimatased here to quantify the performance
improvement of DRS relative to KS. The true target trajectwincides with that of Fid.]2 (solid line),
when M = 100 noise and outlier realizations are present. With probgbiti= 0.97, the model in[(Ib)
was in effect witho, = 0, H,, in (28), andR,, = 150I,. With probability 1 — = = 0.03, outliers in the

observations occur, and in this case the position repoet$yan , y, 2] ~ U([—10000,10000]?). Figure

[@ depicts the RMSE of the position estimates, RVSE \/% SMpE —pE)2 + (0% — D42,
where [ﬁ(m),ﬁ?fm)] is the estimated position at time for the mth noise and outlier realization, for the
fixed-interval KS and DRS witih, = 0.01, and )\, = 0.05. Clearly, DRS exhibits lower RMSE than the
clairvoyant KS.

Figure[8 depicts the instantaneous RMSE for fixed-lag KS aR& Bor ¢ = 10, w = 10, A, = 0.01,
and \, = 0.05, along with the Rao-Blackwellized (RB) SMC smoother retyion 50 particles, and the
online fixed-lag DRS with50 AD-MoM iterations and constant = 0.05 (referred in the figure as O-
DRS). For the RB-SMC smoother, a conditionally linear, Giars model is adopted. Specifically, under

nominal conditions, the model is that inl (1) with,, G,,, andH,, as in [25),0 = 0, Q,, = 0.5I, and
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R, = 150%L,. It is assumed that the nominal conditions are in effect withbability 7 = 0.97. Outliers

in the measurements occur with probability- = = 0.03, and in this cas®,, = 15000215, which allows

for down-weighting the respective measurements. With #raesprobability, state outliers emerge too,
and in this cas&),, = 500I,. Clearly, conditioned on the outlier realizations, the ayrcal process is
linear and Gaussian. This allows for drawing particles far state/measurement outliers, and using them
for estimating the state via fixed-lag KS; see alsd [13] farmde on the fixed-lag RB-SMC. In addition

to fixed-lag KS, the novel O-DRS approach outperforms RB-SiiCthe same computational burden.

C. Comparison with RANSAC and Huber M-estimates

DRS is compared here against state-of-the-art robust $ramtnamely the Huber based scheme, and
a combined RANSAC followed by Huber scheme. In the lattepatining is cast as the linear regression
problem in [B) to which RANSAC can be applied read(ly][20]. RBAC relies on random draws (here
100 or 1,000) to find the “best” possible subset of rows coasing to the nominal modé€l [14], [20].
To ensure that the remaining outliers do not degrade pedoce, the nominal rows of](3) found by
RANSAC are pre-whitened, and subsequently plugged intoersitzost in [¥). The Huber parameters
are set to\, = )\, = 1.345 as suggested by [17],_[23] for standardized Gaussian ndmmiae (this
requires pre-whitening the nominal noise). The Huber estns found by solvind{7) using the iteratively
re-weighted least-squares (IRLS) algorithm [in![23], whigfiike the Lasso-based solver pursued here,
guarantees only local convergence. The fixed-interval DR@)i is also employed with, and ), found
using either of the two data-driven criteria suggested ictiSe V. To further improve DRS, one iteration
of the refined estimate in Remark 3 is also implemented. Theetngimulated here obeyis {25), but with
G, = 1, w, ~ N(04,Q,), Q, = diag1,0.001,1,0.001), andR,, = 5I,. State and measurement
outliers are generated as independent Laplacian withn@e®200 and 20,000, respectively. The RMSE
for both position and velocity estimates time-averaged d@ Monte Carlo runs is plotted versus the
percentage of outlier contamination.

Fig.[9 plots the RMSE versus percentage of outliers for tielined RANSAC-Huber robust smoother
as well as DRS, when outliers appear only in the measuremEmsnumerical suffix for DRS denotes
the grid size used for the AVD [cfl_{10)], while the one for RENC stands for the number of RANSAC's

random draws. In terms of complexity, DRS-100 (with= I, = 10 grid points equispaced in log scale
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as suggested in [15]) lies in-between RANSAC-100 and RANSAQGO0. Note that up t60% outliers all
three methods perform similarly. When the outlier contaation percentage exceedl¥’, RANSAC-100
performs poorly, while RANSAC-1000 and DRS-100 exhibitagful performance degradation. Due to
its lower-complexity, DRS-100 offers a better alternatikan RANSAC-1000.

Fig.[10 compares RMSE performance when outliers are onlgemtein the state. One observes that
DRS-100 considerably outperforms both versions of RANSACHIl percentages of outlier contamina-
tion. The improvement in going from RANSAC-100 to RANSACEMDis not noticeable.

Fig.[11 plots the RMSE resulting from DRS-100, batch KS, Htdrdy, and the combined RANSAC-
Huber scheme when outliers are simultaneously preseneistttie and measurements. The AVD criterion
is used for DRS. It can be seen that RANSAC-Huber combingteniorms poorly for outliers present
in the state and measurement. This happens because RANS#@vas certain rows of the regression
matrix, namely those contaminated by outliers, which rendiee remaining sub-matrix ill-conditioned.
Huber-only performs close but worse than KS — a manifestadibthe fact that Huber’s estimate are
found for independent nominal noise. Even though the noe&e fs independent, it is not standard
Gaussian and the subsequent pre-whitening, which is a neafimg in this case, adversely affects the
Huber-based estimate. Indeed, neither of the mentionadstabethods performs well when outliers are
present both in the state and measurement, and surprigngly the clairvoyant KS outperforms them.
However, DRS-100 outperforms KS in terms of RMSE, and spé&akihe importance of the universality
property of the novel estimator.

The DRS improvement over KS is more pronounced if the peaggnof outliers is known, case where
@) is used instead of AVD. The result is plotted in Hig] 12,en DRS significantly outperforms KS.
Here, the percentage of state outliers is fixed @&, while that of measurement outliers is variable.

At last, different DRS renditions are compared against eatbler and with the robust smoother of
[3]. For a fair comparison with ]3], the setup includes @i only in the measurements and smoothed
estimates for both approaches are formed using the gememnabse optimization software SeDuMi [34].
Each randomly occurring outlying-measurement is drawmfi@ zero-mean uniform distribution with
variance20, 000 independently from the nominal random variables. Note th@toutlying measurements
here are generated not in accordance with the model in [3tderdo illustrate the universality attribute

of the proposed DRS. Nominal model parameters commonly kntmwboth DRS and the smoother
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[3], are chosen as before with the only difference thgt = diag(100,1,100,1). Fig.[I3 depicts the
mean and median RMSE computed owef00 Monte Carlo runs as a function of the percentage of
outliers. It can be seen that DRS with AVD outperforms the ather in [3], especially as the fraction of
outlier contamination exceeds 10%. Similar to the smoaith§3], DRS with AVD utilizes only nominal
parameter knowledge to form its estimate. The curve théizesi the concave penalty pertains to the
refinement outlined in Remark 3. A clear gain is observed Witk refinement as a result of de-biasing
the DRS estimates. DRS with known percentage of outlierdsis plotted and outperforms all other

alternatives. This is due to the extra knowledge on outlersty that this smoother benefits from.

IX. CONCLUSIONS

Robust smoothers were developed for dynamical processegansmated with outliers in the observa-
tions and/or state. The novel fixed-interval DRS can be vieag an/;-norm regularized version of the
WLS-based clairvoyant KS algorithm. This form of regulatian controls the sparsity of outliers, which
are explicitly introduced as auxiliary variables. Two ddt&ven methods were also devised to select the
associated regularization parameters. Block coordinaseeht-based iterations were developed to solve
the underlying convex optimization problem in an efficierermer. To enable real-time smoothing for
delay-constrained applications such as target trackingyrdine fixed-lag DRS was also developed. At
last, the novel approach was broadened to include geneddiizear state-space models. Numerical tests
demonstrated that the proposed algorithms can jointly ceitie state and measurement outliers, and

outperform state-of-the-art methods at comparable coatipaial burden.

APPENDIX
A. Proof of Proposition 1 (MAP optimality of DRS ()

Successive application of Bayes’ rule, as well as the assangon independence and the correspond-

ing distributions of the nominal noise and outlier vectoislg
N
X p(XO) H p(}’n|x0:m Yin—1,021:n, Oy,lzn)

n=1

p(y1:N7 X, Oy, Oy)
p(y1n)

p(X7 Og, 0y|Y1:N) =

Xp(xn‘xO:n—la Y1:n—1,0z1:n, Oy,l:n)p(oy,n‘xO:n—la Y1:n—1,0z1:n, Oy,l:n—l)
N

Xp(om,n|X0:n—1> Yin—1,021:n—1, Oy,lzn—l) = p(XO) H p(Yn|Xm Oy,n)p(xn|xn—17 Om,n)p(oy,n)p(om,n)
n=1
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N
= N(XO§ my, 20) H N(Yn7 H,x, + Oy n, Rn)N(Xn7 Fox,1+ Oz, Qn)ﬁ(ox,n; )\:c)ﬁ(oy,n; )‘y626)

n=1

whereN (x; my, X)) represents a Gaussian distribution with meanand covarianc&, while £(o; \) :=
[1,(A/2) exp(—Aloq|) o exp(—Allo|l1) represents the joint Laplacian distribution for a vectothwi
independent entries. Maximizing_(26) amounts to miningzihe negative of the exponent, which leads

to the DRS criterion in[{6).

B. Proof of Proposition 2 (Equivalence ) with (7))

Consider minimizing the cost iJ(6) over, and o, with x fixed. Givenx and with {Q,,, R,,})_,
and 3, given by identity matrices, the criterion ihl(6) is sepaeabVer each scalar entry of, ando,.

Hence, it suffices to find

~ . 1
Oynd = argmin {i(y"’d - hz;dxn — 0y,n7d)2 + /\y|oy7n,d|},n =1,...,N,d=1,...,D, (27a)

Oy,n,d

~ . 1
Ornmd = argmin {i(acn,d — fg,dxn_l — om,md)2 + )\x\ow,mdl},n =1,...,N, d=1,...,D,(27b)

Ox.,n,d

The scalar problems i (27) admit, respectively, the follmyclosed-form solutions (see, e.d., [29]):

N 0, if |yn.a — Bl x| <N, (283)
yn,d —
L Yn.a — hl L Xn — Ay SigN(yp.q — den), otherwise
0, if |zpa— 0 xp_1] < Ap
Ornd = [na = fn (28b)

Tpd — fff’dxn_l — Xy Sign(zy, ¢ — £1 x,,—1), otherwise

Substituting [(ZB) in the DRS cost dfl(6), the subsequennupétion problem inx is

N Dy

X = argmln [ZZ( (Yn.d — ndxn) 1, .,—nr dxn\<>\y( X)

n=1d=1

+(/\y|yn,d - hg,dxn| /\ /2)]l|y d—thxn\>>\ > + Z ( Zo,d — Mo d) >

N D
1535 D TR PN W

el — kot =32/ bt o )| (29)

Given the definition of Huber's cost, the problem [n](29) isieglent to [7). Therefore[(6) andl(7) are

equivalent.
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C. Proof of Proposition 3

Letting L(x, 0,,0,) denote the cost if16) and the subgradient operator, the optimality conditions

for the non-differentiable problem if](6) arfe [32, p. 126]

0€V,,, L(X,6,,06,) = 0cR;%0,, Ry (y,—HuX,) + A0y (30a)
0€V,, L(X,6:,6,) = 0€Q,"6,,— Q" (%, — FnXn_1) + \uOs (30b)
whereo, ,, := [04.n.1, 02,02, - -, 0xn,D,|T @ANASy 1= [0y n1,0yn2,...,0ynp,]" are the subgradients

of |o,,|[1 and|o, | 1, respectively, whoséth entries are given by

5 Sigr(éy,n,d)a 6y,n,d 7£ 0 . Sigr(éx,n,d)y 6x,n,d ?é 0
Oyn,d = y  Oznd = s

Sn.d> Oynd =0 tn.d Ogm,a=0
for any s, 4| <1 and|t, 4 < 1.
DRS coincides with KS wheb, = 0y p, ando, = Oxp,, which impliesx := %KS, Foro, = Onp,,
(B04d) is satisfied withk := %S if and only if (8d) holds. Similarly, fol, = 0y p,, (308) is satisfied
with x := %KS if and only if (88) holds. QED
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Fig. 3: True target trajectory (solid line) and esti- Fig. 4: True target trajectory (solid line) and esti-

mated trajectory (circles) using fixed-interval KS. mated trajectory (circles) using fixed-interval DRS

(A, = 0.01, A, = 0.05).
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Fig. 5: True target trajectory (solid line) and esti- Fig. 6: True target trajectory (solid line) and

mated trajectory (circles) using fixed-lag KS. estimated trajectory (circle) using fixed-lag DRS

(A, = 0.01, A, = 0.05).
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