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Abstract

Coping with outliers contaminating dynamical processes isof major importance in various appli-

cations because mismatches from nominal models are not uncommon in practice. In this context, the

present paper develops novel fixed-lag and fixed-interval smoothing algorithms that are robust to outliers

simultaneously present in the measurementsand in the state dynamics. Outliers are handled through

auxiliary unknown variables that are jointly estimated along with the state based on the least-squares

criterion that is regularized with theℓ1-norm of the outliers in order to effect sparsity control. The resultant

iterative estimators rely on coordinate descent and the alternating direction method of multipliers, are

expressed in closed form per iteration, and are provably convergent. Additional attractive features of

the novel doubly robust smoother include: i) ability to handle both types of outliers; ii) universality

to unknown nominal noise and outlier distributions; iii) flexibility to encompass maximum a posteriori

optimal estimators with reliable performance under nominal conditions; and iv) improved performance

relative to competing alternatives at comparable complexity, as corroborated via simulated tests.
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I. INTRODUCTION

Estimating the state of dynamical systems is of paramount importance in various applications including

tracking and navigation. A major challenge in these applications is deviation from nominal conditions,

which gives rise to outliers in the observations and state dynamics. Outliers in the state may come from

abrupt changes in the target position due to, e.g., unexpected turbulence, and velocity variations due to

target maneuvering. Outliers in the observations typically occur because of clutter, and glint noise [26]. In

addition, both types of outliers can arise after linearizing the emergent nonlinearities, as in the extended

Kalman filter (EKF) [4], [24]. The clairvoyant Kalman filter (KF) and smoother (KS) can not handle

state and/or measurement outliers [3], [27], because both can be viewed as minimizers of a weighted

least-squares (WLS) criterion, which is known to be sensitive to outliers [22].

Robustification of KF and KS dates back to the ’70s [27], but remains an active area of research until

today [33], [35], continuously leveraging advances in convex optimization [3], [5]. Despite these advances,

existing robust KF and KS approaches have several limitations. Some consider outliers only in the

measurements [33], while others can handle either type of outliers alone but not both simultaneously [27].

Most approaches capitalize on robust e.g., M-estimators [35], which rely on Huber’s and other outlier-

resilient criteria [20, App. A6.8]. They require knowledgeof the nominal distribution, and are effective

only when the nominal noise is independent across observations and state entries [23, Chap. 7]. In the

presence of correlated Gaussian noise, pre-whitening yields independent noise entries, which is required

for M-estimates to be applicable [35]. However, pre-whitening spreads the outliers to non-contaminated

measurements. Approaches to doubly robust fixed-lag smoothing rely on heuristics to determine whether

outliers are present in the state or the measurement equation [35].

A recent scheme for robust fixed-interval (but not fix-lag) smoothing is reported in [3], treating non-

linearities in the state and measurement equations separately from robustness issues. In the development,

nonlinearities are linearized, and the measurement noise is assumed to follow the so-termedℓ1-Laplacian

(or a Huber) distribution parameterized by a matrixR. The choice ofR (and likewise that of Huber

thresholds) critically affects smoothing performance, but systematic means of selecting these parameters

was left open in [3]. Finally, a class of robust schemes popular in computer vision for linear regression

settings comprises the so-termed random sample consensus (RANSAC)-based algorithms [14], [20].

If the outlier distributions are known and the model is linear and Gaussian (when conditioned on the
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outliers), efficient sequential Monte Carlo (SMC) smoothers based on Rao-Blackwellization [9] as well

as deterministic algorithms based on pruning techniques, such as the interacting multiple model (IMM)

method [11], will offer viable alternatives. Unfortunately, accurate description of the outlier distribution

can be hard to obtain in practice. In addition, the complexity of SMC methods can be prohibitive for

medium-to-large size problems due to the curse of dimensionality [12].

In the present work, outliers are handled through auxiliaryunknown variables that arejointly estimated

along with the state. The resultant estimators rely on constraining the degree of outlier scarcity throughℓ1-

norm regularization, which is imposed on the auxiliary variables to enablesparsitycontrol. The proposed

robust smoothers: i) can handle both types of outliers simultaneously (hence referred to as doubly robust);

ii) are universal, meaning they can operate even when the distributions of the nominal noise and outliers

are unknown; iii) possess maximum a posteriori (MAP) optimality under specific assumptions on the

outlier and nominal noise distributions; iv) perform well under nominal conditions (i.e., with no outliers

present); and v) outperform RANSAC- and Huber-based robustsmoothers.

Unlike ordinary KS, the novel robust estimators are nonlinear functions of the data, and rely on the

alternating direction method of multipliers (AD-MoM) or coordinate descent iterations. Closed-form

expressions render the bulk of complexity per iteration comparable to that of KS, which is linear in the

observation time. Few iterations of the coordinate descentor AD-MoM-based algorithms are required in

practice to obtain satisfactory results. Numerical tests demonstrate that the developed methods can reject

state and measurement outliers, and outperform RANSAC and Huber-based techniques.

The rest of the paper is organized as follows. Section II contains preliminaries and the problem

statement. Fixed-interval doubly robust smoothing (DRS) is introduced in Section III, where the link

between robustness and sparsity is also established. Selection of the regularization parameters is the

subject of Section IV. The coordinate descent based DRS algorithm is developed in Section V. Fixed-lag

DRS is dealt with in Section VI. An alternative formulation for general linear state-space models is

developed in Section VII. Simulations are presented in Section VIII, and conclusions in Section IX.

Notation: Column vectors (matrices) are denoted with lower- (upper-)case boldface letters;(·)T stands

for transposition;0N is theN × 1 column vector with all zeros; andIN is theN ×N identity matrix.

Given a setS ⊂ R
N , the indicator function is defined as1lS(x) = 1 if x ∈ S, and1lS(x) = 0, otherwise.
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II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the followingoutlier-awarestate-space model

xn = Fnxn−1 +wn + ox,n, n = 1, . . . , N (1a)

yn = Hnxn + vn + oy,n, n = 1, . . . , N (1b)

wherexn ∈ R
Dx and yn ∈ R

Dy denote the state and measurement vectors at timen, respectively;

wn andvn are mutually independent, zero-mean nominal noise vectors, each independent across time,

and from the initial statex0, with respective covariance matrices{Qn,Rn}
N
n=1; x0 has meanm0 and

covarianceΣ0; and{ox,n,oy,n}Nn=1 represent the unknown state and measurement outlier vectors.

Given {Fn,Hn,Qn,Rn,yn}
N
n=1, m0, andΣ0, the goal offixed-intervalDRS is to estimate{xn}

N
n=1

and{ox,n,oy,n}Nn=1. Different from [3], [27], [33], [35], note that the outliers are explicitly introduced and

treated as unknown variables to be estimated. This problem can be cast as one of linear regression, since

xn = Fnxn−1+ox,n+wn can be viewed as an extra “zero measurement”0 = −xn+Fnxn−1+ox,n+wn;

and similarly for the initial condition as−m0 = −x0+w0, wherew0 is zero-mean with covarianceΣ0.

Thus, (1) can be expressed in a matrix-vector form as



−I

F1 −I

. . . . . .

FN −I

0 H1

...
. . .

0 HN







x0

x1

x2

...

xN




+




0

ox,1
...

ox,N

oy,1

...

oy,N




+




w0

w1

...

wN

v1

...

vN




=




−m0

0

...

0

y1

...

yN




(2)

or in a more compact form (with obvious definitions) as

Ax+ o+w = y (3)

where matrixA is tall, and vectorw has block diagonal covariance matrixQw := diag(Σ0,Q1, . . . ,QN ,

R1, . . . ,RN ). Since bothx ando are unknown, the linear system in (2) is clearly under-determined.

When there are no outliers (cf.o = 0) andA is full rank, the WLS estimate [cf. (3)]̂x := arg minx(y−
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Ax)TQ−1
w (y−Ax) yields the KS. Substituting from (2), this estimate can alsobe written as [1, p. 189]

x̂KS := arg min
x

1

2

N∑

n=1

‖yn −Hnxn‖
2
R

−1
n

+
1

2
‖x0 −m0‖

2
Σ

−1
0

+
1

2

N∑

n=1

‖xn − Fnxn−1‖
2
Q

−1
n

(4)

where‖x‖2M := xTMx. The estimatêxKS is also known as the Rauch-Tung-Striebel (RTS) smoother

[30]. It is both minimum mean-square error (MMSE) and maximum a posteriori (MAP) optimal if the

initial state and all nominal noise vectors are Gaussian; otherwise, it is linear (L)MMSE optimal. In fact,

adding to the WLS cost in (4) a ridge regularization termλ‖x‖22 to constrain theℓ2 norm of x, the

resultant ridge WLS, as well as the (L)MMSE and MAP, all yielda unique estimate (even for under-

determined models), and can be rendered equivalent depending on the assumptions and corresponding

optimality claims one is willing to make. The exposition henceforth is centered around the (regularized)

WLS approach, because it is universal with respect to (wrt) the underlying probability density functions.

With o = 0 (or known for that matter), the state can be clearly estimated by solving the equations

(ATQ−1
w A)x = ATQ−1

w (y − o), where the matrixATQ−1
w A has ablock tridiagonal structure [cf.

(2) and (3)]. This allows obtaining the solution in batch form at complexity which is linear inN [19,

p. 174]. Alternatively, one can use the forward-backward algorithm in e.g., [1, p. 189] or [30] to solve

(4) recursively. The forward direction is a KF followed by the backward run, which smooths the filtered

estimates. The forward-backward algorithm also exhibits linear complexity inN . In a nutshell, both batch

and recursive solvers of (2)-(4) exhibit low complexity (linear inN ) wheno is known.

If unknown outlierso are present in (3), and one chooses to ignore them and run a clairvoyant KS

as if o were absent, the MSE performance will be poor because the (W)LS criterion is known to be

severely affected by outliers [23]. This mandates dealing with the outliers in (3) explicitly – a challenge

addressed in the next section by exploiting sparsity constraints ono.

III. ROBUSTNESS BY CONTROLLINGOUTLIER SPARSITY

The under-determinacy in (3) wheno is unknown, raises non-uniqueness and thus state identifiability

issues. Ridge WLS, (L)MMSE, and MAP estimators cannot recover the exactx, a fact confirmed by

the nominal-noise-free setup [cf.w = 0 in (3)], where one faces an under-determined system of linear

equations generally admitting infinite solutions. Key to addressing this issue is the degree ofsparsity

(number of nonzero entries) of the vectoro – an attribute offering the potential for solving uniquely
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under-determined systems of linear equations, as established recently in the context of compressive

sampling [10]. This motivates recovery of a controllably sparse estimate ofo by effecting sparsity through

an ℓ0-(pseudo)norm regularization term. Specifically, the proposed robust smoother aims at

[x̂, ô] := arg min
x,o

1

2
‖y −Ax− o‖2

Q−1
w

+ λ‖o‖0 (5)

where the scalarλ is used to control the degree of sparsity ino. The level of outlier sparsity can be

selected by tuningλ, and the outliers can then be estimated jointly with the state via (5). Unfortunately,

the ℓ0-norm renders the problem non-convex and in fact NP-hard, which suggests a convex relaxation

using the closestconvexapproximation to theℓ0-norm, namely theℓ1-norm [10], [37].

Using anℓ1-norm regularization and definingox := [oTx,1, . . . ,o
T
x,N ]T , oy := [oTy,1, . . . ,o

T
y,N ]T , the

novel DRS approach amounts to [cf. (1)-(5)]

[x̂DRS, ôx, ôy] := arg min
x,ox,oy

{
1

2

N∑

n=1

‖yn −Hnxn − oy,n‖
2
R

−1
n

+
1

2

N∑

n=1

‖xn − Fnxn−1 − ox,n‖
2
Q

−1
n

+
1

2
‖x0 −m0‖

2
Σ

−1
0

+

N∑

n=1

[λx‖ox,n‖1 + λy‖oy,n‖1]

}
(6)

whereλx andλy are introduced in (6) to allow individual control of sparsity levels in ox,n and oy,n.

Viewing the cost in (6) as a Lagrangian function, allows casting thisunconstrainedminimization problem

as a constrained one. Indeed, sufficiency of the Lagrange multiplier theory implies that [6, Sec. 3.3.4]:

using the solution̂ox, ôy of (6) for given multipliersλx, λy ≥ 0 and lettingτx := ‖ôx‖1, τy := ‖ôy‖1,

the equivalentconstrainedminimization problem entails the WLS cost (quadratic termsin (6)) subject

to the constraints‖ox‖1 ≤ τx, and‖oy‖1 ≤ τy. Note however, thatλx(λy) in (6), and likewiseτx(τy) in

its constrained equivalent, are tuning parameters and not optimization variables.

The DRS state estimate in (6) can cope with outliersjointly present in the state and in the measurements.

In addition, it isuniversalbecause it does not require knowing the distribution of the nominal noise or

the outlier vectors. (The choice ofλx and λy discussed in the next section will not follow from the

distribution of a contaminating model but will be data driven.) Different from [2] and [39] which enforce

sparsity in the state, DRS controls sparsity in the outliersto effect robustness. At this point, it is worth

recalling thato in smoothing dynamical processes is indeed sparse, since itmodels abrupt changes (target

maneuvers) in the state which cannot be too many in the analysis window, and glint noise giving rise to

large-magnitude observations which occur rarely too. Having explained why it is meaningful to expect
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only few nonzero entries ino, it is also useful to clarify that this is not necessary. (Simulated tests in

Section VIII will allow for outlier contamination as high as80%.) Although smoothing performance

degrades as the number of nonzero entries ino increases, all the proposed approach needs is a handle

on the percentage of outliers without requiring this percentage to be necessarily low.

The WLS cost can be also replaced by other functions (e.g., the ℓ1-norm of the error), and alternative

regularization terms (e.g., theℓ2-norm of the outliers) can be employed instead of, or, in addition to

the ℓ1-norm [18]. Non-convex costs and regularizers are also possible, but they are not recommended as

stand-alone solvers of (6) because they cannot guarantee convergence to the global optimum. In contrast,

it will be seen in Sections V and VI that (6) and variants involving ℓ1 andℓ2 norms can afford not only

globally convergent but also computationally efficient solvers.

Having clarified that the ensuing developments will rely on (6), which is meaningful regardless of

the {w,v,o} distributions, it is natural to ask the following question:Under what assumptions on these

distributions can one claim MAP optimality of the resultantstate and outlier estimators? The ensuing

proposition (proved in Appendix A) asserts that this is possible if the nominal noise vectors are Gaussian

and the additive outliers are known to be Laplacian distributed.

Proposition 1. Supposewn andvn are Gaussian distributed, mutually independent, and independent from

ox,n and oy,n, respectively. Furthermore, assumeox,n has Laplacian distributed entriesox,n,d that are

independent from past states, past state outliers, measurement outliers, and across different dimensions;

that is, ox,n,d and ox,n,d′ are independent ford 6= d′. Similarly, oy,n has Laplacian distributed entries

oy,n,d that are independent from past states, past measurement outliers, state outliers, and across different

dimensions; then the estimators obtained as in(6) are MAP optimal.

Albeit simple to prove, the usefulness of Proposition 1 is twofold: (a) it allows for a side-by-side

comparison with the MAP optimality offered by the clairvoyant KS in (4); and (b) it positions the

proposed approach in the context of related MAP-optimal schemes adoptingℓ1-error based smoothers;

see e.g., [3] and references therein. Specifically, different from the multivariate Laplacian in Proposition

1 described by the two scalarλx andλy parameters, theℓ1-Laplacian model in [3] entails aDy ×Dy

matrix of parameters that are assumed known.

Next, robustness of the estimators (6) is established. Specifically, the ensuing proposition proved in

Appendix B, shows that DRS subsumes Huber’s M-estimator as aspecial case.
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Proposition 2. When{Qn,Rn}
N
n=1 andΣ0 are all identity matrices, the DRS in(6) boils down to solving

the following Huber M-estimator problem

x̂ := argmin
x





Dy∑

d=1

N∑

n=1

ρλy
(yn,d − hT

n,dxn) +

Dx∑

d′=1

[
(x0,d′ −m0,d′)2 +

N∑

n=1

ρλx
(xn,d′ − fTn,d′xn−1)

]
 (7)

whereyn := [yn,1, yn,2, . . . , yn,Dy
]T , xn := [xn,1, xn,2, . . . , xn,Dx

]T , x := [xT
1 ,x

T
2 , . . . ,x

T
N ]T , Hn :=

[hn,1, . . . ,hn,Dy
]T , Fn := [fn,1, . . . , fn,Dx

]T , andρλ denotes the Huber cost [23]

ρλ(r) :=





1
2r

2, if |r| ≤ λ

λ|r| − λ2

2 , otherwise.

Proposition 2 generalizes to dynamical systems the link between (6) and (7) established in [17] for

linear regression models. As a result, DRS also inherits therobustness attributes associated with the

Huber M-estimators. Figure 1 depicts Huber’s cost along with the quadratic one. For small residuals

(i.e., |r| ≤ λ), ρλ(r) coincides with the quadratic one. But for|r| > λ, Huber’s cost grows only linearly

with r, which allows for down-weighting large errors. Therefore,outliers which are responsible for large

errors will be weighted less in the overall objective function. Clearly, for large values ofλ, Huber’s cost

coincides with the quadratic one. As a consequence, a large number of outliers in the observations and

state is effected through smallλy andλx, respectively. Finally, it should be mentioned that the Huber

function is not the only one enabling robustness. A gamut of related robust costs can be found in e.g., [20,

Appendix A6.8] with different properties. The most convincing reason for exploiting sparsity constraints

under theℓ1-norm of the outlier vectors is to leverage recent advances on compressive sampling to

develop the computationally efficient and globally convergent solvers presented in Section V.

While DRS inherits the robustness features of Huber’s M-estimator, it enjoys several advantages over

it, as detailed in the following two remarks.

Remark 1. As mentioned earlier, the universality of DRS pertains alsoto the regularization term. If

outliers are present inall entries ofxn or yn, this form of group sparsitycan be effected by replacing

‖oy,n‖1 and‖ox,n‖1 in (6) with ‖oy,n‖2 and‖ox,n‖2, respectively. Using the latter regularization, either

oy,n = 0Dy
(ox,n = 0Dx

), or all the entries ofoy,n (ox,n) are nonzero, signifying the presence of outliers

in all measurement (state) variables at timen. The cost function resulting fromℓ2-norm regularization

is still convex [41], and its minimization can be carried outusing solvers similar to those of (6) to

June 12, 2018 DRAFT
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be presented in Sections V and VI. For this reason, onlyℓ1-norm regularization will be considered

henceforth.

Remark 2. In addition to universal robustness, the novel approach to DRS is also flexible in three counts.

First, Huber estimators fixλx or λy a fortiori based on knowledge of the nominal distribution and the

contamination model, e.g., for theǫ-contaminated class with Gaussian nominal, it follows thatλx = λy =

1.345 [23]. In contrast, DRS does not assume any specific model for the outliers’ distribution. From

this viewpoint,M -estimators are subsumed by the present formulation as special cases corresponding

to specific values ofλx and λy. In addition, DRS can accommodate colored noise [cf. (6)], which is

formidable for the robust estimators of [27] and [35] because pre-whitening in (7) withQ−0.5
n andR−0.5

n

spreads the outliers to non-contaminated measurements. Finally, DRS not only allows one to apply KS

on outlier-free data but also reveals the outliers – a feature not available to Huber-based approaches,

which only implicitly incorporate the outliers.

The next section presents systematic means of adjustingλx and λy to accommodate fully nominal

settings (i.e., no outliers), fully contaminated scenarios, and all cases in between, even when the degree

of contamination is unknown.

IV. SELECTING λx AND λy

Parametersλx andλy control the level of sparsity in the estimated outlier vectors, and their judicious

selection is crucial for the successful operation of DRS. Too large a value for these parameters reverts

DRS back to the KS, which is non-robust. On the other hand, very small values give rise to many

spurious state and measurement outliers, thus degrading DRS performance. Standard cross-validation

techniques [31], are not effective when outliers are present [25]. Toward choosing proper values ofλx

andλy, the next proposition provides computable bounds so that ifλy ≥ λ̄y andλx ≥ λ̄x, then DRS

coincides with KS. (See Appendix C for the proof.)

Proposition 3. The DRS estimate in(6) coincides with KS estimatêxKS if

λy ≥ λ̄y := max
1≤n≤N

∥∥R−1
n (yn −Hnx̂

KS
n )

∥∥
∞

(8a)

λx ≥ λ̄x := max
1≤n≤N

∥∥Q−1
n (x̂KS

n − Fnx̂
KS
n−1)

∥∥
∞
. (8b)

Having established the upper bounds in (8), desirable values forλx andλy will be points in the rectangle

[0, λ̄x]× [0, λ̄y]. Consider a two-dimensional grid on this rectangle and a properly chosen cost generated
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by each grid point. Depending on the information available to the designer, the “best”λx andλy will be

those values minimizing either one of two costs presented inthe ensuing subsections.

A. Known percentage of outliers

Here the percentage of (non-)zero entries of the outlier vectors is assumed (at least approximately)

known; denote them asπo,x andπo,y. Consider the 2-D grid on[0, λ̄x] × [0, λ̄y], comprisingIx points

along theλx axis andIy points along theλy axis. Let(ix, iy), with 1 ≤ ix ≤ Ix and1 ≤ iy ≤ Iy be the

grid point corresponding to valuesλx(ix) andλy(iy). For the given(ix, iy), solve (6) withλx = λx(ix)

andλy = λy(iy), to obtainx̂(ix, iy), ôx(ix, iy) and ôy(ix, iy). With supp(x) representing the non-zero

entries ofx, and |x| the number of entries ofx, the “best”λx(i
∗
x) andλy(i

∗
y) are found as those with

[i∗x, i
∗
y] := argmin

ix,iy

{∣∣∣∣πx,o −
|supp(ôx(ix, iy))|

|ôx(ix, iy)|

∣∣∣∣+
∣∣∣∣πy,o −

|supp(ôy(ix, iy))|
|ôy(ix, iy)|

∣∣∣∣
}

. (9)

Finding λx(i
∗
x) andλy(i

∗
y) as in (9), appears to require solving (6) for all pairs(ix, iy) of the two-

dimensional grid. The associated computational cost can beviewed as the “price paid” for the universality

attribute of DRS elaborated in Section III. Instead of two,(λx, λy), recall that the number of parameters

(and thus dimensionality of the search space had those been unknown) in [3] isO(D2
y). Of course, this

is not an issue in [3] where these parameters are assumed known.

Fortunately, the special structure of the optimization problem in (6) allows for solvers at complexity

lower than runningIxIy robust smoothers, one per(λx, λy) point on the grid. Indeed, (6) can be formulated

as a quadratic program (QP), and its form can leverage recentadvances in computing the so-termed least-

absolute shrinkage and selection operator (Lasso), originally developed for static linear regressions; see

e.g., [21]. As will be detailed in Section V, Lasso can be alsoexploited for the DRS dynamical model

considered here. General-purpose QP solvers incur polynomial complexity up toO(D3.5) per iteration,

whereD is the number of optimization variables involved [8]; here,D = N(2Dx+Dy+1). The reduction

to O(D) per iteration afforded by Lasso-based solvers becomes possible by starting fromλ := (λ̄x, λ̄y)

(sparsest initialization) and solving successively over decreasingλ-points on the grid, using coordinate

descent iterations. Qualitatively speaking, about one nonzero entry ofo emerges perλ-point on the grid,

and its value is used to initialize the iteration for the nextpoint on the grid (warm start) [15], [40].

Especially for large problem dimensions (D ≫), it has been demonstrated that such Lasso solutions
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for the entire so-termedregularization path(corresponding to allλ-points on the grid), can be more

computationally efficient than solving Lasso even for a single fixed pointλ on the grid; see also [16].

B. Known covariance of nominal noise vectors

The key observation here is that if the estimatesôx,n(ix, iy) andôy,n(ix, iy) are accurate, then̂xn(ix, iy)−

Fnx̂n−1(ix, iy) − ôx,n(ix, iy) should have the same statistics aswn; and likewise, the statistics of

yn−Hnx̂n(ix, iy)− ôy,n(ix, iy) should coincide with those ofvn. Focusing for instance on second-order

statistics, if these estimated residuals are pre-whitened(by left-multiplication with Q−0.5
n andR−0.5

n ),

they should have zero mean and unit variance. Thus, upon pre-whitening and averaging, their sample

variance should approach 1. As a consequence, the “best”λx(i
∗
x) andλy(i

∗
y) are found as those with

[i∗x, i
∗
y] := argmin

ix,iy

∣∣1− σ̂2
e(ix, iy)

∣∣ (10)

σ̂2
e(ix, iy) :=

‖ŵ0(ix, iy)‖
2
Σ

−1
0

+
∑N

n=1

[
‖v̂n(ix, iy)‖

2
R

−1
n

+ ‖ŵn(ix, iy)‖
2
Q

−1
n

]

NDy + (N + 1)Dx

where

v̂n(ix, iy) := yn −Hnx̂n(ix, iy)− ôy,n(ix, iy)

ŵn(ix, iy) := x̂n(ix, iy)−Fnx̂n−1(ix, iy)− ôx,n(ix, iy)

ŵ0(ix, iy) := x̂0(ix, iy)−m0.

The number of grid pointsIx andIy should be chosen large enough to ensure that a point in the vicinity

of the global minimum of (10) is obtained. The grid need not beuniform. Indeed, simulations confirm

that the search is more efficient if grid points are chosen on the log scale; see also [16]. This parameter

tuning method, will be henceforth referred to as absolute variance deviation (AVD). Since DRS in (6)

requires knowledge of nominal noise covariances, the AVD scheme needs no additional assumption; and

similar to the method of the previous subsection, it can capitalize on Lasso coordinate descent based

schemes to lower the computational complexity of solving (6) per grid point, as detailed next.

V. DRS VIA COORDINATE DESCENT

While general purpose QP solvers can be utilized to solve (6)with polynomial complexity inN , their

complexity can still be too high whenN is large. A reduced-complexity alternative is developed inthis

June 12, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (REVISED) 12

section to solve (6) using block coordinate descent iterations. LettingC(x,ox,oy) denote the cost in (6)

and j indexing coordinate descent iterations, the following sub-problems are solved per iterationj and

coordinate dimensiond

x(j) = argmin
x

C(x,o(j−1)
x ,o(j−1)

y ) (11a)

o
(j)
x,n,d = arg min

ox,n,d

C(x(j),o
(j)
x,1, . . . ,o

(j)
x,n−1,o

(j)
x,n,1:d−1, ox,n,d,o

(j−1)
x,n,d+1:Dx

,o
(j−1)
x,n+1, . . . ,o

(j−1)
x,N ,o(j−1)

y ) (11b)

o
(j)
y,n,d = arg min

oy,n,d

C(x(j),o(j)x ,o
(j)
y,1, . . . ,o

(j)
y,n−1,o

(j)
y,n,1:d−1, oy,n,d,o

(j−1)
y,n,d+1:Dy

,o
(j−1)
y,n+1, . . . ,o

(j−1)
y,N ) (11c)

where (11b) is solved forn = 1, . . . , N andd = 1, . . . ,Dx, while (11c) is solved forn = 1, . . . , N and

d = 1, . . . ,Dy. The initial conditions areo(0)x = 0NDx
ando(0)y = 0NDy

.

The optimization in (11a) can be explicitly written as

x(j) := argmin
x

{
1

2

N∑

n=1

∥∥∥yn −Hnxn − o(j−1)
y,n

∥∥∥
2

R
−1
n

+
1

2

N∑

n=1

∥∥∥xn− Fnxn−1−o(j−1)
x,n

∥∥∥
2

Q
−1
n

+
1

2
‖x0−m0‖

2
Σ

−1
0

}
. (12)

Solving (12) is equivalent to finding the KS estimate for a system with outlier-compensated measurements

yn−o
(j−1)
y,n , and outlier-compensated statexn−o

(j−1)
x,n . Therefore, either the batch or the forward-backward

recursive algorithms reviewed in Section II can be adopted to solve (12) with linear complexity inN .

Focusing on (11b), one should solve

o
(j)
x,n,d := arg min

ox,n,d

1

2

∥∥∥∥∥∥∥∥∥∥

x(j)
n − Fnx

(j)
n−1−




o
(j)
x,n,1:d−1

ox,n,d

o
(j−1)
x,n,d+1:Dx




∥∥∥∥∥∥∥∥∥∥

2

Q−1
n

+ λx|ox,n,d| (13)

for everyd = 1, . . . ,Dx andn = 1, . . . , N . The scalar problem (13) is solved using the Lasso, which

can afford a closed-form solution [21]. Indeed, (13) can be equivalently expressed as

o
(j)
x,n,d := arg min

ox,n,d

1

2

(
ox,n,d − γ

(j)
x,n,d

)2
+ λx,n,d|ox,n,d| (14)

where

γ
(j)
x,n,d :=

1

qn,d,d
[α

(j)
x,n,d −

d−1∑

k=1

qn,k,do
(j)
x,n,k −

Dx∑

k=d+1

qn,k,do
(j−1)
x,n,k ]

α
(j)
x,n := Q−1

n

(
x(j)
n − Fnx

(j)
n−1

)
, λx,n,d := λx/qn,d,d
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andQ−1
n has entries[Q−1

n ]k,k′ := qn,k,k′. The solution to (14) is given by

o
(j)
x,n,d =

[∣∣∣γ(j)x,n,d

∣∣∣− λx,n,d

]+
sign

(
γ
(j)
x,n,d

)

where[x]+ := max(x, 0) and sign(·) denotes the sign operator.

A similar closed-form solution becomes available for (11c), since

o
(j)
y,n,d := arg min

oy,n,d

1

2

∥∥∥∥∥∥∥∥∥∥

yn −Hnx
(j)
n −




o
(j)
y,n,1:d−1

oy,n,d

o
(j−1)
y,n,d+1:Dy




∥∥∥∥∥∥∥∥∥∥

2

R
−1
n

+ λy|oy,n,d|. (15)

for everyd = 1, . . . ,Dy andn = 1, . . . , N .

Problem (15) can be alternatively written as

o
(j)
y,n,d := arg min

oy,n,d

1

2

(
oy,n,d − γ

(j)
y,n,d

)2
+ λy,n,d|oy,n,d| (16)

where

γ
(j)
y,n,d :=

1

rn,d,d
[α

(j)
y,n,d −

d−1∑

k=1

rn,k,do
(j)
y,n,k −

Dy∑

k=d+1

rn,k,do
(j−1)
y,n,k ]

α
(j)
y,n := R−1

n

(
yn −Hnx

(j)
n

)
, λy,n,d := λy/rn,d,d

andR−1
n has entries[R−1

n ]k,k′ := rn,k,k′. The solution to (14) is given by

o
(j)
y,n,d =

[∣∣∣γ(j)y,n,d

∣∣∣− λy,n,d

]+
sign

(
γ
(j)
y,n,d

)
.

Global convergence of the (12)-(15) iterates is guaranteedfrom the results in [38], as summarized next.

Proposition 4. For any initial valuesx(0),o
(0)
x ,o

(0)
y , the iterates in(12), (13) and (15) are all convergent.

Furthermore, every limit point of the sequencesx(j), o(j)x , o(j)y solves(6).

Note that (12) contains the bulk of computation per iteration j, and its complexity is equivalent to

that of KS, which is linear inN . This should be contrasted with the general purpose convex solvers

whose complexity is polynomial inN (worst-case of orderO(N3.5); see e.g., [8]). As mentioned

earlier, the complexity reduction is due to the unique properties of Lasso-related problems, namely

variable separability, closed-form thresholding per variable, and warm starts. Coordinate descent solvers
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capitalize on these properties, and have been documented tooutperform competing alternatives, including

off-the-shelf QP solvers [15], [16], [40].

Remark 3. This section’s efficient solvers of theℓ1-norm based convex cost in (6) will converge to

estimates generally not coinciding with the global optimumof the ultimateℓ0-norm based sparsity-

promoting cost in (5). This motivatesconcaveregularization terms, which offer improved approximations

of the ℓ0-norm relative to that offered by theℓ1-norm [25]. One such alternative leads to solving

[x̂, ô] := arg min
x,o

1

2
‖y−Ax−o‖2

Q
−1
w

+λx

N∑

n=1

Dx∑

d=1

log(|ox,n,d|+δx)+λy

N∑

n=1

Dy∑

d=1

log(|oy,n,d|+δy) (17)

whereδx (δy) are small positive constants to ensure that the argument ofthe logarithm stays away from

zero. Since the cost in (17) is non-convex, it is recommendedto initialize its iterative minimization with

the efficient convex solver of (6). Starting with such an initialization (x(0),o(0)), the logarithm can be

successively linearized around thel-th iterate usinglog(t+δ) ≈ log(t(l)+δ)+(t−t(l))/(t(l)+δ) to arrive

at a convex cost, which can be readily optimized to obtain theestimates at iteration(l+1). Specifically,

at iterationl one solves

[x(l),o(l)] := arg min
x,o

1

2
‖y −Ax− o‖2

Q
−1
w

+ λx

N∑

n=1

Dx∑

d=1

w
(l)
x,n,d|ox,n,d|+ λy

N∑

n=1

Dy∑

d=1

w
(l)
y,n,d|oy,n,d| (18)

where

w
(l)
x,n,d :=

(
|o

(l−1)
x,n,d |+ δx

)−1
, w

(l)
y,n,d :=

(
|o

(l−1)
y,n,d |+ δy

)−1
.

Note that (18) is similar to the DRS one in (6) except that the entries of vectoro in the regularization are

weighted non-uniformly. Being convex, (18) can be solved aseasily as (6). With reliable initialization

offered by the solution of (6), one reason behind the enhancement offered by (18) is the bias correction

to Lasso, which is known to yield reliable estimates of theo support but biased estimates of its nonzero

entries [21]. Besides (18), alternative means to mitigate such bias effects is to retain only the outlier-free

measurements, after identifying them through the zero entries ofo, and use them to re-run the clairvoyant

KS which is unbiased. The improvement offered by these refined estimates and those obtained by solving

(18) will be corroborated via simulated tests.

VI. F IXED-LAG DRS FOR ONLINE OPERATION

The major limitation offixed-intervalsmoothing is that the whole batch{yn}
N
n=1 has to be available

prior to estimating{xn}
N
n=1. This is useful for applications such as processing electroencephalograms
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[36], but not for target tracking. In many tracking applications, state smoothing has to be performed

online and stringent delay (“lag”) constraints are imposedbetween the smoothed state instant and the

time state estimates are formed. Online smoothing is also important in applications where the state is

affected by abrupt changes since these events may be the manifestation of, e.g., system failures [28].

When the outliers are absent in (1), optimal fixed-lag KS can be regarded as a special case of fixed-

interval KS [1, p. 176]. The goal here is to estimatexn, relying upon observations up to timen + ℓ,

whereℓ denotes the estimation lag. Supposing that a KF has been run up to time n to yield the state

and covariance estimatesxn|n andΣn|n, fixed-lag KS can be accomplished using

x̂KS
n:n+ℓ = argmin

x

{
1

2

n+ℓ∑

n′=n+1

‖yn′ −Hn′xn′‖2
R

−1

n′
+

1

2
‖xn − xn|n‖

2
Σ

−1
n|n

+
1

2

n+ℓ∑

n′=n+1

‖xn′ − Fn′xn′−1‖
2
Q

−1

n′

}
(19)

where x̂KS
n:n+ℓ := [(x̂KS

n )T , . . . , (x̂KS
n+ℓ)

T ]T . Observe that fixed-lag KS in (19) is a special case of fixed-

interval KS, when the initial condition on the state, namelyxn|n and Σn|n, is given by the KF, and

the state is smoothed over the interval[n, n + ℓ]. Thus, the solution of (19) can be found with either

one of the two algorithms of Section II. However, since (19) does not account for outliers, the resulting

estimator is not robust. To address this issue, a fixed-lag DRS is developed next.

A. Fixed-lag DRS

In the previous section, the fixed-lag KS was regarded as a special case of the fixed-interval KS with

properly chosen smoothing interval and initial conditions. Furthermore, in Section III a fixed-interval

DRS was developed, which is extended here to robustify the fixed-lag KS in (19). Mimicking the steps

followed in Section III to robustify (19) is challenged by the fact that the initial conditionsxn|n and

Σn|n are evaluated by the clairvoyant (and thus non-robust) KF. To overcome this obstacle, the fixed-lag

KS will be recast in a form entailing the interval[n− w,n+ ℓ]; that is,

x̌KS
n−w:n+ℓ = argmin

x

{
1

2

n+ℓ∑

n′=n−w+1

‖yn′ −Hn′xn′‖2
R

−1

n′
+

1

2
‖xn−w − xn−w|n−w‖

2
Σ

−1
n−w|n−w

+
1

2

n+ℓ∑

n′=n−w+1

‖xn′ − Fn′xn′−1‖
2
Q

−1

n′

}
. (20)
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The formulation in (20) is equivalent to that of (19) in the sense thatx̌KS
n = x̂KS

n . It also suggests that

the fixed-lag KS estimate at timen and lagℓ can also be obtained by initializing its recursions with the

KF estimatesxn−w|n−w andΣn−w|n−w for arbitraryw. The fixed-lag DRS is obtained by robustifying

the fixed-lag KS (20) in a fashion similar to that used in Section III; that is,

[x̌DRS
n−w:n+ℓ, ǒx,n−w:n+ℓ, ǒy,n−w:n+ℓ] =

arg min
x,ox,oy

{
1

2

n+ℓ∑

n′=n−w+1

‖yn′ −Hn′xn′ − oy,n′‖2
R

−1

n′
+

1

2
‖xn−w − xn−w|n−w‖

2
Σ

−1
n−w|n−w

+
1

2

n+ℓ∑

n′=n−w+1

‖xn′ − Fn′xn′−1 − ox,n′‖2
Q

−1

n′
+

n+ℓ∑

n′=n−w+1

[λy‖oy,n′‖1 + λx‖ox,n′‖1]

}
.(21)

Observe that eventual errors inxn−w|n−w andΣn−w|n−w due to the non-robust KF do not severely affect

the estimates at timen provided thatw is sufficiently large. Certainly, the larger thew, the larger the

number of nuisance variables involved.

The major limitation of the fixed-lag DRS in (21) is that a convex optimization problem has to be

solved at each timen to obtainx̌DRS
n . As a consequence, the associated computational burden to solve

the fixed-lag DRS in (21) is not comparable with that of the standard fixed-lag KS. This motivates

approximating the fixed-lag approach in (21) to enable online DRS at complexity comparable to that of

standard fixed-lag KS and state-of-the-art non-linear smoothers.

B. Online fixed-lag DRS

The coordinate descent-based fixed-interval algorithm in Section V is properly modified in this section

in order to solve the fixed-lag DRS problem formulated in (21). Despite the fact that convergence to a

solution of (21) is provably guaranteed asymptotically (i.e., for infinite iterations), satisfactory estimates

can be obtained with only a few coordinate descent iterations.

Suppose that between two consecutive observations (sayn + ℓ andn + ℓ + 1), the affordable delay

allows for J coordinate descent iterations to be implemented. Furthermore, for a limited number of

iterations, initializing witho(0)x,n−w:n+ℓ ando
(0)
y,n−w:n+ℓ close to their global optimum values provides a

“warm start-up” considerably improving the performance. Observe that for estimating the state at timen,

fixed-lag DRS entails smoothing over the interval[n−w,n+ℓ], and afterJ coordinate descent iterations,

the variablesx(J)
n−w:n+ℓ, o

(J)
x,n−w:n+ℓ, o

(J)
y,n−w:n+ℓ become available. Since fixed-lag DRS at timen + 1
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entails smoothing over the interval[n − w + 1, n + ℓ + 1], the variableso(0)x,n−w+1:n+ℓ, o
(0)
y,n−w+1:n+ℓ

can be initialized too(J)x,n−w:n+ℓ ando(J)y,n−w:n+ℓ obtained from the previousJ iterations, which provides

the aforementioned warm start-up. Granted, when the windoww is smaller, the effect of the non-robust

initialization is more pronounced. Even though no analytical results are claimed on the performance

as a function ofw, the simulated RMSE comparisons in Section VIII with competing alternatives of

comparable complexity, speak for the merits of this section’s online algorithm.

The novel fixed-lag DRS scheme amounts to sequentially runningJ KS’s and combining their outputs.

Interestingly, several non-linear smoothers including those based on SMC and IMM approaches also

combine the outputs of several fixed-lag KS’s, which allows for a fair comparison of these techniques.

VII. G ENERALIZED LINEAR STATE-SPACE MODEL

Consider the more general linear state-space model, given by [cf. (1a)]

xn = Fnxn−1 +Gnwn + ox,n, ∀n = 1, . . . , N. (22)

where{Gn}
N
n=1 are known matrices. If matrixGn is tall, GnG

T
n is rank deficient, which prevents one

from writing the WLS state error as in (4). Instead, KS can be formulated as a constrained optimization

problem, and likewise for the corresponding fixed-intervaland fixed-lag DRS. Specifically, the novel

fixed-interval DRS can be obtained as

[x̂DRS, ̂̄w, ôx, ôy] := arg min
x,w̄,ox,oy

CDRS
λx,λy

(x, w̄,ox,oy)

subject to xn = Fnxn−1 +Gnwn + ox,n, ∀ n = 1, . . . , N (23)

wherew̄ := [wT
1 ,w

T
2 , . . . ,w

T
N ]T and

CDRS
λx,λy

(x, w̄,ox,oy) =
1

2

N∑

n=1

‖yn −Hnxn − oy,n‖
2
R−1

n
+

1

2
‖x0 −m0‖

2
Σ−1

0
+

1

2

N∑

n=1

‖wn‖
2
Q−1

n

+

N∑

n=1

[λx‖ox,n‖1 + λy‖oy,n‖1].

Due to the constrained nature of the problem in (23), coordinate descent iterations can not be directly

applied. However, it is possible to develop iterations based on the alternating direction method of

multipliers (AD-MoM) [7]. These iterations are simple if one introduces the auxiliary variablesan = ox,n
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andbn = oy,n which imply additional constraints. Then, the augmented Lagrangian can be written as

Lκ =
1

2

N∑

n=1

‖yn −Hnxn − oy,n‖
2
R−1

n
+

1

2
‖x0 −m0‖

2
Σ−1

0
+

1

2

N∑

n=1

‖wn‖
2
Q−1

n
+

N∑

n=1

[λy‖bn‖1 + λx‖an‖1]

+

N∑

n=1

[
χ
T
n (xn − Fnxn−1 −Gnwn − ox,n) +

κ

2
‖xn − Fnxn−1 −Gnwn − ox,n‖

2
2

]

+

N∑

n=1

[
µ
T
n (oy,n − bn) +

κ

2
‖oy,n − bn‖

2
2

]
+

N∑

n=1

[
ν
T
n (ox,n − an) +

κ

2
‖ox,n − an‖

2
2

]
. (24)

where {χn, µn, νn}
N
n=1 denote the Lagrange multipliers andκ is a positive constant. Setting the

derivatives ofLκ with respect toxn equal to zero, yields the following AD-MoM iteration [cf. (24)]

x(j) = argmin
x

{
1

2

N∑

n=1

‖yn −Hnxn − o(j−1)
y,n ‖2

R
−1
n

+
1

2
‖x0 −m0‖

2
Σ

−1
0

+

N∑

n=1

κ

2
‖xn − Fnxn−1 −Gnw

(j−1)
n − o(j−1)

x,n + χ
(j−1)
n

T
/κ‖22

]
}
.

Clearly, this problem is equivalent to (4), which can be solved in a batch or recursive form at complexity

that is linear inN . Likewise, the remaining variables are updated as follows:

w(j)
n = (Q−1

n + κGT
nGn)

−1GT
n (χ

(j−1)
n + κx(j)

n − κFnx
(j)
n−1 − κo(j−1)

x,n ), n = 1, . . . , N

o(j)y,n = (R−1
n + κIDy

)−1
(
R−1

n (yn −Hnx
(j)
n )− µ

(j−1)
n

T
+ κb(j−1)

n

)
, n = 1, . . . , N

o(j)x,n =
1

2

(
χ
(j−1)
n /κ+ x(j)

n − Fnx
(j)
n−1 −Gnw

(j)
n + a(j−1)

n − ν
(j−1)
n /κ

)
, n = 1, . . . , N

b
(j)
n,d =

1

κ
max

(
|κo

(j)
y,n,d + µ

(j−1)
n,d | − λy, 0

)
sign

(
κo

(j)
y,n,d + µ

(j−1)
n,d

)
, n = 1, . . . , N, d = 1, . . . ,Dy

a
(j)
n,d =

1

κ
max

(
|κo

(j)
x,n,d + ν

(j−1)
n,d | − λx, 0

)
sign

(
κo

(j)
x,n,d + ν

(j−1)
n,d

)
, n = 1, . . . , N, d = 1, . . . ,Dx

χ
(j)
n = χ

(j−1)
n + κ(x(j)

n −Fnx
(j)
n−1 −Gnw

(j)
n − o(j)x,n), n = 1, . . . , N

µ
(j)
n = µ

(j−1)
n + κ(o(j)y,n − b(j)

n ), n = 1, . . . , N

ν
(j)
n = ν

(j−1)
n + κ(o(j)x,n − a(j)n ), n = 1, . . . , N.

Invoking the results in [7, p. 256], guarantees global convergence of these iterations as asserted next.

Proposition 5. For any κ > 0 and arbitrary initial valuesw(0),o
(0)
y ,o

(0)
x ,b(0),a(0),χ(0),µ(0),ν(0), the

AD-MoM iterates are all convergent. Furthermore, every limit point of the sequencesx(j), w(j), o(j)y ,

o
(j)
x is a solution of the problem in(23).
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Although global convergence of the coordinate descent and AD-MoM iterates is ensured by Propositions

4 and 5, respectively, no analytical results are available in optimization theory regarding their rate of

convergence – a challenging subject going well beyond the scope of the present work.

For AD-MoM iterations too, the bulk of computations is in theorder of a KS, which grows linearly in

N . The rest involves closed-form evaluations. In a nutshell,for the general linear model in (22) the AD-

MoM iterations replace those of the coordinate descent algorithm with the same order of computational

complexity. Some of the simulations in the ensuing section will test this AD-MoM based fixed-interval

DRS approach, which also has a fixed-lag counterpart tailored for online operation under the general

linear state-space model. Its derivation follows closely that of the coordinate descent for fixed-interval

DRS, and is omitted for brevity.

VIII. S IMULATED TESTS: MANEUVERING TARGET TRACKING WITH GLINT

In this section, the developed robust smoothers are simulated for maneuvering target tracking in the

presence of glint noise. First, DRS performance is tested ona sample target trajectory, and then sample

averaged performance metrics for DRS are compared against the main competing alternatives.

A. DRS on a Sample Trajectory

The model in (22) is simulated withxn := [pxn, s
x
n, p

y
n, s

y
n]T , wherepxn andpyn denote the target position

in thex andy coordinates, respectively; and correspondinglysxn andsyn denote the target velocity in the

x andy directions; thus,Dx = 4. The matrices in (1b) and (22) are invariant∀ n

Fn :=




1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1




, Gn :=




τ2

2 0

τ 0

0 τ2

2

0 τ




, Hn :=




1 0 0 0

0 0 1 0


 (25)

and τ denotes the sampling period. SinceGn is tall, this so-termed discrete white noise acceleration

(DWNA) model [4, p. 273], can only be handled by the generalized linear state-space model of Section

VII. The form of Hn in (25), shows thatyn comprises noisy position measurements, andDy = 2.

A total of N = 100 observations are collected,τ = 1, Rn = 1502I2, Qn = 0.5I2, m0 = 04, and

Σ0 = diag(50, 5, 50, 5). The target trajectory starts from position[0, 0], and evolves according to the
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DWNA model with the specified parameters from timen = 1 to n = 29. At times n = 30 and 31

the target turns right and follows again the DWNA model fromn = 32 to 59. At time n = 60 and61

the target turns left and then proceeds with the DWNA model until n = N . The true target trajectory

is depicted in Fig. 2 with solid line. The circles represent the acquired position measurements. Three

outliers (not depicted in the figure) yield erroneous position reports, atn = 15, 50, and80.

Figure 3 depicts the clairvoyant fixed-interval KS estimate. Observe that KS is not robust to outliers in

the observations and state. The fixed-interval DRS estimates shown in Fig. 4 forλy = 0.01, andλx = 0.05

(which approximately correspond to10% of the critical λ̄y and λ̄x in Proposition 3), demonstrate that

DRS can effectively cope with outliers, and has merits over the non-robust KS even when(λx, λy) are

not systematically estimated as in (9) or (10). Figures 5 and6 depict estimates of the fixed-lag KS in

(19), and DRS in (21) for lagℓ = 10, respectively. Again, the KS estimates are strongly affected by

outliers. On the other hand, the fixed-lag DRS estimates in Fig. 6, forw = ℓ, λy = 0.01, andλx = 0.05,

are only minimally affected by outliers.

B. Online Fixed-lag DRS versus Rao-Blackwellized SMC

The root mean-square error (RMSE) of the position estimatesis used here to quantify the performance

improvement of DRS relative to KS. The true target trajectory coincides with that of Fig. 2 (solid line),

whenM = 100 noise and outlier realizations are present. With probability π = 0.97, the model in (1b)

was in effect withoy = 0, Hn in (25), andRn = 1502I2. With probability1− π = 0.03, outliers in the

observations occur, and in this case the position reports are [yn,1, yn,2] ∼ U([−10000, 10000]2). Figure

7 depicts the RMSE of the position estimates, RMSEn =

√
1
M

∑M
m=1[(p

x
n − p̂x(m)

n )2 + (pyn − p̂y
(m)

n )2],

where[p̂x
(m)

n , p̂y
(m)

n ] is the estimated position at timen for themth noise and outlier realization, for the

fixed-interval KS and DRS withλy = 0.01, andλx = 0.05. Clearly, DRS exhibits lower RMSE than the

clairvoyant KS.

Figure 8 depicts the instantaneous RMSE for fixed-lag KS and DRS for ℓ = 10, w = 10, λy = 0.01,

andλx = 0.05, along with the Rao-Blackwellized (RB) SMC smoother relying on 50 particles, and the

online fixed-lag DRS with50 AD-MoM iterations and constantκ = 0.05 (referred in the figure as O-

DRS). For the RB-SMC smoother, a conditionally linear, Gaussian model is adopted. Specifically, under

nominal conditions, the model is that in (1) withFn, Gn, andHn as in (25),o = 0, Qn = 0.5I2, and
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Rn = 1502I2. It is assumed that the nominal conditions are in effect withprobabilityπ = 0.97. Outliers

in the measurements occur with probability1−π = 0.03, and in this caseRn = 150002I2, which allows

for down-weighting the respective measurements. With the same probability, state outliers emerge too,

and in this caseQn = 500I2. Clearly, conditioned on the outlier realizations, the dynamical process is

linear and Gaussian. This allows for drawing particles for the state/measurement outliers, and using them

for estimating the state via fixed-lag KS; see also [13] for details on the fixed-lag RB-SMC. In addition

to fixed-lag KS, the novel O-DRS approach outperforms RB-SMCfor the same computational burden.

C. Comparison with RANSAC and Huber M-estimates

DRS is compared here against state-of-the-art robust smoothers, namely the Huber based scheme, and

a combined RANSAC followed by Huber scheme. In the latter, smoothing is cast as the linear regression

problem in (3) to which RANSAC can be applied readily [20]. RANSAC relies on random draws (here

100 or 1,000) to find the “best” possible subset of rows corresponding to the nominal model [14], [20].

To ensure that the remaining outliers do not degrade performance, the nominal rows of (3) found by

RANSAC are pre-whitened, and subsequently plugged into Huber’s cost in (7). The Huber parameters

are set toλx = λy = 1.345 as suggested by [17], [23] for standardized Gaussian nominal noise (this

requires pre-whitening the nominal noise). The Huber estimate is found by solving (7) using the iteratively

re-weighted least-squares (IRLS) algorithm in [23], whichunlike the Lasso-based solver pursued here,

guarantees only local convergence. The fixed-interval DRS in (6) is also employed withλx andλy found

using either of the two data-driven criteria suggested in Section IV. To further improve DRS, one iteration

of the refined estimate in Remark 3 is also implemented. The model simulated here obeys (25), but with

Gn = I4, wn ∼ N (04,Qn), Qn = diag(1, 0.001, 1, 0.001), andRn = 5I2. State and measurement

outliers are generated as independent Laplacian with variances 200 and 20,000, respectively. The RMSE

for both position and velocity estimates time-averaged over 100 Monte Carlo runs is plotted versus the

percentage of outlier contamination.

Fig. 9 plots the RMSE versus percentage of outliers for the combined RANSAC-Huber robust smoother

as well as DRS, when outliers appear only in the measurements. The numerical suffix for DRS denotes

the grid size used for the AVD [cf. (10)], while the one for RANSAC stands for the number of RANSAC’s

random draws. In terms of complexity, DRS-100 (withIx = Iy = 10 grid points equispaced in log scale
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as suggested in [15]) lies in-between RANSAC-100 and RANSAC-1000. Note that up to50% outliers all

three methods perform similarly. When the outlier contamination percentage exceeds50%, RANSAC-100

performs poorly, while RANSAC-1000 and DRS-100 exhibit graceful performance degradation. Due to

its lower-complexity, DRS-100 offers a better alternativethan RANSAC-1000.

Fig. 10 compares RMSE performance when outliers are only present in the state. One observes that

DRS-100 considerably outperforms both versions of RANSAC for all percentages of outlier contamina-

tion. The improvement in going from RANSAC-100 to RANSAC-1000 is not noticeable.

Fig. 11 plots the RMSE resulting from DRS-100, batch KS, Huber-only, and the combined RANSAC-

Huber scheme when outliers are simultaneously present in the state and measurements. The AVD criterion

is used for DRS. It can be seen that RANSAC-Huber combinationperforms poorly for outliers present

in the state and measurement. This happens because RANSAC removes certain rows of the regression

matrix, namely those contaminated by outliers, which renders the remaining sub-matrix ill-conditioned.

Huber-only performs close but worse than KS – a manifestation of the fact that Huber’s estimate are

found for independent nominal noise. Even though the noise here is independent, it is not standard

Gaussian and the subsequent pre-whitening, which is a mere scaling in this case, adversely affects the

Huber-based estimate. Indeed, neither of the mentioned robust methods performs well when outliers are

present both in the state and measurement, and surprisinglyeven the clairvoyant KS outperforms them.

However, DRS-100 outperforms KS in terms of RMSE, and speaksfor the importance of the universality

property of the novel estimator.

The DRS improvement over KS is more pronounced if the percentage of outliers is known, case where

(9) is used instead of AVD. The result is plotted in Fig. 12, where DRS significantly outperforms KS.

Here, the percentage of state outliers is fixed at10%, while that of measurement outliers is variable.

At last, different DRS renditions are compared against eachother and with the robust smoother of

[3]. For a fair comparison with [3], the setup includes outliers only in the measurements and smoothed

estimates for both approaches are formed using the general-purpose optimization software SeDuMi [34].

Each randomly occurring outlying-measurement is drawn from a zero-mean uniform distribution with

variance20, 000 independently from the nominal random variables. Note thatthe outlying measurements

here are generated not in accordance with the model in [3] in order to illustrate the universality attribute

of the proposed DRS. Nominal model parameters commonly known to both DRS and the smoother
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[3], are chosen as before with the only difference thatQn = diag(100, 1, 100, 1). Fig. 13 depicts the

mean and median RMSE computed over1, 000 Monte Carlo runs as a function of the percentage of

outliers. It can be seen that DRS with AVD outperforms the smoother in [3], especially as the fraction of

outlier contamination exceeds 10%. Similar to the smootherin [3], DRS with AVD utilizes only nominal

parameter knowledge to form its estimate. The curve that utilizes the concave penalty pertains to the

refinement outlined in Remark 3. A clear gain is observed withthis refinement as a result of de-biasing

the DRS estimates. DRS with known percentage of outliers is also plotted and outperforms all other

alternatives. This is due to the extra knowledge on outlier sparsity that this smoother benefits from.

IX. CONCLUSIONS

Robust smoothers were developed for dynamical processes contaminated with outliers in the observa-

tions and/or state. The novel fixed-interval DRS can be viewed as anℓ1-norm regularized version of the

WLS-based clairvoyant KS algorithm. This form of regularization controls the sparsity of outliers, which

are explicitly introduced as auxiliary variables. Two data-driven methods were also devised to select the

associated regularization parameters. Block coordinate descent-based iterations were developed to solve

the underlying convex optimization problem in an efficient manner. To enable real-time smoothing for

delay-constrained applications such as target tracking, an online fixed-lag DRS was also developed. At

last, the novel approach was broadened to include generalized linear state-space models. Numerical tests

demonstrated that the proposed algorithms can jointly copewith state and measurement outliers, and

outperform state-of-the-art methods at comparable computational burden.

APPENDIX

A. Proof of Proposition 1 (MAP optimality of DRS in(6))

Successive application of Bayes’ rule, as well as the assumptions on independence and the correspond-

ing distributions of the nominal noise and outlier vectors yield

p(x,ox,oy|y1:N ) =
p(y1:N ,x,ox,oy)

p(y1:N )
∝ p(x0)

N∏

n=1

p(yn|x0:n,y1:n−1,ox,1:n,oy,1:n)

×p(xn|x0:n−1,y1:n−1,ox,1:n,oy,1:n)p(oy,n|x0:n−1,y1:n−1,ox,1:n,oy,1:n−1)

×p(ox,n|x0:n−1,y1:n−1,ox,1:n−1,oy,1:n−1) = p(x0)

N∏

n=1

p(yn|xn,oy,n)p(xn|xn−1,ox,n)p(oy,n)p(ox,n)
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= N (x0;m0,Σ0)

N∏

n=1

N (yn;Hnxn + oy,n,Rn)N (xn;Fnxn−1 + ox,n,Qn)L(ox,n;λx)L(oy,n;λy)(26)

whereN (x;m0,Σ0) represents a Gaussian distribution with meanm0 and covarianceΣ0, whileL(o;λ) :=
∏

d(λ/2) exp(−λ|od|) ∝ exp(−λ‖o‖1) represents the joint Laplacian distribution for a vector with

independent entries. Maximizing (26) amounts to minimizing the negative of the exponent, which leads

to the DRS criterion in (6).

B. Proof of Proposition 2 (Equivalence of(6) with (7))

Consider minimizing the cost in (6) overoy andox, with x fixed. Givenx and with {Qn,Rn}
N
n=1

andΣ0 given by identity matrices, the criterion in (6) is separable over each scalar entry ofoy andox.

Hence, it suffices to find

ôy,n,d = arg min
oy,n,d

{
1

2
(yn,d − hT

n,dxn − oy,n,d)
2 + λy|oy,n,d|

}
, n = 1, . . . , N, d = 1, . . . ,Dy (27a)

ôx,n,d = arg min
ox,n,d

{
1

2
(xn,d − fTn,dxn−1 − ox,n,d)

2 + λx|ox,n,d|

}
, n = 1, . . . , N, d = 1, . . . ,Dx(27b)

The scalar problems in (27) admit, respectively, the following closed-form solutions (see, e.g., [29]):

ôy,n,d =





0, if |yn,d − hT
n,dxn| ≤ λy

yn,d − hT
n,dxn − λy sign(yn,d − hT

n,dxn), otherwise
(28a)

ôx,n,d =





0, if |xn,d − fTn,dxn−1| ≤ λx

xn,d − fTn,dxn−1 − λx sign(xn,d − fTn,dxn−1), otherwise
(28b)

Substituting (28) in the DRS cost of (6), the subsequent optimization problem inx is

x̂ := argmin
x

[ N∑

n=1

Dy∑

d=1

(
1

2
(yn,d − hT

n,dxn)
21l|yn,d−hT

n,dxn|≤λy
(x)

+
(
λy|yn,d − hT

n,dxn| − λ2
y/2

)
1l|yn,d−hT

n,dxn|>λy
(x)

)
+

Dx∑

d=1

(
1

2
(x0,d −m0,d)

2

)

+

N∑

n=1

Dx∑

d=1

(
1

2
(xn,d − fTn,dxn−1)

21l|xn,d−fTn,dxn−1|≤λx
(x))

+
(
λx|xn,d − fTn,dxn−1| − λ2

x/2
)
1l|xn,d−fTn,dxn−1|>λx

(x)

)]
. (29)

Given the definition of Huber’s cost, the problem in (29) is equivalent to (7). Therefore, (6) and (7) are

equivalent.
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C. Proof of Proposition 3

Letting L(x,ox,oy) denote the cost in (6) anď∇ the subgradient operator, the optimality conditions

for the non-differentiable problem in (6) are [32, p. 126]

0 ∈ ∇̌oy,n
L(x̂, ôx, ôy) ⇒ 0 ∈ R−1

n ôy,n −R−1
n (yn −Hnx̂n) + λyǒy,n (30a)

0 ∈ ∇̌ox,n
L(x̂, ôx, ôy) ⇒ 0 ∈ Q−1

n ôx,n −Q−1
n (x̂n − Fnx̂n−1) + λxǒx,n (30b)

whereǒx,n := [ǒx,n,1, ǒx,n,2, . . . , ǒx,n,Dx
]T and ǒy,n := [ǒy,n,1, ǒy,n,2, . . . , ǒy,n,Dy

]T are the subgradients

of ‖ox,n‖1 and‖oy,n‖1, respectively, whosedth entries are given by

ǒy,n,d =





sign(ôy,n,d), ôy,n,d 6= 0

sn,d, ôy,n,d = 0
, ǒx,n,d =





sign(ôx,n,d), ôx,n,d 6= 0

tn,d, ôx,n,d = 0
,

for any |sn,d| ≤ 1 and |tn,d| ≤ 1.

DRS coincides with KS when̂oy = 0NDy
andôx = 0NDx

, which impliesx̂ := x̂KS. For ôy = 0NDy
,

(30a) is satisfied witĥx := x̂KS if and only if (8a) holds. Similarly, for̂ox = 0NDx
, (30b) is satisfied

with x̂ := x̂KS if and only if (8b) holds. QED
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Fig. 1: Quadratic cost versus Huber cost (λ = 2).
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Fig. 2: True target trajectory (solid line); Observed

positions (circles). The squares indicate the tra-

jectory instants where outliers occur (n = 15, 50,

and80). Outlier-corrupted measurement values are

y15 = [−5560, 18440]T , y50 = [3880, 14440]T ,

andy80 = [6440,−14800]T .
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Fig. 3: True target trajectory (solid line) and esti-

mated trajectory (circles) using fixed-interval KS.
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Fig. 4: True target trajectory (solid line) and esti-

mated trajectory (circles) using fixed-interval DRS

(λy = 0.01, λx = 0.05).
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Fig. 5: True target trajectory (solid line) and esti-

mated trajectory (circles) using fixed-lag KS.
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Fig. 6: True target trajectory (solid line) and

estimated trajectory (circle) using fixed-lag DRS

(λy = 0.01, λx = 0.05).

June 12, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (REVISED) 29

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

time

R
M

S
E

 

 
KS
DRS

Fig. 7: RMSE analysis of the fixed-interval KS

versus DRS (λy = 0.01, λx = 0.05).
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Fig. 8: RMSE analysis of the fixed-lag KS versus

DRS (λy = 0.01, λx = 0.05), online DRS (κ > 0,

λy = 0.01, λx = 0.05, J = 50 AD-MoM

iterations), and Rao-Blackwellized SMC smoother

(50 particles).
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Fig. 9: Mean RMSE± std. deviation for estimates

formed by RANSAC followed by Huber robustifi-

cation versus DRS: Measurement outliers only.
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Fig. 10: Mean RMSE± std. deviation for estimates

formed by RANSAC followed by Huber robustifi-

cation versus DRS: State outliers only.
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Fig. 11: Outliers present in state and measure-

ments.
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Fig. 12: DRS versus LS with known percentage of

outliers.
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Fig. 13: Comparison among different DRS renditions with thesmoother in [3]: (left) Mean RMSE±

std. deviation; (right) Median RMSE.
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