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Abstract—The problem of paraunitary filter bank design for
subband coding has received considerable attention in recent
years, not least because of the energy preserving property of
this class of filter banks. In this paper, we consider the design
of signal-adapted, finite impulse response (FIR), paraunitary
filter banks using polynomial matrix EVD (PEVD) techniques.
Modifications are proposed to an iterative, time-domain PEVD
method, known as the sequential best rotation (SBR2) algorithm,
which enables its effective application to the problem of FIR
orthonormal filter bank design for efficient subband coding.
By choosing an optimisation scheme that maximises the coding
gain at each stage of the algorithm, it is shown that the
resulting filter bank behaves more and more like the infinite-
order principle component filter bank (PCFB). The proposed
method is compared to state-of-the-art techniques, namely the
iterative greedy algorithm (IGA), the approximate EVD (AEVD),
standard SBR2 and a fast algorithm for FIR compaction filter
design, called the window method (WM). We demonstrate that
for the calculation of the subband coder, the WM approach offers
a low-cost alternative at lower coding gains, while at moderate
to high complexity, the proposed approach outperforms the
benchmarkers. In terms of run-time complexity, AEVD performs
well at low orders, while the proposed algorithm offers a better
coding gain than the benchmarkers at moderate to high filter
order for a number of simulation scenarios.

Index Terms—Orthonormal subband coders, paraunitary ma-
trix, principal component filter banks, polynomial matrix eigen-
value decomposition, sequential best rotation.

I. INTRODUCTION

PARAUNITARY filter banks have been extensively studied

for subband coding and applied to an increasing number

of applications, including noise reduction [1], audio and image

coding [2] and digital communications [3], [4]. For the case

where the order of the filters is unconstrained, it is known

that a principal component filter bank (PCFB) [5], [6] exists

and is an orthonormal or paraunitary (PU) filter bank that

is simultaneously optimal for a number of objectives [7],

including mean-squared error and coding gain for subband

coding in data compression applications [8]. This is also

true when the filter orders are constrained to be not greater

Copyright (c) 2011 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
S. Redif is with the Electrical and Electronic Engineering Department,

European University of Lefke, Lefke, Cyprus (e-mail sredif@eul.edu.tr).
J.G. McWhirter is with Cardiff University, Cardiff CF24 3AA, Wales, UK

(e-mail mcwhirter@cardiff.ac.uk)
S. Weiss is with the Department of Electronic & Electrical Engineer-

ing, University of Strathclyde, Glasgow G1 1XW, Scotland, UK (e-mail
stephan@eee.strath.ac.uk)

than the number of subband channels. In this case, the zero-

order PCFB, viz. the Karhunen-Loeve transform (KLT) or

the singular-value decomposition (SVD) [10], provides the

optimal solution [11]. The PCFB also exists for the special

case of the two-channel filter bank. However, it is believed

that the PCFB does not generally exist for the case where

order-constrained (or finite McMillan degree [12]) filters are

used [7], [13].

A number of authors have proposed methods for the design

of suboptimal finite impulse response (FIR) PU filter banks.

Typically, the filter is chosen to optimise a specific objective

function for a known input power spectral density (PSD), such

as coding gain [2], [14], [15] and multiresolution energy com-

paction [16]. As a consequence, all such methods require the

numerical optimisation of nonlinear and non-convex functions.

A common approach has been to calculate an optimal FIR

compaction filter for the first filter [17], [18], and then find the

remaining filters using an appropriate completion strategy to

construct the filter bank [16], [19]. In [16], the FIR compaction

filter design problem is reduced to a semi-infinite linear (SIP)

program. The authors solve a discretised version of the SIP

using standard linear programming methods, which becomes

computationally costly and complex for large filter orders. A

more efficient discretisation method is proposed in [17], called

the window method. However, the main disadvantage of this

type of approach is that global optimality is not guaranteed due

to the fact that there is ambiguity caused by the nonuniqueness

of the FIR compaction filter [18], [19]. In [20], Tkacenko and

Vaidyanathan propose a different strategy for the design of

filter banks, called the iterative greedy algorithm (IGA), which

involves simultaneously designing all of the filters at once, thus

avoiding the need to compare the performance of different

spectral factors of a given FIR compaction filter. The IGA

parameterises a dyadic-based structure, similar to that in [12],

by minimising the difference between a desired response and a

causal FIR PU filter bank consisting of degree-one paraunitary

building blocks. A drawback of this algorithm is that it is very

demanding computationally.

PU filter bank design has also been presented in the context

of the eigenvalue decomposition (EVD) of para-Hermitian

matrices in [22], [23], [24] and signal subspace analysis of

broadband signals [25], [26], [27]. The approach by Regalia

and Loubaton [25] exploits the fixed degree parameterisation

proposed in [12]. They re-formulate the problem using a state

space model and propose an iterative solution, which avoids

the problems of local minima associated with gradient descent
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techniques. Lambert et al. [27] have developed an EVD for

polynomial matrices by generalising some conventional linear

algebra and control technique from the complex number field

to the field of rational functions. Requiring the approximate

inversion of FIR filters in the frequency domain, issues around

stability arise.

An alternative PU filter bank design can be obtained by

generalisation of the EVD to polynomial matrices, such as

the second order sequential best rotation (SBR2) algorithm,

proposed by McWhirter et al. in [22]. This algorithm has been

successfully applied to broadband extensions of narrowband

problems, which traditionally have been addressed by the

EVD, including subspace decomposition. In constrast with

IGA, where a fixed constraint is imposed on the order of the

filters, the filter order of the filter banks constructed by SBR2

can grow with every iteration.

Tkacenko [24] has recently proposed a fixed order algo-

rithm for approximating the polynomial matrix EVD based

on applying a given number of degree-one (second order)

filter stages. Like the SBR2 algorithm, it aims to increase the

zero order diagonal energy in a monotonic fashion. However,

this method, referred to as the approximate EVD (AEVD)

algorithm, is not designed (or claimed) to converge as the

number of stages increases and its performance has been found

to saturate at a much lower level than that of SBR2. While

a detailed discussion is beyond the scope of this paper, the

AEVD is included as one of several benchmarkers below.

In this paper, we consider the application of the SBR2

algorithm to the problem of PU filter bank design for subband

coding. A new cost function is proposed, which is based on the

coding gain, and improves the diagonalisation and coding gain

performances compared to the SBR2 algorithm, for which ini-

tial results have been reported in [28]. The resultant algorithm

can converge to a solution that yields a PU filter bank, which

is approximately optimal for subband coding, in a relatively

small number of iterations. It is shown that the resulting filter

banks tend towards the infinite-order PCFB as the number of

iterations in increased. The algorithm is based on a polynomial

cross-spectral density (CSD) matrix which for the subband

coder design possesses a specific structure, incorporating both

parahermitian and pseudo-circulant properities. We therefore

demonstrate how these implicit properties can be exploited to

enhance the estimation accuracy of the CSD matrix.

In Sec. II, we present a review of relevant theory and results

pertaining to filter bank design and the extension of the EVD

to polynomial matrices. A review of the SBR2 algorithm is

given as a technique for computing the polynomial EVD. In

Sec. III, a new cost function for SBR2 is introduced, which

improves the energy compaction ability of the algorithm. The

applicability of the modified SBR2 to the problem of data

compression is investigated in Sec. IV. This leads to a method

by which a priori knowledge about the subband signals is used

to improve the decorrelation performance of this algorithm.

The resulting technique is compared to the state-of-the-art,

IGA [20], the AEVD [24] and the computationally efficient

window method [17] in Sec. V. We present experimental re-

sults which suggest that our algorithm outperforms the window

method, IGA and AEVD on a set of benchmark problems for

Fig. 1. (a) M -channel uniform, maximally decimated filter bank and (b) its
equivalent polyphase represention.

moderate to large filter orders. Finally, conclusions are given

in Sec. VI.

II. OPTIMAL FILTER BANKS AND POLYNOMIAL MATRIX

DECOMPOSITIONS

A. Preliminary

A polynomial matrix is a matrix whose elements are poly-

nomials, or equivalently a polynomial with matrix coeffi-

cients [29]. In this paper, we will use the term polynomial

to include Laurent polynomials which can include negative

powers of the indeterminate variable. We denote a P × Q
polynomial matrix in the indeterminate variable z−1 by

A(z) =

τ2∑

τ=τ1

A[τ ]z−τ =






a11(z) . . . a1,Q(z)
...

. . .
...

aP,1(z) . . . aP,Q(z)




 ,

(1)

where τ ∈ Z, τ1 ≤ τ2, and

apq(z) =

τ2∑

τ=τ1

apq[τ ]z−τ (2)

with apq[τ ] ∈ C ∀p, q, τ . Since the leading term of zτ1A(z)
is constant, the effective order of A(z) is τ2−τ1. A transform

pair as in (1) is denoted as A(z) •—◦ A[τ ].

B. Filter Bank Optimality

A typical model of a subband coder is the M -channel,

maximally decimated, uniform filter bank shown in Fig. 1(a)

and its polyphase form [12] shown in Fig. 1(b). It consists

of an analysis bank followed by subband processors {qk} ,

applied to the subband signals, and a synthesis bank. The

subband processors {qk} are typically scalar quantisers. If

F(z) in Fig. 1(b) is chosen such that F(z)H(z) = cz−τI,

for some constant c and integer τ , then the subband coder is a

perfect reconstruction filter bank, which in the absence of any

subband processing is transparent from input to output, i.e.
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y[n] = cx[n − τ ]. Furthermore, an elegant and simple recon-

struction may be obtained, if the matrix H(z)|z=ejΩ = H(ejΩ)
is unitary for all normalised angular frequencies Ω; that is,

H(z) satisfies the PU or orthonormality condition [12]

H(z)H̃(z) = H̃(z)H(z) = I , (3)

where H(z) is an M × M polynomial matrix and H̃(z) is

the paraconjugate transpose of H(z), i.e. H̃(z) = HH(z−1).
In this case, the synthesis bank is simply given by F(z) =
H̃(z). Another important property of paraunitary filter banks

is their losslessness, which means that the total signal power

at every frequency is conserved by the transformation [12],

i.e. H(z) defines an all-pass filter. Our discussions are limited

to maximally decimated, uniform paraunitary filter banks.

The design of an optimal PU subband coder, for a given

fixed budget of quantiser bits, consists of simultaneously

optimising the analysis and synthesis filters as well as choosing

a subband bit allocation strategy such that the reconstruction

error is minimised. The scalar input signal x[n] is typically

assumed to be a zero mean, wide-sense stationary (WSS)

random process with a known power spectrum Sxx(ejΩ). This
is equivalent to saying that the M -fold blocked input signal

vector x[k] is jointly WSS [12], where k = Mn denotes

the low-rate time index. Assuming a high bit rate for the

quantiser and optimum bit allocation, an optimal PU filter bank

maximises the well-known coding gain [8]

G = σ2
x

(
M∏

m=1

σ2
m

)− 1

M

, (4)

where σ2
x is the variance of x[n] and σ2

m is the variance

of the mth subband signal vm[k]. The denominator is the

geometric mean of the subband variances. Since σ2
x is fixed,

the optimisation of the analysis filters consists of minimising

this geometric mean under the orthonormality condition. For

the unconstrained filter order case, Vaidyanathan derives a set

of necessary and sufficient conditions for optimality of a PU

filter bank [8]:

1) strong (or total) decorrelation — the subband sig-

nals are decorrelated at all relative time lags,

i.e. E
{
vm[k]v∗p [k − τ ]

}
= δ(m−p)δ(τ) ∀m, p, τ , where

E{·} denotes the expectation operator, a∗ the complex

conjugation of a, and δ(·) the Kronecker delta function;
2) spectral majorisation — the set of subband spectra

Smm(ejΩ) has the property S11(e
jΩ) ≥ S22(e

jΩ) ≥
. . . ≥ SMM (ejΩ) ∀Ω , where the subbands are num-

bered such that σ2
m ≥ σ2

m+1. In other words, the PSD

matrix Sxx(ejΩ) of x[k] is diagonalised for every Ω
such that the eigenvalues of Sxx(ejΩ) are arranged in

decreasing order [1].

A procedure for obtaining optimal PU systems, for the uncon-

strained order case, is presented in [8]. We can also obtain

an optimal PU system through the design of a PCFB, which

is defined as follows: Consider that M − K channels are

discarded in the synthesis part of the M -channel filter bank in

Fig. 1. A filter bank that minimises the average mean square

reconstruction error for all K is called a PCFB. The set of

subband variances σ2
m generated by a PCFB is said to majorise

any other possible set of subband variances. It turns out that

the orthonormal PCFB is also optimal for energy compaction:

the subband variances are arranged as σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
K ,

such that
∑K

m=1 σ2
m, 1 ≤ K < M is maximised. For the

case K = 1, σ2
1 is maximised by H1(z), which is an optimal

compaction filter. Furthermore, since the filters of a PCFB are

orthonormal, H1(z) satisfies the Nyquist-M constraint, viz.,

1

M

M−1∑

i=0

∣
∣
∣H1(e

j(Ω− 2πi
M

))
∣
∣
∣

2

= 1 (5)

where H1(e
jΩ) is a real coefficient FIR filter [12]. A quanti-

tative measure of energy compaction performance is given by

the compaction gain [17],

Gcomp =
σ2

1

σ2
x

, (6)

which is maximised by a compaction filter, i.e. the first filter

of a PCFB.

C. Polynomial Matrix EVD

Given a vector of signals x[k] ∈ CM , compression can be

achieved by exploiting redundancy in the form of correlation

between the M signals xm[k], m = 1 . . .M constituting

x[k]. If these signals are only correlated at zero relative time-

lag, then the Karhunen-Loeve transform (KLT) matrix H can

perform decorrelation

v[k] = H x[k] , (7)

whereby H is derived from an EVD of the covariance matrix

R = E
{
x[k]xH[k]

}
= HHCH, with C diagonal and H

unitary matrices, or from an SVD operating on the data

matrix. The decorrelation according to (7) converts the form

of the redundancy from correlation between the signals to

disparity between the signal powers. Compression is realised

by discarding low power channels which lie in the noise-only

subspace estimated by the KLT.

If signals in x[k] are correlated for lags other than lag zero,

then the KLT can only achieve instantaneous decorrelation,

and not strong decorrelation as defined in Sec. II-B. While

this problem occurs in many techniques such as separation

of convolutively mixed signals, we here concentrated on the

subband coding idea, where x[k] is obtained by demultiplexing

an input signal x[n] as shown in Fig. 1. We would like to find

a polyphase matrix H[k] with z-transform H(z) •—◦ H[k],
such that the transformed data vector v[k]

v[k] =

∞∑

k=−∞

H[κ]x[k − κ] (8)

is strongly decorrelated. This requires the cross-spectral den-

sity (CSD) matrix C(z) of the transformed signals v[k] ∈ CM

to be diagonalised, such that the polynomial matrix C(z) is

given by

C(z) = H(z)R(z)H̃(z) = diag{c11(z) . . . cMM (z)} ,
(9)
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where R(z) •—◦ R[τ ] is the CSD matrix based on the

covariance matrix R[τ ] = E
{
x[k]xH[k − τ ]

}
of the input data

vector, and C(z) is defined likewise based on v[k].
We refer to (9) as a polynomial EVD (PEVD) and demand

as a generalisation of the EVD that the polynomial matrix

H(z) is constrained to satisfy the PU condition in (3).

D. PCFBs and PEVDs

To explore the energy compaction property of the PEVD

w.r.t. data compression, we assume that only the first P ≤ M
signals of the M -element transformed data vector v[k] in (8)

are retained,

v̂[k] = diag{1 · · · 1
︸ ︷︷ ︸

P

0 · · · 0
︸ ︷︷ ︸

M−P

} v[k] . (10)

The total power of this compressed signal vector v̂[k],

σ2
v̂ =

P∑

p=1

cpp[0] , (11)

is maximised for each P ≤ M . The terms cpp[τ ], p = 1 . . .M ,

are the diagonal entries of the covariance matrix C[τ ] corre-
sponding to the CSD C(z) in (9). By applying the PU matrix

H̃(z) to v̂[k], as shown in Fig. 1(b) with F(z) = H̃(z),

y[k] =

∞∑

k=−∞

HH[−κ]v̂[k − κ] , (12)

represents an approximate reconstruction of x[k], whereby

H̃(z) •—◦ HH[−k].
Since (11) is maximised, the sum of the variances of

the M − P signals suppressed in (10) is minimised. With

H(z) being PU, the power σ2
e =

∑M
m=P+1 cmm[0] of the

reconstruction error y[k]− x[k] is also minimised. Therefore,

the PU matrix H(z) responsible for this minimisation can be

interpreted as an extension of the PCFB for subband coding,

motivating the need for a PEVD.

E. Polynomial EVD via the Sequential Best Rotation Algo-

rithm (SBR2)

A number of algorithms have been reported to approximate

the PEVD factorisation of (9) in [21], [22], [24], [27]. We

review the sequential best rotation (SBR2) approach [22],

which will form the basis of the proposed subband coding

scheme in Sec. III.

An iterative approach to obtain the decomposition (9) is

described in [22]. This method calculates a sequences of

paraunitary operations consisting of delays and rotations to

iteratively eliminate the largest off-diagonal terms in the CSD

matrix. The approach in [21], [22] is based on second order

statistics, and therefore termed second order sequential best

rotation (SBR2) algorithm.

After L iterations, SBR2 is set to achieve the decomposition

SL(z) = HL(z)R̂(z)H̃L(z) (13)

≈ diag{sL,11(z) sL,22(z) . . . sL,MM (z)} (14)

where R̂(z) is an estimate of the CSD matrix R(z) based on

the available samples of x(z), and SL(z) provides an estimate

of the approximately diagonalised CSD matrix C(z) of the

transformed signals v(z).
SBR2 starts by setting S0(z) = R̂(z). In each subsequent

step l, SBR2 will eliminate the largest off-diagonal element

of Sl−1(z). This element can be identified by its coordinates

ml, pl and lag τl,

{ml, pl, τl} = arg max
m,p,m 6=p,τ

|sl−1,mp[τ ]| , (15)

where sl−1,mp[τ ] is the element in row m and column p of

the covariance matrix Sl−1[τ ] corresponding to Sl−1(z). The
elimination of this element is performed by the generalised

similarity transform

Sl(z) = Pl(z)Sl−1(z)P̃l(z) , (16)

whereby the elementary PU matrix

Pl(z) = QlΛl(z) (17)

consists of a delay matrix Λ(z) and a Jacobi rotation Q. The

delay matrix shifts the largest off-diagonal element of Sl=1[τ ]
onto lag zero by setting

Λl(z) = diag{1 · · · 1
︸ ︷︷ ︸

pl−1

z−τl 1 · · · 1
︸ ︷︷ ︸

M−pl

} . (18)

The operation Λl(z)Sl−1(z)Λ̃l(z) will transfer the largest off-
diagonal element onto the lag-zero slice. The Jacobi rotation

Ql,

Ql =










I1

cosϕl . . . ejϑl sin ϕl

... I2

...

−e−jϑl sin ϕl . . . cosϕl

I3










(19)

with Ii identity matrices of dimensions (min{ml, pl} − 1),
(|ml − pl| − 1) and (M −max{ml, pl}+ 1), respectively, for
i = 1, 2, 3,contains angles ϕl and ϑl selected to eliminate the

largest off-diagonal element and transfer its energy onto the

main diagonal [10]. The transfer is performed such that the

larger element lies higher up on the diagonal, which during

the iteration process leads to spectral majorisation.

The iteration continues until SL(z) is sufficiently diago-

nalised, such that the maximum off-diagonal element

max
m,p,m 6=p,τ

|sL,mp[τ ]| ≤ ǫ (20)

falls below a pre-selected threshold ǫ. In this case, SL(z) is

the approximately diagonalised CSD matrix of (13), and the

paraunitary matrix HL(z) in (13) is given by

HL(z) = PL(z)PL−1(z) . . .P1(z) . (21)

The accuracy of this decomposition depends on ǫ, the sample

size over which R̂(z) is estimated as an approximation of the

true CSD matrix R(z), as well as optimality of the estimation

procedure to be discussed in Sec. IV.

The order of both HL(z) and SL(z) can grow significantly

with the number of iterations L. Therefore, a trim function

was proposed in [22] to truncate the highest order coefficient

matrices at each SBR2 stage based on a small threshold, and

thus limit the increase in order on both polynomial matrices.
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III. MODIFIED SBR2 (SBR2C) ALGORITHM

There is an important limitation of the search strategy

employed by the SBR2 algorithm described in Sec. II. The pa-

rameter values for each delay-rotation matrix are chosen using

a generalisation of the classical Jacobi algorithm [10]. This

method may be viewed as a “greedy” optimisation scheme

that annihilates the largest cross-correlation at each algorithm

iteration. Therefore, SBR2 is proportionately more sensitive

to changes (in correlation) in dominant signals than it is to

changes in weak signals. This is because, in general, the largest

cross-correlation coefficients occur between dominant signals,

which are minimised by the algorithm at every step. The

detrimental effect on algorithm performance when operating

on estimated CSD matrices is twofold:

1) The extent to which polynomial matrix diagonalisa-

tion (strong decorrelation) is carried out is restricted:

after a number of iterations, the algorithm begins to

zero noise-related cross-correlations between dominant

signals rather than true signal-related cross-correlations

between weaker signals.

2) The extent to which spectral majorisation is performed

is limited: Energy in weaker, correlated signals is not

compacted into as few channels as possible. This is

usually because energies due to cross-correlation terms,

which are spread among pairs of weak signals, are not

transferred to the auto-correlation of the signals.

The above problems can be alleviated by the use of a

cost function which is proportionately equally sensitive to

changes in any of the signals. The coding gain in (4) for

subband coding has this property. Here, we define a new

cost function simply by substituting the variance terms in the

coding gain definition (4) by variances sl,mm[0] obtained after

l diagonalisation steps, using e.g. SBR2, and based on sample

statistics in S0(z) = R̂(z), giving

Ĝl =

(

1

m

M∑

m=1

sl,mm[0]

)

·

(
M∏

m=1

sl,mm[0]

)− 1

M

. (22)

As with the coding gain, minimisation of the product of the

transformed signal variances in (22) leads to maximal energy

compaction and spectral majorisation. In this paper, the SBR2

algorithm with this cost function is referred to as the SBR2

algorithm modified for subband coding (SBR2C). We now

make the following assertion.

Theorem 1: The cost function Ĝl in (22) is maximised at

each step l of the SBR2C algorithm if the largest normalised

magnitude squared off-diagonal term with indices ml, pl, and

τl,

{ml, pl, τl} = arg max
m,p,m 6=p,τ

|sl−1,mp[τ ]|2

sl−1,mm[0]sl−1,pp[0]
(23)

in Sl−1[τ ] is zeroed.
Proof: The indices ml and pl identify the two signals

involved in the elementary similarity transformation Pl(z) in

(16) at step l. Note that the numerator in (22) — i.e. the

arithmetic mean of sample variances — can be treated as a

constant κ1 under PU operations and therefore throughout the

SBR2 algorithm. Further, since signals indexed ml and pl are

the only ones modified by the transformation in question, we

may write

Ĝl = κ1 (κ2,lsl,mlml
[0]sl,plpl

[0])−
1

M , (24)

where κ2,l represents the product of the P−2 sample variances

that are invariant under the lth elementary PU transformation.

Following the transformation process, we have

(

Ĝl

Ĝl−1

)M

=
sl−1,mlml

[0]sl−1,plpl
[0]

sl,mlml
[0]sl,plpl

[0]
, (25)

but from properties of the transformation it can easily be

shown that

sl,mlml
[0]sl,plpl

[0] = sl−1,mlml
[0]sl−1,plpl

[0]−|sl−1,mlpl
[τl]|

2 ,
(26)

and therefore
(

Ĝl

Ĝl−1

)M

=
sl−1,mlml

[0]sl−1,plpl
[0]

sl−1,mlml
[0]sl−1,plpl

[0] − |sl−1,mlpl
[τl]|2

.

(27)

It follows that for any one iteration of the algorithm, the

cost function Ĝl is maximised by choosing the correct set

{ml, pl, τl} at the lth iteration such that the objective function

J =
|sl−1,mlpl

[τl]|
2

sl−1,mlml
[0]sl−1,plpl

[0]
(28)

is as close to unity as possible. The denominator of (28) can be

viewed as a normalisation factor that essentially stabilises the

algorithm. In essence, this is because large cross-covariance

coefficients due to strong signals, say, are attenuated relative to

those associated with weaker signals. Hence, the maximisation

of Ĝl entails a generalised classical Jacobi search for the

largest normalised cross-covariance term.

There are two modifications that need to be made to

the SBR2 algorithm in order to obtain the modified SBR2

algorithm. The first is that the correlation based objective

function |sl−1,mp[τ ]|2 in (15) is replaced by the quotient

Jl−1 =
|sl−1,mp[τ ]|2

sl−1,mm[0]sl−1,pp[0]
(29)

based on (28), searching over all normalised cross-correlation

functions. Secondly, the stopping criterion ǫ in (20) needs to

be defined in terms of JL in (29) rather than |sL,mp[τL]|2.
The proposed modified cost function in (29) improves the

strong decorrelation and spectral majorisation performances

of the SBR2 algorithm. Hence, the SBR2C algorithm is more

suited to the applications of data compression and broadband

subspace decomposition than its correlation-based counterpart.

Note that the algorithm intrinsically aims to design a filter bank

that is optimal for multichannel data compression because its

optimisation is exclusively geared towards the maximisation

of energy compaction. The proof of convergence for SBR2

in [22] no longer holds for the modified SBR2 algorithm,

since the condition Jl → ∞ will arise if either sl,mm[0] or
sl,pp[0] tend to zero. However, the original proof remains valid

if individual signal powers are artificially bounded from below

by a small noise-related offset value.
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IV. CROSS-SPECTRAL DENSITY MATRIX ESTIMATION

The SBR2 algorithm and its proposed modificiation, the

SBR2C algorithm, can be classed as “blind” techniques since

they require knowledge of neither the source signals nor their

mixing. However, these algorithms require the CSD matrix

R(z) of the demultiplexed data vector x[k] . In practise, an

estimate of this CSD matrix R̂(z) has to be calculated based

on a finite window of data. The accuracy of this estimate

is therefore crucial for the performance of subband coding.

Below, we first review two important properties of the CSD

matrix in Sec. IV-A, in order to suggest two procedures in

Sec. IV-B that implicitly exploit the CSD matrix’ properties

and therefore yield enhanced estimates.

A. Cross-Spectral Density Matrix

Consider the subband coder in Fig. 1(b). We assume that

the scalar input signal x[n] is a zero mean, WSS random

process [9]. The blocked filter bank input vector is given by

x[k] = [x1[k] x2[k] · · · xM [k]]T (30)

where xm[k] = x[Mn + m − 1], 1 ≤ m ≤ M are the

demultiplexed signals. The M × M CSD matrix R(z),

R(z) =

∞∑

τ=−∞

R[τ ]z−1 =

∞∑

τ=−∞

E
{
x[k]xH[k − τ ]

}
z−1,

(31)

has the form

R(z) =








r1,1(z) r1,2(z) . . . r1,M (z)
r2,1(z) r2,2(z) . . . r2,M (z)

...
. . .

...

rM,1(z) . . . rM,M−1 rM,M (z)








,

(32)

where

rm,p[τ ] = E
{
xm[k]x∗

p[k − τ ]
}

(33)

is the cross-correlation sequence between subband signals

xm[k] and xp[k]. The CSD matrix R(z) has the following

important properties:

1) Para-Hermitian Property. From the definition

of the cross correlation function rm,p[τ ] =
E
{
xm[k]x∗

p[k − τ ]
}

= E{xp[k + τ ]x∗
m[k]}

∗
=

r∗p,m[−τ ] and rm,p(z) =
∑∞

τ=−∞ rm,p[τ ]z−τ =

r̃p,m(z), it follows that R̃(z) = R(z).
2) Pseudo-circulant Property. An M ×M polynomial ma-

trix R(z) with entries rm,p(z) as defined in (32) is

pseudo-circulant if there exist polynomials φ0(z),φ1(z),
. . .φM−1(z) such that [12]

rm,p(z) =

{
φp−m(z), 1 ≤ m ≤ p ≤ M
z−1φp−m+M (z), 1 ≤ p < m ≤ M .

(34)

The pseudo-circulant property of R(z) means that each row is

derived from the previous one by right-shifting elements and

forming a wrap-around with a multiplication by z−1,

R(z) =








φ0(z) φ1(z) . . . φM−1(z)
z−1φM−1(z) φ0(z) . . . φM−2(z)

...
. . .

. . .
...

z−1φ1(z) . . . z−1φM−1(z) φ0(z)








(35)

whereby here specifically φm[τ ], m = 0 · · · (M−1), are the M
polyphase components of the autocorrelation function of x[n].
The pseudo-circulant property of R(z) is intimated but not

explicitly derived in [12]; since it is central to the estimation

of R̂(z) below, (35) is shown in Appendix A.

B. Estimation of R(z)

Based on the availability of a finite window T of input data

x[n], 0 ≤ n ≤ T , we discuss a direct approach that yields a

suboptimal estimation of R̂(z), followed by two estimates that

exploit the properties of R(z) and lead to enhanced accuracy.

1) Subband-Based Calculation of R̂(z): If x[k] is ergodic,
(31) can be converted to estimate R(z) via

R̂(1)(z) =

T/M
∑

τ=−T/M

M

T

T/M
∑

k=0

x[k]xH[k − τ ]z−τ . (36)

In this case, every entry of R̂(1)(z) is estimated from T/M
samples. If the influence of marginal values of x[n] is ne-

glected, R(z) will be para-Hermitian. However, every entry

along the diagonals of R̂(1)(z) is estimated from a different

data set, and the pseudo-circulant property according to (35)

will only be achieved in the limit T → ∞.

2) Improved Subband-Based Calculation: An improved

estimate R̂(2)(z) can be obtained by forcing it to be pseudo-

circulant. If φ̂
(2)
m [τ ] is a cross-correlation entry of R̂(2)(z),

reflecting the structure in (35), it can be obtained by averaging

across the diagonals of R̂(1)(z) in (36). With the entries

r̂
(1)
m,p[τ ] of R̂(1)(z),

φ̂(2)
m [τ ] =

1

M





M−m∑

p=1

r̂
(1)
p,p+m[τ ] +

M∑

p=M−m+1

r̂
(1)
p,p+m−M [τ + 1]



 ,

(37)

for m = 0 · · · (M − 1). Note that compared to R̂(1)(z), every
entry of R̂(2)(z) is now an estimate drawn from T rather than

T/M samples.

3) Calculation Based on Input Auto-Correlation: A third

option is to draw the elements of the estimate R̂(z) directly

from an estimate of the auto-correlation sequence of x[n],

φ̂(3)(z) =

T∑

τ=−T

1

T

T∑

n=0

x[n]x∗[n − τ ]z−τ , (38)

to form an estimate R̂(3)(z) according to (35) by splitting

φ̂(3)(z) in (38) into its M polyphase components φ̂
(3)
m (z), m =

0 · · · (M − 1).
Alternatively, R̂(3)(z) can be constructed in closed form

from (38), in analogy to FIR block filtering [34], as

R̂(3)(zM ) = D(z)T Φ̂(3)(z)THD̃(z) , (39)
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whereby

Φ̂(3)(z) =








φ̂(3)(z)

φ̂(3)(zej 2π
M )

. . .

φ̂(3)(zej 2π
M

(M−1))







(40)

D = diag
{
1 z−1 · · · z−M+1

}
, (41)

and T is a unitary M × M DFT matrix normalised by

√
1
M .

The CSD estimate R̂(3)(z) is based on T samples for every

entry, and provides the same accuracy and result as R̂(2)(z).
When using any subband coder in the following results section,

it is always assumed that it operates on an estimate provided

by the latter two optimal methods discussed in this section.

V. SIMULATIONS AND RESULTS

To demonstrate the performance of the proposed SBR2C

algorithm, we define two simulation scenarios in Sec. V-A.

Simulations on the achievable coding gain are presented in

Sec. V-B, followed by comments on the influence of estimation

inaccuracies in Sec. V-C and the algorithm and encoder

complexity in Sec. V-D.

A. Simulation Scenarios

In general, we assume subband coding of a signal x[n]
which can be modelled as the output of an innovation fil-

ter [31] excited by uncorrelated noise. Popular processes for

subband coding use autoregressive (AR) models of first and

second order — AR(1) [13], [16], [17] and AR(2) [13],

[16], [18] — or higher order models such as AR(4) [19],

[20], AR(5) [13], [18], and ARMA(5) [32] providing a multi-

band structure. For this reason, we utilise an AR(4) process

characterised by a transfer function A(z) with two complex

conjugate pole pairs 0.9e±j0.6283 and 0.85e±j2.8274, and mag-

nitude response shown in Fig. 2(a).

Further, an ensemble of 330 moving average (MA) systems

of order 14 is utilised, whereby the coefficients of sample sys-

tems are drawn from independent and identically distributed

Gaussian processes of unit variance and zero mean. The

excitation of the innovation filters are formed by uncorrelated

zero mean and unit variance quaternary phase shift keying

(QPSK) sequences. With the exception of the window method,

all algorithms below operate on x[n] decomposed into M = 4
polyphase components.

B. Coding Gain

1) PCFB Approximation and Spectral Majorisation :

Multiplexing the AR(4) process x[n] into M = 4 polyphase

components for subband coding, Figs. 2 and 3 show the results

for the proposed SBR2 system as well as for SBR2, IGA,

and AEVD in terms of the filter bank filters and the spectral

majorisation. The CSD matrix estimate R̂(z) for SBR2C,

SBR2, and AEVD, and the estimate of the power spectral

density Sxx(ejΩ) required for IGA are based on 211 samples

of x[n].

Fig. 2. (a) PSD of input signal x[n] produced by AR(4) model, and (b)–(e)
magnitude responses of filters Hm(z) for theoretical PCFB (dashed), SBR2C
(solid, L = 150 iterations) and SBR2 (dotted, L = 150 iterations).

Fig. 3. (a)-(d) magnitude responses of filters Hm(z) for theoretical PCFB
(dashed), IGA (solid, filter order N = 25) and AEVD (dotted, filter order
N = 40 iterations), obtained for the AR(4) model in Fig. 2(a).

The true PSD of x[n] is shown in Fig. 2(a). Based on

this PSD, a theoretical PCFB can be stated, which consists

of M -band filters with a binary magnitude response and a

fragmented passband spectrum in order to yield the theoretical

maximum coding gain GPCFB according to [5], [6]. This the-

oretical PCFB is shown as a benchmark for various algorithms

in Fig. 2(b)-(e) and Fig. 3(a)-(d). The filter banks obtained for

SBR2C and SBR2 after L = 150 iterations are characterised

in Fig. 2(b)-(e), and exhibit a close approximation of the

PCFB except in spectral regions where the PSD has low

values. IGA and AEVD were selected of order N = 25 and

N = 40 respectively — values which will be justified below

in Secs. V-B2 and V-D — yielding the filter banks shown in

Fig. 3(a)-(d). The proposed SBR2C algorithm is the closest in

approaching the ideal PCFB characteristic. The motivation for

the cost function alteration over SBR2 as derived in Sec. III

becomes evident when considering the subchannels of weakest

power. Fig. 4 underlines this by showing the majorisation prop-

erties of both SBR2C and SBR2 after L = 150 iteration, where
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Fig. 4. Spectral majorisation of elements in (14) after L = 150 iterations
for (a) SBR2 and (b) SBR2C, with the latter achieving complete spectral
majorisation with SL,11(ejΩ) ≥ · · · ≥ SL,44(ejΩ)∀Ω.

SBR2C fulfills spectal majorisation for all subchannels, while

SBR2 does not achieve this for the two weakest subchannels.

2) Coding Gain Evolution : The evolution of coding gain

based on the AR(4) process is shown in Fig. 5, comparing the

proposed SBR2C algorithm to the benchmarkers. The coding

gain results are averaged over different randomised excitations

of the AR(4) innovation filter A(z). The upper bound is given

by the coding gain, which can be calculated for the theoretical

PCFB [5], [6]. For comparison, an M × M KLT is included,

which performs the optimal narrowband decorrelation in the

sense of (7). IGA converges quickly with order N , but the

coding gain value again decreases beyond a value of N = 25,
which had therefore been selected to evaluate the filter banks

in Fig. 3 of Sec. V-B1. The IGA algorithm requires an iteration

parameter, which gave best results for values of around 1000;

however even a substantial increase in this iteration index

could not alter the drop in performance. AEVD, SBR2 and

SBR2C are based on similar principles, but while AEVD

converges quickly, SBR2C achieves a higher coding gain,

which, due to its better spectral majorisation performance

w.r.t. weaker subbands, also outperforms SBR2.

To verify the result for the AR(4) model, the various

algorithms were tested on the randomised MA(14) process for

M = 4 subbands. Since every sample of the MA(14) ensemble

has a different associated optimal coding gain GPCFB as

defined by the theoretical PCFB, a normalised coding gain

Ĝ
(n)
l =

Ĝl

GPCFB
(42)

is introduced, which in the case of ideal subband coding

converges towards unity. The estimation of the CSD matrix

R(z) or the input PSD Sxx(ejΩ) is again based on 211 samples

of x[n]. The resulting normalised coding gain averaged over

330 ensemble processes is shown in Fig. 6. The general

behaviour of algorithms is similar to the AR(4) system, with

Fig. 5. Evolution of coding gain with iteration number L (SBR2, SBR2C)
or filter order N (IGA, AEVD) for AR(4) process.

Fig. 6. Evolution of ensemble averaged normalised coding gain with iteration
number L (SBR2, SBR2C) or filter order N (IGA, AEVD, WM) for random
MA(14) processes. All algorithms operate on M = 4 subbands, except for
WM with M = 2.

AEVD providing fast initial convergence, and the proposed

SBR2C algorithm, achieving the highest normalised coding

gain with increasing number of iterations.

The window method (WM) [17] defines a compaction filter

for which a complementary filter for an M = 2 channel filter

bank is easily found. Since for values of M > 2 the method

becomes ambiguous, the WM approach is here restricted to

the exception M = 2. While its coding gain reaches a value

of around 0.85 when normalised w.r.t. the optimum PCFB

coding gain for M = 2, the increased performance for a PCFB

for M = 4 leads to lower values for Ĝ
(n)
l in Fig. 6. While

the displayed performance may seem modest, the WM offers

computational advantages, as will be seen later.

To underline the impact of the modifications applied in

SBR2C over SBR2, Fig. 7 demonstrates the evolution of the

compaction gain Ĝcomp as defined in (6) and normalised with

respect to the optimal performance of the PCFB analogously

to (42), analogous considerations for WM as applied in Fig. 6.

Since SBR2 gives more weight to the diagonalisation of

strong subchannels, its performance w.r.t. compaction gain

is superior over the proposed SBR2C algorithm. However, it
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Fig. 7. Evolution of ensemble averaged normalised compcation gain with
iteration number L (SBR2, SBR2C) or filter order N (IGA, AEVD, WM)
for random MA(14) processes. All algorithms operate on M = 4 subbands,
except for WM with M = 2. The KLT’s average normalised compaction gain
of 0.363 is omitted.

is interesting to note that both algorithms converge to very

similar compaction gains for an increased number of iterations.

C. Influence of Estimation Errors

Sec. IV concentrated on the estimation of the CSD matrix

based on data available over a finite window. This section

explores the impact of different data window sizes on the

accuracy of subband coding algorithms. Given the dominance

of SBR2, SRB2C, and AEVD as established on Sec. V-B2,

the comparison is restricted to these three methods. As an

example, we the utilise the AR(4) innovation filter, with results

averaged over 200 different instances of QPSK excitations.

The results for two different window sizes of x[n], T = 211

and T = 213, are compared with the case of knowledge of true

underlying statistics , i.e. T → ∞. A suitable performance

measure is the normalised coding gain error,

Ê
(n)
l =

GPCFB − Ĝl

GPCFB
= 1 − Ĝ

(n)
l , (43)

which assesses the normalised mismatch w.r.t. the performance

of the ideal PCFB. For an optimal algorithm, Ê
(n)
l is expected

to converge to zero for large T and sufficient iterations L in

case of SBR2 and SBR2C or filter order N in case of the

AEVD. The results in Fig. 8 show the superiority of SBR2C

over SBR2 in terms of convergence to the PCFB performance.

The graph also highlights the performance difference between

the suboptimal and optimal estimation methods for R̂(z)
described in Sec. IV-A, which leads to an alteration in the

effective data size by a factor of M = 4. The results for the

next best competitor to SBR2C, the AEVD, are only shown

for the knowledge of true statistics, which is still outperformed

by SBR2 for a sufficiently high number of iterations.

D. Computational Complexity

1) Iterations, Filter Order, and Run Time Complexity:

The number of iterations L, which governs the convergence

Fig. 8. Normalised coding gain error obtained for AR(4) process with M = 4
with SBR2C (solid), SBR2 (dashed), and AEVD (dotted) for knowledge of
true statistics (square), and finite data windows of x[n] with T = 8192
(star) and T = 2048 (circle); for the latter two, curves are averaged over an
ensemble of 50 variations on the excitation sequence of the innovation filter
A(z).

Fig. 9. Dependency of filter order N on iteration number L for SBR2 and
SBR2C.

of SBR2 and SBR2C, and the filter order N , which is the

main parameter of the remaining benchmark methods, have

been shown together in previous plots but are not directly

equivalent. With order trimming during the iteration process

applied to both SBR2 and SBR2C as mentioned in Sec. II-E

and outlined in [22], the relation between N and L has been

measured for the randomised MA(14) process. The averaged

results on the dependency between N and L are given in

Fig. 9, showing an initial fast growth in order N and a gradual

slowing and saturation as iterations L progress. Although

measured for MA(14), these results have been found for all

systems attempted, and motivate the selection of L = 150 and

N = 40 in Figs. 2 and 3 in Sec. V-B1 for SBR2/SBR2C and

AEVD, respectively, to yield systems of comparable order.

The run time complexity defines the computation cost of

applying the PU encoder matrix H(z) to input data, and

is hence directly related to the filter order N . Therefore,

the relation between the achievable coding gain and run

time complexity is similar to the results displayed in Fig. 6,

whereby the curves for SBR2 and SBR2C are non-linearly

compressed according to Fig. 9 into the range N ≈ [1, 40],
increasing both the superiority of the AEVD at low orders

(N < 25), and the superiority of SBR2C at moderate to high

orders (N > 25).

2) Algorithm Complexity: The complexity of determining

the encoder matrix H(z) based on the various algorithms
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Fig. 10. CPU time requirement for calculation of encoder matrix H(z) for
different approaches as a function of iteration number L (SBR2 and SBR2C)
or filter order N (IGA, AEVD, and WM).

Fig. 11. Achievable normalised coding gain versus CPU time required to
calculate the encoder matrix H(z).

has been assess by the CPU time measured during 400h of

simulations for the coding gain evolution across an ensemble

of 330 randomised MA(14) processes. Fig. 10 reveals the

IGA as a very complex algorithm, followed by the AEVD.

The overhead of normalising the cross-correlation functions in

SBR2C results in a small complexity degradation w.r.t. SBR2

particularly at lower orders, while WM. although restricted

to M = 2, represents an approach with very low complexity

compared to IGA, AEVD, and SBR2/SBR2C.

To assess the achievable coding gain in terms of the effort

of calculating the encoder matrix, Fig. 11 relates the results

of Fig. 10 to Fig. 6 for the randomised MA(14) processes.

At low complexity, the window method can deliver the best

coding gain. Otherwise, the SBC2C algorithm offers the best

coding performance at the lowest cost compared to SBR2,

AEVD, and IGA.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated paraunitary filter bank

design techniques for subband coding. Specifically, we have

related principal component filter banks to a polynomial

matrix EVD, which is applied to the CSD matrix of the

polyphase component vector of the signal to be encoded.

Spectral majorisation is a key condition for good coding

gain performance, which has motivated the extension of an

existing PEVD algorithm, the SBR2 algorithm in [22] by an

alternative cost function, leading to the SBR2 algorithm for

subband coding, or SBR2C. Since optimal estimation of the

CSD matrix is crucial, two estimation techniques have been

considered, which exploit the implicit structure of the CSD

matrix, possessing both Parahermitian and pseudo-circulant

properties. Compared to a direct computation, the optimal

approaches are equivalent to effectively increasing the data

window by a factor M , when an M -channel subband coder is

considered.

The proposed SBR2C algorithm can converge to a solution

that yields an M -channel perfect reconstruction filter bank,

which is approximately optimal for subband coding in a small

number of iterations. The solution provided by the PEVD

obtained by SBR2C converges to that provided by the principle

component filter bank (PCFB) for subband signals as the

number of iterations increases. The coding performance of the

proposed algorithm has been demonstrated to exceed current

state-of-the-art methods, such as the iterative greedy algorithm

(IGA), the approximate EVD (AEVD), or the standard SBR2

algorithm for moderate to large filter orders on a set of

benchmark problems. When considering the calculation of the

encoder matrix, the window method has been shown to yield

moderate coding gain performance at a very low cost. On the

same benchmark problems, when admitting moderate to high

filter order, the SBR2C algorithm provides the best coding

performance at the lowest cost.

The proposed SBR2C algorithm has been mainly target-

ted towards subband coding, since a number of competitor

algorithms and benchmarks exist in the area. However, since

the algorithm applies a PEVD to the CSD matrix rather than

analysing the PSD of the single-channel input signal, the

applicability of the derived SBR2C algorithm is considerably

wider, and can include multi-channel coding or MIMO sub-

band coding.

APPENDIX A

PSEUDO-CIRCULANT PROPERTY OF R(z).

In the following, we show that the cross-spectral density

matrix R(z) of the demultiplexer output x[k] in Fig. 1(b) is

a pseudo-circulant matrix for a WSS input signal. The cross-

correlation between the mth and pth polyphase components,

rm,p[τ ], can be — according to the description in (30) —

expressed in terms of the input signal x[n] to the demultiplexer

and its auto-correlation r[τ ] = E{x[n]x∗[n − τ ]},

rm,p[τ ] = E
{
xm[k]x∗

p[k − τ ]
}

= E{x[Mk−m+1]x∗[Mk−p+1−Mτ ]}(44)

= r[Mτ + p − m] . (45)

The step from (44) to (45) is based on the wide sense station-

arity of x[n], which retains this property when decimated to

x[Mn] [12]. From (45), an entry of the CSD matrix R(z) in
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(32) can be denoted as

rm,p(z) =
∞∑

τ=−∞

r[Mτ + p − m]z−τ . (46)

With the polyphase decomposition of the auto-correlation

sequence

r(z) =
M−1∑

m=0

φm(zM )z−m (47)

we need to distinguish two cases in order to identify (46)

with one of the polyphase components φm(z) •—◦ φm[τ ] =
r[Mτ + m]:

a) Case p ≥ m: Since 0 ≤ p − m < M ,

rm,p(z) = φp−m(z) . (48)

b) Case p < m: Therefore 0 ≤ M + p − m < M ,

and the insertion of a spurious M into the argument of the

auto-correlation sequence leads to

rm,p(z) =

∞∑

τ=−∞

r[M(τ − 1) + M + p − m]z−τ

=
∞∑

ν=−∞

r[Mν + M + p − m]z−ν−1 (49)

= z−1φM+p−m(z) . (50)

With the substitution ν = τ−1 in (49), the two cases (48) and

(50) confirm the pseudo-circulant property of R(z) as defined
in (34) and (35).
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