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Abstract—The stability of sparse signal reconstruction is investi-
gated in this paper. We design efficient algorithms to verify the
sufficient condition for unique `1 sparse recovery. One of our
algorithm produces comparable results with the state-of-the-art
technique and performs orders of magnitude faster. We show
that the `1-constrained minimal singular value (`1-CMSV) of
the measurement matrix determines, in a very concise manner,
the recovery performance of `1-based algorithms such as the
Basis Pursuit, the Dantzig selector, and the LASSO estimator.
Compared with performance analysis involving the Restricted
Isometry Constant, the arguments in this paper are much less
complicated and provide more intuition on the stability of sparse
signal recovery. We show also that, with high probability, the
subgaussian ensemble generates measurement matrices with `1-
CMSVs bounded away from zero, as long as the number of
measurements is relatively large. To compute the `1-CMSV and
its lower bound, we design two algorithms based on the interior
point algorithm and the semi-definite relaxation.

Index Terms—`1-constrained minimal singular value, Basis
Pursuit, Dantzig selector, interior point algorithm, LASSO esti-
mator, restricted isometry property, sparse signal reconstruction,
semidefinite relaxation, verifiable sufficient condition

I. INTRODUCTION

Sparse signal reconstruction aims at recovering a sparse
signal x ∈ Rn from observations of the following model:

y = Ax + w, (1)

where A ∈ Rm×n is the measurement or sensing matrix,
y is the measurement vector, and w ∈ Rm is the noise
vector. The sparsity level k of x is defined as the number
of non-zero components of x. The measurement system is
underdetermined because the number of measurements m is
much smaller than the signal dimension n. However, when
the sparsity level k is also small, it is possible to recover x
from y in a stable manner. Reconstruction of a sparse signal
from linear measurements appears in many signal processing
branches, such as compressive sensing [1]–[3], sparse linear
regression [4], source localization [5], [6], sparse approxi-
mation, and signal denoising [7]. Model (1) is applicable to
many practical areas such as DNA microarrays [8]–[11], radar
imaging [12]–[14], cognitive radio [15], and sensor arrays [5],
[6], to name a few.

This paper is motivated by the following considerations.
When we are given a sensing or measurement system (1),
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we usually want to know the performance of the system
before using it, or at least to know whether it works in
the ideal setting. This involves deriving a verifiable sufficient
condition for unique recovery and a computationally amenable
performance measure. Furthermore, in signal processing and
the applications mentioned in the previous paragraph, we
usually have the freedom to design the sensing matrix; that is,
we can choose the best from a collection of sensing matrices.
For example, in radar imaging and sensor array applications,
sensing matrix design is connected with waveform design and
array configuration design. The `1-CMSV of this paper has
already been used to optimally design orthogonal frequency
division multiplexing (OFDM) radar signals for detecting a
moving target in the presence of multipath reflections [16].
We hope the practitioners in similar fields will also find the
results in this paper useful.

The contribution of the work is fourfold. First, we design
two algorithms to verify the sufficient condition that a sparse
signal can be uniquely recovered using `1 minimization in
the noise-free setting. By solving multiple linear programs
efficiently, one of the algorithms produces comparable results
with the state-of-the-art verification algorithms and performs
orders of magnitude faster. Second, we derive concise bounds
on the `2 norm of estimation error for the Basis Pursuit,
the Dantzig selector, and the LASSO estimator in terms of
the `1−CMSV. As the third contribution, we demonstrate
that if the number of measurements m is reasonably large,
subgaussian random matrices have `1-CMSVs bounded away
from zero, with high probability. This implies that at least for
subgaussian random matrices, the `1-CMSV is as good as the
restricted isometry constant. Last but not least, we develop
algorithms to compute the `1-CMSV for an arbitrary sensing
matrix and compare their performance. These algorithms are
by no means the most efficient ones. However, once we
shift from an optimization problem with a discrete nature
(e.g., the restricted isometry constant) to a continuous one,
there are many optimization tools available and more efficient
algorithms can be designed.

Many quantities and properties on the sensing matrix A
have been proposed to guarantee a stable or unique signal
reconstruction, most notably the Restricted Isometry Constant
(RIC) [1], [17] and the Null Space Property (NSP) [18].
The RIC provides a unified framework to deal with sparse
signal recovery and has very nice geometrical explanations.
However, it is known to be very difficulty to compute. There-
fore, computable bounds on quantities involved in the RIC
and the NSP are computed using, for example, semi-definite
programming relaxation [19], [20], and linear programming
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relaxation [21]. To the best of the authors’ knowledge, the
algorithms of [20] and [21] in verifying the sufficient condition
of unique `1 recovery represent the state-of-the-art technique
in this direction. In our paper, instead of computing a quantity
(αk in [21]) for various sparsity levels k and checking if it
is less than 1/2, we directly seek the critical sparsity level
below which unique recovery is guaranteed. We compare our
verification algorithms with those in [20] and [21] using nu-
merical simulations. One of our algorithms performs orders of
magnitude faster, consumes much less memory, and produces
comparable results.

The paper is organized as follows. In Section II, we present
the measurement model, three convex relaxation algorithms,
and the RIC. Section III is devoted to deriving sufficient
conditions for unique `1 recovery and deriving bounds on
the recovery errors of several convex relaxation algorithms.
In Section IV, we show that the majority of realizations of the
subgaussian measurement ensemble have good `1-CMSVs. In
Section V, we design algorithms to verify unique recovery, and
compute the `1-CMSV and its lower bound. We compare the
algorithms’ performance in Section VI. Section VII summaries
our conclusions.

II. THE MEASUREMENT MODEL, RECONSTRUCTION
ALGORITHMS, AND RESTRICTED ISOMETRY PROPERTY

A. The Measurement Model

The following measurement model is used throughout the
paper. Suppose we have a sparse signal x ∈ Rn, i.e., x has
only a few non-zero components. The sparsity level k of x
is defined as the number of non-zero elements of x, or the
`0 “norm” of x: k = ‖x‖0. We call a vector k−sparse if
its sparsity level ‖x‖0 ≤ k. For ease of presentation, we
restrict ourselves to exactly sparse signals in this paper and
leave approximately sparse signals to future work.

We observe y ∈ Rm through the following linear model:

y = Ax + w, (2)

where A ∈ Rm×n is the sensing/measurement matrix and w ∈
Rm is the noise/disturbance vector.

In this paper, we focus on three most renown recovery
algorithms based on convex relexation: the Basis Pursuit (BP)
[22], the Dantzig Selector (DS) [23], and the LASSO estimator
[24]:

BP: min
z∈Rn

‖z‖1 s.t. ‖y −Az‖2 ≤ ε (3)

DS: min
z∈Rn

‖z‖1 s.t. ‖AT (y −Az)‖∞ ≤ λnσ (4)

LASSO: min
z∈Rn

1

2
‖y −Az‖22 + λnσ‖z‖1. (5)

Here λn is a turning parameter, and ε and σ is a measure of
the noise level. All these three optimization programs can be
implemented efficiently using convex programming or even
linear programming.

The performance of the BP, the DS and the LASSO, more
specifically the error bounds on the solutions of these algo-
rithms, usually involve the incoherence of the sensing matrix
A. Many quantities are proposed to measure the incoherence

of the sensing matrix, for example, the Restricted Isometry
Constant (RIC) [3], [17], the Restricted Eigenvalue assumption
[25], and the Restricted Correlation assumption [26], among
others. However, these quantities are very difficult to compute.
For example, the only known technique to exactly compute the
RIC is test all its submatrices of certain size.

We will compare our CMSV based bounds with the RIC
based bounds. For this purpose, we follow [3], [17] to define
the RIC as follows:

Definition 1 For each integer k ∈ {1, . . . , n}, the restricted
isometry constant (RIC) δk of a matrix A ∈ Rm×n is defined
as the smallest δ > 0 such that

1− δ ≤ ‖Ax‖
2
2

‖x‖22
≤ 1 + δ (6)

holds for arbitrary non-zero k−sparse signal x.

The RIC has very clear geometrical meanings. A matrix A
with a small δk roughly means that A is nearly an isometry
when restricted onto all k−sparse vectors.

Now we cite some of the most renown performance results
on the BP, the DS, and the LASSO, which are expressed in
terms of the RIC. Assume x is a k−sparse signal and x̂ is its
estimate given by any of the three algorithms; then we have
the following:

1) BP [17]: Suppose that δ2k <
√

2 − 1 and ‖w‖2 ≤ ε.
The solution to the BP (3) satisfies

‖x̂− x‖2 ≤
4
√

1 + δ2k

1− (1 +
√

2)δ2k
· ε. (7)

2) DS [23]: If the noise w satisfies ‖ATw‖∞ < λnσ, and
δ2k + δ3k < 1. Then, the error signal obeys

‖x̂− x‖2 ≤
4
√
k

1− δ2k − δ3k
λnσ. (8)

3) LASSO [27]: Consider the noise-free case. Under the
condition of incoherence design with a sparsity multi-
plier sequence en, the error associated with the LASSO
estimator x̂ is bounded for sufficiently large n by

‖x̂− x‖2 ≤ 17.5 · λnσ ·
√
kn

(νmin
enkn

)2
. (9)

Here, the sparsity level k = kn depends on n. Refer
to [27] for more information on incoherence design and
multiplier sequence.

We note that in these error bounds, the terms involving the
RIC on the right hand sides are quite complicated. We will
compare these results with our bounds in Section III, which
are much more concise and whose derivations are much less
involved.

Although the RIC provides a measure quantifying the good-
ness of a sensing matrix, as mentioned earlier, its computation
poses great challenge. The computation difficulty is compen-
sated by the nice properties of RIC for a large class of random
sensing matrices. We cite one general result below [28]:
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• Let A ∈ Rm×n be a random matrix whose entries
are i.i.d. samples from any distribution that satisfies the
concentration inequality for any x ∈ Rn and 0 < ε < 1:

P
(∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ ε‖x‖22) ≤ 2e−mc0(ε). (10)

Then, for any given δ ∈ (0, 1), there exist constants
c1, c2 > 0 depending only on δ such that δk ≤ δ, with
probability not less than 1− 2e−c2m, as long as

m ≥ c1k log
n

k
. (11)

We remark that distributions satisfying the concentration
inequality (10) include the Gaussian distribution and the
Bernoulli distribution. For the `1-CMSV, we will establish a
theorem similar to the one above for the subgaussian ensemble
with the same bound on m. The subgaussian ensemble in this
paper includes the Gaussian ensemble, the Bernoulli ensemble,
as well as the normalized volume measure on various convex
symmetric bodies , for example, the unit balls of `np for
2 ≤ p ≤ ∞ [29].

III. STABILITY OF CONVEX RELAXATION BASED ON THE
`1-CONSTRAINED MINIMAL SINGULAR VALUE

In this section, we present two approaches to verify the
sufficient condition for the uniqueness of `1-recovery. We also
derive bounds on the reconstruction errors for the BP, the DS
and the LASSO. Our bounds are given in terms of the `1-
CMSV rather than the RIC of matrix A .

We first introduce a quantity that measures the sparsity, (or,
more accurately, the density), of a given vector x.

Definition 2 The `1-sparsity level of a non-zero vector x ∈
Rn is defined as

s(x) =
‖x‖21
‖x‖22

. (12)

The scaling and permutation invariant s(x) is indeed a
measure of sparsity. To see this, suppose ‖x‖0 = k; then the
Cauchy-Schwartz inequality implies that

s(x) ≤ k, (13)

and we have equality if and only if the absolute values of
all non-zero components of x are equal. Therefore, the more
non-zero elements x has and the more evenly the magnitudes
of these non-zero elements are distributed, the larger sp(x). In
particular, if x has exactly one non-zero element, then s(x) =
1; if x has n non-zero elements with the same magnitude, then
s(x) = n.

We use the `1−sparsity level as a tool to relax the necessary
and sufficient condition for exact `1 recovery in the noise less
setting [30]–[32]. In particular, Zhang showed in [30] that x
with ‖x‖0 = k is the unique solution to BP with ε = 0:

min
z∈Rn

‖z‖1 s.t. Ax = Az (14)

if and only if ∑
i∈S
|zi| <

∑
i/∈S

|zi| (15)

for any z such that Az = 0 and any index set S ⊂ {1, . . . , n}
of size at most k. We are interested in finding k∗, the maximal
k such that the necessary and sufficient condition (15) is
satisfied.

We note that a sufficient condition for exact `1 recovery is

s(z) > 4k (16)

for any z ∈ Ker(A)
def
= {z : Az = 0}. This is because the

negation of (15):

∃z ∈ Ker(A) and S with size at most k

such that
∑
i∈S
|zi| ≥

∑
i/∈S

|zi|

implies

‖z‖1 ≤ 2
∑
i∈S
|zi|

≤ 2
√
k

√∑
i∈S
|zi|2

≤ 2
√
k‖z‖2.

Therefore, the minimization of s(z) over Ker(A) yields a
lower bound on k∗. Unfortunately, this optimization is very
difficult. In section V, we present a semidefinite relaxation
algorithm to obtain a lower bound on k∗.

Another relaxation approach is to replace the `2 norm in
the definition of the `1-sparsity level with the `∞ norm. Note
that the negation of (15) also implies that

‖z‖1 ≤ 2
∑
i∈S
|zi| (17)

≤ 2k‖z‖∞. (18)

Therefore, the following optimization problem

min
z:Az=0

1

2

‖z‖1
‖z‖∞

(19)

finds a lower bound on the maximal k such that (15) is satis-
fied. In Section V, we will present a polynomial time algorithm
to solve (19). The algorithm solves n linear programs and
produces results comparable to the best known results in [21]
within a much shorter time.

In the noisy setting, our derivation of the error bounds for
the BP, the DS, and the LASSO relies heavily on the fact that
the error vectors have small `1−sparsity levels.

Now we are ready to define the `1−constrained minimal
singular value (CMSV):

Definition 3 For any s ∈ [1, n] and matrix A ∈ Rm×n, define
the `1-constrained minimal singular value (abbreviated as `1-
CMSV) of A by

ρs(A)
def
= min

x6=0, s(x)≤s

‖Ax‖2
‖x‖2

. (20)

Intuitively, the `1−CMSV ρs(A) measures the invertibility
of the operator A : Rn 7→ Rm when restricted onto vectors
with `1-sparsity level not greater than s.
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In the following theorem, we present our error bounds in
terms of the `1−CMSV, whose proof is given in Appendix A:
Theorem 1 Suppose the support of the true signal x is of size
k.

1) If the noise w is bounded; that is, ‖w‖2 ≤ ε, then the
solution x̂ to the BS (3) obeys

‖x̂− x‖2 ≤ 2ε

ρ4k
. (21)

2) If the noise w in the DS (4) satisfies ‖ATw‖∞ ≤ λnσ,
then the solution to (4) obeys

‖x̂− x‖2 ≤
4
√
k

ρ24k
λnσ. (22)

3) If the noise w in the LASSO (5) satisfies ‖ATw‖∞ ≤
κλnσ for some κ ∈ (0, 1), then the solution x̂ to the
LASSO estimator (5) obeys

‖x̂− x‖2 ≤
1 + κ

1− κ
· 2
√
k

ρ2 4k
(1−κ)2

λnσ. (23)

As shown in Appendix A, the procedure of establishing
Theorem 1 has two steps:

1) For all three algorithms, show that the error vector h =
x̂−x is `1−sparse: s(x) ≤ s, where s = 4k for the BP
and the DS, and s = 4k/(1− κ)2 for the LASSO. This
automatically leads to a lower bound ‖Ah‖2 ≥ ρs‖h‖2;

2) Obtain an upper bound on ‖Ah‖2 or ‖Ah‖22 and invoke
Definition 3 of the `1-CMSV .

The derivation is simpler than those employed for obtaining
the RIC based bounds.

When the noise w ∼ N (0, σ2Im), as shown by Candés and
Tao in [23], with high probability, w satisfies the orthogonality
condition

|wTAj | ≤ λnσ for all 1 ≤ j ≤ n, (24)

for λn =
√

2 log n. More specifically, defining the event

E
def
= {‖ATw‖∞ ≤ λnσ}, (25)

we have

P(Ec) ≤ 2n · (2π)−1/2e−λ
2
n/2

λn
. (26)

Therefore, with λn =
√

2(1 + t) log n, we obtain

P(E) ≥ 1−
(√

π(1 + t) log n · nt
)−1

. (27)

As a consequence, the conditions on noise in Theorem 1 for
the DS and the LASSO hold with high probability.

Compared with the RIC bounds (7), (8), and (9), our CMSV
bounds (21), (22), and (23) are more concise. Of course, if the
CMSV ρs(A) is not bounded away from zero, these concise
bounds would not offer much. We will show in Section IV that,
at least for a large class of random matrices, the corresponding
`1-CMSVs are bounded away from zero with high probability
if m ≥ c1k log n

k .

IV. `1-CONSTRAINED MINIMAL SINGULAR VALUES OF
RANDOM MATRICES

This section is devoted to analyzing the property of the `1-
CMSVs for the subgaussian ensemble. We employ a recent
estimate on the behavior of empirical processes involving
subgaussian random variables [29].

Before we turn to the general empirical process result of
[29] developed by the delicate use of the powerful generic
chaining idea, we need some notations and definitions. For a
scalar random variable X , the Orlicz ψ2 norm is defined as

‖X‖ψ2
= inf

{
t > 0 : E exp

(
|X|2

t2

)
≤ 2

}
. (28)

Markov’s inequality immediately gives that X with finite
‖X‖ψ2 has subgaussian tail

P(|X| ≥ t) ≤ 2 exp(−ct2/‖X‖ψ2). (29)

The converse is also true, i.e., if X has subgaussian tail
exp(−t2/K2), then ‖X‖ψ2

≤ cK.
A random vector X ∈ Rn is called isotropic and subgaus-

sian if E| 〈X,u〉 |2 = ‖u‖22 and ‖ 〈X,u〉 ‖ψ2 ≤ L‖u‖2 hold
for any u ∈ Rn. A random vector X with independent sub-
gaussian entries X1, . . . , Xn is a subgaussian vector because
[33]

‖〈X,u〉‖ψ2
≤ c

√√√√ n∑
i=1

u2
i ‖Xi‖2ψ2

≤ c max
1≤i≤n

‖Xi‖ψ2‖u‖. (30)

Clearly, if in addition {Xi} are centered and has unit
variance, then X is also isotropic. In particular, the standard
Gaussian vector on Rn and the sign vector with i.i.d. 1/2
Bernoulli entries are isotropic and subgaussian. Isotropic and
subgaussian random vectors also include the vectors with the
normalized volume measure on various convex symmetric
bodies , for example, the unit balls of `np for 2 ≤ p ≤ ∞ [29].

We reformulate the `1−CMSV for sensing matrices with
subgaussian entries using empirical processes. Suppose the en-
tries of A are i.i.d. with subgaussian tails such that E‖Au‖22 =
m‖u‖22 for any u ∈ Rn. The rows of A are denoted by
{aTi , i = 1, . . . ,m}. Denote Hns = {u ∈ Rn : ‖u‖22 =
1, ‖u‖21 ≤ s}. We note that ρs(A/

√
m) > 1 − ε is a

consequence of

supu∈Hns

∣∣∣∣ 1

m
uTATAu− 1

∣∣∣∣
= supu∈Hns

∣∣∣∣∣ 1

m

m∑
i=1

〈ai,u〉2 − 1

∣∣∣∣∣ ≤ ε. (31)

Define a class of functions parameterized by u as Fs
def
=

{fu(·) = 〈u, ·〉 : u ∈ Hns } and denote Pm the empirical
measure that puts equal mass at each of the m random
variables (observations) a1, . . . ,am, i.e.,

Pm(·) =
1

m

m∑
i=1

δai(·) (32)
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with δx(·) the dirac measure that puts unit mass at x.
We realize that { 1

m

∑m
i=1 〈ai,u〉

2} is the empirical process
{Pm(f2)}f∈Fs . We slightly abuse notation and use Ef2 to
denote Ef2(a). Then, our goal is to estimate

Esupf∈Fs
∣∣Pm(f2)− Ef2

∣∣ (33)

and

P
{

supf∈Fs
∣∣Pm(f2)− Ef2

∣∣} , (34)

a central topic of the study of empirical processes.
A key concept in studying general Gaussian processes as

well as the empirical process {Pm(f2)}f∈Fs is the γp function
we are going to define. We need some setup first. For any
set X , an admissible sequence is a sequence of increasing
partitions {Qk}k≥0 of X such that card(Q0) = 1 and
card(Qk) = 22

k

for k ≥ 1. By a sequence of increasing
partitions, we mean that every set in Qk+1 is contained in
some set of Qk. We will use Qk(x) to denote the unique set
in partition Qk that contains x. The diameter of Qk(x) is
denoted by ∆(Qk(x)). Then we have the following definition
for γp function associated with a metric space:

Definition 4 [34] Suppose (X , d) is a metric space and p > 0.
We define

γp(X , d) = inf supx∈X
∑
k≥0

2k/p∆(Qk(x)), (35)

where the infimum is taken over all admissible sequences.

The importance of the γp lies in its relationship with the
behavior of Gaussian process indexed by a metric space when
the metric is induced by the Gaussian process. More precise,
suppose {Xx}x∈X is a Gaussian process indexed by the metric
space (X , d) with

d(x,y) = (E(Xx −Xy)2)1/2, (36)

then we have

cγ2(X , d) ≤ Esupx∈XXx ≤ Cγ2(X , d) (37)

for some numerical constants c and C. The upper bound (the
generic chaining bound) was first established by Fernique [35]
and the lower bound is obtained by Talagrand using majorizing
measures [36]. The rather difficult concept of majorizing
measures has been considerably simplified through the notion
of “generic chaining”, an idea that dates back to Kolmogorov
and is greatly advanced in recently years by Talagrand [34].

With these preparations, we present the major result of [29]:

Theorem 2 [29] Let {a,ai, i = 1, . . . ,m} ⊂ Rn be i.i.d.
random vectors which induce a measure µ on Rn, and F be a
subset of the unit sphere of L2(Rn, µ) with diam(F , ‖·‖ψ2

) =
α. Then there exist absolute constants c1, c2, c3 such that for
any ε > 0 and m ≥ 1 satisfying

m ≥ c1
α2γ22(F , ‖ · ‖ψ2

)

ε2
, (38)

with probability at least 1− exp(−c2ε2m/α4),

supf∈F

∣∣∣∣∣ 1

m

m∑
k=1

f2(ak)− Ef2(a)

∣∣∣∣∣ ≤ ε. (39)

Furthermore, if F is symmetric, we have

Esupf∈F

∣∣∣∣∣ 1

m

m∑
k=1

f2(ak)− Ef2(a)

∣∣∣∣∣
≤ c3 max

{
α
γ2(F , ‖ · ‖ψ2)√

m
,
γ22(F , ‖ · ‖ψ2

)

m

}
. (40)

We apply Theorem 2 to estimate the `1-CMSV. Consider
the function set F = Fs = {fu(·) = 〈u, ·〉 : ‖u‖22 =
1, ‖u‖21 ≤ s}. Assume a ∈ Rn is isotropic and subgaussian.
As a consequence of the isotropy of a and ‖u‖2 = 1, we get
Fs is a subset of the unit sphere of L2(Rn, µ). The symmetry
of Fs yields

α = diam(Fs, ‖ · ‖ψ2)

= 2supu∈Hns E 〈u,a〉
2

= 2. (41)

Now the key is to compute γ2(Fs, ‖ · ‖ψ2). Due to (37), the
problem reduces to the computation of Esupu∈HnsXu (actually
an upper bound suffices), where {Xu}u∈Hns is the canonical
Gaussian process:

Xu = 〈g,u〉 , g ∼ N (0, In),u ∈ Hns . (42)

Clearly, we have

γ2(Fs, ‖ · ‖ψ2) ≤ c Esupu∈Hns 〈g,u〉
≤ c E‖u‖1‖g‖∞
≤ c

√
s log n. (43)

As a consequence, we have the following theorem:

Theorem 3 Let the rows of the sensing matrix A be i.i.d.
subgaussian and isotropic random vectors. Then there exists
constants c1, c2, c3 such that for any ε > 0 and m ≥ 1
satisfying

m ≥ c1
s log n

ε2
, (44)

we have

E|1− ρs(A)| ≤ c2ε, (45)

and

P{1− ε ≤ ρs(A) ≤ 1 + ε} ≥ 1− exp(−c3ε2m). (46)

This theorem says that at least for subgaussian ensembles
(including the Gaussian ensemble and the Bernoulli ensemble),
the `1-CMSV bounds are as tight as the RIC bounds.

V. COMPUTATION OF THE `1-CMSVS

In this section, we first describe two algorithms to compute
a lower bound on the maximal k such that the sufficient
condition (15) is satisfied. This gives a way to verify that the
`1 recovery is exact in the noiseless setting. The second part
of this section is devoted to the computation of `1-CMSV and
its lower bound.
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A. Verifying the Sufficient Condition for Exact `1 Recovery

Using the `1-sparsity level to verify the sufficient condition
(15) (refer to Section III) is formulated as the following
optimization problem:

min
z:Az=0

1

4

‖z‖21
‖z‖22

, (47)

or equivalently,

max
z

4‖z‖22 s.t. Az = 0, ‖z‖1 ≤ 1. (48)

Unfortunately, this later optimization problem, which maxi-
mizes the `2 norm over a polyhedron, is NP-hard [37]. By
defining Z = zzT and dropping the rank constraint, we
instead use the following semidefinite relaxation to produce
a lower bound:

(L2) : max
Z:Z�0

4trace(Z)

s.t. trace(AZAT ) = 0, ‖Z‖1 ≤ 1, (49)

where ‖Z‖1 is the sum of absolute values of all elements in
Z.

Another relaxation based on the `∞ norm is to solve the
following optimization problem (refer to (19)):

(L∞) : max
z

2‖z‖∞ s.t. Az = 0, ‖z‖1 ≤ 1, (50)

which is solved by the following n linear programs:

max
z

2zi s.t. Az = 0, ‖z‖1 ≤ 1, i = 1, . . . , n. (51)

We observe this linear program subproblem is actually the dual
of the linear program subproblem used in [21] to compute
α1(A, β) when β = ∞. In this paper, the linear program
subproblems are implemented using the primal-dual algorithm
detailed in Chapter 11 of [38]. This algorithm produces results
comparable to those in [21] but is significantly faster.

B. Computing `1-CMSV

An advantage of using the `1-CMSV as a measure of the
“goodness” of a sensing matrix is the relative ease of its
computation. The computation of `1-CMSV is equivalent to

min
x∈Rn

‖Ax‖2 s.t. ‖x‖1 ≤
√
s, ‖x‖2 = 1. (52)

Unfortunately, the above optimization is not convex because
of the `2 constraint ‖x‖2 = 1. However, many tools at our
disposal can deal with the continuous problem (52), for
example, the Lagrange multiplier or the Karush-Kuhn-Tucker
condition [39]. We will present an interior point algorithm to
directly compute an approximate numerical solution of (52).
Since the optimization problem (52) is not convex, there is
no guarantee that the solution of the algorithm are the true
minima. Thus, we will also present a convex program to
compute a lower bound on `1-CMSV.

The interior point (IP) method provides a general approach
to efficiently solve the following general constrained optimiza-
tion problem:

min
z∈Rn

F (z) s.t. f(z) ≤ 0, g(z) = 0. (53)

The basic idea is to construct and solve a sequence of
penalized optimization problems with equality constraints:

min
z,σ

F (z)− µ
∑
i

log(σi)

s.t. f(z) + σ = 0, g(z) = 0. (54)

By using either a Newton step, which tries to solve the Karush-
Kuhn-Tucker equations [39], or a conjugate gradient step using
trust regions to solve the penalized problem (54) in each
iteration, the interior point approach efficiently generates a
sequence of solutions that converge to the solution of (53).
Refer to [40]–[42] for more information on this approach.

However, the interior point approach assumes that the
objective and constraint functions have continuous second
order derivatives, which is not satisfied by the constraint
‖z‖1 −

√
s ≤ 0. We address the non-differentiability of

f(z) = ‖z‖1 −
√
s by defining z = z+ − z− with

z+ = max(z,0) ≥ 0 and z− = max(−z,0) ≥ 0, which
leads to the following augmented optimization:

IP: min
z+,z−∈Rn

(z+ − z−)TATA(z+ − z−)

subject to
∑
i

z+
i +

∑
i

z−i − s ≤ 0,

(z+ − z−)T (z+ − z−) = 1,

z+ ≥ 0, z− ≥ 0. (55)

This algorithm is employed in [16] to design the transmitting
waveform of an OFDM radar for optimal detection and
estimation performance.

We briefly describe a semidefinite relaxation (SDR) ap-
proach to compute a lower bound on `1-CMSV. A similar
method was employed in [19] to compute an upper bound on
sparse variance maximization using the lifting procedure for
semidefinite programming [43]–[45]. Defining Z = zzT and
dropping the rank constraint transform problem (52) into the
following form:

SDR: min
Z�0

trace(ATAZ)

s.t. ‖Z‖1 ≤ s, trace(Z) = 1. (56)

Now SDR is a semidefinite programming problem. For a small
size problem, a global minimum can be achieved at high
precision using SEDUMI [46], SDPT3 [47] or CVX [48].
However, for relatively large n, the interior point algorithm
makes the memory requirement prohibitive (see [19] for more
discussion). In this paper, we do not consider more efficient
implementations of the SDR.

VI. NUMERICAL SIMULATIONS

We use numerical simulations to assess the effectiveness and
efficiency of the algorithms presented in Section V. Except
for the JN algorithm in Table IV, all other experiments were
performed on a platform with a Pentium D CPU@3.40GHz,
2GB RAM, and a Windows XP operating system.
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A. Verification of Sufficient Conditions

We first examine the L2 (49) and L∞ (50) algorithms for
verifying the sufficient condition (15). These two algorithms
are compared with the two algorithms d’AE and JN proposed
in [20] and [21], respectively. We name the two algorithms
d’AE and JN using the abbreviations of the authors’ names.
Recall that k∗ is defined as the maximal k such that (15) is
satisfied. In Table I, we show the lower bounds on k∗ for a
small size Bernoulli matrix with n = 40 computed by L2, L∞,
d’AE and JN. The algorithms of d’AE and JN are provided
by the authors for free download online.

TABLE I: Comparison of different verification algorithms for
a Bernoulli matrix with leading dimension n = 40.

m
lower bounds on k∗ CPU time (s)

L1 L∞ d’AE JN L1 L∞ d’AE JN
20 1 1 2 1 14.29 0.41 1040.40 4.59
24 1 2 2 2 16.11 0.38 694.20 0.69
28 2 3 3 3 15.12 0.37 710.90 16.20
32 2 3 4 3 15.43 0.37 894.08 2.45

TABLE II: Comparison of L∞ and JN for a Hadamard matrix
with leading dimension n = 256.

m
lower bounds on k∗ CPU time (s)
L∞ JN L∞ JN

25 1 1 3 35
51 2 2 6 70
76 3 3 7 102
102 4 4 9 303
128 5 5 9 544
153 7 7 13 310
179 9 9 15 528
204 12 12 18 1333
230 19 18 18 435

TABLE III: Comparison of L∞ and JN for a Gaussian matrix
with leading dimension n = 256.

m
lower bnd on k∗ CPU time (s)
L∞ JN L∞ JN

25 1 1 6 91
51 2 2 8 191
76 3 3 10 856
102 4 4 13 5630
128 4 5 16 5711
153 6 6 20 1381
179 7 7 24 3356
204 10 10 25 10039
230 13 14 28 8332

In the next set of experiments, we compare lower bounds
on k∗ computed by L∞ and JN, respectively, for n = 256.
In this case, both the semidefinite relaxation in this paper and
that in [20] are too time and memory consuming to compute.
The lower bounds and execution times are shown in Table II
and III for a Hadamard and a Gaussian matrix, respectively.

Table IV shows the results of L∞ and JN for a Hadamard
matrix with leading dimension n = 1024. Note the lower

TABLE IV: Comparison of L∞ and JN for Gaussian and
Hadamard matrices with leading dimension n = 1024. In
the column head, “G” represents Gaussian matrix and “H”
represents Hadamard matrix.

m
lower bounds on k∗ CPU time (s)

L∞(H) L∞(G) JN(G) L∞(H) L∞(G) JN(G)
102 3 2 2 182 136 457
204 4 4 4 501 281 1179
307 6 6 6 872 510 2235
409 8 7 7 1413 793 3659
512 11 10 10 1914 990 5348
614 14 12 12 1362 1309 7156
716 18 15 15 1687 1679 9446
819 24 20 21 1972 2033 12435
921 37 29 32 2307 2312 13564

bounds computed by JN and the CPU times of JN in table
IV are extracted from [21]. We were not able to carry out the
computation of JN within reasonable time in our platform.

From Table I, we see that for n = 40, d’AE performs the
best, and L∞ and JN give exactly the same results. However,
d’AE is very slow in general. For example, even with a first
order implementation, the d’AE takes more than 37 hours for
matrices of size 350 × 500, while the L∞ takes less than
3 minutes to finish the computation. From Table II, III and
IV, we see that L∞ and JN produces comparable results.
However, our L∞ algorithm performs much faster than the JN
algorithm. Because the two algorithms solve n linear program
subproblems that are dual to each other, they should yield
exactly the same results. However, we observe that sometimes
the upper bound and lower bound on the lower bound of k∗

computed by JN does not coincide. The difference in speed
might come from the implementation. Our implementation
of the linear sub-program employs the primal-dual approach
detailed in [38] while [21] uses the commercial LP solver
mosekopt [49].

B. Computation of `1-CMSV

We next report the test results of the IP and SDR algorithms
for computing the `1-CMSV and its lower bound, respectively.
The interior point algorithms IP is implemented using the
MATLAB R© function fmincon. The SDR is solved using CVX
[48] with the default SDPT3 solver.

We fist test IP and SDR on a Gaussian matrix A ∈ R20×60

for s = 5. Due to the existence of local minima, we need to run
IP several times and select the minimal function value among
all the trials as the `1-CMSV. Fifty random initial points on
the unit sphere in R60 are generated for IP. The SDR only
runs once. The results are shown in Table V. In this example,
SDR over-relaxes the problem and produces a zero `1-CMSV.

TABLE V: Comparison of IP and SDR for a Gaussian matrix.

minF (z∗) meanF (z∗) stdF (z∗) mean time (s)
IP 0.0666 0.7133 0.3661 2.8903
SDR 0.0000 0.0000 N/A 53.1583
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TABLE VI: IP for a Bernoulli matrix A ∈ R50×500.

minF (z∗) meanF (z∗) stdF (z∗) mean time (s)
IP 0.000371 0.007472 0.004545 123.6456

Fig. 1: `1-CMSV ρs and its bound as a function of s for
Bernoulli matrix with n = 60 and m = 10, 20, 40.

The IP is also tested for a Bernoulli matrix A ∈ R50×500

with results shown in Table VI. The CVX implementation of
SDR takes too much memory to run for n = 500.

We compare the `1-CMSVs ρs and their bounds as a
function of s computed by IP and SDR, respectively, for
Bernoulli random matrices. We consider a small-scale problem
with n = 60 and m = 10, 20, 40. A matrix B ∈ R40×60

with entries {+1,−1} following 1
2 Bernoulli distribution is

generated. For m = 10, 20, 40, the corresponding Bernoulli
matrix A is obtained by taking the first m rows of B. The
columns of A are then normalized to have unit norm. The
normalization implies that ρs ≤ ρ1 = 1. The IP uses 30
random initial points. As illustrated in Figure 1, the `1-CMSVs
and their bounds decrease very fast as s increases. For fixed
s, increasing m generally (but not necessarily, as shown in
Figure 2) increases the `1-CMSV and their bounds.

In Figure 2, the `1-CMSV ρs is plotted as a function of
m with varying parameter values: s = 5, 10 and 20. With
s fixed, the two algorithms (IP and SDR) are run for A ∈
Rm×n, with m increasing from 2s to n = 60. For each m,
the construction of A follows the procedure described in the
previous paragraph. The discrete nature of adding rows to A
while increasing m makes the curves in Figure 2 not as smooth
as those in Figure 1. The ρs increases with m in general, but
local decreases do happen. The gap between values computed
by IP and SDR is also clearly seen for medium s.

VII. CONCLUSIONS

In this paper, a new measure of a sensing matrix’s inco-
herence, the `1-CMSV, is proposed to quantify the stability
of sparse signal reconstruction. It is demonstrated that the

Fig. 2: `1-CMSV ρs and its bound as a function of m for
Bernoulli matrix with n = 60 and s = 5, 10, 20.

reconstruction errors of the Basis Pursuit, the Dantzig selector,
and the LASSO estimator are concisely bounded using the
`1-CMSV. A generic chaining argument shows that the `1-
CMSV is bounded away from zero with high probability
for the subgaussian ensemble, as long as the number of
measurements is relatively large. One interior point program
and one semidefinite program are presented to compute the
`1-CMSV and its lower bound, respectively. Numerical sim-
ulations assess the algorithms’ performance. The `1-CMSV
provides a computationally amenable measure of incoherence
that can be used for optimal design.

As a by product, two algorithms are designed to verify the
sufficient conditions guaranteeing the uniqueness of `1-based
recovery. The `∞ relaxation based algorithm is shown to pro-
duce comparable results with the state-of-the-art algorithms,
and performs much faster.

APPENDIX A
PROOF OF THEOREM 1

In this appendix, we derive the error bounds presented in
Theorem 1.

Proof of Theorem 1: We strictly follow the two-step
procedure expounded in Section III.

1) In order to establish the `1-sparsity of the error vector in
the first step, we suppose S = supp(x) and |S| = ‖x‖0 = k.
Define the error vector h = x̂ − x. For any vector z ∈ Rn
and any index set S ⊆ {1, . . . , n}, we use zS ∈ R|S| to
represent the vector whose elements are those of z indicated
by S.

We first deal with the BP and the DS. As observed by
Candés in [17], the fact that ‖x̂‖1 = ‖x+h‖1 is the minimum
among all z satisfying the constraints in (3) and (4), together
with the fact that the true signal x satisfies the constraints as
required by the conditions imposed on the noise in Theorem
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1, imply that ‖hSc‖1 cannot be very large. To see this, we
observe that

‖x‖1 ≥ ‖x + h‖1
=

∑
i∈S
|xi + hi|+

∑
i∈Sc
|xi + hi|

≥ ‖xS‖1 − ‖hS‖1 + ‖hSc‖1
= ‖x‖1 − ‖hS‖1 + ‖hSc‖1. (57)

Therefore, we obtain ‖hSc‖1 ≤ ‖hS‖1, which leads to

‖h‖1 = ‖hS‖1 + ‖hSc‖1
= 2‖hS‖1
≤ 2

√
k‖hS‖2

≤ 2
√
k‖h‖2, (58)

where for the next to the last inequality we used the Cauchy-
Schwart inequality. Inequality (58) is equivalent to

s(h) ≤ 4k. (59)

We now continue to establish the `1 sparsity of the error
vector for the LASSO (5). We borrow ideas from [50] (see
also [25]). Since the noise w satisfies ‖ATw‖∞ ≤ κλnσ for
some small κ > 0 and x̂ is a solution to (5), we have
1

2
‖Ax̂− y‖22 + λnσ‖x̂‖1 ≤

1

2
‖Ax− y‖22 + λnσ‖x‖1.

Consequently, substituting y = Ax + w yields

λnσ‖x̂‖1 ≤ 1

2
‖Ax− y‖22 −

1

2
‖Ax̂− y‖22 + λnσ‖x‖1

=
1

2
‖w‖22 −

1

2
‖A(x̂− x)−w‖22 + λnσ‖x‖1

=
1

2
‖w‖22 −

1

2
‖A(x̂− x)‖22

+ 〈A(x̂− x),w〉 − 1

2
‖w‖22 + λnσ‖x‖1

≤ 〈A(x̂− x),w〉+ λnσ‖x‖1
=

〈
x̂− x, ATw

〉
+ λnσ‖x‖1.

Using the Cauchy-Swcharz type inequality, we get

λnσ‖x̂‖1 ≤ ‖x̂− x‖1‖ATw‖∞ + λnσ‖x‖1
= κλnσ‖h‖1 + λnσ‖x‖1,

which leads to

‖x̂‖1 ≤ κ‖h‖1 + ‖x‖1.

Therefore, similar to the argument in (57) we have

‖x‖1
≥ ‖x̂‖1 − κ‖h‖1
= ‖x + hSc + hS‖1 − κ (‖hSc + hS‖1)

≥ ‖x + hSc‖1 − ‖hS‖1 − κ (‖hSc‖1 + ‖hS‖1)

= ‖x‖1 + (1− κ)‖hSc‖1 − (1 + κ)‖hS‖1,

where S = supp(x). Consequently, we have

‖hSc‖1 ≤ 1 + κ

1− κ
‖hS‖1.

Therefore, an argument similar to the one leading to (58) yields

‖h‖1 ≤
2

1− κ
√
k‖h‖2, (60)

or equivalently,

s(h) ≤ 4k

(1− κ)2
. (61)

2) We now turn to obtain an upper bound on ‖Ah‖2. For the
BP (3), this is trivial because both x and x̂ satisfy constraint
‖y −Az‖ ≤ ε in (3). The triangle inequality yields

‖Ah‖2 = ‖A(x̂− x)‖2
≤ ‖Ax̂− y‖2 + ‖y −Ax‖2
≤ 2ε. (62)

It then follows from Definition 3 that

ρ4k‖h‖2 ≤ ‖Ah‖2 ≤ 2ε. (63)

Hence, we get

‖x̂− x‖2 ≤ 2ε

ρ4k
. (64)

For the DS (4), as shown in [23], the condition on noise
‖ATw‖∞ ≤ λnσ and the constraint in the Dantzig selector
(4) yield

‖ATAh‖∞ ≤ 2λnσ (65)

because

ATj (w − r̂) = ATj [(y −Ax)− (y −Ax̂)]

= ATj (Ax̂−Ax) = ATj Ah, (66)

where r̂ = y−Ax̂ is the residual corresponding to the Dantzig
selector solution x̂. Therefore, we obtain an upper bound on
‖Ah‖22 as follows:

hTATAh = |
n∑
i=1

hi(A
TAh)i|

≤
n∑
i=1

|hi| · |(ATAh)i|

≤ 2λnσ‖h‖1. (67)

Equation (67), the definition of ρ4k, and equation (58) together
yield

ρ24k‖h‖22 ≤ hTATAh

≤ 2λnσ‖h‖1
≤ 4λn

√
kσ‖h‖2. (68)

We conclude that

‖x̂− x‖2 ≤ 4
√
k

ρ24k
λnσ. (69)
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Now we establish an upper bound on ‖Ah‖22 for the LASSO
(5) using a procedure similar to the one used for the DS given
above. We need to establish a bound on

‖ATAh‖∞
≤ ‖AT (y −Ax)‖∞ + ‖AT (y −Ax̂)‖∞
≤ ‖ATw‖∞ + ‖AT (y −Ax̂)‖∞
= κλnσ + ‖AT (y −Ax̂)‖∞. (70)

We again follow the procedure in [50] (see also [25]) to
estimate ‖AT (y − Ax̂)‖2. Since x̂ is the solution to (5), the
optimality condition yields that

AT (y −Ax̂) ∈ λnσ∂‖x̂‖1, (71)

where ∂‖x̂‖1 = [−1, 1]n is the subgradient of ‖ · ‖1 evaluated
at x̂.

As a consequence, we obtain

‖AT (y −Ax̂)‖∞ ≤ λnσ. (72)

Following the same lines in (67), we get

‖Ah‖22 ≤ (κ+ 1)λnσ‖h‖1. (73)

Then, Equation (60), (70) and (72)

ρ2 4k
(1−κ)2

‖h‖22 ≤ ‖Ah‖22

≤ (κ+ 1)λnσ

√
4k

1− κ
‖h‖2. (74)

As a consequence, we get

‖x̂− x‖2 ≤
1 + κ

1− κ
· 2
√
k

ρ2 4k
(1−κ)2

λnσ. (75)
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