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Stochastic Control of Event-Driven Feedback in
Multi-Antenna Interference Channels

Kaibin Huang, Vincent K. N. Lau, and Dongku Kim

Abstract—Spatial interference avoidance is a simple and ef-
fective way of mitigating interference in multi-antenna wireless
networks. The deployment of this technique requires channel-
state information (CSI) feedback from each receiver to all
interferers, resulting in substantial network overhead. To address
this issue, this paper proposes the method of distributive control
that intelligently allocates CSI bits over multiple feedback links
and adapts feedback to channel dynamics. For symmetric channel
distributions, it is optimal for each receiver to equally allocate the
average sum-feedback rate for different feedback links, thereby
decoupling their control. Using the criterion of minimum sum-
interference power, the optimal feedback-control policy is shown
using stochastic-optimization theory to exhibit opportunism.
Specifically, a specific feedback link is turned on only when the
corresponding transmit-CSI error is significant or interference-
channel gain is large, and the optimal number of feedback bits
increases with this gain. For high mobility and considering the
sphere-cap-quantized-CSI model, the optimal feedback-control
policy is shown to perform water-filling in time, where the number
of feedback bits increases logarithmically with the corresponding
interference-channel gain. Furthermore, we consider asymmetric
channel distributions with heterogeneous path losses and high
mobility, and prove the existence of a unique optimal policy for
jointly controlling multiple feedback links. Given the sphere-cap-
quantized-CSI model, this policy is shown to perform water-
filling over feedback links. Finally, simulation demonstrates that
feedback-control yields significant throughput gains compared
with the conventional differential-feedback method.

Index Terms—Interference channels, array signal process-
ing, stochastic optimal control, feedback communication, time-
varying channels, dynamic programming, Markov processes

I. INTRODUCTION

Interference limits the performance of decentralized wire-
less networks but can be effectively mitigated by multi-
antenna techniques, namely spatial interference cancelation
and avoidance. In a frequency-division-duplexing network,
spatial interference avoidance at interferers requires feedback
of interference channel state information (CSI) from all in-
terfered receivers, called cooperative feedback. Given finite-
rate cooperative feedback, CSI quantization errors result in
residual interference. Suppressing such interference requires
high-resolution feedback over a network of feedback links,
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resulting in overwhelming network overhead. This calls for re-
search on intelligent feedback control that optimally allocates
feedback bits over multiple feedback links and adapts feedback
to channel dynamics, which is the theme of this paper.

A. Prior Work

Extensive research has been carried out on designing
feedback-CSI-quantization algorithms for multi-antenna sys-
tems, called limited feedback [1], based on different ap-
proaches including line packing [2] and Lloyd’s algorithm [3].
Besides quantization, another effective approach for compress-
ing feedback CSI is to explore CSI redundancy due to the
wireless-channel correlation in time [4], [5], frequency [6], and
space [7]. Though a few feedback bits suffice in a point-to-
point multi-antenna system, the feedback requirement is more
stringent in multi-antenna downlink where CSI errors cause
multiuser interference [8]. This motivates the joint design of
CSI feedback and scheduling algorithms to exploit multiuser
diversity for reducing the required numbers of feedback bits
[9]–[12]. Both high-resolution feedback for multi-antenna
downlink and progressive feedback for correlated channels
require CSI feedback with adjustable resolutions. This is
realized using hierarchical CSI-quantizer codebooks [13], [14]
or systematic codebook generation [15], [16]. The current
work also concerns variable-rate feedback but focuses on
feedback control rather than codebook designs.

Recent research on limited feedback explores more complex
network topologies. In [17], the decentralized wireless net-
works based on interference alignment [18] are considered,
and the required scaling of the numbers of feedback bits
with respect to the signal-to-noise ratio (SNR) is derived such
that the channel capacity is achieved for high SNRs. The
Grassmannian codebooks designed for point-to-point beam-
forming systems with limited feedback is shown in [19] to be
suitable for multiple-input-multiple-output (MIMO) amplify-
and-forward relay systems. The algorithms for cooperative
feedback from the primary user to the secondary user are
designed in [20] for implementing cognitive beamforming in
two-user cognitive-radio systems. Moreover, Lloyd’s algorithm
is applied in [21] to jointly quantize the CSI sent by a mobile
to the desired and interfering base stations. The above prior
work does not explicitly optimize the tradeoff between the
network performance and the amount of CSI overhead.

In wireless networks, excessive CSI feedback yields
marginal performance gain per additional feedback bit but
insufficient feedback causes unacceptable performance degra-
dation. Therefore, feedback control is a pertinent issue for
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designing efficient wireless networks. In [22], CSI feedback
rates are optimized for maximizing the sum throughput in a
two-way beamforming system where a pair of transceivers
exchange both data and CSI. For a transmit beamforming
system, bandwidth is optimally partitioned for CSI feedback
and data transmission [23]. For point-to-point multi-antenna
precoding, sub-optimal algorithms have been proposed to ad-
just the CSI-codebook size according to the channel state [24]
or jointly with the feedback interval based on channel temporal
correlation [25]. The problem of splitting the sum-feedback
rate by a mobile for multiple cooperative-feedback links to
interferers is studied in [26] in the context of base-station
collaboration. It was shown that more feedback bits should
be sent to nearer interfering base stations so as to reduce the
throughput loss caused by feedback quantization. The splitting
of the sum-feedback rate among multiple users in a multi-
antenna downlink system was investigated in [27], where the
optimal feedback rate for a user is shown to increase log-
arithmically with the target signal-to-interference-plus-noise
ratio (SINR). The feedback-bit allocation considered in prior
work is mostly static, targeting dedicated feedback channels
in cellular networks [28]. In decentralized networks where a
feedback channel is shared by multiple users, more efficient
feedback-allocation should be adapted to channel dynamics,
motivating the event-driven feedback and stochastic feedback
control.

B. Contributions and Organization

This work adopts the approach of stochastic feedback
control proposed in [29] but targets more complex systems.
Specifically, this paper concerns the K-user multiple-input-
single-output (MISO) interference channel where there is an
event-driven feedback controller at each receiver. The feed-
back controller dynamically and distributively determines the
CSI feedback rate for each feedback link according to local
CSI. As a result, each feedback controller serves multiple
cooperative-feedback links in the current system rather than
a single feedback link to the intended transmitter as in [29].
1 Furthermore, we generalize the on/off feedback control in
[29] to the variable-rate feedback control.

This work establishes a novel approach of using stochastic
feedback control to achieve the optimal tradeoff between
the CSI-feedback overhead and sum interference power in
the K-user multi-antenna interference channel. The feedback
controllers are designed based on several key assumptions.
Channel coefficients are assumed to be independent and identi-
cally distributed (i.i.d.). The expectation of a CSI quantization
error is assumed to be a monotone decreasing and convex
function of the number of feedback bits, which is consistent
with the popular CSI-quantizer models in [30], [31]. Moreover,
the channel parameters, namely channel gains and transmit
CSI (CSIT) errors, are assumed to vary in time following
Markov chains. The channel temporal correlation is further

1In this paper, we focus on cooperative feedback with some discussion of
direct-link feedback, namely CSI feedback from receivers to their intended
transmitters. Hereafter, cooperative feedback is referred to simply as feedback
whenever there is no confusion.

characterized by two assumptions. Given no feedback, sam-
ples of the channel-parameter processes conditioned on large
past realizations stochastically dominate those conditioned on
small ones; given feedback, the tail probability of the CSIT
error is a monotone decreasing and convex function of the
corresponding number of feedback bits in the past slot. The
channels are assumed to follow independent block fading for
the limiting case of high mobility. Based on these assumptions,
the key findings of this work are summarized as follows.

– Under an average sum-feedback-rate constraint, a feed-
back controller is designed as a Markov decision pro-
cess with average cost. By channel symmetry, it is
optimal for each controller to equally split the average
sum-feedback rate for all feedback links, reducing the
problem of optimizing the multiple-feedback-link control
policy to the single-feedback-link-policy optimization.
The optimal policy for minimizing the average sum-
interference power is shown to exhibit opportunism.
Specifically, feedback should be performed only when
the corresponding interference-channel gain is large or
the CSIT error is significant. Upon feedback, the optimal
number of feedback bits for each feedback link increases
with the corresponding interference-channel gain but is
independent with the observed CSIT error.

– For high mobility and considering the sphere-cap-
quantized-CSI model [9], [30], more elaborate proper-
ties of the optimal feedback-control policy are derived.
Specifically, it is shown that the number of feedback
bits for each feedback link follows water-filling in time
and is proportional to the logarithm of the corresponding
interference-channel gain.

– We also consider asymmetric channel distributions where
interference-channel gains are scaled by heterogeneous
path losses. For high mobility, the problem of feedback-
control-policy optimization is decomposed into a mas-
ter problem that optimally allocates average feedback
rates for multiple feedback links, and a sub-problem
that optimizes the policy for controlling the feedback-
bit allocation in time for a particular feedback link given
an allocated average feedback rate. This decomposed op-
timization problems are proved to yield a unique optimal
policy. Furthermore, given the sphere-cap-quantized-CSI
model, the optimal feedback-control policy is shown to
perform water-filling over feedback links.

The remainder of this paper is organized as follows. The
system model is described in Section II. The problem formu-
lation for the optimal feedback control is presented in Sec-
tion III. The optimal feedback-control policies for the general
case and the limiting case of high mobility are analyzed in
Section IV and V, respectively. In Section V-B, the design of
the feedback controller for asymmetric channel distributions
is discussed. Simulation results are presented in Section VI.

II. SYSTEM MODEL

We consider the K-user MISO interference channel as illus-
trated in Fig. 1. Provisioned with L antennas, each transmitter
sends a single data stream to an intended receiver using
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Data

Cooperative
Feedback

Fig. 1. The K-user MISO interference channel with cooperative feedback

beamforming. As illustrated in Fig. 2, time is slotted and
each slot is divided into the feedback phase (feedback control
and cooperative CSI feedback) and the data phase (data
transmission). Each system parameter affected by feedback is
represented by the same symbol without and with the accent
“ˇ”, corresponding to the beginnings of the feedback and data
phases, respectively. Moreover, the subscript t denotes the slot
index.

A. Zero-Forcing Transmit Beamforming

Each transmitter uses beamforming to null interference to
(K − 1) unintended receivers. Let h

[mn]
t denote the L × 1

vector representing the channel from transmitter n to receiver
m. To facilitate exposition, we decompose h

[mn]
t as h

[mn]
t =√

g
[mn]
t s

[mn]
t where g

[mn]
t = ‖h[mn]

t ‖2 is the channel gain
and s

[mn]
t = h

[mn]
t /‖h[mn]

t ‖ specifies the channel direction.
Transmitter n applies zero-forcing beamforming by choosing
its beamformer f

[n]
t to be orthogonal to the interference-

channel directions. As a result, K links are decoupled if
all transmitters have perfect CSIT of the channels to their
interfered receivers.

Consider the scenario where transmit beamforming at a
transmitter relies on finite-rate CSI feedback from interfered
receivers. Let u

[mn]
t with unit norm denote the CSIT at

transmitter n updated by the feedback of s[mn] from receiver
m. Then the zero-forcing beamformer f

[n]
t at transmitter n

satisfies the constraints: (f
[n]
t )†u[mn]

t = 0 for all m 6= n, which
requires L ≥ K. Under the finite-rate feedback constraints,
imperfect CSIT results in residual interference between links.
The interference from transmitter n to receiver m has the
power

I
[mn]
t = g

[mn]
t

∣∣∣(f [n]
t )†s[mn]

t

∣∣∣2 , m 6= n (1)

where unit transmission power is used by all transmitters.

B. Variable-Rate Feedback Control

In the feedback phase of every slot, each receiver, say
receiver m, sends the quantized version ŝ

[mn]
t of s

[mn]
t to

Feedback 
Phase

Feedback 
Controller

Number of Feedback Bits

t-th slot 

Data Phase Feedback 
Phase Data Phase

(t+1)-th slot 

Channel State 
Information

Fig. 2. Variable-rate feedback control

interferer n in a variable-length packet comprising B[mn] bits.
The variable-rate feedback is modeled as B[mn] ∈ B, where
B is a set of nonnegative integers including 0 that corresponds
to no feedback. As illustrated in Fig. 2, a feedback controller
at each receiver controls the number of feedback bits sent to a
particular interferer by observing the interference-channel gain
and the CSIT error that is defined as follows. The dynamics
of the CSIT u

[mn]
t at transmitter n can be specified as

u
[mn]
t+1 = ǔ

[mn]
t

=

{
ŝ

[mn]
t , B

[mn]
t > 0

u
[mn]
t , B

[mn]
t = 0.

(2)

The CSIT error is defined as δ[mn]
t = 1 −

∣∣∣(s[mn]
t )†u[mn]

t

∣∣∣2
with δ

[mn]
t = 0 for the case of perfect CSIT: u[mn]

t = s
[mn]
t

[2]. The feedback controller at receiver m observes the
state

{(
g

[mn]
t , δ

[mn]
t

)
| n 6= m

}
and generates the feedback

decision
{
B

[mn]
t | n 6= m

}
. Similarly, we define the CSI-

quantization error as ε[mn]
t = 1−

∣∣∣(s[mn]
t )†ŝ[mn]

t

∣∣∣2.

Assumption 1. The conditional expectation E
[
ε
[mn]
t | B[mn]

t

]
is a monotone decreasing and convex function of B[mn]

t .

Example 1 (Sphere-cap-quantized-CSI model). The quantiza-
tion error ε[mn] is modeled in [9], [30] to be uniformly dis-
tributed on a sphere-cap in CL with the following distribution
function

Pr
(
ε[mn] ≤ τ | B[mn]

)
=

{
2B

[mn]

τL−1, 0 ≤ τ ≤ 2−
B[mn]

L−1

1, otherwise.
(3)

Using this model, the expectation of ε[mn] is obtained as

E
[
ε[mn] | B[mn]

]
=
L− 1

L
2−

B[mn]

L−1 (4)

which is a monotone decreasing and convex function of B[mn],
consistent with Assumption 1.

Example 2 (Random-vector quantization). As shown in [31],
the use of a random beamformer codebook of i.i.d. and
isotropic unitary vectors results in the following distribution
of ε[mn]

Pr
(
ε[mn] ≥ τ | B[mn]

)
= (1− τL−1)2B[mn]

(5)
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and the expectation

E
[
ε[mn] | B[mn]

]
= 2B

[mn]

beta

(
2B

[mn]

,
L

L− 1

)
≈ ae−

1
L−1B

[mn]

, B[mn] � 1 (6)

where beta(·, ·) denotes the beta function and a is a constant.
The last expression is a monotone decreasing and convex
function of B[mn], justifying Assumption 1.

Next, it follows from (2) that

δ̌
[mn]
t =

{
ε
[mn]
t , B

[mn]
t > 0

δ
[mn]
t , B

[mn]
t = 0

(7)

given that channels remain constant within each slot as as-
sumed in the sequel. Note that ǧ[mn] = g[mn] since it is
unaffected by feedback.

Finally, it is important to note that besides CSI, controlled
feedback requires addition bits for specifying the number
of feedback-CSI bits since it varies with the channel state.
Such overhead is unnecessary for feedback schemes with fixed
numbers of feedback bits (see e.g., [2], [5]). Let D denote the
number of available decisions for the feedback-control policy.
Assuming that the policy is known to the transmitter, the total
number of feedback bits from receiver m to transmitter n in
the t-th slot is B[mn]

t +dlog2De. It is observed from simulation
that D for the optimal policy is relatively small e.g., 3 or 4
(see Fig. 4).

C. Channel Model

Channels vary with time but remain constant within each
slot. For simplicity, all channel coefficients, namely the el-
ements of the vectors

{
h

[mn]
t

}
, are assumed to be samples

of i.i.d circularly-symmetric complex Gaussian processes with
unit variance, which is denoted as CN (0, 1) (asymmetric
channel distributions are considered in Section V-B). Note that
as a result of channel isotropicity, the two channel parameters
g

[mn]
t and δ

[mn]
t are independent conditioned on B

[mn]
t . The

channel temporal correlation is modeled using the following
two assumptions.

Assumption 2. Each channel coefficient evolves as a Markov
chain. Given B

[mn]
t−1 = 0, the distributions of

(
g

[mn]
t , δ

[mn]
t

)
conditioned on

(
g

[mn]
t−1 , δ

[mn]
t−1

)
satisfy

Pr
(
δ

[mn]
t ≥ τ1 |δ[mn]

t−1 = a1

)
≥Pr

(
δ

[mn]
t ≥ τ1 |δ[mn]

t−1 = b1

)
Pr
(
g

[mn]
t ≥ τ2 |g[mn]

t−1 = a2

)
≥Pr

(
g

[mn]
t ≥ τ2 |g[mn]

t−1 = b2

)
if a1 ≥ b1 and a2 ≥ b2, where 0 ≤ τ1 ≤ 1 and τ2 ≥ 0.

The above assumption states that given no feedback, large
CSIT error and channel power in the current slot are likely to
stay large in the next slot due to channel temporal correlation.

Assumption 3. For B[mn]
t−1 > 0, the conditional distribution

Pr
(
δ

[mn]
t ≥ τ | B[mn]

t−1

)
is a monotone decreasing and convex

function of B[mn]
t−1 .

Note that upon feedback, δ[mn]
t is independent of δ[mn]

t−1 as a
result of (7).

Finally, for the limiting case of high mobility, channels are
assumed to follow independent block-fading channels. For this
case, Assumption 2 and 3 are trivial and not required in the
analysis.

D. Performance Metric
The objective for designing the distributed feedback con-

troller at each receiver is to minimize the average interference
power. For receiver m, this metric is given as

Ī [m] = lim
T→∞

1

T
E

 T∑
t=1

K∑
n=1
n 6=m

I
[mn]
t

 (8)

with I [mn]
t given in (1). Minimizing Ī [m] suppresses the system

performance degradation caused by quantizing feedback CSI
e.g., the throughput loss in the following example.

Example 3. Let S[m]
t and I

[m]
t denote the signal and inter-

ference power received at receiver m in slot t, respectively.
Assuming Gaussian signaling and high mobility, the through-
put loss of the m-th data link is given as [8]

∆R = E

[
log2

(
1 +

S
[m]
t

σ2

)
− log2

(
1 +

S
[m]
t

σ2 + I
[m]
t

)]

≤ E

[
log2

(
1 +

I
[m]
t

σ2

)]

≤ log2

(
1 +

Ī [m]

σ2

)
(9)

where σ2 is the variance of a sample of the additive-white-
Gaussian-noise process and (9) uses Jensen’s inequality. It can
be observed from (9) that minimizing an upper bound on the
throughput loss is equivalent to minimizing Ī [m].

III. PROBLEM FORMULATION

The design of the feedback controller is formulated as
a stochastic optimization problem under an average sum-
feedback constraint.

The cost function and state space for feedback control are
defined as follows. To this end, the channel shape s

[mn]
t is

decomposed as

s
[mn]
t =

√
1− δ̌[mn]

t ǔ
[mn]
t +

√
δ̌

[mn]
t q̌

[mn]
t (10)

=

√
1− δ[mn]

t u
[mn]
t +

√
δ

[mn]
t q

[mn]
t

where q
[mn]
t and q̌

[mn]
t are unitary vectors orthogonal to u

[mn]
t

and ǔ
[mn]
t , respectively. Based on the above decomposition,

we can define the channel parameters β[mn]
t =

∣∣∣(f [n]
t )†q[mn]

t

∣∣∣2
and β̌

[mn]
t =

∣∣∣(f [n]
t )†q̌[mn]

t

∣∣∣2. Using these parameters and

substituting (1) allow Ī [m] in (8) to be written as

Ī [m] = lim
T→∞

1

T
E

 T∑
t=1

∑
n 6=m

E
[
g

[mn]
t β̌

[mn]
t δ̌

[mn]
t | x[m]

t ,B
[m]
t

]
(11)
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where x
[m]
t and B

[m]
t =

{
B

[mn]
t | n 6= m

}
denote the

state and decision of the feedback controller at receiver
m, respectively. From (11), the controller’s state should
be intuitively chosen to comprise all channel parameters{
β

[mn]
t , g

[mn]
t , δ

[mn]
t | n 6= m

}
. However, this results in the

coupling of feedback control at different receivers. Specifi-
cally, by definition, the state parameter β[mn]

t depends on the
beamformer f

[n]
t that in turn is computed based the feedback

CSI from the receivers {m | m 6= n}, and each of these
receivers also controls other beamformers. Therefore, to enable
distributive feedback control, β[mn]

t is excluded from the
controller’s state and hence x

[m]
t =

{
g

[mn]
t , δ

[mn]
t | n 6= m

}
where each parameter pair (g

[mn]
t , δ

[mn]
t ) depends only on the

single channel h[mn]
t . Since all channel vectors are isotropic

and that feedback control is independent of
{
β

[mn]
t

}
, β[mn]

t

and β̌[mn]
t can be shown to be beta(1, L−2) random variables

and independent with (g
[mn]
t , δ

[mn]
t ) [9]. This simplifies (11)

as

Ī [m] =
1

L− 1
lim
T→∞

1

T
×

E

 T∑
t=1

∑
n6=m

E
[
g

[mn]
t δ̌

[mn]
t | x[m]

t ,B
[m]
t

] . (12)

Consider a stationary feedback-control policy and an aver-
age sum-feedback constraint where the total average feedback
rate for each receiver is no more than b̄ > 0. The optimal
policy P?m : x

[m]
t → B

[m]
t at receiver m solves the following

infinite-horizon stochastic optimization problem: 2

minimize: Ī [m](Pm)

subject to : lim
T→∞

1

T
E

 T∑
t=1

∑
n6=m

B
[mn]
t

 ≤ b̄. (13)

Due to symmetric channel distributions, it is optimal for
receiver m to equally split b̄ for (K − 1) feedback links.
Consequently, the optimization of Pm reduces to that of the
policy P for controlling an arbitrary single feedback link. To
simplify notation, define the random process (gt, δt, δ̌t, Bt) ∼
(g

[mn]
t , δ

[mn]
t , δ̌

[mn]
t , B

[mn]
t ) where “∼” represents equality in

distribution, and the metric

J = lim
T→∞

1

T

T∑
t=1

E
[
gtδ̌t | xt, Bt

]
(14)

where xt = (gt, δt) is the state of a single-feedback-link
controller. Then P : xt → Bt can be designed by solving

2It is also possible to formulate the optimal feedback control as a finite-
horizon stochastic optimization problem. However, the current infinite-horizon
formulation not only leads to a stationary control policy but also allows
tractable analysis of the policy structure. Furthermore, the infinite-horizon
approximation is justified by that a communication session in a practical
system such as 3GPP LTE usually spans over thousands of frames.

the following optimization problem:

minimize: J(P)

subject to : lim
T→∞

1

T
E

[
T∑
t=1

Bt

]
≤ b̄

K − 1
.

(15)

IV. THE OPTIMAL FEEDBACK-CONTROL POLICY

In this section, we derive the optimal feedback-control
policy for general mobility. Given channel Markovity, the op-
timization problem in (15) can be transformed into a stochastic
optimization problem as follows. By applying Lagrangian-
multiplier theory, there exists a Lagrangian multiplier λ > 0
such that the optimal policy P? that solves (15) also minimizes
the following Lagrangian function:

L(P) = lim
T→∞

1

T
E

[
T∑
t=1

(
E
[
gtδ̌t | xt, Bt

]
+ λBt

)]
. (16)

Minizing L(P) is an average-cost stochastic optimization
problem with a continuous state space. Though there exists
no systematic method for solving this problem, it can be
approximated by a discrete-space counterpart whose solution
can be computed efficiently using dynamic programming [32].
The required state-space discretization is discussed and the
resultant optimal feedback-control policy analyzed in the fol-
lowing subsections.

A. State-Space Discretization

The spaces of the feedback-controller’s state parameters gt
and δt are discretized separately. The set G = {gt ≥ 0}
is partitioned into M line segments [g̃1, g̃2), [g̃2, g̃3), · · · ,
[g̃M ,∞) with g̃1 = 0 and 0 < g̃1 < g̃2 < · · · < g̃M . These line
segments are represented by a set of M grid points Ĝ = {ḡm}
with ḡm ∈ [g̃m, g̃m+1). Specifically, gt ∈ G is mapped to ḡm
if gt lies in the m-th line segment. Similarly, we divide the
set D = {0 ≤ δt ≤ 1} into N line segments [δ̃1, δ̃2), [δ̃2, δ̃3),
· · · , [δ̃N , 1] with δ̃1 = 0 and 0 < δ̃1 < δ̃2 < · · · < δ̃N < 1
and represent these segments using a set of N grid points
D̂ = {δ̄n} with δ̄n ∈ [δ̃n, δ̃n+1). The optimization of the grid
points Ĝ and D̂ is outside the scope of this paper. Last, the
discrete state space is represented by X̂ = Ĝ × D̂.

The discretized version of the controller state xt is denoted
as x̂t = {ĝ, δ̂t}. Given Assumption 2, {ĝt} and {δ̂t} are two
Markov chains whose transition probabilities are obtained as
follows. Let Pn,`(B) denote the probability for the transition
of δ̂ from the state n to ` given the feedback decision B. Then
Pn,` can be written as

Pn,`(B) = Pr(δ̂t+1 = δ̄` | δ̂t = δ̄n, Bt = B)

where 1 ≤ n, ` ≤ N . Similarly, let P̃m,k denote the transition
probability for {ĝt}, which is given as

P̃m,k = Pr(ĝt+1 = ḡk | ĝt = ḡm)

where 1 ≤ m, k ≤M . Note that given B, Pn,`(B) and P̃m,k
are independent as a result of channel isotropicity. Last, the
transition kernel for the controller-state Markov chain {x̂t} is
{P̃m,k} × {Pn,`(B)}.
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B. The Structure of the Optimal Feedback-Control Policy

The stochastic optimization problems for feedback control
with the discrete state space X̂ are formulated as follows. De-
fine the corresponding feedback-control policy as P̂ : X̂ → B.
The matching average cost function L̂ is modified from (16)
as

L̂(P̂) = lim
T→∞

1

T
E

[
T∑
t=1

G(x̂t, Bt)

]
(17)

where G(x̂t, Bt) is the cost-per-stage obtained using (7) as

G(x̂t, Bt) =

{
ĝtE [εt | Bt] + λBt, Bt ≥ 0

ĝtδ̂t, Bt = 0.
(18)

Note that the minimum cost L̂? converges to minP L(P)
as N,M → ∞ provided that the grid points are suitably
chosen [29], [33]. The optimal policy P̂? can be computed
efficiently using policy iteration [32]. The analysis of P̂?
is made tractable by considering a discounted-cost problem.
Specifically, given a discount factor ρ ∈ (0, 1) and the initial
state x̂0, a stationary feedback-control policy P̂ρ : X̂ → B is
designed by minimizing the discounted cost function

Vρ(P̂ρ, x̂0) =

∞∑
t=0

ρtG(x̂t, Bt). (19)

The optimal policy P̂?ρ and minimum cost V?ρ converge to
their average-cost counterparts as: P̂? = limρ→1 P̂?ρ and L̂? =
limρ→1(1− ρ)V?ρ (x̂0) for arbitrary x̂0 [32].

The discounted-cost problem allows simpler analysis as V?ρ
satisfies the following Bellman’s equation:

V?ρ (x̂t) = FV?ρ (x̂t), ∀ x̂t (20)

where F is the dynamic-programming operator and defined for
a given function q : X̂ → R as

Fq(x̂t) = min
B∈B
{G(x̂t, B) + ρE [q(x̂t+1) | x̂t, B]} . (21)

Though solving Bellman’s equation analytically is infeasible,
we can derive from this equation some properties of the opti-
mal policy as follows. Several auxiliary results are obtained as
shown in the following two lemmas. First, the monotonicity
of V?ρ (x̂) depends on if the following function is negative or
nonnegative

f(ḡk, δ̄`) = V?ρ (ḡk, δ̄`)− V?ρ (ḡk, δ̄`−1)−
V?ρ (ḡk−1, δ̄`) + V?ρ (ḡk−1, δ̄`−1).

(22)

with V?ρ (ḡk, δ̄`) = 0 if either k = 0 or ` = 0.

Lemma 1. The function f(x̂) is nonnegative for all x̂ ∈ X̂ .

Proof: The proof uses the value iteration, namely that
for an arbitrary function q : X̂ → R, the minimum discounted
cost is [32]

V?ρ (x̂t) = lim
n→∞

Fnq(x̂t). (23)

We show that if q is chosen to have the property in the lemma
statement, this property also holds for Fq or in other words,
remains unchanged by the dynamic-programming operation.

Combining this fact and the value iteration in (23) proves the
lemma. The details are provided in Appendix A.

Lemma 1 shows that f(ĝ, δ̂) is a monotone increasing
function of (ĝ, δ̂) ∈ X̂ . Next, define the function

Z(x̂t, B) = G(x̂t, B) + ρE
[
V?ρ (x̂t+1) | x̂t, B

]
. (24)

Given the relation

P̂?ρ (x̂t) = arg min
B

Z(x̂t, B), (25)

the structure of P̂?ρ depends directly on the characteristics of
Z, which are specified in the following lemma.

Lemma 2. Z(x̂t, B) has the following properties.
1) With x̂t fixed and for B ∈ B and B 6= 0, Z(x̂t, B) is a

monotone decreasing and convex function of B;
2) With B fixed, Z(ĝt, δ̂t, B) is a monotone increasing

function of ĝt and also of δ̂t if B = 0, and of ĝt and
independent with δ̂t if B > 0.

The proof is provided in Appendix B. Using Lemma 1 and
2, the key result of this section is obtained as follows.

Theorem 1. The optimal feedback-control policy P̂? has the
following properties.

1) If there exists (a, b) ∈ X̂ such that P̂?(a, b) = 0,
P̂?(a, δ̂) = 0 for all δ̂ ∈ D̂ and δ̂ ≤ b.

2) If there exists (a, b) ∈ X̂ such that P̂?(a, b) > 0,
P̂?(a, δ̂) = P̂(a, b) for all δ̂ ∈ D̂ and δ̂ > b.

3) If there exist (a, b), (c, b) ∈ X̂ such that P̂?(a, b) > 0
and P̂?(c, b) > 0, P̂?(c, b) ≥ P̂?(a, b) if c ≥ a and vice
versa.

The proof is presented in Appendix C. The structure of P̂?
as specified in Theorem 1 is illustrated in Fig. 3, from which
P̂? is observed to be opportunistic in nature. CSI feedback
over a particular feedback link is performed only when the
corresponding CSIT error and/or interference channel gain
are large. As a result, the optimal policy partitions the state
space into the feedback and no-feedback regions similar to the
on/off-feedback policy in [29]. The current policy that supports
variable-rate feedback further partitions the feedback region
into smaller regions and assigns them different numbers of
feedback bits. Upon feedback, the number of feedback bits
increases with the interference-channel gain. The CSIT error
observed prior to feedback affects the decision on if feedback
should be performed but has no influence on the number of
feedback bits upon feedback. The reason is that the CSIT
error after feedback is equal to the quantization error that is
independent of CSIT error prior to feedback.

Intuitively, the feedback-link should be turned off less
frequently when the interference-channel gain is large. In
other words, the feedback-threshold function separating the
feedback and no-feedback regions should map larger values
of ĝ to smaller ones of δ̂. However, proving this property
requires more restrictive assumptions on the channel temporal
correlation than the current ones.

The feedback control can be treated as the dual of bit
loading (or adaptive modulation) over forward data links [34],
[35]. Both feedback control and bit loading opportunistically
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ĝ

δ̂

B� = 0

B� = B̄1

B� = B̄2

B� = B̄A−1

B� = B̄A

0

Fig. 3. The structure of the optimal feedback-control policy P̂? where
0 ≤ B̄1 ≤ · · · ≤ B̄A−1 ≤ B̄A and {B̄k} ∈ B.

allocate (CSI or data) bits over (feedback or forward) channels
based on instantaneous (interference or data) CSI. Further-
more, both functions share the same objective of enhancing
the system throughput.

In wireless communication networks such as 3GPP-LTE,
users are assigned dedicated (orthogonalized) feedback links.
This approach incurs fast growing network overhead with the
increasing popularity of cooperative transmission techniques
such as multi-cell joint transmission [36] or interference
alignment [18], for which the number of feedback links may
increase quadratically with the number of users. Perhaps a
more efficient approach is to allow multiple users to share a
single feedback channel using e.g., a random access protocol.
For this case, intelligent feedback control by receivers will
alleviate feedback-traffic congestion and reduce the feedback
delay for CSI that is time sensitive.

C. The Computation of the Optimal Feedback-Control Policy

The optimal feedback-control policy can be efficiently
computed by policy iteration (see e.g., [32]). Each iteration
involves policy evaluation and policy improvement. The step
of policy evaluation in the i-th iteration is to compute the
corresponding average reward L̂(i) conditioned on a given
policy P̂(i−1):

L̂(i) + U (i)
m,n = G(ḡm, δ̄n, P̂(i−1)(ḡm, δ̄n)) +

∑
k,`

U (i)
k,`P̃m,k×

Pn,`(P̂(i−1)(ḡm, δ̄n)), ∀ m,n (26)

U (k)
1,1 = 0 (27)

where
{
U (i)
m,n

}
represents a set of scalars called differential

rewards and the constraint in (27) ensures that the solution of
(26) is unique. In the ensuing step of policy improvement, a
new policy P̂(i) is computed using L̂(i) and

{
U (i)
m,n

}
obtained

by solving (26) and (27):

P̂(i)(ḡm, δ̄n) = arg max
B∈B

[
G(ḡm, δ̄n, B)+∑
k,`

U (i)
k,`P̃m,kPn,`(B)

] (28)

for all m and n. The above two steps are repeated till the
policy converges, namely P̂(i+1) = P̂(i), yielding the optimal
feedback-control policy. As observed from simulation, the
policy iteration converges typically within several iterations.

V. THE OPTIMAL FEEDBACK-CONTROL POLICY: HIGH
MOBILITY

In this section, we focus on the regime of high mobility
and derive more elaborate structural results for the optimal
feedback-control policy by directly solving the optimization
problem (15) rather than relying on dynamic programing.

A. The Structure of the Optimal Feedback-Control Policy

To simplify the solution of (15), we consider the sphere-
cap-quantized-CSI model in Example 1, resulting in the
optimal feedback-control policy of the water-filling type as
shown in the sequel. This property is expected to also hold
for the random-vector quantization in Example 2 since the
quantization-error expectations for both models have similar
exponential forms (compare (4) and (6)).

Given independent block fading and a stationary feedback-
control policy, the optimal feedback decisions in different slots
are made independently. Consequently, (gt, δt, Bt) have sta-
tionary distributions and are i.i.d. in different slots. To simplify
notation, let (g, δ, B) represent a sample of {gt, δt, Bt} in an
arbitrary slot. Using this notation and (4), (15) can be rewritten
as follows:

minimize:
B

E

[
gmin

(
L− 1

L
2−

B
L−1 , δ

)]
subject to : E [B] ≤ b̄

K − 1
B ∈ B

(29)

where the min operator in the objective function accounts for
the fact that feedback from a receiver to a particular interferer
should be performed only if it reduces the expected CSIT
error. Solving the problem in (29) analytically is difficult due
to the constraint B ∈ B. To overcome this difficulty, the
constraint B ∈ B is relaxed as B ≥ 0 which approximates
the case where many quantization resolutions are supportable.
The above optimization problem is modified accordingly as:

minimize:
B

E

[
gmin

(
L− 1

L
2−

B
L−1 , δ

)]
subject to : E [B] ≤ b̄

K − 1
B ≥ 0.

(30)

Solving the above problem yields the structure of the optimal
feedback-control policy as described in the following propo-
sition.
Proposition 1. For high mobility, the optimal feedback-
control policy P? : X → R+ resulting from solving (30)
is of the water-filling type:

P?(g, δ) =

Υ− (L− 1) log2

1

g
, δ ≥ Ψ(g)

0, otherwise
(31)
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where Υ is the water level given as

Υ =
b̄

(K − 1) Pr(δ ≥ Ψ(g))
+(L−1)E

[
log2

1

g
| δ ≥ Ψ(g)

]
.

The feedback-threshold function Ψ : G → D solves the
following optimization problem: 3

minimize: Ī?(Ψ)

subject to: Υ(Ψ)− (L− 1) log2

1

Ψ−1(1)
≥(

(L− 1) log2

L− 1

LΨ−1(1)

)+

(32)

where Ī?(Ψ) given below is the sum-interference power at any
receiver achieved by P? given Ψ

Ī? =
1

L− 1
2−

Υ
L−1 Pr(δ ≥ Ψ(g))+

1

L− 1
E [gδ | δ < Ψ(g)] .

(33)

In addition, Ψ(g) is a monotone decreasing function of g.

The proof is provided in Appendix D. The above policy
structure is consistent with that of the general solution as
described by Theorem 1 and its remarks. Moreover, the
optimal feedback-control for high mobility is similar to the
classic adaptive modulation algorithm that allocates data bits
in time also based on water-filling [34].

For a large average feedback rate b̄� 1, Pr(δ ≥ Ψ(g)) ≈ 1
and thus the minimum average sum-interference power at an
arbitrary receiver follows from (33) as

Ī? ≈ 1

L− 1
2−

Υ
L−1

= c2−
b̄

(K−1)(L−1) (34)

where c is a constant. It can be observed from (34) that Ī?

decreases exponentially with increasing b̄, where the slope is
smaller for a larger number of links or transmit antennas per
transmitter. In addition, the optimal number of feedback bits
given in (31) needs to be rounded to the nearest and smaller
integer for implementation and this operation increases Ī? by
a multiplicative factor no larger than 2−

1
(K−1)(L−1) .

It is infeasible to obtain the feedback-threshold function Ψ
analytically by solving the optimization problem in Proposi-
tion 1. Thus computing Ψ requires a numerical search, which
is used to obtain relevant simulation results in Section VI.

Finally, we obtain some insight into the effect of quantizing
direct-link feedback (feedback from a receiver to the intended
transmitter) and justify its omission in the performance metric.
Consider an arbitrary data link in the current MISO inter-
ference channel, where the transmit beamformer, channel-
direction vector, and received interference power are denoted
as f0, s0 and I0, respectively. The direct-link feedback of the
quantized version ŝ0 of s0 allows the transmitter to perform
the maximum-ratio transmission under the constraint of zero-
forcing beamforming [37]. As a result, the corresponding
effective channel gain after beamforming can be shown to be

3The operator (a)+ for a ∈ R gives a if a ≥ 0 or otherwise 0.

ϕ(1 − ζ) where ϕ follows the chi-square distribution with
2(L−K + 1) degrees of freedom and ζ is no larger than the
quantization error ε0 of s0, where ε0 = 1−|ŝ†0s0|2 [37]. For a
high SINR and small ζ, throughput R of the considered data
link can be approximated as follows

R ≈ E

[
log2

ϕ(1− ζ)

I0

]
≈ −E[ζ]− E[log2 I0] + E[log2 ϕ]

≥ −E[ε0]− log2 E[I0] + E[log2 ϕ]. (35)

Assuming that ŝ0 is generated by a random vector quantizer,
it follows from (6) that E[ε0] ≈ ae−

1
L−1 B̌0 where B̌0 denotes

the number of direct-link-feedback bits. Moreover, for high
mobility and a large cooperative feedback rate, E[I0] can be
approximated by Ī? given in (34). Then it follows from (34)
and (35) that

R ≥ −ae−
1

L−1 B̌0 +
b̄

(K − 1)(L− 1)
+ constant. (36)

The first term at the right-hand side of (36) represents the
throughput loss due to the direct-link-feedback error and
the second the throughput gain obtained by increasing the
cooperative feedback rate. It can be observed that the effect
of the direct-link-feedback error diminishes exponentially with
B̌0 and hence omitted in the current analysis.

B. Extension to Asymmetric Channel Distributions

In the preceding sections, all interference channels are
assumed to follow identical distributions. In this section, we
discuss feedback control for asymmetric interference channel
distributions in terms of heterogeneous path losses and as-
suming high mobility for mathematical tractability. Let d[mn]

denote the distance between receiver m and transmitter n. The
average interference power at receiver m can be written as

Ī [m] =
∑
n6=m

(d[mn])−αĪ [mn] (37)

where α is the path-loss exponent and

Ī [mn] =
1

L− 1
E
[
g

[mn]
t min

(
E
[
ε[mn] | B[mn]

t

]
, δ

[mn]
t

)]
.

(38)
Given heterogeneous path losses, the uniform allocation of

average feedback rates by each receiver to different feedback
channels is no longer optimal. Consequently, we should op-
timize the average feedback-rate allocation besides feedback-
control over time. Specifically, the feedback-control optimiza-
tion problem can be decomposed as:

– Master problem (average feedback-rate allocation)

minimize:
{b̄m,n}

K∑
n=1
n 6=m

(
d[mn]

)−α
Ī

[mn]
min

(
b̄m,n

)

subject to:
K∑
n=1
n 6=m

b̄m,n ≤ b̄

b̄m,n ≥ 0 ∀ m 6= n

(39)



9

where Ī [mn]
min

(
b̄m,n

)
solves the following sub-problem.

– Sub-problem (stochastic feedback control)

minimize: Ī [mn](Pmn)

subject to: E
[
B

[mn]
t

]
≤ b̄m,n

(40)

where Ī [mn] is given in (38) and Pmn denotes the
stationary policy for controlling the feedback link from
receiver m to transmitter n.

Note that the sub-problem is identical to (15) except for the
difference in the maximum average feedback rates. The above
decomposed optimization problems have an unique solution
as shown below.

Lemma 3. Ī [mn]
min

(
b̄m,n

)
is a convex and monotone decreasing

function over b̄m,n ≥ 0.

The proof is presented in Appendix E. The following result
holds given the convexity of the master problem as a result
of Lemma 3 and that of the sub-problem follows from the
discussion in Section V.

Proposition 2. Solving the master problem and sub-problem
gives an unique optimal stationary feedback-control policy.

Next, we characterize the optimal feedback-control policy
based on the quantizer model in Example 1 and for a large
average sum-feedback rate per user. For this case, using
(34) and given b̄m,n, the average interference power from
transmitter n to receiver m can be approximated as

Ī [mn] ≈ 1

L− 1
2−E[log2

1
g ]2−

b̄m,n
L−1 (41)

where g follows the chi-square distribution. This approxima-
tion reduces the master problem as:

minimize:
{b̄m,n}

K∑
n=1
n 6=m

(
d[mn]

)−α
2−

b̄m,n
L−1

subject to:
K∑
n=1
n 6=m

b̄m,n ≤ b̄

b̄m,n ≥ 0 ∀ m 6= n.

Solving the above constrained optimization problem using La-
grangian method yields that the optimal allocation of average
feedback rates is of the water-filling type:

b̄?m,n = η − α(L− 1) log2 d
[mn], n 6= m (42)

where η is the water-level given as

η =
b̄

K − 1
+
α(L− 1)

K − 1

∑
n6=m

log2 d
[mn]. (43)

For a sanity check, the substitution of equal distances d[m1] =
d[m2] = · · · = d[mK] into (42) gives equal-rate splitting:
b̄?m,n = b̄

K−1 for all n 6= m. It can be observed from (42)
that the optimal average feedback rate allocated by a receiver
for suppressing the interference-power of a particular interferer
decreases logarithmically with the increasing distance between
the interferer and the receiver. Relaxing the integer constraint

on the numbers of feedback bits and combining (31) and (42),
we can approximate the optimal number of feedback bits B?m,n
sent from receiver m to transmitter n with n 6= m as

B?m,n = η′ − α(L− 1) log2 d
[mn] − (L− 1) log2

1

g[mn]
(44)

where η′ is a constant. The above expression shows two-
tier water-filling for allocating average feedback rates over
multiple feedback links and for each link distributing feedback
bits over different slots.

The feedback scheme in (44) is similar to those in [26], [27]
in that the optimal number of feedback bits for a particular
feedback link increases logarithmically with the channel gain
of the corresponding forward link, despite the differences
in settings (interference networks, cooperative multi-cell net-
works [26], or multiuser downlink systems [27]) and metrics
(sum interference power, throughput loss [26] or total trans-
mission power [27]). The fundamental reason for the above
similarity is that different performance optimization problems
can be reduced to or approximated by one that minimizes a
weighted sum of exponential functions of numbers of feedback
bits under a constraint on the sum-feedback rate.

VI. SIMULATION RESULTS

The simulation has the following settings unless specified
otherwise. The number of antennas L = 4, the number of
users K = 3, and the set of available numbers of feedback
bits is B = {2n | 0 ≤ n ≤ 15}. All channel fading coefficients
are modeled as i.i.d. CN (0, 1) Gaussian processes. For low-
to-moderate mobility, the temporal correlation of each process
is specified by Clark’s function [38]. The values of Doppler
frequency are normalized by the symbol rate. The state space
for feedback control at low-to-moderate mobility is discretized
to have M = 16 grid points for the interference-channel gain
and N = 16 points for the CSIT error. The set Ĝ is chosen
based on the equal-probability criterion such that Pr(g̃k ≤
g[mn] < g̃k+1) = 1

M for 1 ≤ k ≤M , g̃1 = 0 and g̃M+1 =∞.
The CSI quantization error is generated based on the sphere-
cap-quantized-CSI model in Example 1. Correspondingly, the
grid points for the CSIT error are chosen to be the expected
quantization errors for different numbers of feedback bits in
B, namely D̂ =

{
L−1
L 2−

B
L−1 | B ∈ B

}
.

Fig. 4 to 6 concern stochastic feedback control for low-to-
moderate mobility. Fig. 4 shows the optimal feedback-control
policies computed using policy iteration for different combina-
tions of (normalized) Doppler frequency fd and average sum-
feedback rates b̄. Both Fig. 4(a) and 4(b) are consistent with
Theorem 1. Specifically, it can be observed from the figures
that given the optimal policy, the state space is partitioned
into the feedback and no feedback regions. Moreover, in the
feedback region, B? is independent of the CSIT error δ̂; given
δ̂, B? is a monotone non-decreasing function of ĝ. Comparing
Fig. 4(a) and 4(b), increasing Doppler frequency and the
average sum-feedback rate enlarge the feedback region as well
as the numbers of feedback bits in the feedback region.

Fig. 5 shows the throughput-per-user versus transmit SNR
for optimally controlled feedback given b̄ = 12 bit/slot and
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(b) fd = 6× 10−3 and b̄ = 36 bit/slot

Fig. 4. Optimal feedback-control policies given average sum-feedback
constraints and a discrete state space

for conventional feedback algorithms with a sum feedback
constraint of 16 bit/slot, where the additional 4 bit/slot ac-
counts for the extra feedback-control overhead for specifying a
varying number of feedback bits. For comparison, two existing
feedback methods are considered, namely simple feedback for
which CSI in each slot is quantized with a fixed resolution (8
bits) and feedback is performed in each slot (see e.g., [2]) and
differential feedback that exploits channel temporal correlation
for feedback reduction (see e.g., [5]). The different-feedback
algorithm considered here is from [5] and allows transmitter
n to construct the channel direction ŝ

[mn]
t using the past CSI

ŝ
[mn]
t−1 and a quantized L × L unitary matrix Λ

[mn]
t sent by

receiver m as follows:

ŝ
[mn]
t =

(√
1− ν2 + νΛ

[mn]
t

)
ŝ

[mn]
t−1 (45)

where 0 < ν < 1 is adapted to Doppler frequency by a
numerical search using the criterion of maximum throughput
and Λ

[mn]
t is chosen from a 8-bit random codebook of i.i.d.
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Fig. 5. Throughput-per-user versus transmit SNR for low-to-moderate
mobility and different limited-feedback techniques under an average sum-
feedback constraint per user of 16 bit/slot.
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Fig. 6. Throughput-per-user versus average sum-feedback rate for different
limited-feedback techniques with low-to-moderate mobility and the transmit
SNR equal to 13 dB.

entries such that the CSI error is minimized. From Fig. 5, the
throughput-per-user for both simple and differential feedback
is observed to saturate as the transmit SNR increases and
residual interference becomes dominant over noise. The use
of feedback control alleviates this performance degradation
and increases the throughput-per-user significantly especial at
high SNRs. Moreover, the throughput-per-user given feedback
control increases rapidly as the Doppler frequency decreases,
corresponding to growing redundancy in CSI. Specifically, re-
ducing fd from 1×10−2 to 2×10−3 increases the throughput-
per-user by up to about 2 bit/s/Hz.

Fig. 6 shows the throughput-per-user versus average sum-
feedback rate per user for both controlled feedback and con-
ventional feedback methods, where the additional controlled-
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Fig. 7. Throughput-per-user versus average sum-feedback rate for the optimal
feedback control with high mobility. All interference channels have unit
propagation distances for the case of symmetric channel distributions. For the
asymmetric case, the (K − 1) = 2 interferers for each receiver are located
at distances of 1 and 3 units away. The path-loss exponent is α = 3 and
transmit SNR 13 dB.

feedback overhead mentioned earlier has been accounted for.
It can be observed that as the average sum-feedback rate
increases, the throughput-per-user for the optimally controlled
feedback converges to the upper bound corresponding to
perfect CSIT faster than that for differential feedback and
much more rapidly than that for simple feedback. Conse-
quently, given the same average sum-feedback constraint, the
optimal feedback control yields higher throughput than the
two conventional methods. It can be observed that exploiting
the channel temporal correlation by either feedback control or
differential feedback can provide significant throughput gains.
For example, feedback control increases the throughput-per-
user of simple feedback by about 3 times given the average
sum-feedback rate of 7 bit/slot and fd = 2× 10−3. Last, note
that the humps on the curves for controlled feedback are due
to discretization of the state space.

Finally, we consider the optimal feedback control for high
mobility. Fig. 7 displays the curves of throughput-per-user
versus average sum-feedback rate per user for controlled
feedback as well as no feedback control, namely that the rates
for different feedback links are equal and simple feedback is
applied. These results are based on B ∈ N+, aligned with
the analysis in Section V. It is observed that the throughput
gain of the optimal feedback control with respect to the case
of no feedback control is marginal given symmetric channel
distributions and high mobility, namely no redundancy in
CSI. However, this gain is significant in the presence of
asymmetric channel distributions and unequal distribution of
average feedback rates over different feedback links.

VII. CONCLUSION

This work has proposed the new approach of distributive
and stochastic control of event-driven CSI feedback in multi-
antenna interference networks. For symmetric channel distri-

butions, the optimal feedback-control policy for each feedback
link has been proved to be opportunistic. Specifically, feedback
is performed only if the corresponding interference-channel
gain is large or the CSI at the transmitter is significantly
outdated; the number of feedback bits increases with the
interference-channel gain. For high-mobility and symmetric
channel distributions, by considering a specific CSI quantiza-
tion model, the optimal feedback policy has been shown to be
of the water-filling type that also has the above opportunistic
properties. For high-mobility and heterogeneous path-losses
for the interference channels, the optimization of the feedback
controller has been decomposed into a master problem and
a sub-problem. We have proved the existence of an unique
solution for the decomposed optimization problems.

To the best of our knowledge, this is the first work on
applying stochastic-optimization theory to design feedback
controllers in multi-antenna interference networks. This work
opens several issues for future investigation. First, in the case
of bursty traffic, the queues and feedback-links can be jointly
controlled to achieve the optimal tradeoff between transmis-
sion delay and feedback overhead. Second, the event-driven
feedback targets shared feedback channels where feedback
collisions are inevitable. Collisions and the resultant feedback
delay are omitted in the current work but important issues
to consider in designing practical feedback controllers and
protocols. Last, it is challenging to generalize the current
feedback-controller designs to more complex settings such
as MIMO channels and spatial multiplexing, and alternative
beamforming algorithms such as one using the minimum-
mean-square-error criterion.
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APPENDIX

A. Proof for Lemma 1

For ease of notation, define a function Φ(ḡk | δ̄b, B?) as

Φ(ḡk | δ̄b, B?)= E
δ̂t+1

[
V?ρ (ĝt+1 = ḡk, δ̂t+1) | δ̂t= δ̄b, B

?
]
. (46)

We can write that

Φ(ḡk | δ̄b, B?) =

N∑
n=1

V?ρ (ḡk, δ̄n)Pb,n(B?)

=

N∑
n=1

[
V?ρ (ḡk, δ̄n)− V?ρ (ḡk, δ̄n−1)

]
×

N∑
m=n

Pb,m(B?)

with V?ρ (ḡk, δ̄0) = 0. Similarly, from (46), we can obtain that

E[V?ρ (ĝt+1, δ̂t+1) | ĝt = ḡa, δ̂t = δ̄b, B
?]

= E[Φ(ĝt+1 | δ̄b, B?) | ĝt = ḡa]

=

M∑
k=1

[
Φ(ḡk | δ̄b, B?)− Φ(ḡk−1 | δ̄b, B?)

] M∑
`=k

P̃a,`

=

N∑
n=1

M∑
k=1

f(δ̄n, ḡk)

N∑
m=n

Pb,m(B?)

M∑
`=k

P̃a,` (47)

with Φ(ḡ0 | δ̄b, B?) = 0. Using (18), (20), and (21), it can be
obtained for B? = 0 that

FV?ρ (ḡa, δ̄b) = ḡaδ̄b + E
[
V?ρ (ĝt+1, δ̂t+1) | ĝt = ḡa, δ̂t = δ̄b

]
= ḡaδ̄b +

N∑
n=1

M∑
k=1

f(δ̄n, ḡk)

N∑
m=n

Pb,m(0)

M∑
`=k

P̃a,`

(48)

where (48) uses (47). It follows from (22) and (48) that

Ff(ḡa, δ̄b) = FV?ρ (ḡk, δ̄`)− FV?ρ (ḡk, δ̄`−1)−
FV?ρ (ḡk−1, δ̄`) + FV?ρ (ḡk−1, δ̄`−1) (49)

= (ḡa − ḡa−1)(δ̄b − δ̄b−1) +

N∑
n=1

M∑
k=1

f(δ̄n, ḡk)×[
N∑

m=n

Pb,m(0)−
N∑

m=n

Pb−1,m(0)

]
×[

M∑
`=k

P̃a,` −
M∑
`=k

P̃a−1,`

]
(50)
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with ḡ0 = δ̄0 = 0. Given Assumption 2, (50) yields that
Ff(ĝ, δ̂) ≥ 0 for all (ĝ, δ̂) if f(ĝ, δ̂) ≥ 0 for all (ĝ, δ̂) and
B? = 0. Next, from (18), (20), and (21), it can be obtained
for B? > 0 that

FV?ρ (ḡa, δ̄b) = ḡaE[ε | B?] +B?+

E
[
V?ρ (ĝt+1, δ̂t+1) | ĝt = ḡa, B

?
]
.

(51)

It can be observed from (51) that FV?ρ (ḡa, δ̄b) is independent
with δ̄b. Thus, using this fact and (49) gives that Ff(ĝ, δ̂) = 0
for B? > 0. By combining above results, we conclude that
the policy iteration retains the property f(ĝ, δ̂) ≥ 0 if its
initialization has such a property (e.g., f(ĝ, δ̂) = 1 for all
(ĝ, δ̂)). This completes the proof.

B. Proof for Lemma 2

Using (18), (24) and (47), it can be obtained that

Z(a, b, B) =

aE[ε | B] +B +

N∑
n=1

M∑
k=1

f(δ̄n, ḡk)

N∑
m=n

Pb,m(B)

M∑
`=k

P̃a,`, B > 0

ab+

N∑
n=1

M∑
k=1

f(δ̄n, ḡk)

N∑
m=n

P̄b,m(0)

M∑
`=k

P̃a,`, B = 0.

(52)

Given Assumption 1 and 3 and using Lemma 1, Property 1) in
the lemma statement holds since Z(a, b, B) is a nonnegative
combination of monotone decreasing and convex functions of
B as can be observed from (52). Property 2) follows from
Assumption 2, Lemma 1 and (52).

C. Proof for Theorem 1

Since P̂?ρ → P̂? as ρ → 1, it is sufficient to prove that
given an arbitrary ρ ∈ (0, 1), P̂?ρ has the properties of P̂? as
described in the theorem statement. Assume that there exists
(a, b) ∈ X̂ such that P̂?ρ (a, b) = 0. Using (20) and (24), (a, b)
satisfies the following condition

Z(a, b, 0) ≤ min
B 6=0

Z(a, b, B). (53)

It follows from Assumption 2 and (52) that with a fixed,
Z(a, b, 0) is a monotone increasing function of b. As a result,
we obtain from (53) that

Z(a, δ, 0) ≤ min
B 6=0

Z(a, b, B), ∀ δ ≤ b

= min
B 6=0

Z(a, δ, B) (54)

where (54) holds since Z(a, b, B) can be observed from (52)
to be independent with b if B 6= 0. Property 1) in the theorem
statement is proved by combining (25) and (54). Next, assume
that there exists (a, b) ∈ X̂ such that P̂ρ(a, b) > 0. This
implies that P̂ρ(a, δ) > 0 for all δ ≥ b since otherwise

P̂ρ(a, b) = 0 based on Property 1, which violates the earlier
assumption. Therefore,

P̂ρ(a, δ) = arg min
B 6=0

Z(a, δ, B), ∀ δ ≥ b

= arg min
B 6=0

Z(a, b, B) (55)

where (55) results from the equality in (54). Property 2) in
the theorem statement follows from (25) and (55).

Last, assume that there exist (ḡa, δ̄b), (ḡc, δ̄b) ∈ X̂ such that
ḡa ≤ ḡc, P̂ρ(ḡa, δ̄b) > 0, and P̂ρ(ḡc, δ̄b) > 0. To facilitate the
proof, we arrange the elements of B in the ascending order:
B = {B̄1, B̄2, · · · , B̄A} with B̄1 ≤ B̄2 · · · ≤ B̄A and A =
|B|. Moreover, given x̂ ∈ X̂ , define the differences

∆+Z(x̂, B̄u) = Z(x̂, B̄u)− Z(x̂, B̄u+1) (56)

with 1 ≤ u < A and

∆−Z(x̂, B̄u) = Z(x̂, B̄u)− Z(x̂, B̄u−1) (57)

with 1 < u ≤ A. The substitution of (52) into (56) gives

∆+Z(ḡa, δ̄b, B̄u) = ḡa
{
E[ε | B̄u]− E[ε | B̄u+1]

}
+

N∑
n=1

M∑
k=1

f(δ̄n, ḡk)

M∑
`=k

P̃a,`

[ N∑
m=n

Pb,m(B̄u)−

N∑
m=n

Pb,m(B̄u+1)

]
− (B̄u+1 − B̄u).

(58)

It follows that

∆+Z(ḡa, δ̄b, B̄u)−∆+Z(ḡc, δ̄b, B̄u)

= (ḡa − ḡc)
{
E[ε | B̄u]− E[ε | B̄u+1]

}
+

N∑
n=1

M∑
k=1

f(δ̄n, ḡk)

[
M∑
`=k

P̃a,` −
M∑
`=k

P̃c,`

]
×[

N∑
m=n

Pb,m(B̄u)−
N∑

m=n

Pb,m(B̄u+1)

]
≤ 0 (59)

where (59) is obtained using Assumption 1 and 2, and
Lemma 1. Similarly, it can be shown that

∆−Z(ḡa, δ̄b, B̄u)−∆−Z(ḡc, δ̄b, B̄u) ≥ 0. (60)

By replacing B̄u in (59) and (60) with P̂?ρ (ḡa, δ̄b),

∆+Z(ḡc, δ̄b, P̂?ρ (ḡa, δ̄b)) ≥ ∆+Z(ḡa, δ̄b, P̂?ρ (ḡa, δ̄b)) (61)

∆−Z(ḡc, δ̄b, P̂?ρ (ḡa, δ̄b)) ≤ ∆−Z(ḡa, δ̄b, P̂?ρ (ḡa, δ̄b)). (62)

For B ∈ B and B > 0, Z(x̂, B) with x̂ fixed is a convex
function of B according to Lemma 2 and from (25) P̂?ρ (x̂)
minimizes Z(x̂, B) over B. Consequently,

∆+Z(x̂, P̂?ρ (x̂)) ≤ 0, ∆−Z(x̂, P̂?ρ (x̂)) ≤ 0, (63)

for any B ≤ P̂?ρ (x̂),

∆+Z(x̂, P̂?ρ (x̂)) ≥ 0, ∆−Z(x̂, P̂?ρ (x̂)) ≤ 0, (64)

and for any B ≥ P̂?ρ (x̂),

∆+Z(x̂, P̂?ρ (x̂)) ≤ 0, ∆−Z(x̂, P̂?ρ (x̂)) ≥ 0. (65)
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It can be concluded that P̂?ρ (ḡc, δ̄b) ≥ P̂?ρ (ḡa, δ̄b) by combin-
ing (61), (62) and (63) and comparing the result with (64)
and (65). This proves Property 3) in the theorem statement,
completing the proof.

D. Proof for Proposition 1

We claim that there exists a threshold Ψ : g → δ such that
(30) is equivalent to the following optimization problem:

minimize: E
[
g2−

B
L−1 | δ ≥ Ψ(g)

]
subject to : E[B] ≤ b̄

K − 1
B ≥ 0

(66)

and prove the claim as follows. Let B? denote the solution
of (30). Given g and from (30), if there exists δa ∈ D such
that L−1

L 2−
B?

L−1 < δa, L−1
L 2−

B?

L−1 < δ for all δ ≥ δa; if there
exists δb ∈ D such that L−1

L 2−
B?

L−1 ≥ δb, B? satisfies B? = 0
for all δ ≤ δb. This proves the claim.

The above optimization problem can be solved as follows.
First, by neglecting the positivity constraint on B, the convex
optimization problem in (66) can be solved using Lagrangian
method [39]. The resultant policy is specified in (31). Next,
Ψ is chosen to suppress the expected interference power as
well as enforce two constraints in (30): i) feedback reduces
the expected CSI error, namely L−1

L 2−
B

L−1 < δ if B > 0 and
ii) B ≥ 0 ∀ (g, δ). It follows that the problem of optimizing Ψ
is as given in (32) with Ψ−1(1) replaced with minδ Ψ−1(δ).
Next, it can be observed from (33) that given Pr(δ ≥ Ψ(g)),
minimizing Ī? requires Ψ(g) to be a monotone decreasing
function of g, proving the stated monotonicity of Ψ(g). As
a result, minδ Ψ−1(δ) = Ψ−1(1) and (32) follows. This
completes the proof.

E. Proof for Lemma 3

Let P denote the space of the optimal feedback-control
policies. Consider Ba, Bb ∈

⋃
P P?(g

[mn]
t , δ

[mn]
t ) for given

(g
[mn]
t , δ

[mn]
t ) ∈ X . Note that E

[
ε[mn] | B

]
< δ

[mn]
t if

B ∈ {Ba, Bb} and B > 0. Using this fact and for µ ∈ [0, 1],
the term q(B) = min

(
E
[
ε[mn] | B

]
, δ

[mn]
t

)
in the objective

function of the sub-problem is proved to be convex as follows

µq(Ba) + (1− µ)q(Bb)

=



µE
[
ε
[mn]
t |Ba

]
+(1−µ)E

[
ε
[mn]
t |Bb

]
, Ba>0, Bb>0

µδ
[mn]
t + (1− µ)E

[
ε
[mn]
t |Bb

]
, Ba=0, Bb>0

µE
[
ε
[mn]
t |Ba

]
+ (1− µ)δ

[mn]
t , Ba>0, Bb=0

δ
[mn]
t , Ba=0, Bb=0

≥



E
[
ε
[mn]
t | µBa + (1− µ)Bb

]
, Ba > 0, Bb > 0

E
[
ε
[mn]
t | Bb

]
, Ba = 0, Bb > 0

E
[
ε
[mn]
t | Ba

]
, Ba > 0, Bb = 0

δ
[mn]
t , Ba = 0, Bb = 0

where the inequality uses the convexity of E
[
ε
[mn]
t | B

]
over

B as assumed in Assumption 1. It follows that

µq(Ba) + (1− µ)q(Bb) = q(µBa + (1− µ)Bb)

and hence q(B) is a convex function.
Next, we prove that Ī [mn]

min (x) is a convex function for x > 0
using the sample-path method. Consider two average sum-
feedback rates b̄x, b̄y > 0. Let P?x and P?y denote the optimal
feedback-control policies that yield Ī [mn]

min

(
b̄x
)

and Ī [mn]
min

(
b̄y
)
,

respectively. Consider the sample paths
{
g

[mn]
t

}∞
t=1

and{
δ

[mn]
t

}∞
t=1

. Let {Bxt }∞t=1 and {Byt }∞t=1 denote the sequences
of numbers of feedback bits generated by P?x and P?y , re-
spectively. Moreover, given µ ∈ [0, 1], define the sequence
{Bzt }∞t=1 = µ{Bxt }∞t=1 + (1−µ){Byt }∞t=1. Using the function
q(B) defined earlier, we can write

µĪ
[mn]
min

(
b̄x
)

+ (1− µ)Ī
[mn]
min

(
b̄y
)

= lim
T→∞

1

T
E

[
T∑
t=1

1

L− 1
g

[mn]
t [µq(Bxt ) + (1− µ)q(Byt )]

]

≥ lim
T→∞

1

T

[
T∑
t=1

1

L− 1
g

[mn]
t q(Bzt )

]
(67)

≥ Ī [mn]
min

(
µb̄x + (1− µ)b̄y

)
(68)

where (67) uses the convexity of q(B) as proved earlier. The
desired result follows from (68).
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