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Abstract

\olterra and polynomial regression models play a major molaonlinear system identification and
inference tasks. Exciting applications ranging from neuarence to genome-wide association analysis
build on these models with the additional requirement obipaony. This requirement has high interpre-
tative value, but unfortunately cannot be met by least-+spibased or kernel regression methods. To this
end, compressed sampling (CS) approaches, already sfutdadiear regression settings, can offer a
viable alternative. The viability of CS for sparse Volteaad polynomial models is the core theme of
this work. A common sparse regression task is initially jpo®e the two models. Building on (weighted)
Lasso-based schemes, an adaptive RLS-type algorithm &apmd for sparse polynomial regressions.
The identifiability of polynomial models is critically cHahged by dimensionality. However, following
the CS principle, when these models are sparse, they coulecogered by far fewer measurements. To
quantify the sufficient number of measurements for a giveellef sparsity, restricted isometry properties
(RIP) are investigated in commonly met polynomial reg@ssiettings, generalizing known results for
their linear counterparts. The merits of the novel (weightedaptive CS algorithms to sparse polynomial

modeling are verified through synthetic as well as real dedtstfor genotype-phenotype analysis.
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. INTRODUCTION

Nonlinear systems with memory appear frequently in sciearmd engineering. Pertinent application
areas include physiological and biological processesg@er amplifiers[[2], loudspeakefs [31], speech,
and image models, to name a few; see el.gl, [16]. If the naaddityeis sufficiently smooth, the Volterra
series offers a well-appreciated model of the output exsa@ess a polynomial expansion of the input
using Taylor's theorem [20]. The expansion coefficients feo P > 1 are P-dimensional sequences of
memory L generalizing the one-dimensional impulse response seguarcountered with linear systems.
However, polynomial expansions of nonlinear mappings gmbd filtering. Polynomial regression aims
at approximating a multivariate nonlinear function via aypomial expansion[[13]. Apart from its
extensive use for optical character recognition and otlaessiication tasks [23], (generalized) polynomial
regression has recently emerged as a valuable tool for lregegenotype-phenotype relationships in
genome-wide association (GWA) studies$ [9].1[27]./[28].][18

\olterra and polynomial regression models are jointly stigated here. Albeit nonlinear, their input-
output (I/O) relationship is linear with respect to the uolm parameters, and can thus be estimated
via linear least-squares (LS) [16], [13]. The major bottek is the “curse of dimensionality,” since the
number of regression coefficient$ grows asO(L”). This not only raises computational and numerical
stability challenges, but also dictates impracticallydodata recordsV for reliable estimation. One
approach to coping with this dimensionality issue it to viealynomial modeling as a kernel regression
problem [11], [23], [13].

However, various applications admit sparse polynomiabesjons, where only a few, sayout of M,
expansion coefficients are nonzero — a fact that cannot deitegvia polynomial kernel regression. The
nonlinearity order, the memory size, and the nonzero caefiis may all be unknown. Nonetheless, the
polynomial expansion in such applications is sparse — aiatie that can be due to either a parsimonious
underlying physical system, or an over-parameterized im@siimed. Sparsity in polynomial expansions
constitutes the motivation behind this work. Volterra systidentification and polynomial regression
are formulated in Sectionlll. After explaining the link bet@n the two problems, several motivating
applications with inherent sparse polynomial structuee @ovided.

Sectior1ll deals with the estimation of sparse polynomiadansions. Traditional polynomial filtering
approaches either drop the contribution of expansion teanfertiori, or adopt the sparsity-agnostic
LS estimator [[156]. Alternative estimators rely on: estimgta frequency-domain equivalent model;

modeling the nonlinear filter as the convolution of two or mbnear filters; transforming the polynomial
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representation to a more parsimonious one (e.g., using digeidrre expansion); or by estimating fewer
coefficients and then linearly interpolating the full mgdsde [16] and references thereoff. However, the
recent advances on compressive sampling [8], [6], and &et-Ebsolute shrinkage and selection operator
(Lasso) [25] offer a precious toolbox for estimating spasgmals. Sparse \olterra channel estimators
are proposed i [15] and [17]. Building on well-establisi{eeighted) Lasso estimators [25], [32], and
their efficient coordinate descent implementation [12¢ fpinesent paper develops an adaptive RLS-type
sparse polynomial estimation algorithm, which generalidd to the nonlinear case, and constitutes the
first contribution.

Performance of the (weighted) Lasso estimators has bedpzadaasymptotically in the number of
measurementd’ [10], [32]. With finite samples, identifiability of Lasso-ed estimators and other com-
pressive sampling reconstruction methods can be asseissdt\s0-called restricted isometry properties
(RIP) of the involved regression matrix| [6],/[4]. It has bedrown that certain random matrix ensembles
satisfy desirable properties with high probability wh¥nscales at least aslog(M/s) [6]. For Gaussian,
Bernoulli, and uniform Toeplitz matrices appearing in sgalinear filtering, the lower bound aN has
been shown to scale aglog M [14], [22]. Section IV-A deals with RIP analysis for Volterfilters,
which is the second contribution of this work. It is shownttiiar a uniformly distributed input, the
second-order Volterra filtering matrix satisfies the RIPhwitgh probability whenV scales as?log M,
which extends the bound from the linear to the Volterra fittgrcase.

The third contribution is the RIP analysis for the sparseypoinial regression setup (Section 1V-B).
Because there are no dependencies across rows of the idvageession matrix, different tools are
utilized and the resultant RIP bounds are stronger tham fodtierra filter counterparts. It is proved that
for a uniform input,s-sparse linear-quadratic regression requires a numbereautements that scales
asslog* L. The same result holds also for a model oftentimes emplogeGWA analysis.

Applicability of the existing batch sparse estimators ahdirt developed adaptive counterparts is
demonstrated through numerical tests in Sedfibn V. Sinauaton synthetic and real GWA data show that
sparsity-aware polynomial estimators can cope with theewof dimensionality and yield parsimonious
yet accurate models with relatively short data records. Whek is concluded in Sectidn V1.

Notation: Lower-(upper-)case boldface letters are reserved forneolwectors (matrices), and calli-
graphic letters for setd;y denotes the all-ones vector of length (-)” denotes transpositiot\ (m, )
stands for the multivariate Gaussian probability densitthwneanm and covariance matrix; E[]
denotes the expectation operatpx||, := (>, |z; |p)1/” for p > 1 stands for the,-norm inR", and

Ix|lo the ¢p-(pseudo)norm, which equals the number of nonzero entfies o
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Il. PROBLEM FORMULATION: CONTEXT AND MOTIVATION

Nonlinear system modeling using the \olterra expansion afi as the more general notion of
(multivariate) polynomial regression are reviewed in tbétion. For both problems, the nonlinear 1/0
dependency is expressed in the standard (linear with respeice unknown coefficients) matrix-vector
form. After recognizing the “curse of dimensionality” infeat to the involved estimation problems,

motivating applications admitting (approximatelparsepolynomial representations are highlighted.

A. \olterra Filter Model

Consider a nonlinear, discrete-time, and time-invaridét telationshipy(n) = f (z(n),...,z(1)),
wherez(n) andy(n) denote the input and output samples at timé&Vhile such nonlinear mappings can
have infinite memory, finite-memory truncation is adoptegbiactice to yieldy(n) = f (x1(n)), where
x1(n) == [z(n) ... z(n — L+1)]" with L finite. Under smoothness conditions, this 1/O relationship

can be approximated by a Volterra expansion oftentimescataal to a finite ordeP as

P
y(n) = Hy[x1(n)] + v(n) 1)
p=0

wherewv(n) captures unmodeled dynamics and observation noise, adstantge zero-mean and inde-
pendent ofx;(n) as well as across time; arfd, [x;(n)] denotes the output of the so-termedh order

\olterra moduleh,(k1, ..., k,) given by

p

L—1 L—1
Hy[xi(n)] = > ... > hyp(ks, ... k) [[o(n — &) 2)
k1=0 k

=0 i=1

where memoryL has been considered identical for all modules without Idsgemerality. The Volterra
expansion in[{(I1)E(2) has been thoroughly studied in itses@ntation power and convergence properties;
see e.g.,[[20],116], and references therein.

The goal here is to estimatg,(k1,...,k,) forp=0,1,..., P, andk; =0,1,...,L—1, given the 1/O
samplegx;(n), y(n)}fj:l, and upper bounds on the expansion ot#eand the memory siz€. Although
this problem has been extensively investigated [16], teesify present in the Volterra representation of
many nonlinear systems will be exploited here to develogiefit estimators.

To this end, [(IL) will be expressed first in a standard mategtor form [16]. Define the vectors
xp(n) = x,-1(n) ®x;(n) for p > 2, where® denotes the Kronecker product; and write fhth order
\olterra output as?, [x;(n)] = xg(n)hp, whereh,, contains the coefficients d@f,(k1, ..., k,) arranged

accordingly. Using the latterJ(1) can be rewritten as

y(n) =x ' (n)h+v(n), n=1,...,N (3)
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wherex(n) = [1 x] (n) ... x}C(n)]T, andh := [hg h{ ... hE]T. Concatenating{1) for alk, one
arrives at the linear model

y=Xh+v (4)

wherey := [y(1) --- y(N)]7, X :=[x(1) ... x(N)]7, andv :=[v(1) ... o(N)]".

B. Polynomial Regression Model

Generalizing the Volterra filter expansion, polynomial resggion aims at approximating a nonlinear
function y(n) = f ({xl(n) f:‘ol) of L variables through an expansion similar id (@)-(2), where th
input vectorx, (n) is now defined as; (n) := [zo(n) ... zz_1(n)]”, andn is not necessarily a time
index. Again the goal is to estimate,(ki, ..., k,) given {xi(n),y(n)})_,. Polynomial regression can
be interpreted as the-th order Taylor series expansion ffx;(n)), and appears in several multilinear
estimation and prediction problems in engineering, naseences, and economids [13].

By simply choosingz;(n) = z(n —1) for I = 0,...,L — 1, the Volterra filter is a special case of
polynomial regression. Since this extra property has nenlexploited in derivind{1)={4), these equations
carry over to the polynomial regression setup. For thisaeathe same notation will be used henceforth

for the two setups; the ambiguity will be easily resolved bg tontext.

C. The Curse of Dimensionality

Estimating the unknown coefficients in both the Volterrateys identification and in polynomial
regression is critically challenged by the curse of dimenaiity. The Kronecker product defining,(n)
imply that the dimension oh, is LP, and consequenthh and x(n) have dimensionzf;O L =
(LP+1 —1) /(L — 1). Note that all possible permutations of the indidés, . .., k,} multiply the same
input termzy, (n) - - - x5, (n); €.9., h2(0,1) and ho(1,0) both multiply the monomiak:g(n)z(n). To
obtain a unique representation 6f (2), only one of these petions is retained. After discarding the
redundant coefficients, the dimension lof and x,(n)'s is reduced to(”;"l) [16]. Exploiting such
redundancies in modules of all orders eventually shorteasndx(n)’s to dimension

" L+p-1 L+P L+P
w2 () -0 - (1) ©
which still grows fast with increasingy and P. For notational brevityh andX will denote the shortened

versions of the variables if](4); that is mat will be N x M.
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D. Motivating Applications

Applications are outlined here involving models that ad@jtproximately) sparse polynomial represen-
tations. WhenP and L are unknown, model order selection can be accomplishedpaesity-cognizant
estimators. Beyond this rather mundane task, sparsity dae due to problem specifications, or be
imposed for interpretability purposes.

A special yet widely employed Volterra model is the so-ahllaear-nonlinear-linear (LNL) oné [16]. It
consists of a linear filter with impulse responge, (k) ﬁ;gl, in cascade with a memoryless nonlinearity
f(x), and a second linear filte[rhb(k)}ﬁigl. The overall memory is thug = L, + L, — 1. If f(x) is
analytic on an open sét, b), it accepts a Taylor series expansiffx) = > 2, c,2” in = € (a,b). It

can be shown that thg-th order redundant Volterra module is given byl[16, Ch. 2]

Ly—1
hp(k, . kp) = ¢p > ho(k)ha(ky — k) ... ha(ky — k) (6)
k=0

for k; € {0,..., L —1}. In (@), there are-tuples(k, ..., k,) for which there is ndk € {0,..., L, — 1}
such that(k; — k) € {0,...,L, — 1} for all i = 1,...,p. For thesep-tuples, the corresponding \olterra
coefficient is zero. As an example, for filters of lendgith = L, = 6 and for P = 3, among the364
non-redundant \Volterra coefficients, the nonzero ones areore than224. When L, and L, are not
known, the locations of the zero coefficients cannot be detexd a priori. By dropping the second
linear filter in the LNL model, the Wiener model is obtainets Yolterra modules follow immediately
from (@) and have the separable fotmp(k1, ..., ky) = cpha(k1) ... he(ky) for everyp [16]. Likewise,
by ignoring the first filter, the LNL model is transformed taetho-called Hammerstein model in which
hyp(ki, ..., kp) = cphy(k) for k = ki = ... = k,; and O otherwise. The key observation in all three
models is that if at least one of the linear filters is spainse,resulting Volterra filter is even sparser.
That is usually the case when modeling the nonlinear behasidoudspeakers and high-power
amplifiers (HPA) [16], [2]. When a small-size (low-cost) ispeaker is located close to a microphone
(as is the case in cellular phones, teleconferencing, hfiadsor hearing aid systems), the loudspeaker
sound is echoed by the environment before arriving at therapione. A nonlinear acoustic echo
canceller should adaptively identify the impulse resparmaprising the loudspeaker and the room, and
thereby subtract undesirable echoes from the microphgmalsiThe cascade of the loudspeaker, typically
characterized by a short memory LNL or a Wiener model, andtypéally long but (approximately)
sparse room impulse response gives rise to a sparse Vdiilegrg31]. Similarly, HPAs residing at the

transmitters of wireless communication links are usuallydeled as LNL structures having only a few
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coefficients contributing substantially to the outgut [26G]. When the HPA is followed by a multipath
wireless channel represented by a sparse impulse respgbaeseverall system becomes sparse fod [17].

Sparse polynomial expansions are also encountered in s@ence and bioinformatics. Volterra filters
have been adopted to model causal relationships in neuemsaimbles using spike-train data recorded
from individual neurons[[3],[[24]. Casting the problem as rahit \Volterra regression, conventional
model selection techniques have been pursued to zero bdddkdterra expansion coefficients, and thus
reveal neuron connections. Furthermore, genome-widecidimm (GWA) analysis depends critically on
sparse polynomial regression modeéls [9],1[27],1[28]. Tlylo GWA studies, geneticists identify which
genes determine certain phenotypes, e.g., human genstiasdis or traits in other species. Analysis has
revealed that genetic factors involve multiplicative natgtions among genes — a fact known as epistasis;
hence, linear gene-phenotype models are inadequate. Therecce of a disease can be posed as a
(logistic) multilinear regression, where apart from sexgene terms, the output depends on products of
two or more genes as welll[9]. To cope with the under-deteanyirof the problem and detect gene-gene
interactions, sparsity-promoting logistic regressiorthds have been developed; see e.gl, [27].

Based on these considerations, exploiting sparsity inrmotyial representations is well motivated and

prompted us to develop the sparsity-aware estimators ibescin the following section.

1. ESTIMATION OF SPARSEPOLYNOMIAL EXPANSIONS

One of the attractive properties of Volterra and polynomégression models is that the output is a
linear function of the wanted coefficients. This allows onedevelop standard estimators flarin (4).
However, the number of coefficienld can be prohibitively large for reasonable values?oand L, even
after removing redundancies. Hence, accurately estigiatirequires a large number of measuremeits
which: i) may be impractical and/or violate the stationagssumption in an adaptive system identification
setup; ii) entails considerable computational burden;i@ndises numerical instability issues. To combat
this curse of dimensionality, batdparsity-awarenethods will be proposed first for polynomial modeling,

and based on them, adaptive algorithms will be developexivedirds.

A. Batch Estimators

Ignoring v in (), the vectorh can be recovered by solving the linear system of equatjoasXh.
Generally, a unique solution is readily found > M; but whenN < M, there are infinitely many

solutions. Capitalizing on the sparsity bf one should ideally solve

min {[[hfjo: y = Xh}. 7
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Recognizing the NP-hardness of solvig (7), compressivgpiiag suggests solving instead the linear

program 8], [6]
min {|l; : y = Xh} ®)

which is also known as basis pursuit and can quantifiablyamate the solution of {7); see Section IV
for more on the relation betwedn (7) andl (8). However, modedirrors and measurement noise, motivate
a LS estimatoih™S := argminy, ||y — Xh|2. If N > M andX has full column rank, the LS solution is
uniquely found ah™ = (XTX)_1 XTy. If the input is drawn either from a continuous distribution
from a finite alphabet of at leagt+1 values, X”X is invertible almost surely; but its condition number
grows with Z and P [19]. A large condition number translates to numericallypibsed inversion oX”'X

and amplifies noise too. IN < M, the LS solution is not unique; but one can choose the minimum
¢5-norm solutionh™S = X7 (XXT)'y.

For both over/under-determined cases, one may resort tadpe (»-norm regularized) solution

e .— (XTX + 61,) ' Xy (9a)

= XT (XXT 4 61y) 'y (9b)

for somed > 0, where the equality can be readily proved by algebraic mdains. Calculating, storing
in the main memory, and inverting the matrices in parenthese the main bottlenecks in computing
hftidse via (@). Choosing{da) versus (9b) depends on hévand M/ compare. Especially for polynomial
(or Volterra) regression, théni, ns)-th entry of XX, which is the inner produck” (n;)x(ns), can
be also expressed @;};o (x] (n1)x (n2))p. This computational alternative is an instantiation of the
so-called kernel trick, and reduces the cost of compukX’ in @8) from O(N2M) to O(N?(L + P))
[23], [11]; see also Subsection III}C.

In any case, neithdi™“S nor his¢ are sparse. To effect sparsity, the idea is to adopt as mézatian

penalty the/;-norm of the wanted vector [25]
M

. 1
h = argmin [y — Xh{3 + Ay z;wz-rh,-\ (10)
1=
whereh; is thei-th entry ofh, andw; > 0 fori =1, ..., M. Two choices ofw; are commonly adopted:
(wl) w; =1fori=1,...,M, which corresponds to the conventional Lasso estimatdr [#5

W2) w; = |f"9¢=1 for i = 1,..., M, which leads to the weighted Lasso estimator [32].
Asymptotic performance of the Lasso estimator has beeryzedlin [10], where it is shown that the

weighted Lasso estimator exhibits improved asymptotiperties over Lasso at the price of requiring the
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ridge regression estimates to evaluate dhis [32]. For the practical finite-sample regime, performanc
of the Lasso estimator is analyzed through the restrictechésry properties oX in Section 1\, where
rules of thumb are also provided for the selectiomgf as well (cf. Lemmall).

Albeit known for linear regression models, the novelty here is the adoption of (wed) Lasso for
sparse polynomialegressions. Sparse generalized linear regression maedelsad; -regularized logistic
and probit regressions can be fit as a series of successige pasblems after appropriately redefining
the responsg and weighting the inpuKX [13, Sec. 4.4.1],[I27]. Hence, solving and analyzing Lasso
for sparse polynomial expansions is important for gensedlipolynomial regression as well. Moreover,
in certain applications, Volterra coefficients are coketin subsets (according to their order or other
criteria) that are effected to be (non)zero as a group [24§uch applications, using methods promoting
group-sparsity is expected to improve recoverability [#}en though sparsity is manifested here at the
single-coefficient level, extensions toward the aforeno@ed direction constitutes an interesting future
research topic.

Algorithmically, the convex optimization problem ih_{10arc be tackled by any generic second-order
cone program (SOCP) solver, or any other method tailorethimtasso estimator. The method of choice
here is the coordinate descent scheme of [12], which isrmdlnext for completeness. The core idea is
to iteratively minimize [(ID) w.r.t. one entry df at a time, while keeping the remaining ones fixed, by

solving the scalar minimization problem
1 (i) (—i) 2
II'}lLllliHy—X h'™" — x;h;||5 + Avw; | h| (11)

wherex; is thei-th columlH of X, variablesX(~% andh(~% denoteX andh, respectively, having thith
column (entry) removed, aridis the latest value for the optimumm It turns out that the component-wise

minimization of [11) admits the closed-form solutidn [12]

- sign(z)
hi —

where[z], := max(z,0), R;; is thei-th entry of the sample correlation or Grammian maftix= X’ X

lzil = Avwil (12)

and z; is thei-th entry ofz; :== X7 (y - X(—“fl(—i)). After initializing h to any value (usually zero),
the algorithm iterates by simply updating the entrieshofia (I2). By definingz := X7T (y — Xﬁ),
vectorz; can be updated as

Z; < Z + I'Z'ili (13)

'Recall thatx(n) stands for the:-th row of X.
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with r; being thei-th column of R. After updatingh; to its new value[{I2)z has to be updated too as

A~

Z<— Z; — I’th (14)

It is easy to see thafz;}}, in (I3)-(12) are not essentially needed, and one can upaéyezo These
iterates constitute the cyclic coordinate descent (CCByrithm for the (weighted) Lasso problem, and
are tabulated as Alf] 1. CCD-(W)L is guaranteed to convergerninimizer of [ID)[[1R]. Apart from the
initial computation ofz andR. which incurs complexityO(M?2N), the complexity of Alg[lL as presented

here isO(M) per coordinate iteration; see al$o[[12].

B. Recursive Estimators

Unlike batch estimators, their recursive counterparterofomputational and memory savings, and
enable tracking of slowly time-varying systems. The reiwer&S (RLS) algorithm is an efficient imple-

mentation of the LS, and the ridge estimators. It solves aeiiplly the following problem:
N

h{iEs = argm&H25N_n (y(n) — xT(n)h)* + BN5||h|3 (15)

n=1

where 5 denotes the forgetting factor adda small positive constant. For time-invariant systemss
set to1, while 0 < 5 < 1 enables tracking of slow variations. Similar to the batch ttf® RLS does
not exploit the a priori knowledge on the sparsitylgfand suffers from numerical instability especially
when the effective memory of the algorithm/(1 — 3), is comparable to the dimensia of h.

To overcome these limitations, the following approach igaadted for polynomial regression:

hy = arg m}}n JE(h) (16)

N M
n 2
Jh(h) :=> " N7 (y(n) = xT(n)h)” + Ax Y wnilhil
n=1 i=1
wherewy,; can be chosen as

(@l) wny;=1VN,i=1,...,M, which corresponds to the recursive Lasso (RL) problem; or,

(@2) wy,; = \ﬁﬁfis “1VN,i=1,...,M, leading to the recursive weighted Lasso (RWL) one.
The sequencéle} cannot be updated recursively, ahdl(16) calls for a convéxnamtion solver for
each time instant or measuremeéyit To avoid the computational burden involved, several mashtave
been developed for sparse linear models; $ée [1] and theenefes therein. The coordinate descent

algorithm of Subsection IlI-A can be extended [fol(16) by firptlatingR andz as
Ry = BRy-1 + x(N)x"(N) (17a)

zy = Bzn—1 +x(N)(y(N) —x" (N)hy_1) (17D)
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wherehy_; is a solution at timeV — 1. The minimizerhy can then be found by performing component-
wise minimizations until convergence in the spirit of therresponding batch estimator. However, to
speed up computations and leverage the adaptivity of theisn] we choose to perform a single cycle
of component-wise updates. Thisy is formed by the iterates of the inner loop in Alg. 2, whene;,
Zn,i» R i, and BNJ are defined as before.

The presented algorithm called hereafter cyclic coordindgscent for recursive (weighted) Lasso
(CCD-R(W)L) is summarized as Aldl 2; the convergence prisgenf CCD-RL have been established
in for linear regression, but carry over directly to thelymomial regression considered here. Its
complexity isO(M?) per measurement which is of the same order as the RLS. Byigetfi; = 0 or

wN; = yﬁﬁgsy—l, the CCD-R(W)L algorithms approximate the minimizers of R(W)L problems.

C. Polynomial Reproducing Kernels

An alternative approach to polynomial modeling is via kénegression[[23]. In the general setup, ker-
nel regression approximates a nonlinear funciiér, ) assuming it can be linearly expanded over a possi-
bly infinite number of basis functions,(x;) as f(x;) = Zle aror(x1). Whengy(x1) = k (x1,x1(k))
with x(-,-) denoting a judiciously selected positive definite kernél;) lies in a reproducing kernel

Hilbert spaceH, and kernel regression is formulated as the variationablpro

min ¢ ({f (xa(n)) ,y(m)}aly) + I fll (18)

where(C(-) is an arbitrary cost function, anlf||, is the norm in# that penalizes complexity of. It
turns out that there exists a minimizer 6f18) expressed(as) = Zﬁle ank (x1,%1(n)), while for
many meaningful costs the,’s can be computed i®(N?) using convex optimization solvers [23].
Polynomial regression can be cast as kernel regressionsafttngx(x;(n1),x1(n2)) to be either the
homogeneous polynomial kernet! (n1)x; (n2)) P or, one of the inhomogeneous orf@s-x] (n1)x1(n2)) F
or Z;I;D:o (xT(n1)x1(n2))” [23], [11]. Once then,,’s have been estimated, the polynomial coefficidnts
(cf. (4)) can be found in closed form [11]. Furthermore, akijees C(-) such as the-insensitive cost,
yield sparsity in thev,,—domain, and thus designate the so-called support veatwsaagthex; (n)’s [23].
Even though kernel regression alleviates complexity corgseheh which can indirectly obtained cannot
be sparse. Thus, sparsity-aware estimation in the prisrdbmain (as opposed to the dug/-domain)

comes with interpretational and modeling advantages.
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IV. IDENTIFIABILITY OF SPARSEPOLYNOMIAL MODELS

This section focuses on specifying whether the optimimaiooblems in [(B) and (10) are capable
of identifying a sparse polynomial expansion. The asyniptiot N behavior of the (weighted) Lasso
estimator has been studied in_[10], [32]; practically thoumne is more interested in finite-sample
recoverability guarantees. One of the tools utilized te #nd is the so-calle@stricted isometry properties

(RIP) of the involved regression matriX. These are defined ds [6]:

Definition 1 (Restricted Isometry Properties (RIPWatrix X € RV*M possesses the restricted isometry

of order s, denoted asj, € (0,1), if for all h € RM with ||hjg < s
(1—45) )3 < [Xh|3 < (1 +6) [h3. (19)

RIP were initially derived to provide identifiability cortdtins of ans-sparse vectoh, given noiseless
linear measurementg = Xh,. It has been shown that thg-pseudonorm minimization if{7) can
uniquely recoveh, if and only if 55, < 1. If additionally 5, < v/2— 1, thenh, is the unique minimizer
of the basis pursuit cost iftl(8)![5].

RIP-based analysis extends to noisy linear observations efsparse vector; that is, for = Xh, +v.

If ||v|l2 <e, the constrained version of the Lasso optimization problem

min {[[hfl : |y —Xh[2 < €} (20)
yields [hpy — h,|3 < &y - €2, Wherecpy = % whenevery, < v/2 — 1 [B]. Furthermore,

if v ~N(0,0%Iy), the Dantzig selector defined as

min {|[bfl + X7 (y — Xh) oo < eps} (21)

2
satisfies|hps — ho||3 < cps - 02slog M, wherecpg := <%> with probability at leastl —
(wlog M)~Y/? whenevers,, < v2— 1, andeps = v20+/Iog M [7]. Similarly, RIP-based recoverability
guarantees can be derived in the stochastic noise settmthdoLasso estimator as described in the

following lemma.

Lemma 1. Consider the linear modey = Xh, + v, where the columns dX € RV*M are of unit

{o-norm, ||h, o = s, andv ~ N(0,0%Iy). Let h;, denote the minimizer of the Lasso estimafdd)
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with w; =1fori=1,..., M, and A = Ac\/Iog M for A > 2/2. If dy5 < ﬁ the bounds

NG
. 16A
HhL—ho”l S E‘O’S\/ IOgM (22)
X 16A\ 2
B — by < (6—> o?slog M (23)
Cr,
16 A2

[X(hz —hy)|j3 < -02slog M (24)

CL

5 2
hold with probability at leastt — M'=4°/% for ¢z = (1 — das) (1 . %) .

Proof: The lemma follows readily by properly adapting Lemma 4.1 ahdorem 7.2 of[[4]. =
The earlier stated results document and quantify the rolRRIBfbased analysis in establishing identi-
fiability in a compressive sampling setup. However, Defimfll suggests that finding the RIP of a given
matrix X is probably a hard combinatorial problem. Thus, to deriva s recoverability guarantees one
usually resorts to random matrix ensembles to provide fitisc bounds on their RIPL[6],]22]. In
the generic sparse linear regression setup, it has beemsthatvwhen the entries a&X € RY*M are
independently Gaussian or Bernoulk, possesses RIP; with probability at least — exp (—53/(20))
when the number of measurementsNs> 2C/42 - slog(M/s), whereC is a universal constant; this
bound is known to be optimal[6]. In a sparse system identifinasetup where the regression matrix
has a Toeplitz structure, the condition on the number of omeasentsN obtained so far loosens to
a scaling ofs%log M for a Gaussian, Bernoulli, or uniform input [14], [22]. Theagratic scaling of
N w.r.t. s in the latter bound versus the linear scaling in the former loa attributed to the statistical
dependencies among the entries30f[22]. Our contribution pertains to characterizing the RifPtlee
involved regression matrix for both the \olterra systemntifecation and the multivariate polynomial

regression scenarios.

A. RIP for Volterra System Identification
For the Volterra filtering problem under study, the follogriassumptions will be in force:
(asl) input{x,} is independently drawn from the uniform distribution, ,j.e, ~ U[—1,1]; and
(as2) expansion is of orddr = 2 (linear-quadratic Volterra model).

Regarding (asl), recall that the Volterra expansion is dofagries approximation of a nonlinear function;
thus, it is reasonable to focus on a bounded input regioneblar, practically, one is frequently interested
in the behavior of a nonlinear system for a limited input mrigor (as2), the non-homogeneous quadratic

Volterra model is a commonly adopted one. Generalizatiomaadlels withP > 3 is not straightforward

September 8, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (REVISED) 14

and goes beyond the scope of our RIP analysis. The consitfetedra filter length isM = (L;FZ); and,
for future use, it is easy to check that under (asl) it holds Hz2] = 1/3 andE[z}] = 1/5.

To start, recall the definition of the Grammian matik := X7X and let R;; denote its(i, j)-th
entry. As shown in[[14, Sec. Ill], the matriX possesses RIP; if there exist positived; andd, with
dq + 0, = d5 such that R;; — 1| < §4 and |R;;| < d,/s for everyi, j with j # i. When these conditions
hold, GerSgorin’s disc theorem guarantees that the e&jees of Grammian matrices formed by any
combination ofs columns ofX lie in the interval[l — J,, 1 + d,], andX possesses RIP; by definition.
In a nutshell, for a regression matriX to have smallj,;'s, and hence favorable compressed sampling
properties, it suffices that its Grammian matrix has diagengies close to unity and off-diagonal entries
close to zero. If the involved regression matd had unit/s-norm columns, then théR;;} would be

unity by definition and one could merely study the quantityx; ; ;+; | R;;|, defined as the coherence of

X; see alsol[22, p. 13] for the relation between coherence la@dRtP.

In the Volterra filtering problem at hand, the diagonal e R;;} are not equal to one; but an
appropriate normalization of the columns Xf can provide at leasE[R;;] = 1 for all i. The law of
large numbers dictates that given sufficiently enough measentsN, the R;;'s will approach their
mean value. Likewise, it is desirable for the off-diagonatries of R to have zero mean, so that they
vanish for largeN. Such a requirement is not inherently satisfied byrl's with j # i; e.g., the inner
product betweeiX columns of the form{z2 22, ... 22 |7 and[22 , 22 .\ ... 22 .. n]”
for somen andk > 0 has expected valug/ (IE[gci])2 that is strictly positive.

To achieve the desired properties, namely

(pl) E[R;]=1forali=1,...,M, and

(p2) E[R;j]=0foralli,j=1,...,M andj # i
it will be soon established that instead of studying the RIPXo one can equivalently focus on its

modified versionX € RV*M defined as

X =g %I X1 % } (25)
wherex® := 1, /v/N corresponds to the constant (intercept or dc) componandX? are twoN x L

Toeplitz matrices corresponding to the linear and quadzdits defined as

ZTo 1 v T_I+1
~ 3 T X0 . T_L+2
X! = ~ | . . _ (26)
| TN-1 IN-2 ... TN-L+1 |
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2 1 2 1 1
o~y FTo1T3 T_r+17 3
2 1 2 1 2 1
Xq'_?) 5 I1—3 To—3 - T4 3 27
=5V N . : . (27)
2 1 2 1 1
ITN-173 TN-2"3 TN-L+1 — 3 |

andX’is aN x @ (non-Toeplitz) matrix related to the bilinear part given by

ToT—1 ToT -2 e T—rp+2T—L+1
- 3 T1Z0 T1T—1 .. T_[4+3T—L42
Xb = \/—N (28)
| TN-1TN-2 IN-1TN-3 ... IN—-L4+2IN-L+1 |

Consider now the Grammian &, namelyR := X”7X. ComparingX with X, the columns ofX
have theirf,-norm normalized in expectation, and thRssatisfies (p1). Moreover, those columnsof
corresponding to the quadratic part (cf. submaXiX are shifted by the variance af,. One can readily
verify that (p2) is then satisfied too.

The transition fromX to X raises a legitimate question though: Does the RIK gfrovide any insight
on the compressed sampling guarantees for the originaéivalproblem? In the noiseless scenario, we

actually substitute the optimization problem [n (8) by

min { [l : y =Xh}. (29)
h
Upon matching the expansioh = Xh, the following one-to-one mapping holds
L
1 - 1 /5 ~
ho_\/—ﬁ 0—5\/N;h2(k,k) (30a)
o (k) = %Bl(k), k=1, L (30b)
ho(k k:)—éq/iﬁ (k,k), k=1,...,L (30c)
2\l - 2 N 2\l ) — Ly
3 -
ho(ki,ke) = —=ho(k1,ke), k1 =1,...,L, ko =k +1,...,L. 30d
2(k1, k2) \/NZ(l 2), k1 2 =k (30d)

It is now apparent that a sparse solution [0f] (29) translaiea sparse solution of](8) except for the
constant term in[(30a). By deterministically adjusting weights{w;}}Z, and the parametexy in (I0),

this argument carries over to the Lasso optimization probéend answers affirmatively the previously
posed question. Note though that such a modification semigsamalytical purposes; practically, there

is no need to solve the modified compressed sampling problems
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Remarkl. Interestingly, transition from the original Volterra miatto the modified one resembles the
replacement of the \olterra by the Wiener polynomials fonlmear system identification [16]. Wiener
polynomials are known to facilitate mean-square error (M&gimal estimation of Volterra modules
for a white Gaussian input; see e.d.,][16]. Our modificatadijusted to a uniformly distributed input,

facilitates the RIP analysis of the Volterra regressionrixat

One of the main results of this paper is summarized in thevellg theorem (see the Appendix for

a proof).

Theorem 1 (RIP in Volterra Filtering) Let {xi}fi_LH be an input sequence of independent random
variables drawn froni/[—1,1], and defineM := (L + 1)(L + 2)/2. Assume that théV x M modified
Volterra regression matriX defined in(23)-(28) is formed by such an input faE > 7 and N > 160.
Then, for any; € (0, 1) and for anyy € (0, 1), wheneverV > (1 )52 -s21og L, the matrixX possesses

RIP o5 for s > 2 with probability exceeding — exp ( 29 g) whereC = 2,835.

The theorem asserts that an ord&log L observations suffice to recover aisparse non-homogeneous
second-order Volterra filter of memory probed by a uniformly distributed input scalessdsog L. Since
the number of unknowns/ is O(L?), the bound onV scales also as®log M. The bound agrees with
the bounds obtained for the linear filtering setupl [14], welasrnow the constants are larger due to the

more involved dependencies among the entries of the assdaiagression matrix.

B. RIP for Multivariate Polynomial Regression

Consider now the case wheféx) describes a sparse linear-quadratic model

L
f(Xl) = ho + Zhl( wk + Z Z hg kl,kg wklka (31)

k?l—]. k‘g

Given N output samplesy(n)})_,, corresponding to input datax; (n)}2_; drawn independently from

n=1
U[-1,1]*, the goal is to recover the spardé x 1 vectorh comprising theh, (k)’s and hy (K1, k2)’s.
Note thatM = (L + 1)(L + 2)/2 here. As explained in Sectidn Il, the noiseless expansid@I) can
be written asy = Xh; but, contrary to the Volterra filtering setup, the rowsXfare now statistically
independent. The last observation differentiates sigamtly the RIP analysis for polynomial regression
and leads to tighter probabilistic bounds.

Our analysis builds on[22], which deals with finding a spaeg@ansion of a functionf(x) =

Zle ¢ (x) over a bounded orthonormal set of functiong (x)}. ConsideringD a measurable space,
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e.g., a measurable subset®f endowed with a probability measure the set of functiong{+;(x) :

D — R}, is a bounded orthonormal system if for &jlty = 1,...,T
/Dwt] (X)r, (x)dv(x) = 0y, 4, (32)
whered;, ;, denotes the Kronecker delta function, and for some congtant1 it holds that
sup sup (%) < K. (33)

After sampling f(x) at {x(n) € D}}_,, the involvedN x T regression matrix® with entries¥,, ; :=
Y (x(n)) admits the following RIP characterizatidn [22, Theorems @nd 8.4].

Theorem 2 (RIP in bounded orthonormal systems|[22]et ¥ be the N x 7" matrix associated with a
bounded orthonormal system with constant> 1 in (33). Then, for any; € (0, 0.5], there exist universal

positive constant§’ and v, such that wheneveN > CK

\/_\Il possesses RIP,

with probability exceeding — exp (— 2% %)

In the linear-quadratic regression ¢f131), even though libsis functions{1, {x;}, {x; z;,}} are
bounded in[—1, 1]%, they are not orthonormal in the uniform probability measiortunately, our input
transformation trick devised for the Volterra filtering ptem applies to the polynomial regression too.

The expansion is now over the basis functidnis, (x)} M

m=1

{1 {V3z;}, {3\f< é)}{&rx}} (34)

where the last subset contains all the unique, two-variaidaomials lexicographically ordered. Upon
stacking the function valuey, }_, in y and properly definingh, the expansiony = Xh can be

replaced byy = Xh, where the entries dK are

o _ Um (x(n))
Xnm = 7\/N . (35)

Vectorsh and h are related through the one-to-one mappinglid (30); thuarsiy in one is directly
translated to the other. Identifiability of a spatsean be guaranteed by the RIP analysi&Xopresented

in the next lemma.

Lemma 2 (RIP in linear-quadratic regressiorhetz;(n) fori = 1,...,L andn = 1,..., N independent
random variables uniformly distributed ir-1, 1], and defineM := (L + 1)(L + 2)/2. Assume that the
N x M modified polynomial regression matiX in (35) is generated by this sequence for> 4. Then, for

anyd, € (0,0.5], there exist universal positive constadtsandy, such that whenevey > 141¢.

the matrixX possesses RIP, with probability exceeding — exp ( 2% ﬂ).

s
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Proof: The inputsx(n) are uniformly drawn ove = [—1,1]%, and it is easy to verify that the
basis functiong+,,,(x)}_; in (34) form a bounded orthonormal system wih= 3. Hence, Theorem
can be straightforwardly applied. Sindé < L? for L > 4, it follows thatlog M < 16log*L. =

Lemmal[2 assures that ansparse linear-quadratit-variate expansion with independent uniformly
distributed inputs can be identified with high probabilitprh a minimum number of observations that
scales asslog? L or slog* M. Comparing this to Theoref 1, the bound here scales linenmitly s.
Moreover, except for the increase in the power of the logani¢ factor, the bound is close to the one
obtained for random Gaussian and Bernoulli matrices. Thgrorement over the Volterra RIP bound is
explained by the simpler structural dependence of the ma&rinvolved.

Another interesting polynomial regression paradigm is mkige nonlinear functiory(x;) admits a
sparse polynomial expansion involvirdginputs, and all products up t& of these inputs, that is

L L L
fx)=ho+ Y mlk)ze+ Y > holky, ko)zgap, + ... (36)
k=1

k‘] :1 k‘zzkl +1
L

L L
+ Z Z Z hp(kl,kg,”' ,kp)wklwk2 e Tkp-

ki=1ko=k:1+1 kp=kp_1+1
This is the typical multilinear regression setup appeaim@WA studies [27], [[9]. Because there are

(I]j) monomials of ordep, the vectorh comprising all the expansion coefficients has dimension

M = pz:] <’;> <(L+1)F (37)

where the last inequality provides a rough upper bound. Téed & again to recover ag-sparseh
given the sample phenotypés, })_, over the genotype values (n)}Y_,. Vectorsx;(n) are drawn
either from{—1,0,1}" or {—1,1}" depending on the assumed genotype model (additive for tse fir
alphabet; and dominant or recessive for the later) [27h@it loss of generality, consider the ternary
alphabet with equal probabilities. Further, suppose falyital convenience that the entries ©f(n)
are independent. Note that the input has mean zero and varidh.

The RIP analysis for the model in_(36) exploits again ThedBer@ince now every single input appears
only linearly in [36), the basis functionsl, {x;}, {z;,z;,},...} are orthogonal w.r.t. the assumed point

mass function. A bounded orthonormal systém, (x)})_, can be constructed after scaling as

{1, {2/3)7 23, 1, 4(2/3) " 2wy @, b (2/3) P,y - x}} (38)

while the set is bounded b = (3/2)"/2. Similar to the linear-quadratic case {n(31), the original

multilinear expansiorXh is transformed toXh, whereX is defined as in[{35) with the new basis of
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(38), andh is an entry-wise rescaled version lof Based on these facts, the RIP characterizatioX of

follows readily from the ensuing lemnia.

Lemma 3 (RIP in multilinear expansion)Let x;(n) for i = 1,...,L andn = 1,..., N independent
random variables equiprobably drawn frofa-1,0, 1}, and M defined as in@87). The N x M modified
multilinear regression matriX in (358) and (38) is generated by this sequence. Then, for &ng (0,0.5],

there exist universal positive constaritsand , such that wheneveN > < (3)” Pislog?(L + 1), the

matrix X possesses RIP, with probability exceeding — exp <_C(+§Z)P : %)

Since P is often chosen in the order of 2 due to computational linttet, Lemmd 3 guarantees the

RIP to hold with high probability when the number of phen@ygamplesV scales at least aslog® L.

V. SIMULATED TESTS

The RIP analysis performed in the previous section provimebabilistic bounds on the identifiability
of sparse polynomial representations. In this section, waduate the applicability of sparsity-aware
polynomial estimators using synthetic and real data. Theeemental results indicate that sparsity-
promoting recovery methods attain accurate results evamiine number of measurements is less than

the RIP-derived bounds, and, in any case, they outperfoarsplarsity-agnostic estimators.

A. Batch and Adaptive Volterra Filters

We first focus on the sparse \Volterra system identificatidnmserhe system under study was an LNL
one, consisting of a linear filter with impulse respohse= [0.36 0 0.91 0 0 0.19]T, in cascade with the
memoryless nonlinearity (z) = —0.52 + 0.422 + 2, and the same linear filter. This system is exactly
described by a Volterra expansion with= 11 and P = 3, leading to a total of\/ = (“1F) = 364
coefficients collected in the vecthp. Out of the364 coefficients only48 are nonzero. The system input
was modeled ag(n) ~ N (0,1), while the output was corrupted by additive noise:) ~ N(0,0.1).
First, the batch estimators of Section II-A were testedlpfieed by their sequential counterparts.

In Fig.[1(a@), the obtained MSH, [Hho — ﬁ\\%}, averaged over00 Monte Carlo runs, is plotted against
the number of observationgy, for the following estimators: (i) the ridge estimator &) @ith 6=1;

(i) the Lasso (CCD-L) estimator with y=0.7+/N; and, (iii) the weighted Lasso (CCD-WL) estimator

2pfter our conference precursdr [15], we became aware of enteesult in[[IB], which relates to Lemrhh 3. The differences
are: i) only the P-th order term in expansio_(B6) is considered[inl [18]; andriputs {x;(n)} adhere to the binarf+1}
alphabet in[[18], as opposed to the ternary one in Lefma 3.
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with Ax=0.08log N. The scaling rules for the tways follow the results ofi[1] and [32]. It can be seen
that the sparsity-agnostic ridge estimator is outperfairng the Lasso estimator for short observation
intervals (V<600). For largerN, whereX” X becomes well-conditioned, the former provides improved
estimation accuracy. However, CCD-WL offers the lowest MBEevery N, and provides reasonably
accurate estimates even for the under-determined (C88&364).

Performance of the sequential estimator in Sedfion ll-Bs vasessed in the same setup. Fig.|1(b)
illustrates the MSE convergence, averaged over 100 Mont® @ans, for the following three recursive
algorithms: (i) the conventional RLS df (15); (ii) the cyctoordinate descent recursive Lasso (CCD-RL);
and, (iii) its weighted version (CCD-RWL). Since the systemas time-invariant, the forgetting factor
was set tog = 1. It can be observed that the conclusions drawn for the badske carry over to the
recursive algorithms too. Moreover, a comparison of and I(H) indicates that the sparsity-aware

iterates of Tabl€]2 approximate closely the exact per tinséairce problem i (16).

B. Multilinear Regression for GWA Analysis

Here we test sparse polynomial modeling for studying thetapc effects in quantitative trait analysis.
In quantitative genetics, the phenotype is a quantitatai of an organism, e.g., the weight or height of
barley seeds [26]. Ignoring environmental effects, thenplype is assumed to follow a linear regression
model over the individual's genotype, including singlaigémain) and gene-gene (epistatic) effects [28],
[9]. The genotype consists of markers which are samples @hobsomes taking usually binagy+1}
values. Determining the so-called quantitative trait IGQITL) corresponds to detecting the genes and
pairs of genes associated with a particular trait [28]. Sitiee studied populatiofV is much smaller
than the number of regressokg$, and postulating that only a few genotype effects deterritieetrait
considered, QTL analysis falls under the sparse multiliffiea P = 2) model of [36).

1) Synthetic Data:The first QTL paradigm is a synthetic study detailed [in| [28].p8pulation of
N=600 individuals is simulated for a chromosome of 1800 civnhtiddorgan) evenly sampled every 15
cM to yield L = 121 markers. The true population mean and variance arens.A@0, respectively. The
phenotype is assumed to be linearly expressed over theeptigthel, main effects, and thég) = 7,260
epistatic effects, leading to a total 8f = 7, 382 regressors. The QTLs simulated are 9 single markers and
13 marker pairs. Note that the simulation accommodatesemai) with main only, (i) epistatic only,
and (iii) both main and epistatic effects. Since the intptde not regularized, genotype and phenotype
data were centered, i.e., their sample mean was subtraotddhe intercept was determined at the end

as the sample mean of the initial I/O data on the fitted model.
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Parameterg and \ for ridge and (w)Lasso estimators, respectively, were duheough 10-fold cross-
validation over an 100-point grid [13]; see Taple J(a). Thgufe of merit for selecting the parameters
was the prediction error (PE) over the unseen data, ¥.8., , |[y, — X,h,[3/(N/V), whereV = 10
and h, is the regression vector estimated given all but the, X,) validation data. The value of
attaining the smallest PE was subsequently used for detgmgnthe weights for the wLasso estimator.
Having tuned the regularization parameters, the MSE pealigy the three methods was averaged over
100 Monte Carlo runs on different phenotypic data while kegphe genotypes fixed. The (w)Lasso
estimators were run using the glmnet software [12]. Eacthefthree algorithms took less than 1 min
and 1 sec for cross-validation and final estimation, re$pelgt

As can be seen from Talle T[a), Lasso attains the smaller Biveter, wLasso provides significantly
higher estimation accuracy at a PE value comparable to Lads® number of non-zero regression
coefficients indicated in the fourth column shows that ridggression yields an over-saturated model.
As shown more clearly in Fidll 2, where the true and the eséithatodels are plotted, the wLasso yields
a sparser, closer to the true model, while avoiding somei@micoefficients found by Lasso.

2) Real data from a barley experimenthe second QTL experiment entails a real dataset collected
by the North American Barley Genome Mapping Project as desdrin [26], [29], and outlined shortly
next. Aiming at a GWA analysis on barley height (HGT), the plagion consists ofN=145 doubled-
haploid lines of a cross between two barley lines, Harringgad TR306. The height of each individual
was measured under 27 different environments, and the pjmnwas taken to be the sample average.
There arel. = 127 markers covering a 1270 cM segment of the genome witlvarage marker interval
of 10.5 cM. The genotype is binary: +1 (-1) for the TR306 (ktegton) allele. There is &% of missing
values which are modeled as zeros in order to minimize tHeecte[28]. The main and epistatic QTL
analysis involves\/ = 1 + 127 + ('27) = 8,129 regressors.

The regularization parameter values were selected thréemle-one-out cross-validation [13]; see
Table[T(b). The ridge estimator fails to handle over-fittengdd is set to a large value yielding regression
coefficients of insignificant amplitude. Using the ridgeirestes to weight the regression coefficients,
wlLasso yields a PE slighty smaller than the one attained lsgd;abut it reduces the spurious coefficients.
As shown in Fig[B, wLasso provides a more parsimonious maatél fewer spurious peaks than the
Lasso-inferred model. Closer investigation of the wLasdd exceeding).1 in magnitude, shown in
Table[I(c), offers the following interesting observatiofi} epistatic effects are not negligible; (ii) there
are epistatic effects related to QTLs with main effects,,dlee (35,99) pair is related to markef101);

(ii) there are epistatic effects such as t#e33) one involving markers with no main effect.
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VI. CONCLUSIONS

The idea of exploiting sparsity in the representation of astesy, already widely adopted for linear
regression and system identification, has been permeateddestimate sparse Volterra and polynomial
models. The abundance of applications allowing for an pregative parsimonious polynomial expansion
and the inability of kernel regression to yield such an esjgamnecessitate sparsity-aware polynomial
estimators. This need was successfully met here both frautipal and analytical perspectives. Algo-
rithmically, the problem was solved via the batch (weightedsso estimators, where for the weighted
one, the weights were efficiently found through the kerriektrTo further reduce the computational and
memory load and enable tracking, an adaptive sparse RLSalgmrithm was devised. On the analytical
side, RIP analysis was carried out for the two models. It wasnve that ans-sparse linear-quadratic
\olterra filter can be recovered with high probability usimgasurements in the order eflog L; a
bound that interestingly generalizes the results from itheal filtering problem to the Volterra one. For
the sparse polynomial expansions considered, the bounweg tos log* L, which also generalizes the
corresponding linear regression results. The potentigdeaforementioned sparse estimation methods was
numerically verified through synthetic and real data. Thesttged sparse adaptive algorithms converged
fast to the exact solution, while the (weighted) Lasso estins outperformed the LS-based one in all
simulated scenarios, as well as in the GWA study on real pald¢a. Future research directions include
extending the bounds derived to higher-order models, aitiding our adaptive methods to accomplish

epistatic GWA studies on the considerably higher dimeraibmman genome.

APPENDIX

Outlining some tools regarding concentration inequalipeecede the proof of Theordr 1.

Lemma 4 (Hoeffding's inequality) Givent > 0 and independent random variabl¢s;}? , bounded as
a; < x; < b; almost surely, the sumy := Zf\il x; Satisfies
Pr (s — E[sn]| > ) < 2exp (—%) . (39)
> iz (bi — a;)?
It is essentially a Chernoff-type result on the concerdratf a sum of independent bounded random
variables around its mean. However, the subsequent asalpsihe RIP of the Volterra filter considers
sums of structurally dependent random variables. Usefbatility bounds on such sums can be derived

based on the following lemma.
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Lemma 5 (Hoeffding’s inequality with dependent summands| [2Q3pnsider random variablez; } Y
bounded as < x; < b almost surely. Assume also they can be partitioned Aitaollectively exhaustive
and mutually exclusive subs€ts/;,, }2/_, with respective cardinalitie$N,,,}2/_, such that the variables

within each subset are independent. Then, for any0 the sumsy := S | 2, satisfies

2
Pr(|sn — Elsy]| > £) < 2M exp (—mmﬁn) (40)

where Ny, := min,, { N, }.

Note that the sharpness of the bound[in] (40) depends on théeruof subsets\/ as well as the
minimum of their cardinalitiesV,,;,. One should not only strive for the minimum number of intra-
independent subsets, but also arradgg's as uniformly as possible. For example, partitioning witike
minimum number of subsets may yieN,,;, = 1 that corresponds to a loose bound.

The partitioning required in Lemnia 5 is not always easy tostrmct. An interesting way to handle this
construction is offered by graph theory as suggested ih. [PA¢ link between structural dependencies
in a set of random variableis:; } Y., and graph theory hinges on thelependency grapt. The latter is
defined as the graph having one vertex pgrand an edge between every pair of vertices corresponding
to dependent;'s. Recall that the degree of a vertex is the number of eddastetd to it, and the degree
of a graphA(G) is the maximum of the vertex degrees. Finding group-wiséssitzal independence
among random variables can be seen as a coloring of the dependraph. The problem of coloring
aims at assigning every vertex of a graph to a color (classh shat there are no adjacent vertices
sharing the same color. Moreover, coloring of a graph istafle if the cardinality of every color does
not differ by more than one from the cardinalities of evetyastcolor. Thus, ard/-equitable coloring of
the dependency graph means that the random variables cantiimped inM intra-independent subsets
whose cardinalities are eithér? | or | 47| + 1. A key theorem by Hajnal and Szemeredi guarantees that
a graphG has anM-equitable coloring for all/ > A(G) +1; see e.g.[[21]. Combining this result with

Lemma[®, yields the following corollary.

Corollary 1 (Hoeffding’s inequality and dependency graphl![21],]1[14Q)onsider random variables
{x;}}¥, bounded asz < z; < b. Assume also that their dependency graph has degre@hen, the

sumsy := S~ | x; satisfies for every integel/ > A +1 andt > 0
2t N
Pr(|sy — Elsn]| = t) < 2M exp <—m {MJ) : (41)

Having presented the necessary tools, the proof of Thebl&rplesented next.
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Proof of Theorerfi]1: Consider a specific realization ®& and its GrammiarR. As guaranteed by
the Gersgorin disc theorem, |iR;; — 1| < §4 and|R;;| < 6,/s for everyi, j with j # i while 54+, = §
for somed € (0, 1), then matrixX possesses RIP, < § [14]. Thus, the probability oK not satisfying

RIP of valued can be upper bounded as

M M M
Pr(5s > 6) < Pr U{|R“—1|>5d} orUU{|RU|>—} : (42)

=1 i=1j5=1
JFi

Apparently, the events in the right-hand side (RHS)Y of (42)reot independent. Exploiting the symmetry
of R, the union bound can be applied for only its lower trianquart yielding

r (6 > 6) ZPr<|R“ 1] >5d) +Z Z Pr <|le| > _> (43)

=1 j=i+1
Our next goal is to upper bound the probabilities appearmnghe RHS of [(4B). Different from the

analysis in [[14] for the linear case, the entriesRfexhibit different statistical properties depending
on the components (constant, linear, quadratic, bilinefithe nonlinear system they correspond to. To
signify the difference, we will adopt the notatidfﬂf‘jﬁ instead ofﬁfij, where« and 5 can be any of
{¢,1,q,b}, to indicate that the entry%fjﬁ is the inner product between tligh and thej-th columns of
X, but also the-th(j-th) column comes from the(3) part of the system. For example, the elemé@l.t
is the inner product of a column &¢ with a column ofX!. Recall also thaR satisfies the requirements
E[R;] = 1 andE[R;;] = 0 for j # i.

We start with theL diagonal entries?!, where each one of them can be expressed 85, _, z2_,
for somen. Upon recognizing this quantity as a sum &f independent random variables confined in
the interval [O, %] Hoeffding’s lemma can be readily applied. The bound oleaiis multiplied byL

to account for allR!’s; hence

L+1 2
) ON
§ Pr (|R§§ 1> 5d> < 2L exp <— 95d> . (44)

Similarly, each one of thé, diagonal entries??! is equal to£% S | (22, — %)2 for somen, which

is a sum of N independent random variables boundeo[(inw]. Lemmal4 yields

2L+1 2
_ 2N§
Y Pr (|R§§ 1> 5d> < 2L exp (- 25d> . (45)
i=L+2

Before proceeding with the bilinear diagonal entries, ketconsider first the off-diagonal entrieféé-.
Each one of them is a sum of the forl;%] Z]kvzl Tp—kTn_m—k fOr m # n. However, the summands

are not generally independent; every summand is a twoblarimonomial and a single,, may appear
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in two summands. This was handled in[14] after proving tﬁ%t can always be split into two partial
sums, each including independent terms. As a clarifyingrgte, the entryfzg3 can be expressed as
2 [(woz—1 + z2w1 +...) + (z120 + 2322 + .. .)]. MOreover, the two partial sums contdif- | and [£ |

summands. Applying Lemnid 5 far=6,/s, M = 2, Ny = |5 |, andb = —a = 3/N, it follows that

- 0, N| 62
P Ul>Z20) <4 B e O 46

Taking into account thaty' | > & for N > 160, and since there arB(L —1)/2 < L?/2 off-diagonal

R terms, their collective probability bound is

L+1 L+1 N52
>N pr ]R”\> <2L%exp (——2 ). (47)
5452

=2 j=i+1

Returning to the bilinear diagonal entries, evélyf can be written asy, S a2 for some

n—m—k
m # 0. Even though the summands are not independent, they exdidritical structural dependence
observed inéﬁ-ﬁ-’s; thus, the same splitting trick can be applied here tocrpsing Lemmals fot = 4,
M =2, Ny = |&], a =0, andb = 9/N, and adding the contribution of all(L — 1)/2 < L?/2

bilinear diagonal entries, we end up with

M
. 2N§?
Y Pr (ngb 1> 5d> <oL%exp (2201 (48)
i=2L+2 243

Regarding the entrieé and Rf?, an immediate application of Hoeffding’s inequality yield

L+1 9
ZPr RS, y> <) < 2Lexp _o, (49)
652
2L+1 2
o 0o 8N &2
‘Z Pr <1R1§y > ;> < 2Lexp <— e ) (50)
j=L+2

whereas the probabilitie3r (|R§§| > 50/.9) have been already accounted for in the analysis oﬁtbés.

The entriesf%lg. can be written a§— S g (22, — 3) for somen andm, where every
summand lies m[ vi5 ‘ﬁ} Two sub-cases will be considered. The first correspondsed. tentries
RZ’ with m = 0 (or equivalentlyj = ¢+ L), in which every summand depends on a single input. Through
Lemma[4, the sum of probabilities related to thésentries is upper bounded RY. exp(—N§2/(30s2)).
The second case includes the remainfiig — L) entries withm # 0, for which the splitting trick can
be applied to yield the bount{ L? — L) exp (—LN/2J 62/(30s%)). Combining the two bounds yields

L+1 20+1 9
S>> pr(|RY < 4L% exp Ny (51)
9052

i=2 j=L+2
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The R{? entries can be expressedﬁzg_l(xi p—2) (@2, — 1) for somem # 0, where each
summand is bounded |['sf 5N 3 ] Exploiting the same splitting trick and summing up the cibations
of all the L(L —1)/2 R‘?‘? entries, yields

2041 2041 9
8NJ,
aq 2 o

g g Pr <\R | > ) < 2L%exp <_675s2> . (52)

i=L+2 j=i+1

The R“”s can be written as the suri}v— S Ty kTnk—mTn_k_p fOr SOmen andm # p, while
every summand lies uﬁ 3v3 3\f} Note that there exisk!%’s with summands being two-input mono-
mials, i.e., form = 0 or p = 0. However, to simplify the presentation, the derived boundlightly
loosened by considering aﬂ%fjls as sums of three-input monomials. This specific strucprexludes
the application of the splitting procedure into two halvasd necessitates use of the dependency graph.
It can be shown that the degree of the dependency graph assbeiith the three-variable products for
any R!’ entry is at most 6. Then, application of Corolldty 1 over fifdL — 1)/2 < L?/2 R' entries
together with the inequalityN/7| > N/8, which holds forN > 160, yield

L M
_ 5 No2
by~ 70 < 3 — o .
g g Pr (|RU| = ) < T7L”exp < 432s2> (53)

i=2 j=2L+2

The RY’s can be written a®B YN (22, — 1)y k maa_i_p for somen andm # p, where the

summands lie m[ 3v5 3\f} Following a reasoning similar to the one fé?,

2L+1 N§2
qb > < 3 o o
> Z Pr <|R | ) < 7L exp< 72032>' (54)

i=L+2 j=2L+2

Finally, theRbb’s are expressed a8 S v, Ty 1 Tn—k—mTn—k—pTn—k—m—q TOr SOMEn, m, p, andg,
whereas the summands lie jr-%-, %]. For anyR" entry, the summands are four-input monomials, and
thus, the degree of the associated dependency graph is atlthddpon applying Corollari]1 over the
L(L —1)(L* — L — 2)/8 R%'s, and since{ N/13| > N/14 for N > 160, we obtain

M
- ) 13 N§?2
E E by > 20) < 214 — °_ .
Pr (\Rwl > s> <7 L exp( 226832> (55)

1=2L+42 j=i+1
Adding together the bounds for the diagonal elemdnts (44), @nd [(4B), implies

M

R 2N 62
ZPr (’R“ -1 > 5d> < 3L%exp <— 5d> (56)
=2

243
for L > 7. For the off-diagonal elements, upon addihgl (4[7)] (#9)s(85ollows for L > 7 that

M M N§2
> -9 < 4 (0] .
> pr <|R2J| > 6L exp< 2268.92> (57)

=2 j=i+1
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By choosingd, = % 2, the arguments of the exponentials [n(56) and (57) becorelegnd after

adding the two bounds, we arrive at

Pr (8 > 0) < 7L*exp [ — NS (58)
. = 5P Too6ss2 )

2
Sinced = 8, + d, translates t@?2 = (% %) 62 > 0.802 for s > 2, the bound in[(58) simplifies to

N§? N&* (1 2
Pr(5s>5)§7L4eXp< 0 >§exp (— sg < 05 logL)). (59)

283552 2835 N§2

Now set(C:=2, 835 and choose any < (0,1). WheneverN > % -s?log L, (B9) yields

v62 N

which completes the proof. |
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Algorithm 1 CCD-(W)L

Algorithm 2 CCD-R(W)L

1 Initialize s = X'y, 1: Initialize ho = Onr, Zo = Oar, Ro = 61
2: Compute matrixR = X* X. 2: for N =1,2,...do
3: repeat 3 UpdateRy andzy via (I7a) and[(I7b).
4: fori=1,...,M do . 4 fori=1,...,M do
5: Updatez asz = z + r;h;. 5: zZN = ZN +INihN-1,i
6: Updateh; using [12). 6 B = ZEENA (1) = Avwi],
7 Updatez asz = z — r;h;. s
. 7 ZNy = zZN —TINihN
8. end for . 8 end for TN
9: until convergence oh. :
9: end for
5 ; ; ; 5[¥ :
—©— Ridge Regression \ ©ioo RLS
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Fig. 1. MSE of (a) batch and (b) adaptive \Volterra estimators
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Marker

Marker Markor Marker

(a) True model (b) Ridge regression

Marker Marker

Marker Marker

(c) Lasso (d) wLasso
Fig. 2. Regression vector estimates for the synthetic gete. dhe main (epistatic) effects are shown on the diagdatil (

diagonal part), while red (green) bars correspond to pesithegative) entries.

Marker

Marker Marker Marker

(a) Lasso (b) wLasso
Fig. 3. Regression vector estimates for the real QTL barkg.dThe main (epistatic) effects are shown on the diagdefil (

diagonal part), while red (green) bars correspond to pesithegative) entries.
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EXPERIMENTAL RESULTS FOR SYNTHETIC AND REALQTL DATA

(a) Synthetic data

TABLE |

(b) Real QTL barley data

September 8, 2011

Method PE | MSE | NNz IR Method PE | NNz oIX
Ridge 68.10 | 82.29 | 7382 | 0.61 N Ridge 8.26 | 8129 | 4.2810* N
Lasso 12.84 | 15.85| 200 | 0.19N Lasso 5.96 48 0.33N
wLasso | 13.09| 5.11 85| 3.77N wLasso | 5.69 34 6.88 N
(c) QTLs estimated by wLasso for the real
barley data
Main effects Epistatic effects
Marker  Value| Markers  Value
(12) +0.78 | (7,66) +0.19
(53) —0.18 | (9,33) —0.29
(61) +0.23 | (20,95) +0.13
(101) +0.40 | (33,88) +0.10
(104) +0.24 | (35,99) —0.47
(112) +0.43 | (38,52) —0.15
(56,92) +0.38
(63,81) —0.19
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