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Sparse Volterra and Polynomial Regression
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Abstract

Volterra and polynomial regression models play a major rolein nonlinear system identification and

inference tasks. Exciting applications ranging from neuroscience to genome-wide association analysis

build on these models with the additional requirement of parsimony. This requirement has high interpre-

tative value, but unfortunately cannot be met by least-squares based or kernel regression methods. To this

end, compressed sampling (CS) approaches, already successful in linear regression settings, can offer a

viable alternative. The viability of CS for sparse Volterraand polynomial models is the core theme of

this work. A common sparse regression task is initially posed for the two models. Building on (weighted)

Lasso-based schemes, an adaptive RLS-type algorithm is developed for sparse polynomial regressions.

The identifiability of polynomial models is critically challenged by dimensionality. However, following

the CS principle, when these models are sparse, they could berecovered by far fewer measurements. To

quantify the sufficient number of measurements for a given level of sparsity, restricted isometry properties

(RIP) are investigated in commonly met polynomial regression settings, generalizing known results for

their linear counterparts. The merits of the novel (weighted) adaptive CS algorithms to sparse polynomial

modeling are verified through synthetic as well as real data tests for genotype-phenotype analysis.

Index Terms

Compressive sampling, Lasso, Volterra filters, polynomialregression, restricted isometry properties,

polynomial kernels.
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I. INTRODUCTION

Nonlinear systems with memory appear frequently in scienceand engineering. Pertinent application

areas include physiological and biological processes [3],power amplifiers [2], loudspeakers [31], speech,

and image models, to name a few; see e.g., [16]. If the nonlinearity is sufficiently smooth, the Volterra

series offers a well-appreciated model of the output expressed as a polynomial expansion of the input

using Taylor’s theorem [20]. The expansion coefficients of orderP > 1 areP -dimensional sequences of

memoryL generalizing the one-dimensional impulse response sequence encountered with linear systems.

However, polynomial expansions of nonlinear mappings go beyond filtering. Polynomial regression aims

at approximating a multivariate nonlinear function via a polynomial expansion [13]. Apart from its

extensive use for optical character recognition and other classification tasks [23], (generalized) polynomial

regression has recently emerged as a valuable tool for revealing genotype-phenotype relationships in

genome-wide association (GWA) studies [9], [27], [28], [18].

Volterra and polynomial regression models are jointly investigated here. Albeit nonlinear, their input-

output (I/O) relationship is linear with respect to the unknown parameters, and can thus be estimated

via linear least-squares (LS) [16], [13]. The major bottleneck is the “curse of dimensionality,” since the

number of regression coefficientsM grows asO(LP ). This not only raises computational and numerical

stability challenges, but also dictates impractically long data recordsN for reliable estimation. One

approach to coping with this dimensionality issue it to viewpolynomial modeling as a kernel regression

problem [11], [23], [13].

However, various applications admit sparse polynomial expansions, where only a few, says out ofM ,

expansion coefficients are nonzero – a fact that cannot be exploited via polynomial kernel regression. The

nonlinearity order, the memory size, and the nonzero coefficients may all be unknown. Nonetheless, the

polynomial expansion in such applications is sparse – an attribute that can be due to either a parsimonious

underlying physical system, or an over-parameterized model assumed. Sparsity in polynomial expansions

constitutes the motivation behind this work. Volterra system identification and polynomial regression

are formulated in Section II. After explaining the link between the two problems, several motivating

applications with inherent sparse polynomial structure are provided.

Section III deals with the estimation of sparse polynomial expansions. Traditional polynomial filtering

approaches either drop the contribution of expansion termsa fortiori, or adopt the sparsity-agnostic

LS estimator [16]. Alternative estimators rely on: estimating a frequency-domain equivalent model;

modeling the nonlinear filter as the convolution of two or more linear filters; transforming the polynomial
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representation to a more parsimonious one (e.g., using the Laguerre expansion); or by estimating fewer

coefficients and then linearly interpolating the full model; see [16] and references thereoff. However, the

recent advances on compressive sampling [8], [6], and the least-absolute shrinkage and selection operator

(Lasso) [25] offer a precious toolbox for estimating sparsesignals. Sparse Volterra channel estimators

are proposed in [15] and [17]. Building on well-established(weighted) Lasso estimators [25], [32], and

their efficient coordinate descent implementation [12], the present paper develops an adaptive RLS-type

sparse polynomial estimation algorithm, which generalizes [1] to the nonlinear case, and constitutes the

first contribution.

Performance of the (weighted) Lasso estimators has been analyzed asymptotically in the number of

measurementsN [10], [32]. With finite samples, identifiability of Lasso-based estimators and other com-

pressive sampling reconstruction methods can be assessed via the so-called restricted isometry properties

(RIP) of the involved regression matrix [6], [4]. It has beenshown that certain random matrix ensembles

satisfy desirable properties with high probability whenN scales at least ass log(M/s) [6]. For Gaussian,

Bernoulli, and uniform Toeplitz matrices appearing in sparse linear filtering, the lower bound onN has

been shown to scale ass2 logM [14], [22]. Section IV-A deals with RIP analysis for Volterra filters,

which is the second contribution of this work. It is shown that for a uniformly distributed input, the

second-order Volterra filtering matrix satisfies the RIP with high probability whenN scales ass2 logM ,

which extends the bound from the linear to the Volterra filtering case.

The third contribution is the RIP analysis for the sparse polynomial regression setup (Section IV-B).

Because there are no dependencies across rows of the involved regression matrix, different tools are

utilized and the resultant RIP bounds are stronger than their Volterra filter counterparts. It is proved that

for a uniform input,s-sparse linear-quadratic regression requires a number of measurements that scales

ass log4 L. The same result holds also for a model oftentimes employed for GWA analysis.

Applicability of the existing batch sparse estimators and their developed adaptive counterparts is

demonstrated through numerical tests in Section V. Simulations on synthetic and real GWA data show that

sparsity-aware polynomial estimators can cope with the curse of dimensionality and yield parsimonious

yet accurate models with relatively short data records. Thework is concluded in Section VI.

Notation: Lower-(upper-)case boldface letters are reserved for column vectors (matrices), and calli-

graphic letters for sets;1N denotes the all-ones vector of lengthN ; (·)T denotes transposition;N (m,Σ)

stands for the multivariate Gaussian probability density with meanm and covariance matrixΣ; E[·]
denotes the expectation operator;‖x‖p := (

∑n
i=1 |xi|p)

1/p for p ≥ 1 stands for theℓp-norm in R
n, and

‖x‖0 the ℓ0-(pseudo)norm, which equals the number of nonzero entries of x.
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II. PROBLEM FORMULATION : CONTEXT AND MOTIVATION

Nonlinear system modeling using the Volterra expansion as well as the more general notion of

(multivariate) polynomial regression are reviewed in thissection. For both problems, the nonlinear I/O

dependency is expressed in the standard (linear with respect to the unknown coefficients) matrix-vector

form. After recognizing the “curse of dimensionality” inherent to the involved estimation problems,

motivating applications admitting (approximately)sparsepolynomial representations are highlighted.

A. Volterra Filter Model

Consider a nonlinear, discrete-time, and time-invariant I/O relationshipy(n) = f (x(n), . . . , x(1)),

wherex(n) andy(n) denote the input and output samples at timen. While such nonlinear mappings can

have infinite memory, finite-memory truncation is adopted inpractice to yieldy(n) = f (x1(n)), where

x1(n) := [x(n) . . . x(n− L+ 1)]T with L finite. Under smoothness conditions, this I/O relationship

can be approximated by a Volterra expansion oftentimes truncated to a finite orderP as

y(n) =

P
∑

p=0

Hp [x1(n)] + v(n) (1)

wherev(n) captures unmodeled dynamics and observation noise, assumed to be zero-mean and inde-

pendent ofx1(n) as well as across time; andHp [x1(n)] denotes the output of the so-termedp-th order

Volterra modulehp(k1, . . . , kp) given by

Hp [x1(n)] :=

L−1
∑

k1=0

. . .

L−1
∑

kp=0

hp(k1, . . . , kp)

p
∏

i=1

x(n− ki) (2)

where memoryL has been considered identical for all modules without loss of generality. The Volterra

expansion in (1)-(2) has been thoroughly studied in its representation power and convergence properties;

see e.g., [20], [16], and references therein.

The goal here is to estimatehp(k1, . . . , kp) for p = 0, 1, . . . , P , andki = 0, 1, . . . , L−1, given the I/O

samples{x1(n), y(n)}Nn=1, and upper bounds on the expansion orderP and the memory sizeL. Although

this problem has been extensively investigated [16], the sparsity present in the Volterra representation of

many nonlinear systems will be exploited here to develop efficient estimators.

To this end, (1) will be expressed first in a standard matrix-vector form [16]. Define the vectors

xp(n) := xp−1(n)⊗ x1(n) for p ≥ 2, where⊗ denotes the Kronecker product; and write thep-th order

Volterra output asHp [x1(n)] = xT
p (n)hp, wherehp contains the coefficients ofhp(k1, . . . , kp) arranged

accordingly. Using the latter, (1) can be rewritten as

y(n) = xT (n)h+ v(n), n = 1, . . . , N (3)
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wherex(n) :=
[

1 xT
1 (n) . . . xT

P (n)
]T

, andh :=
[

h0 hT
1 . . . hT

P

]T
. Concatenating (1) for alln, one

arrives at the linear model

y = Xh+ v (4)

wherey := [y(1) · · · y(N)]T , X := [x(1) . . . x(N)]T , andv := [v(1) . . . v(N)]T .

B. Polynomial Regression Model

Generalizing the Volterra filter expansion, polynomial regression aims at approximating a nonlinear

function y(n) = f
(

{xl(n)}L−1
l=0

)

of L variables through an expansion similar to (1)-(2), where the

input vectorx1(n) is now defined asx1(n) := [x0(n) . . . xL−1(n)]
T , andn is not necessarily a time

index. Again the goal is to estimatehp(k1, . . . , kp) given {x1(n), y(n)}Nn=1. Polynomial regression can

be interpreted as theP -th order Taylor series expansion off (x1(n)), and appears in several multilinear

estimation and prediction problems in engineering, natural sciences, and economics [13].

By simply choosingxl(n) = x(n − l) for l = 0, . . . , L − 1, the Volterra filter is a special case of

polynomial regression. Since this extra property has not been exploited in deriving (1)-(4), these equations

carry over to the polynomial regression setup. For this reason, the same notation will be used henceforth

for the two setups; the ambiguity will be easily resolved by the context.

C. The Curse of Dimensionality

Estimating the unknown coefficients in both the Volterra system identification and in polynomial

regression is critically challenged by the curse of dimensionality. The Kronecker product definingxp(n)

imply that the dimension ofhp is Lp, and consequentlyh and x(n) have dimension
∑P

p=0 L
p =

(

LP+1 − 1
)

/ (L− 1). Note that all possible permutations of the indices{k1, . . . , kp} multiply the same

input term xk1
(n) · · · xkp

(n); e.g., h2(0, 1) and h2(1, 0) both multiply the monomialx0(n)x1(n). To

obtain a unique representation of (2), only one of these permutations is retained. After discarding the

redundant coefficients, the dimension ofhp and xp(n)’s is reduced to
(

L+p−1
p

)

[16]. Exploiting such

redundancies in modules of all orders eventually shortensh andx(n)’s to dimension

M :=

P
∑

p=0

(

L+ p− 1

p

)

=

(

L+ P

P

)

=

(

L+ P

L

)

(5)

which still grows fast with increasingL andP . For notational brevity,h andX will denote the shortened

versions of the variables in (4); that is matrixX will be N ×M .
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D. Motivating Applications

Applications are outlined here involving models that admit(approximately) sparse polynomial represen-

tations. WhenP andL are unknown, model order selection can be accomplished via sparsity-cognizant

estimators. Beyond this rather mundane task, sparsity can arise due to problem specifications, or be

imposed for interpretability purposes.

A special yet widely employed Volterra model is the so-called linear-nonlinear-linear (LNL) one [16]. It

consists of a linear filter with impulse response{ha(k)}La−1
k=0 , in cascade with a memoryless nonlinearity

f(x), and a second linear filter{hb(k)}Lb−1
k=0 . The overall memory is thusL = La + Lb − 1. If f(x) is

analytic on an open set(a, b), it accepts a Taylor series expansionf(x) =
∑∞

p=0 cpx
p in x ∈ (a, b). It

can be shown that thep-th order redundant Volterra module is given by [16, Ch. 2]

hp(k1, . . . , kp) = cp

Lb−1
∑

k=0

hb(k)ha(k1 − k) . . . ha(kp − k) (6)

for ki ∈ {0, . . . , L− 1}. In (6), there arep-tuples(k1, . . . , kp) for which there is nok ∈ {0, . . . , Lb− 1}
such that(ki − k) ∈ {0, . . . , La − 1} for all i = 1, . . . , p. For thesep-tuples, the corresponding Volterra

coefficient is zero. As an example, for filters of lengthLa = Lb = 6 and forP = 3, among the364

non-redundant Volterra coefficients, the nonzero ones are no more than224. WhenLa andLb are not

known, the locations of the zero coefficients cannot be determined a priori. By dropping the second

linear filter in the LNL model, the Wiener model is obtained. Its Volterra modules follow immediately

from (6) and have the separable formhp(k1, . . . , kp) = cpha(k1) . . . ha(kp) for everyp [16]. Likewise,

by ignoring the first filter, the LNL model is transformed to the so-called Hammerstein model in which

hp(k1, . . . , kp) = cphb(k) for k = k1 = . . . = kp; and 0 otherwise. The key observation in all three

models is that if at least one of the linear filters is sparse, the resulting Volterra filter is even sparser.

That is usually the case when modeling the nonlinear behavior of loudspeakers and high-power

amplifiers (HPA) [16], [2]. When a small-size (low-cost) loudspeaker is located close to a microphone

(as is the case in cellular phones, teleconferencing, hands-free, or hearing aid systems), the loudspeaker

sound is echoed by the environment before arriving at the microphone. A nonlinear acoustic echo

canceller should adaptively identify the impulse responsecomprising the loudspeaker and the room, and

thereby subtract undesirable echoes from the microphone signal. The cascade of the loudspeaker, typically

characterized by a short memory LNL or a Wiener model, and thetypically long but (approximately)

sparse room impulse response gives rise to a sparse Volterrafilter [31]. Similarly, HPAs residing at the

transmitters of wireless communication links are usually modeled as LNL structures having only a few
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coefficients contributing substantially to the output [2, p.60]. When the HPA is followed by a multipath

wireless channel represented by a sparse impulse response,the overall system becomes sparse too [17].

Sparse polynomial expansions are also encountered in neuroscience and bioinformatics. Volterra filters

have been adopted to model causal relationships in neuronalensembles using spike-train data recorded

from individual neurons [3], [24]. Casting the problem as a probit Volterra regression, conventional

model selection techniques have been pursued to zero blocksof Volterra expansion coefficients, and thus

reveal neuron connections. Furthermore, genome-wide association (GWA) analysis depends critically on

sparse polynomial regression models [9], [27], [28]. Through GWA studies, geneticists identify which

genes determine certain phenotypes, e.g., human genetic diseases or traits in other species. Analysis has

revealed that genetic factors involve multiplicative interactions among genes – a fact known as epistasis;

hence, linear gene-phenotype models are inadequate. The occurrence of a disease can be posed as a

(logistic) multilinear regression, where apart from single-gene terms, the output depends on products of

two or more genes as well [9]. To cope with the under-determinacy of the problem and detect gene-gene

interactions, sparsity-promoting logistic regression methods have been developed; see e.g., [27].

Based on these considerations, exploiting sparsity in polynomial representations is well motivated and

prompted us to develop the sparsity-aware estimators described in the following section.

III. E STIMATION OF SPARSEPOLYNOMIAL EXPANSIONS

One of the attractive properties of Volterra and polynomialregression models is that the output is a

linear function of the wanted coefficients. This allows one to develop standard estimators forh in (4).

However, the number of coefficientsM can be prohibitively large for reasonable values ofP andL, even

after removing redundancies. Hence, accurately estimating h requires a large number of measurementsN

which: i) may be impractical and/or violate the stationarity assumption in an adaptive system identification

setup; ii) entails considerable computational burden; andiii) raises numerical instability issues. To combat

this curse of dimensionality, batchsparsity-awaremethods will be proposed first for polynomial modeling,

and based on them, adaptive algorithms will be developed afterwards.

A. Batch Estimators

Ignoring v in (4), the vectorh can be recovered by solving the linear system of equationsy = Xh.

Generally, a unique solution is readily found ifN ≥ M ; but whenN < M , there are infinitely many

solutions. Capitalizing on the sparsity ofh, one should ideally solve

min
h

{‖h‖0 : y = Xh} . (7)
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Recognizing the NP-hardness of solving (7), compressive sampling suggests solving instead the linear

program [8], [6]

min
h

{‖h‖1 : y = Xh} (8)

which is also known as basis pursuit and can quantifiably approximate the solution of (7); see Section IV

for more on the relation between (7) and (8). However, modeling errors and measurement noise, motivate

a LS estimator̂hLS := argminh ‖y−Xh‖22. If N ≥M andX has full column rank, the LS solution is

uniquely found aŝhLS =
(

XTX
)−1

XTy. If the input is drawn either from a continuous distributionor

from a finite alphabet of at leastP+1 values,XTX is invertible almost surely; but its condition number

grows withL andP [19]. A large condition number translates to numerically ill-posed inversion ofXTX

and amplifies noise too. IfN < M , the LS solution is not unique; but one can choose the minimum

ℓ2-norm solutionĥLS = XT
(

XXT
)−1

y.

For both over/under-determined cases, one may resort to theridge (ℓ2-norm regularized) solution

ĥRidge :=
(

XTX+ δIM
)−1

XTy (9a)

= XT
(

XXT + δIN
)−1

y (9b)

for someδ > 0, where the equality can be readily proved by algebraic manipulations. Calculating, storing

in the main memory, and inverting the matrices in parentheses are the main bottlenecks in computing

ĥRidge via (9). Choosing (9a) versus (9b) depends on howN andM compare. Especially for polynomial

(or Volterra) regression, the(n1, n2)-th entry of XXT , which is the inner productxT (n1)x(n2), can

be also expressed as
∑P

p=0

(

xT
1 (n1)x1(n2)

)p
. This computational alternative is an instantiation of the

so-called kernel trick, and reduces the cost of computingXXT in (9b) fromO(N2M) toO(N2(L+P ))

[23], [11]; see also Subsection III-C.

In any case, neither̂hLS nor ĥRidge are sparse. To effect sparsity, the idea is to adopt as regularization

penalty theℓ1-norm of the wanted vector [25]

ĥ = argmin
h

1

2
‖y −Xh‖22 + λN

M
∑

i=1

wi|hi| (10)

wherehi is thei-th entry ofh, andwi > 0 for i = 1, . . . ,M . Two choices ofwi are commonly adopted:

(w1) wi = 1 for i = 1, . . . ,M , which corresponds to the conventional Lasso estimator [25]; or,

(w2) wi = |ĥRidge
i |−1 for i = 1, . . . ,M , which leads to the weighted Lasso estimator [32].

Asymptotic performance of the Lasso estimator has been analyzed in [10], where it is shown that the

weighted Lasso estimator exhibits improved asymptotic properties over Lasso at the price of requiring the
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ridge regression estimates to evaluate thewi’s [32]. For the practical finite-sample regime, performance

of the Lasso estimator is analyzed through the restricted isometry properties ofX in Section IV, where

rules of thumb are also provided for the selection ofλN as well (cf. Lemma 1).

Albeit known for linear regression models, the novelty here is the adoption of (weighted) Lasso for

sparse polynomialregressions. Sparse generalized linear regression models, such asℓ1-regularized logistic

and probit regressions can be fit as a series of successive Lasso problems after appropriately redefining

the responsey and weighting the inputX [13, Sec. 4.4.1], [27]. Hence, solving and analyzing Lasso

for sparse polynomial expansions is important for generalized polynomial regression as well. Moreover,

in certain applications, Volterra coefficients are collected in subsets (according to their order or other

criteria) that are effected to be (non)zero as a group [24]. In such applications, using methods promoting

group-sparsity is expected to improve recoverability [30]. Even though sparsity is manifested here at the

single-coefficient level, extensions toward the aforementioned direction constitutes an interesting future

research topic.

Algorithmically, the convex optimization problem in (10) can be tackled by any generic second-order

cone program (SOCP) solver, or any other method tailored forthe Lasso estimator. The method of choice

here is the coordinate descent scheme of [12], which is outlined next for completeness. The core idea is

to iteratively minimize (10) w.r.t. one entry ofh at a time, while keeping the remaining ones fixed, by

solving the scalar minimization problem

min
hi

1

2
‖y −X(−i)ĥ(−i) − xihi‖22 + λNwi|hi| (11)

wherexi is thei-th column1 of X, variablesX(−i) andĥ(−i) denoteX andĥ, respectively, having thei-th

column (entry) removed, and̂h is the latest value for the optimumh. It turns out that the component-wise

minimization of (11) admits the closed-form solution [12]

ĥi ←
sign(zi)

Rii
· [|zi| − λNwi]+ (12)

where[x]+ := max(x, 0), Rii is thei-th entry of the sample correlation or Grammian matrixR := XTX

andzi is the i-th entry ofzi := XT
(

y −X(−i)ĥ(−i)
)

. After initializing ĥ to any value (usually zero),

the algorithm iterates by simply updating the entries ofĥ via (12). By definingz := XT
(

y −Xĥ

)

,

vectorzi can be updated as

zi ← z+ riĥi (13)

1Recall thatx(n) stands for then-th row of X.
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with ri being thei-th column ofR. After updatingĥi to its new value (12),z has to be updated too as

z← zi − riĥi. (14)

It is easy to see that{zi}Mi=1 in (13)-(14) are not essentially needed, and one can update only z. These

iterates constitute the cyclic coordinate descent (CCD) algorithm for the (weighted) Lasso problem, and

are tabulated as Alg. 1. CCD-(W)L is guaranteed to converge to a minimizer of (10) [12]. Apart from the

initial computation ofz andR which incurs complexityO(M2N), the complexity of Alg. 1 as presented

here isO(M) per coordinate iteration; see also [12].

B. Recursive Estimators

Unlike batch estimators, their recursive counterparts offer computational and memory savings, and

enable tracking of slowly time-varying systems. The recursive LS (RLS) algorithm is an efficient imple-

mentation of the LS, and the ridge estimators. It solves sequentially the following problem:

ĥRLS
N := argmin

h

N
∑

n=1

βN−n
(

y(n)− xT (n)h
)2

+ βNδ‖h‖22 (15)

whereβ denotes the forgetting factor andδ a small positive constant. For time-invariant systems,β is

set to1, while 0 ≪ β < 1 enables tracking of slow variations. Similar to the batch LS, the RLS does

not exploit the a priori knowledge on the sparsity ofh, and suffers from numerical instability especially

when the effective memory of the algorithm,1/(1 − β), is comparable to the dimensionM of h.

To overcome these limitations, the following approach is advocated for polynomial regression:

ĥN = argmin
h

JL
N (h) (16)

JL
N (h) :=

N
∑

n=1

βN−n
(

y(n)− xT (n)h
)2

+ λN

M
∑

i=1

wN,i|hi|

wherewN,i can be chosen as

(a1) wN,i = 1 ∀N , i = 1, . . . ,M , which corresponds to the recursive Lasso (RL) problem; or,

(a2) wN,i = |ĥRLS
N,i |−1 ∀N , i = 1, . . . ,M , leading to the recursive weighted Lasso (RWL) one.

The sequence{ĥN} cannot be updated recursively, and (16) calls for a convex optimization solver for

each time instant or measurementN . To avoid the computational burden involved, several methods have

been developed for sparse linear models; see [1] and the references therein. The coordinate descent

algorithm of Subsection III-A can be extended to (16) by firstupdatingR andz as

RN = βRN−1 + x(N)xT (N) (17a)

zN = βzN−1 + x(N)(y(N) − xT (N)ĥN−1) (17b)
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whereĥN−1 is a solution at timeN−1. The minimizerĥN can then be found by performing component-

wise minimizations until convergence in the spirit of the corresponding batch estimator. However, to

speed up computations and leverage the adaptivity of the solution, we choose to perform a single cycle

of component-wise updates. Thus,ĥN is formed by the iterates of the inner loop in Alg. 2, whererN,i,

zN,i, RN,ii, and ĥN,i are defined as before.

The presented algorithm called hereafter cyclic coordinate descent for recursive (weighted) Lasso

(CCD-R(W)L) is summarized as Alg. 2; the convergence properties of CCD-RL have been established

in [1] for linear regression, but carry over directly to the polynomial regression considered here. Its

complexity isO(M2) per measurement which is of the same order as the RLS. By setting wN,i = 0 or

wN,i = |ĥRLS
N,i |−1, the CCD-R(W)L algorithms approximate the minimizers of the R(W)L problems.

C. Polynomial Reproducing Kernels

An alternative approach to polynomial modeling is via kernel regression [23]. In the general setup, ker-

nel regression approximates a nonlinear functionf(x1) assuming it can be linearly expanded over a possi-

bly infinite number of basis functionsφk(x1) asf(x1) =
∑K

k=1 αkφk(x1). Whenφk(x1) = κ (x1,x1(k))

with κ(·, ·) denoting a judiciously selected positive definite kernel,f(x1) lies in a reproducing kernel

Hilbert spaceH, and kernel regression is formulated as the variational problem

min
f∈H

C
(

{f (x1(n)) , y(n)}Nn=1

)

+ ‖f‖H (18)

whereC(·) is an arbitrary cost function, and‖f‖H is the norm inH that penalizes complexity off . It

turns out that there exists a minimizer of (18) expressed asf(x1) =
∑N

n=1 αnκ (x1,x1(n)), while for

many meaningful costs theαn’s can be computed inO(N3) using convex optimization solvers [23].

Polynomial regression can be cast as kernel regression after settingκ(x1(n1),x1(n2)) to be either the

homogeneous polynomial kernel
(

xT
1 (n1)x1(n2)

)P
, or, one of the inhomogeneous ones

(

1+xT
1 (n1)x1(n2)

)P

or
∑P

p=0

(

xT
1 (n1)x1(n2)

)p
[23], [11]. Once theαn’s have been estimated, the polynomial coefficientsh

(cf. (4)) can be found in closed form [11]. Furthermore, objectivesC(·) such as theǫ-insensitive cost,

yield sparsity in theαn–domain, and thus designate the so-called support vectors among thex1(n)’s [23].

Even though kernel regression alleviates complexity concerns, theh which can indirectly obtained cannot

be sparse. Thus, sparsity-aware estimation in the primalh–domain (as opposed to the dualαn–domain)

comes with interpretational and modeling advantages.
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IV. I DENTIFIABILITY OF SPARSEPOLYNOMIAL MODELS

This section focuses on specifying whether the optimization problems in (8) and (10) are capable

of identifying a sparse polynomial expansion. The asymptotic in N behavior of the (weighted) Lasso

estimator has been studied in [10], [32]; practically though one is more interested in finite-sample

recoverability guarantees. One of the tools utilized to this end is the so-calledrestricted isometry properties

(RIP) of the involved regression matrixX. These are defined as [6]:

Definition 1 (Restricted Isometry Properties (RIP)). Matrix X ∈ R
N×M possesses the restricted isometry

of order s, denoted asδs ∈ (0, 1), if for all h ∈ R
M with ‖h‖0 ≤ s

(1− δs) ‖h‖22 ≤ ‖Xh‖22 ≤ (1 + δs) ‖h‖22. (19)

RIP were initially derived to provide identifiability conditions of ans-sparse vectorho given noiseless

linear measurementsy = Xho. It has been shown that theℓ0-pseudonorm minimization in (7) can

uniquely recoverho if and only if δ2s < 1. If additionally δ2s <
√
2−1, thenho is the unique minimizer

of the basis pursuit cost in (8) [5].

RIP-based analysis extends to noisy linear observations ofans-sparse vector; that is, fory = Xho+v.

If ‖v‖2 ≤ ǫ, the constrained version of the Lasso optimization problem

min
h

{‖h‖1 : ‖y −Xh‖2 ≤ ǫ} (20)

yields ‖ĥBN − ho‖22 ≤ c2BN · ǫ2, wherecBN := 4(1+δ2s)

1−δ2s(
√
2+1)

wheneverδ2s <
√
2 − 1 [5]. Furthermore,

if v ∼ N (0, σ2IN ), the Dantzig selector defined as

min
h

{

‖h‖1 : ‖XT (y −Xh) ‖∞ ≤ ǫDS

}

(21)

satisfies‖ĥDS − ho‖22 ≤ cDS · σ2s logM , wherecDS :=

(

4
√
2

1−δ2s(
√
2+1)

)2

with probability at least1−

(π logM)−1/2 wheneverδ2s <
√
2− 1, andǫDS =

√
2σ
√
logM [7]. Similarly, RIP-based recoverability

guarantees can be derived in the stochastic noise setting for the Lasso estimator as described in the

following lemma.

Lemma 1. Consider the linear modely = Xho + v, where the columns ofX ∈ R
N×M are of unit

ℓ2-norm, ‖ho‖0 = s, and v ∼ N (0, σ2IN). Let ĥL denote the minimizer of the Lasso estimator(10)
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with wi = 1 for i = 1, . . . ,M , andλ = Aσ
√
logM for A > 2

√
2. If δ2s < 1

3
√
2+1

, the bounds

‖ĥL − ho‖1 ≤
16A

cL
· σs
√

logM (22)

‖ĥL − ho‖22 ≤
(

16A

cL

)2

· σ2s logM (23)

‖X(ĥL − ho)‖22 ≤
16A2

cL
· σ2s logM (24)

hold with probability at least1−M1−A2/8 for cL = (1− δ2s)
(

1− 3
√
2δ2s

1−δ2s

)2
.

Proof: The lemma follows readily by properly adapting Lemma 4.1 andTheorem 7.2 of [4].

The earlier stated results document and quantify the role ofRIP-based analysis in establishing identi-

fiability in a compressive sampling setup. However, Definition 1 suggests that finding the RIP of a given

matrix X is probably a hard combinatorial problem. Thus, to derive sparse recoverability guarantees one

usually resorts to random matrix ensembles to provide probabilistic bounds on their RIP [6], [22]. In

the generic sparse linear regression setup, it has been shown that when the entries ofX ∈ R
N×M are

independently Gaussian or Bernoulli,X possesses RIPδs with probability at least1− exp
(

−δ2s/(2C)
)

when the number of measurements isN ≥ 2C/δ2s · s log(M/s), whereC is a universal constant; this

bound is known to be optimal [6]. In a sparse system identification setup where the regression matrix

has a Toeplitz structure, the condition on the number of measurementsN obtained so far loosens to

a scaling ofs2 logM for a Gaussian, Bernoulli, or uniform input [14], [22]. The quadratic scaling of

N w.r.t. s in the latter bound versus the linear scaling in the former can be attributed to the statistical

dependencies among the entries ofX [22]. Our contribution pertains to characterizing the RIP of the

involved regression matrix for both the Volterra system identification and the multivariate polynomial

regression scenarios.

A. RIP for Volterra System Identification

For the Volterra filtering problem under study, the following assumptions will be in force:

(as1) input{xn} is independently drawn from the uniform distribution, i.e., xn ∼ U [−1, 1]; and

(as2) expansion is of orderP = 2 (linear-quadratic Volterra model).

Regarding (as1), recall that the Volterra expansion is a Taylor series approximation of a nonlinear function;

thus, it is reasonable to focus on a bounded input region. Moreover, practically, one is frequently interested

in the behavior of a nonlinear system for a limited input range. For (as2), the non-homogeneous quadratic

Volterra model is a commonly adopted one. Generalization tomodels withP ≥ 3 is not straightforward
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and goes beyond the scope of our RIP analysis. The consideredVolterra filter length isM =
(

L+2
2

)

; and,

for future use, it is easy to check that under (as1) it holds that E[x2n] = 1/3 andE[x4n] = 1/5.

To start, recall the definition of the Grammian matrixR := XTX and letRij denote its(i, j)-th

entry. As shown in [14, Sec. III], the matrixX possesses RIPδs if there exist positiveδd and δo with

δd + δo = δs such that|Rii − 1| < δd and |Rij | < δo/s for every i, j with j 6= i. When these conditions

hold, Geršgorin’s disc theorem guarantees that the eigenvalues of Grammian matrices formed by any

combination ofs columns ofX lie in the interval[1− δs, 1+ δs], andX possesses RIPδs by definition.

In a nutshell, for a regression matrixX to have smallδs’s, and hence favorable compressed sampling

properties, it suffices that its Grammian matrix has diagonal entries close to unity and off-diagonal entries

close to zero. If the involved regression matrixX had unitℓ2-norm columns, then the{Rii} would be

unity by definition and one could merely study the quantitymaxi,j,j 6=i |Rij |, defined as the coherence of

X; see also [22, p. 13] for the relation between coherence and the RIP.

In the Volterra filtering problem at hand, the diagonal entries {Rii} are not equal to one; but an

appropriate normalization of the columns ofX can provide at leastE[Rii] = 1 for all i. The law of

large numbers dictates that given sufficiently enough measurementsN , the Rii’s will approach their

mean value. Likewise, it is desirable for the off-diagonal entries ofR to have zero mean, so that they

vanish for largeN . Such a requirement is not inherently satisfied by allRij ’s with j 6= i; e.g., the inner

product betweenX columns of the form
[

x2n x
2
n+1 . . . x2n+N−1

]T
and

[

x2n−k x
2
n−k+1 . . . x2n−k+N−1

]T

for somen andk > 0 has expected valueN
(

E[x2n]
)2

that is strictly positive.

To achieve the desired properties, namely

(p1) E[Rii] = 1 for all i = 1, . . . ,M , and

(p2) E[Rij ] = 0 for all i, j = 1, . . . ,M andj 6= i

it will be soon established that instead of studying the RIP of X, one can equivalently focus on its

modified versionX̃ ∈ R
N×M defined as

X̃ :=
[

x̃c X̃l X̃q X̃b
]

(25)

wherex̃c := 1N/
√
N corresponds to the constant (intercept or dc) component,X̃l andX̃q are twoN×L

Toeplitz matrices corresponding to the linear and quadratic parts defined as

X̃l :=

√

3

N

















x0 x−1 . . . x−L+1

x1 x0 . . . x−L+2

...
...

...

xN−1 xN−2 . . . xN−L+1

















(26)
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X̃q :=
3

2

√

5

N

















x20 − 1
3 x2−1 − 1

3 . . . x2−L+1 − 1
3

x21 − 1
3 x20 − 1

3 . . . x2−L+2 − 1
3

...
...

...

x2N−1 − 1
3 x2N−2 − 1

3 . . . x2N−L+1 − 1
3

















(27)

andX̃b is aN × L(L−1)
2 (non-Toeplitz) matrix related to the bilinear part given by

X̃b :=
3√
N

















x0x−1 x0x−2 . . . x−L+2x−L+1

x1x0 x1x−1 . . . x−L+3x−L+2

...
...

...

xN−1xN−2 xN−1xN−3 . . . xN−L+2xN−L+1

















. (28)

Consider now the Grammian of̃X, namelyR̃ := X̃T X̃. ComparingX with X̃, the columns ofX̃

have theirℓ2-norm normalized in expectation, and thusR̃ satisfies (p1). Moreover, those columns ofX̃

corresponding to the quadratic part (cf. submatrixX̃q) are shifted by the variance ofxn. One can readily

verify that (p2) is then satisfied too.

The transition fromX to X̃ raises a legitimate question though: Does the RIP ofX̃ provide any insight

on the compressed sampling guarantees for the original Volterra problem? In the noiseless scenario, we

actually substitute the optimization problem in (8) by

min
h̃

{

‖h̃‖1 : y = X̃h̃
}

. (29)

Upon matching the expansionsXh = X̃h̃, the following one-to-one mapping holds

h0 =
1√
N
h̃0 −

1

2

√

5

N

L
∑

k=1

h̃2(k, k) (30a)

h1(k) =

√

3

N
h̃1(k), k = 1, . . . , L (30b)

h2(k, k) =
3

2

√

5

N
h̃2(k, k), k = 1, . . . , L (30c)

h2(k1, k2) =
3√
N
h̃2(k1, k2), k1 = 1, . . . , L, k2 = k1 + 1, . . . , L. (30d)

It is now apparent that a sparse solution of (29) translates to a sparse solution of (8) except for the

constant term in (30a). By deterministically adjusting theweights{wi}Mi=1 and the parameterλN in (10),

this argument carries over to the Lasso optimization problem and answers affirmatively the previously

posed question. Note though that such a modification serves only analytical purposes; practically, there

is no need to solve the modified compressed sampling problems.
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Remark1. Interestingly, transition from the original Volterra matrix to the modified one resembles the

replacement of the Volterra by the Wiener polynomials for nonlinear system identification [16]. Wiener

polynomials are known to facilitate mean-square error (MSE)-optimal estimation of Volterra modules

for a white Gaussian input; see e.g., [16]. Our modification,adjusted to a uniformly distributed input,

facilitates the RIP analysis of the Volterra regression matrix.

One of the main results of this paper is summarized in the following theorem (see the Appendix for

a proof).

Theorem 1 (RIP in Volterra Filtering). Let {xi}Ni=−L+1 be an input sequence of independent random

variables drawn fromU [−1, 1], and defineM := (L + 1)(L + 2)/2. Assume that theN ×M modified

Volterra regression matrix̃X defined in(25)-(28) is formed by such an input forL ≥ 7 andN ≥ 160.

Then, for anyδs ∈ (0, 1) and for anyγ ∈ (0, 1), wheneverN ≥ 5C
(1−γ)δ2s

·s2 logL, the matrixX̃ possesses

RIP δs for s ≥ 2 with probability exceeding1− exp
(

−γδ2s
C · Ns2

)

, whereC = 2, 835.

The theorem asserts that an orders2 logL observations suffice to recover ans-sparse non-homogeneous

second-order Volterra filter of memoryL probed by a uniformly distributed input scales ass2 logL. Since

the number of unknownsM is O(L2), the bound onN scales also ass2 logM . The bound agrees with

the bounds obtained for the linear filtering setup [14], whereas now the constants are larger due to the

more involved dependencies among the entries of the associated regression matrix.

B. RIP for Multivariate Polynomial Regression

Consider now the case wheref(x) describes a sparse linear-quadratic model

f(x1) = h0 +

L
∑

k=1

h1(k)xk +

L
∑

k1=1

L
∑

k2=k1

h2(k1, k2)xk1
xk2

. (31)

GivenN output samples{y(n)}Nn=1, corresponding to input data{x1(n)}Nn=1 drawn independently from

U [−1, 1]L, the goal is to recover the sparseM × 1 vectorh comprising theh1(k)’s andh2(k1, k2)’s.

Note thatM = (L+ 1)(L + 2)/2 here. As explained in Section II, the noiseless expansion in(31) can

be written asy = Xh; but, contrary to the Volterra filtering setup, the rows ofX are now statistically

independent. The last observation differentiates significantly the RIP analysis for polynomial regression

and leads to tighter probabilistic bounds.

Our analysis builds on [22], which deals with finding a sparseexpansion of a functionf(x) =
∑T

t=1 ctψt(x) over a bounded orthonormal set of functions{ψt(x)}. ConsideringD a measurable space,
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e.g., a measurable subset ofR
L endowed with a probability measureν, the set of functions{ψt(x) :

D → R}Tt=1 is a bounded orthonormal system if for allt1, t2 = 1, . . . , T
∫

D
ψt1(x)ψt2 (x)dν(x) = δt1,t2 (32)

whereδt1,t2 denotes the Kronecker delta function, and for some constantK ≥ 1 it holds that

sup
t

sup
x∈D
|ψt(x)| ≤ K. (33)

After samplingf(x) at {x(n) ∈ D}Nn=1, the involvedN × T regression matrixΨ with entriesΨn,t :=

ψt (x(n)) admits the following RIP characterization [22, Theorems 4.4 and 8.4].

Theorem 2 (RIP in bounded orthonormal systems [22]). Let Ψ be theN × T matrix associated with a

bounded orthonormal system with constantK ≥ 1 in (33). Then, for anyδs ∈ (0, 0.5], there exist universal

positive constantsC and γ, such that wheneverN ≥ CK2

δ2s
· s log4 T , the matrix 1√

N
Ψ possesses RIPδs

with probability exceeding1− exp
(

− γδ2s
CK2 · Ns

)

.

In the linear-quadratic regression of (31), even though thebasis functions{1, {xi}, {xi1xi2}} are

bounded in[−1, 1]L, they are not orthonormal in the uniform probability measure. Fortunately, our input

transformation trick devised for the Volterra filtering problem applies to the polynomial regression too.

The expansion is now over the basis functions{ψm(x)}Mm=1
{

1, {
√
3xi},

{

3
√
5

2

(

x2i −
1

3

)}

, {3xi1xi2}
}

(34)

where the last subset contains all the unique, two-variablemonomials lexicographically ordered. Upon

stacking the function values{yn}Nn=1 in y and properly defining̃h, the expansiony = Xh can be

replaced byy = X̃h̃, where the entries of̃X are

X̃n,m :=
ψm (x(n))√

N
. (35)

Vectorsh and h̃ are related through the one-to-one mapping in (30); thus, sparsity in one is directly

translated to the other. Identifiability of a sparseh can be guaranteed by the RIP analysis ofX̃ presented

in the next lemma.

Lemma 2 (RIP in linear-quadratic regression). Letxi(n) for i = 1, . . . , L andn = 1, . . . , N independent

random variables uniformly distributed in[−1, 1], and defineM := (L+ 1)(L + 2)/2. Assume that the

N×M modified polynomial regression matrix̃X in (35) is generated by this sequence forL ≥ 4. Then, for

anyδs ∈ (0, 0.5], there exist universal positive constantsC andγ, such that wheneverN ≥ 144C
δ2s
·s log4 L,

the matrixX̃ possesses RIPδs with probability exceeding1− exp
(

−γδ2s
9C · Ns

)

.
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Proof: The inputsx(n) are uniformly drawn overD = [−1, 1]L, and it is easy to verify that the

basis functions{ψm(x)}Mm=1 in (34) form a bounded orthonormal system withK = 3. Hence, Theorem

2 can be straightforwardly applied. SinceM ≤ L2 for L ≥ 4, it follows that log4M < 16 log4 L.

Lemma 2 assures that ans-sparse linear-quadraticL-variate expansion with independent uniformly

distributed inputs can be identified with high probability from a minimum number of observations that

scales ass log4 L or s log4M . Comparing this to Theorem 1, the bound here scales linearlywith s.

Moreover, except for the increase in the power of the logarithmic factor, the bound is close to the one

obtained for random Gaussian and Bernoulli matrices. The improvement over the Volterra RIP bound is

explained by the simpler structural dependence of the matrix X involved.

Another interesting polynomial regression paradigm is when the nonlinear functionf(x1) admits a

sparse polynomial expansion involvingL inputs, and all products up toP of these inputs, that is

f(x1) = h0 +

L
∑

k=1

h1(k)xk +

L
∑

k1=1

L
∑

k2=k1+1

h2(k1, k2)xk1
xk2

+ . . . (36)

+

L
∑

k1=1

L
∑

k2=k1+1

. . .

L
∑

kP=kP−1+1

hP (k1, k2, · · · , kP )xk1
xk2

. . . xkP
.

This is the typical multilinear regression setup appearingin GWA studies [27], [9]. Because there are
(

L
p

)

monomials of orderp, the vectorh comprising all the expansion coefficients has dimension

M =

P
∑

p=0

(

L

p

)

≤ (L+ 1)P (37)

where the last inequality provides a rough upper bound. The goal is again to recover ans-sparseh

given the sample phenotypes{yn}Nn=1 over the genotype values{x1(n)}Nn=1. Vectorsx1(n) are drawn

either from{−1, 0, 1}L or {−1, 1}L depending on the assumed genotype model (additive for the first

alphabet; and dominant or recessive for the latter) [27]. Without loss of generality, consider the ternary

alphabet with equal probabilities. Further, suppose for analytical convenience that the entries ofx1(n)

are independent. Note that the input has mean zero and variance 2/3.

The RIP analysis for the model in (36) exploits again Theorem2. Since now every single input appears

only linearly in (36), the basis functions{1, {xi}, {xi1xi2}, . . .} are orthogonal w.r.t. the assumed point

mass function. A bounded orthonormal system{ψm (x)}Mm=1 can be constructed after scaling as
{

1, {(2/3)−1/2xi1}, {(2/3)−2/2xi1xi2}, . . . , {(2/3)−P/2xi1xi2 · · · xiP }
}

(38)

while the set is bounded byK = (3/2)P/2. Similar to the linear-quadratic case in (31), the original

multilinear expansionXh is transformed toX̃h̃, whereX̃ is defined as in (35) with the new basis of
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(38), andh̃ is an entry-wise rescaled version ofh. Based on these facts, the RIP characterization ofX̃

follows readily from the ensuing lemma.2

Lemma 3 (RIP in multilinear expansion). Let xi(n) for i = 1, . . . , L and n = 1, . . . , N independent

random variables equiprobably drawn from{−1, 0, 1}, andM defined as in(37). TheN ×M modified

multilinear regression matrix̃X in (35) and(38) is generated by this sequence. Then, for anyδs ∈ (0, 0.5],

there exist universal positive constantsC and γ, such that wheneverN ≥ C
δ2s

(

3
2

)P
P 4s log4(L+ 1), the

matrix X̃ possesses RIPδs with probability exceeding1− exp
(

− γδ2s
C(3/2)P · Ns

)

.

SinceP is often chosen in the order of 2 due to computational limitations, Lemma 3 guarantees the

RIP to hold with high probability when the number of phenotype samplesN scales at least ass log4 L.

V. SIMULATED TESTS

The RIP analysis performed in the previous section providesprobabilistic bounds on the identifiability

of sparse polynomial representations. In this section, we evaluate the applicability of sparsity-aware

polynomial estimators using synthetic and real data. The experimental results indicate that sparsity-

promoting recovery methods attain accurate results even when the number of measurements is less than

the RIP-derived bounds, and, in any case, they outperform the sparsity-agnostic estimators.

A. Batch and Adaptive Volterra Filters

We first focus on the sparse Volterra system identification setup. The system under study was an LNL

one, consisting of a linear filter with impulse responsehf = [0.36 0 0.91 0 0 0.19]T , in cascade with the

memoryless nonlinearityf(x) = −0.5x3 + 0.4x2 + x, and the same linear filter. This system is exactly

described by a Volterra expansion withL = 11 andP = 3, leading to a total ofM =
(

L+P
P

)

= 364

coefficients collected in the vectorh0. Out of the364 coefficients only48 are nonzero. The system input

was modeled asx(n) ∼ N (0, 1), while the output was corrupted by additive noisev(n) ∼ N (0, 0.1).

First, the batch estimators of Section III-A were tested, followed by their sequential counterparts.

In Fig. 1(a), the obtained MSE,E
[

‖h0 − ĥ‖22
]

, averaged over100 Monte Carlo runs, is plotted against

the number of observations,N , for the following estimators: (i) the ridge estimator of (9) with δ=1;

(ii) the Lasso (CCD-L) estimator withλN=0.7
√
N ; and, (iii) the weighted Lasso (CCD-WL) estimator

2After our conference precursor [15], we became aware of a recent result in [18], which relates to Lemma 3. The differences

are: i) only theP -th order term in expansion (36) is considered in [18]; and ii) inputs {xi(n)} adhere to the binary{±1}

alphabet in [18], as opposed to the ternary one in Lemma 3.
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with λN=0.08 logN . The scaling rules for the twoλNs follow the results of [1] and [32]. It can be seen

that the sparsity-agnostic ridge estimator is outperformed by the Lasso estimator for short observation

intervals (N<600). For largerN , whereXTX becomes well-conditioned, the former provides improved

estimation accuracy. However, CCD-WL offers the lowest MSEfor everyN , and provides reasonably

accurate estimates even for the under-determined case(N<364).

Performance of the sequential estimator in Section III-B was assessed in the same setup. Fig. 1(b)

illustrates the MSE convergence, averaged over 100 Monte Carlo runs, for the following three recursive

algorithms: (i) the conventional RLS of (15); (ii) the cyclic coordinate descent recursive Lasso (CCD-RL);

and, (iii) its weighted version (CCD-RWL). Since the systemwas time-invariant, the forgetting factor

was set toβ = 1. It can be observed that the conclusions drawn for the batch case carry over to the

recursive algorithms too. Moreover, a comparison of Figs. 1(a) and 1(b) indicates that the sparsity-aware

iterates of Table 2 approximate closely the exact per time instance problem in (16).

B. Multilinear Regression for GWA Analysis

Here we test sparse polynomial modeling for studying the epistatic effects in quantitative trait analysis.

In quantitative genetics, the phenotype is a quantitative trait of an organism, e.g., the weight or height of

barley seeds [26]. Ignoring environmental effects, the phenotype is assumed to follow a linear regression

model over the individual’s genotype, including single-gene (main) and gene-gene (epistatic) effects [28],

[9]. The genotype consists of markers which are samples of chromosomes taking usually binary{±1}
values. Determining the so-called quantitative trait loci(QTL) corresponds to detecting the genes and

pairs of genes associated with a particular trait [28]. Since the studied populationN is much smaller

than the number of regressorsM , and postulating that only a few genotype effects determinethe trait

considered, QTL analysis falls under the sparse multilinear (for P = 2) model of (36).

1) Synthetic Data:The first QTL paradigm is a synthetic study detailed in [28]. Apopulation of

N=600 individuals is simulated for a chromosome of 1800 cM (centiMorgan) evenly sampled every 15

cM to yieldL = 121 markers. The true population mean and variance are 5.0 and 10.0, respectively. The

phenotype is assumed to be linearly expressed over the intercept, theL main effects, and the
(

L
2

)

= 7, 260

epistatic effects, leading to a total ofM = 7, 382 regressors. The QTLs simulated are 9 single markers and

13 marker pairs. Note that the simulation accommodates markers (i) with main only, (ii) epistatic only,

and (iii) both main and epistatic effects. Since the intercept is not regularized, genotype and phenotype

data were centered, i.e., their sample mean was subtracted,and the intercept was determined at the end

as the sample mean of the initial I/O data on the fitted model.
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Parametersδ andλ for ridge and (w)Lasso estimators, respectively, were tuned through 10-fold cross-

validation over an 100-point grid [13]; see Table I(a). The figure of merit for selecting the parameters

was the prediction error (PE) over the unseen data, i.e.,
∑V

v=1 ‖yv −Xvĥv‖22/(N/V ), whereV = 10

and ĥv is the regression vector estimated given all but the(yv ,Xv) validation data. The value ofδ

attaining the smallest PE was subsequently used for determining the weights for the wLasso estimator.

Having tuned the regularization parameters, the MSE provided by the three methods was averaged over

100 Monte Carlo runs on different phenotypic data while keeping the genotypes fixed. The (w)Lasso

estimators were run using the glmnet software [12]. Each of the three algorithms took less than 1 min

and 1 sec for cross-validation and final estimation, respectively.

As can be seen from Table I(a), Lasso attains the smaller PE. However, wLasso provides significantly

higher estimation accuracy at a PE value comparable to Lasso. The number of non-zero regression

coefficients indicated in the fourth column shows that ridgeregression yields an over-saturated model.

As shown more clearly in Fig. 2, where the true and the estimated models are plotted, the wLasso yields

a sparser, closer to the true model, while avoiding some spurious coefficients found by Lasso.

2) Real data from a barley experiment:The second QTL experiment entails a real dataset collected

by the North American Barley Genome Mapping Project as described in [26], [29], and outlined shortly

next. Aiming at a GWA analysis on barley height (HGT), the population consists ofN=145 doubled-

haploid lines of a cross between two barley lines, Harrington and TR306. The height of each individual

was measured under 27 different environments, and the phenotype was taken to be the sample average.

There areL = 127 markers covering a 1270 cM segment of the genome with an average marker interval

of 10.5 cM. The genotype is binary: +1 (-1) for the TR306 (Harrington) allele. There is a5% of missing

values which are modeled as zeros in order to minimize their effect [28]. The main and epistatic QTL

analysis involvesM = 1 + 127 +
(

127
2

)

= 8, 129 regressors.

The regularization parameter values were selected throughleave-one-out cross-validation [13]; see

Table I(b). The ridge estimator fails to handle over-fittingandδ is set to a large value yielding regression

coefficients of insignificant amplitude. Using the ridge estimates to weight the regression coefficients,

wLasso yields a PE slighty smaller than the one attained by Lasso; but it reduces the spurious coefficients.

As shown in Fig. 3, wLasso provides a more parsimonious modelwith fewer spurious peaks than the

Lasso-inferred model. Closer investigation of the wLasso QTLs exceeding0.1 in magnitude, shown in

Table I(c), offers the following interesting observations: (i) epistatic effects are not negligible; (ii) there

are epistatic effects related to QTLs with main effects, e.g., the (35, 99) pair is related to marker(101);

(iii) there are epistatic effects such as the(9, 33) one involving markers with no main effect.
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VI. CONCLUSIONS

The idea of exploiting sparsity in the representation of a system, already widely adopted for linear

regression and system identification, has been permeated here to estimate sparse Volterra and polynomial

models. The abundance of applications allowing for an interpretative parsimonious polynomial expansion

and the inability of kernel regression to yield such an expansion necessitate sparsity-aware polynomial

estimators. This need was successfully met here both from practical and analytical perspectives. Algo-

rithmically, the problem was solved via the batch (weighted) Lasso estimators, where for the weighted

one, the weights were efficiently found through the kernel trick. To further reduce the computational and

memory load and enable tracking, an adaptive sparse RLS-type algorithm was devised. On the analytical

side, RIP analysis was carried out for the two models. It was shown that ans-sparse linear-quadratic

Volterra filter can be recovered with high probability usingmeasurements in the order ofs2 logL; a

bound that interestingly generalizes the results from the linear filtering problem to the Volterra one. For

the sparse polynomial expansions considered, the bound improved tos log4 L, which also generalizes the

corresponding linear regression results. The potential ofthe aforementioned sparse estimation methods was

numerically verified through synthetic and real data. The developed sparse adaptive algorithms converged

fast to the exact solution, while the (weighted) Lasso estimators outperformed the LS-based one in all

simulated scenarios, as well as in the GWA study on real barley data. Future research directions include

extending the bounds derived to higher-order models, and utilizing our adaptive methods to accomplish

epistatic GWA studies on the considerably higher dimensional human genome.

APPENDIX

Outlining some tools regarding concentration inequalities precede the proof of Theorem 1.

Lemma 4 (Hoeffding’s inequality). Givent > 0 and independent random variables{xi}Ni=1 bounded as

ai ≤ xi ≤ bi almost surely, the sumsN :=
∑N

i=1 xi satisfies

Pr (|sN − E[sN ]| ≥ t) ≤ 2 exp

(

− 2t2
∑N

i=1(bi − ai)2

)

. (39)

It is essentially a Chernoff-type result on the concentration of a sum of independent bounded random

variables around its mean. However, the subsequent analysis on the RIP of the Volterra filter considers

sums of structurally dependent random variables. Useful probability bounds on such sums can be derived

based on the following lemma.
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Lemma 5 (Hoeffding’s inequality with dependent summands [21]). Consider random variables{xi}Ni=1

bounded asa ≤ xi ≤ b almost surely. Assume also they can be partitioned intoM collectively exhaustive

and mutually exclusive subsets{Nm}Mm=1 with respective cardinalities{Nm}Mm=1 such that the variables

within each subset are independent. Then, for anyt > 0 the sumsN :=
∑N

i=1 xi satisfies

Pr (|sN − E[sN ]| ≥ t) ≤ 2M exp

(

− 2t2

N2(b− a)2Nmin

)

(40)

whereNmin := minm{Nm}.

Note that the sharpness of the bound in (40) depends on the number of subsetsM as well as the

minimum of their cardinalitiesNmin. One should not only strive for the minimum number of intra-

independent subsets, but also arrangeNm’s as uniformly as possible. For example, partitioning withthe

minimum number of subsets may yieldNmin = 1 that corresponds to a loose bound.

The partitioning required in Lemma 5 is not always easy to construct. An interesting way to handle this

construction is offered by graph theory as suggested in [21]. The link between structural dependencies

in a set of random variables{xi}Ni=1 and graph theory hinges on theirdependency graphG. The latter is

defined as the graph having one vertex perxi, and an edge between every pair of vertices corresponding

to dependentxi’s. Recall that the degree of a vertex is the number of edges attached to it, and the degree

of a graph∆(G) is the maximum of the vertex degrees. Finding group-wise statistical independence

among random variables can be seen as a coloring of the dependency graph. The problem of coloring

aims at assigning every vertex of a graph to a color (class) such that there are no adjacent vertices

sharing the same color. Moreover, coloring of a graph is equitable if the cardinality of every color does

not differ by more than one from the cardinalities of every other color. Thus, anM -equitable coloring of

the dependency graph means that the random variables can be partitioned inM intra-independent subsets

whose cardinalities are either
⌊

N
M

⌋

or
⌊

N
M

⌋

+1. A key theorem by Hajnal and Szemeredi guarantees that

a graphG has anM -equitable coloring for allM ≥ ∆(G)+1; see e.g., [21]. Combining this result with

Lemma 5, yields the following corollary.

Corollary 1 (Hoeffding’s inequality and dependency graph [21], [14]). Consider random variables

{xi}Ni=1 bounded asa ≤ xi ≤ b. Assume also that their dependency graph has degree∆. Then, the

sumsN :=
∑N

i=1 xi satisfies for every integerM ≥ ∆+ 1 and t > 0

Pr (|sN − E[sN ]| ≥ t) ≤ 2M exp

(

− 2t2

N2(b− a)2
⌊

N

M

⌋)

. (41)

Having presented the necessary tools, the proof of Theorem 1is presented next.
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Proof of Theorem 1:Consider a specific realization of̃X and its GrammiañR. As guaranteed by

the Geršgorin disc theorem, if|R̃ii−1| < δd and|R̃ij | < δo/s for everyi, j with j 6= i while δd+ δo = δ

for someδ ∈ (0, 1), then matrixX̃ possesses RIPδs ≤ δ [14]. Thus, the probability of̃X not satisfying

RIP of valueδ can be upper bounded as

Pr (δs > δ) ≤ Pr









M
⋃

i=1

{

|R̃ii − 1| ≥ δd
}

or
M
⋃

i=1

M
⋃

j=1
j 6=i

{

|R̃ij| ≥
δo
s

}









. (42)

Apparently, the events in the right-hand side (RHS) of (42) are not independent. Exploiting the symmetry

of R̃, the union bound can be applied for only its lower triangularpart yielding

Pr (δs > δ) ≤
M
∑

i=2

Pr
(

|R̃ii − 1| ≥ δd
)

+

M
∑

i=1

M
∑

j=i+1

Pr

(

|R̃ij | ≥
δo
s

)

. (43)

Our next goal is to upper bound the probabilities appearing in the RHS of (43). Different from the

analysis in [14] for the linear case, the entries ofR̃ exhibit different statistical properties depending

on the components (constant, linear, quadratic, bilinear)of the nonlinear system they correspond to. To

signify the difference, we will adopt the notatioñRαβ
ij instead ofR̃ij, whereα and β can be any of

{c, l, q, b}, to indicate that the entryRαβ
ij is the inner product between thei-th and thej-th columns of

X̃, but also thei-th(j-th) column comes from theα(β) part of the system. For example, the elementR̃ql
ij

is the inner product of a column of̃Xq with a column ofX̃l. Recall also that̃R satisfies the requirements

E[R̃ii] = 1 andE[R̃ij ] = 0 for j 6= i.

We start with theL diagonal entries̃Rll
ii, where each one of them can be expressed as3

N

∑N
k=1 x

2
n−k

for somen. Upon recognizing this quantity as a sum ofN independent random variables confined in

the interval
[

0, 3
N

]

, Hoeffding’s lemma can be readily applied. The bound obtained is multiplied byL

to account for allR̃ll
ii’s; hence

L+1
∑

i=2

Pr
(

|R̃ll
ii − 1| ≥ δd

)

≤ 2L exp

(

−2Nδ2d
9

)

. (44)

Similarly, each one of theL diagonal entries̃Rqq
ii is equal to 45

4N

∑N
k=1

(

x2n−k − 1
3

)2
for somen, which

is a sum ofN independent random variables bounded in
[

0, 5
N

]

. Lemma 4 yields

2L+1
∑

i=L+2

Pr
(

|R̃qq
ii − 1| ≥ δd

)

≤ 2L exp

(

−2Nδ2d
25

)

. (45)

Before proceeding with the bilinear diagonal entries, let us consider first the off-diagonal entries̃Rll
ij.

Each one of them is a sum of the form3N
∑N

k=1 xn−kxn−m−k for m 6= n. However, the summands

are not generally independent; every summand is a two-variable monomial and a singlexn may appear
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in two summands. This was handled in [14] after proving thatR̃ll
ij can always be split into two partial

sums, each including independent terms. As a clarifying example, the entryR̃ll
23 can be expressed as

3
N [(x0x−1 + x2x1 + . . .) + (x1x0 + x3x2 + . . .)]. Moreover, the two partial sums contain

⌊

N
2

⌋

and
⌈

N
2

⌉

summands. Applying Lemma 5 fort = δo/s, M = 2, Nmin =
⌊

N
2

⌋

, andb = −a = 3/N , it follows that

Pr

(

|R̃ll
ij | ≥

δo
s

)

≤ 4 exp

(

−
⌊

N

2

⌋

δ2o
18s2

)

. (46)

Taking into account that
⌊

N
2

⌋

≥ N
3 for N ≥ 160, and since there areL(L − 1)/2 < L2/2 off-diagonal

R̃ll
ij terms, their collective probability bound is

L+1
∑

i=2

L+1
∑

j=i+1

Pr

(

|R̃ll
ij | ≥

δo
s

)

≤ 2L2 exp

(

−Nδ
2
o

54s2

)

. (47)

Returning to the bilinear diagonal entries, everyR̃bb
ii can be written as9N

∑N
k=1 x

2
n−kx

2
n−m−k for some

m 6= 0. Even though the summands are not independent, they exhibitidentical structural dependence

observed inR̃ll
ii’s; thus, the same splitting trick can be applied here too. Upon using Lemma 5 fort = δd,

M = 2, Nmin =
⌊

N
2

⌋

, a = 0, and b = 9/N , and adding the contribution of allL(L − 1)/2 < L2/2

bilinear diagonal entries, we end up with

M
∑

i=2L+2

Pr
(

|R̃bb
ii − 1| ≥ δd

)

≤ 2L2 exp

(

−2Nδ2d
243

)

. (48)

Regarding the entries̃Rcl
1j and R̃cq

1j, an immediate application of Hoeffding’s inequality yields

L+1
∑

j=2

Pr

(

|R̃cl
1j | ≥

δo
s

)

≤ 2L exp

(

−Nδ
2
o

6s2

)

(49)

2L+1
∑

j=L+2

Pr

(

|R̃cq
1j | ≥

δo
s

)

≤ 2L exp

(

−8Nδ2o
45s2

)

(50)

whereas the probabilitiesPr
(

|R̃cb
1j | ≥ δo/s

)

have been already accounted for in the analysis of theR̃ll
ij ’s.

The entriesR̃lq
ij can be written as3

√
15

2N

∑N
k=1 xn−k

(

x2n−k−m − 1
3

)

for somen andm, where every

summand lies in
[

−
√
15
N ,

√
15
N

]

. Two sub-cases will be considered. The first corresponds to theL entries

R̃lq
ij with m = 0 (or equivalentlyj = i+L), in which every summand depends on a single input. Through

Lemma 4, the sum of probabilities related to theseL entries is upper bounded by2L exp(−Nδ2o/(30s2)).
The second case includes the remaining(L2 − L) entries withm 6= 0, for which the splitting trick can

be applied to yield the bound4(L2 − L) exp
(

−⌊N/2⌋δ2o/(30s2)
)

. Combining the two bounds yields

L+1
∑

i=2

2L+1
∑

j=L+2

Pr

(

|R̃lq
ij | ≥

δo
s

)

≤ 4L2 exp

(

−Nδ
2
o

90s2

)

. (51)
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The R̃qq
ij entries can be expressed as45

4N

∑N
k=1(x

2
n−k − 1

3)(x
2
n−k−m− 1

3) for somem 6= 0, where each

summand is bounded in
[

− 5
2N ,

10
2N

]

. Exploiting the same splitting trick and summing up the contributions

of all theL(L− 1)/2 R̃qq
ij entries, yields

2L+1
∑

i=L+2

2L+1
∑

j=i+1

Pr

(

|R̃qq
ij | ≥

δo
s

)

≤ 2L2 exp

(

−8Nδ2o
675s2

)

. (52)

The R̃lb
ij ’s can be written as the sum3

√
3

N

∑N
k=1 xn−kxn−k−mxn−k−p for somen andm 6= p, while

every summand lies in
[

−3
√
3

N , 3
√
3

N

]

. Note that there exist̃Rlb
ij ’s with summands being two-input mono-

mials, i.e., form = 0 or p = 0. However, to simplify the presentation, the derived bound is slightly

loosened by considering all̃Rbl
ij ’s as sums of three-input monomials. This specific structureprecludes

the application of the splitting procedure into two halves,and necessitates use of the dependency graph.

It can be shown that the degree of the dependency graph associated with the three-variable products for

any R̃lb
ij entry is at most 6. Then, application of Corollary 1 over theL2(L − 1)/2 ≤ L3/2 R̃lb

ij entries

together with the inequality⌊N/7⌋ ≥ N/8, which holds forN ≥ 160, yield

L
∑

i=2

M
∑

j=2L+2

Pr

(

|R̃lb
ij | ≥

δo
s

)

≤ 7L3 exp

(

− Nδ2o
432s2

)

. (53)

The R̃qb
ij ’s can be written as9

√
5

2N

∑N
k=1

(

x2n−k − 1
3

)

xn−k−mxn−k−p for somen andm 6= p, where the

summands lie in
[

−3
√
5

N , 3
√
5

N

]

. Following a reasoning similar to the one for̃Rlb
ij,

2L+1
∑

i=L+2

M
∑

j=2L+2

Pr

(

|R̃qb
ij | ≥

δo
s

)

≤ 7L3 exp

(

− Nδ2o
720s2

)

. (54)

Finally, theR̃bb
ij ’s are expressed as9N

∑N
k=1 xn−kxn−k−mxn−k−pxn−k−m−q for somen, m, p, andq,

whereas the summands lie in
[

− 9
N ,

9
N

]

. For anyR̃bb
ij entry, the summands are four-input monomials, and

thus, the degree of the associated dependency graph is at most 12. Upon applying Corollary 1 over the

L(L− 1)(L2 − L− 2)/8 R̃bb
ij ’s, and since⌊N/13⌋ ≥ N/14 for N ≥ 160, we obtain

M
∑

i=2L+2

M
∑

j=i+1

Pr

(

|R̃bb
ij | ≥

δo
s

)

≤ 13

4
L4 exp

(

− Nδ2o
2268s2

)

. (55)

Adding together the bounds for the diagonal elements (44), (45), and (48), implies

M
∑

i=2

Pr
(

|R̃ii − 1| ≥ δd
)

≤ 3L2 exp

(

−2Nδ2d
243

)

(56)

for L ≥ 7. For the off-diagonal elements, upon adding (47), (49)-(55), it follows for L ≥ 7 that

M
∑

i=2

M
∑

j=i+1

Pr

(

|R̃ij| ≥
δo
s

)

≤ 6L4 exp

(

− Nδ2o
2268s2

)

. (57)
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By choosingδd = δo
s

√

3
56 , the arguments of the exponentials in (56) and (57) become equal, and after

adding the two bounds, we arrive at

Pr (δs > δ) ≤ 7L4 exp

(

− Nδ2o
2268s2

)

. (58)

Sinceδ = δd + δo translates toδ2o =

(

s
√

56/3

s
√

56/3+1

)2

δ2 > 0.8δ2 for s ≥ 2, the bound in (58) simplifies to

Pr (δs > δ) ≤ 7L4 exp

(

− Nδ2

2835s2

)

≤ exp

(

−Nδ
2

s2

(

1

2835
− 5s2

Nδ2
logL

))

. (59)

Now setC:=2, 835 and choose anyγ ∈ (0, 1). WheneverN ≥ 5C
(1−γ)δ2 · s2 logL, (59) yields

Pr (δs > δ) ≤ exp

(

−γδ
2

C
· N
s2

)

which completes the proof.
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Algorithm 1 CCD-(W)L
1: Initialize z = XTy.
2: Compute matrixR = XTX.
3: repeat
4: for i = 1, . . . ,M do
5: Updatez asz = z+ riĥi.
6: Updateĥi using (12).
7: Updatez asz = z− riĥi.
8: end for
9: until convergence of̂h.

Algorithm 2 CCD-R(W)L
1: Initialize ĥ0 = 0M , z0 = 0M , R0 = δIM .
2: for N = 1, 2, . . . do
3: UpdateRN andzN via (17a) and (17b).
4: for i = 1, . . . ,M do
5: zN = zN + rN,iĥN−1,i

6: ĥN,i =
sign(zN,i)

RN,ii
· [|zN,i| − λNwN,i]+

7: zN = zN − rN,iĥN,i

8: end for
9: end for
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Fig. 1. MSE of (a) batch and (b) adaptive Volterra estimators.
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(a) True model (b) Ridge regression

(c) Lasso (d) wLasso

Fig. 2. Regression vector estimates for the synthetic gene data. The main (epistatic) effects are shown on the diagonal (left

diagonal part), while red (green) bars correspond to positive (negative) entries.

(a) Lasso (b) wLasso

Fig. 3. Regression vector estimates for the real QTL barley data. The main (epistatic) effects are shown on the diagonal (left

diagonal part), while red (green) bars correspond to positive (negative) entries.
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TABLE I

EXPERIMENTAL RESULTS FOR SYNTHETIC AND REALQTL DATA

(a) Synthetic data

Method PE MSE NNZ δ/λ

Ridge 68.10 82.29 7382 0.61N

Lasso 12.84 15.85 200 0.19N

wLasso 13.09 5.11 85 3.77N

(b) Real QTL barley data

Method PE NNZ δ/λ

Ridge 8.26 8129 4.28·104 N

Lasso 5.96 48 0.33N

wLasso 5.69 34 6.88N

(c) QTLs estimated by wLasso for the real

barley data

Main effects Epistatic effects

Marker Value Markers Value

(12) +0.78 (7,66) +0.19

(53) −0.18 (9,33) −0.29

(61) +0.23 (20,95) +0.13

(101) +0.40 (33,88) +0.10

(104) +0.24 (35,99) −0.47

(112) +0.43 (38,52) −0.15

(56,92) +0.38

(63,81) −0.19
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