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Abstract

Theoretical analysis of randomized, compressive opesaifien depends on a concentration of measure inequalityhéor
operator in question. Typically, such inequalities quigritie likelihood that a random matrix will preserve the nasfra signal after
multiplication. When this likelihood is very high for anygsial, the random matrices have a variety of known uses inmbioeality
reduction and Compressive Sensing. Concentration of meassaults are well-established for unstructured comjuessatrices,
populated with independent and identically distributedd) random entries. Many real-world acquisition systerhowever,
are subject to architectural constraints that make suchigaatimpractical. In this paper we derive concentratiormafasure
bounds for two types of block diagonal compressive matrioes in which the blocks along the main diagonal are randodh an
independent, and one in which the blocks are random but e&oalboth types of matrices, we show that the likelihood of
norm preservation depends on certain properties of theakloging measured, but that for the best case signals, bpts tgf
block diagonal matrices can offer concentration perforceaon par with their unstructured, i.i.d. counterparts. \Wpp®rt our
theoretical results with illustrative simulations as wegl (analytical and empirical) investigations of severghal classes that are
highly amenable to measurement using block diagonal nestriEinally, we discuss applications of these results iabdishing
performance guarantees for solving signal processing timsthe compressed domain (e.g., signal detection), andtabkshing

the Restricted Isometry Property for the Toeplitz matrittest arise in compressive channel sensing.

Index Terms

Concentration of measure phenomenon, Block diagonal ceatriCompressive Sensing, Restricted Isometry Propergglitz

matrices

I. INTRODUCTION

Recent technological advances have enabled the sensingtaradie of massive volumes of data from a dizzying array
of sources. While access to such data has revolutionizedsfigich as signal processing, the limits of some computing
and storage resources are being tested, and front-end sigmaisition devices are not always able to support theredei
measure in increasingly finer detail. To confront theselehgks, many signal processing researchers have begustigatang
compressive linear operatofs : RV — R for high resolution signals: € RY (M < N), either as a method for simple
dimensionality reduction or as a model for novel data adtioisdevices. In settings such as these, the dataoften thought

to belong to some concise model class; for example, in the éEICompressive Sensing (CS) [3, 4], one assumesathats
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a sparserepresentation (having few nonzero coefficients) in thestbomain or in some transform basis. If the number of
“measurements}M is sufficient relative to the complexity of the model, thergibz can be recovered fror2 by solving an
inverse problem (often cast as a convex optimization pradfa 4]). Because of their universality and amenability talgsis,
randomized compressive linear operators (i.e., randomiceatwith M < N) have drawn particular interest.

The theoretical analysis of random matrices often reliethengeneral notions that these matrices are well-behavest ofio
the time, and that we can bound the probability with whictytherform poorly. Frequently, these notions are formaliasithg
some form of the&oncentration of measure phenomerih a powerful characterization of the tendency of cerfaimctions of
high-dimensional random processes to concentrate sharpiynd their mean. As one important example of this phenomen
it is known that for any fixed signat € RY, if ® is anM x N matrix populated with independent and identically disttéul
(i.i.d.) random entries drawn from a suitable distributitieen with high probability® will approximately preserve the norm
of 2. More precisely, for many random distributions fbr the probability thaf||®x||3 — [|z[|3| will exceed a small fraction
of ||z||2 decays exponentially in the number of measuremaitésee Section I1-B for additional details).

This likely preservation of signal norms makes random roasriremarkably useful. For example, the above mentioned
concentration result has been used to prove the Johnsa®strauss (JL) lemma [6-8], which states that when apjpdied
a finite set of points) c R¥, a randomized compressive operafiorcan provide a stable, distance preserving embedding
of @ in the measurement spa@’. This enables the efficient solution of problems such asrimdihe nearest neighbor to
a pointz in a databasé&) by permitting these problems to be solved in the low-dimamsi observation space. The same
concentration result has also been used to prove that mdaiilies of random matrices can satisfy the Restrictednksioy
Property (RIP) [9-11], which concerns the stable, distgmeserving embedding of families of sparse signals. In télel fi
of CS, the RIP is commonly used as a sufficient condition torgnuiae that a sparse signalcan be recovered from the
measurement$z. In Section I, after providing a brief introduction to sompeeliminary ideas and notation, we survey related
concentration analysis results and applications in tleeditre.

Despite the utility of norm preservation in dimensionaligduction, concentration analysis to date has focused stimo
exclusively on dense matrices that require each measutamére a weighted linear combination of all entriesaofDense
random matrices with i.i.d. entries are often either impcat because of the resources required to store and woltk avit
large unstructured matrix, or unrealistic as models of &ifijpn devices with architectural constraints prevegtsuch global
data aggregation. For one example, in a distributed sersigtem, communication constraints may limit the depenelenc
of each measurement to only a subset of the data. For a segantpke, applications involving streaming signals [12, 13]
often have datarates that necessitate operating on lagahldblocks rather than the entire signal simultaneousdy.athird
example, recent work has shown the utility of measutingy convolving it with a random pulse and downsampling. These
convolution measurement systems lead to computationéitiemt designs and have been shown to work almost as well as
dense randomized operators [14—-22]. This paradigm iscpdaitly relevant for compressive channel sensing [16-48Ere a
sparse wireless channel is estimated from its convolutitin & random probe signal.

The common thread in each example above is that the dataidedinaturally into discrete subsections (or blocks), athe



block is acquired via a local measurement operaffw. see the implications of this, let us model a signat RV~ as being
partitioned intoJ blocks z1,z2,...,z; € RY, and for eachj € {1,2,...,J}, suppose that a local measurement operator

®; : RNV — RM collects the measuremenjs = &, ;. Concatenating all of the measurements into a vegterR>: %, we

then have ) ; ) o ;
Y1 3] T
Y2 0] T2
= , e (1)
L YJ i Q5 || ®s
—— ——
y: (Z] M;)x1 P: (Z] Mj)xXNJ z:NJx1

In cases such as these, we see that the overall measurenazatoo@ will have a characteristic block diagonal structure.
In some scenarios, the local measurement operfanay be unique for each block, and we say that the resutbiritas a
Distinct Block Diagonal(DBD) structure. In other scenarios it may be appropriate@cessary to repeat a single operator
across all blocks (such thdt; = &, = --- = ®); we call the resultingd a Repeated Block DiagondRBD) matrix.

In Section IIl of this paper, we derive concentration of m&asbounds both for DBD matrices populated with i.i.d.
subgaussignrandom variables and for RBD matrices populated with i.Ghussian random variables. Our main results
essentially state that the probability of concentratiopeswls on the “diversity” of the component signals xs, ..., 2,
where this notion of signal diversity depends whether thérimmas DBD or RBD (we make this precise in Section Ill). Such
nonuniform concentration behavior is markedly unlike tbhtlense matrices, for which concentration probabilities signal
agnostic. At one extreme, for the most favorable classesoofponent signals, the concentration of measure probalfdlit
block diagonal matrices scales exactly as for a fully deaselom matrix. In other words, the concentration probabd#cays
exponentially with the total number of measurements, winicthis case equalzj M;. At the other extreme, when the signal
characteristics are less favorable, the measurementtopeféectiveness is diminished possibly to the point thas no more
effective than measuring a single block. As we discuss ginally and support experimentally, our measures of ditefsave
clear intuitive interpretations and intimately capture tielevant phenomena dictating whether a signéd well matched to
the block diagonal structure d@f. In Section IV we further discuss potential signal clasées &re well-behaved for DBD and
RBD matrices, and finally in Section V we discuss several iptss@pplications of our results to tasks such as detection i

the compressed space and proving RIP guarantees for théitZaepasurement matrices that arise in channel sensing.

Il. BACKGROUND AND RELATED WORK

In this section, we begin with a brief overview of subgaussendom variables and a survey of some of their key propertie
that will be of relevance in our analysis. We then describeenformally several existing concentration of measure ltegar
random matrices, and we conclude by reviewing some starajaptications of these results in the literature.

1See Section V-B1 for details on how the channel sensing enoffits into this viewpoint.

2Subgaussian random variables [23] are precisely define@dtidh 1I-A, and can be thought of as random variables fronisaibution with tails that can
be bounded by a Gaussian.



A. Subgaussian Random Variables

In fields such as CS, the Gaussian distribution is often iadofor probabilistic analysis thanks to its many convenient
properties. Gaussian random variables, however, are pestspecial case in a much broader class of so-calldjaussian
distributions [23]. As we discuss below, subgaussian remgariables actually retain some of the same propertiesntakie
Gaussians particularly well suited to concentration of snea analysis in CS. Thus, for the sake of generality, we stite
our main results in terms of subgaussian random variablesevpossible.

Before proceeding, however, we present a brief definitiosulfgaussian random variables and a short overview of their

key properties.

Definition 1.1. [23] A random variablew is subgaussiaif 3a > 0 such that
tw 1 2,2
Ee"™ <exp (§a t ) for all t € R.

The quantity
1
7(w) := inf{a > 0 : Ee' < exp (§a2t2) for all t € R}

is known as thé&saussian standamf w.

From this definition and Jensen’s inequality, it followstteabgaussian random variables must always be centergdive=
0, and with some simple functional analysis one can also stk varianc&w? < 7%(w). The class of subgaussian random
variables that achieve this bound with equality (i.e., féichh Ew? = 72(w)) are known astrictly subgaussiaf23]. Examples
of strictly subgaussian random variables include zeromeaussian random variables] Bernoulli random variable(= %)
and uniform random variables dn-1, 1].

As with Gaussian random variables, linear combinationsiaf. isubgaussian random variables are also subgausdian. T
fact will be useful to us when studying the matrix-vectordguwots that arise when a compressive linear operator isep{wi

a signal. We provide a more formal statement in the followiamgma.

Lemma Il.1. [23, Theorem 1 and Lemma 8kt 3 € RZ be a fixed vector, and supposél), w(2),...,w(Z) are a collection
of i.i.d. subgaussian random variables with Gaussian staisl all equal tor(w). Then the quantity := Zizzl B()w(i) is

a subgaussian random variable with Gaussian standdrd) < 7(w)||8||2.

Finally, we conclude with some important concentratioruhlssinvolving subgaussian random variables. The firstltesu

gives a standard bound on the tail distribution of a subganssandom variable.

Lemma I.2. [23, Lemma 4]Suppose that is a subgaussian random variable with Gaussian standdrd). Then

P(jwf> > t) < 2exp (—27_2#(“))> (2)

for all ¢ > 0.

This property will also allow us to use subgaussian randoneabkes in the following important theorem capturing the



concentration of measure properties of sums of randomhlaga
Theorem I.1. [24, Theorem 1.4l et X;,..., X, be independent Banach space valued random variables R4thX;| >
t} < aexp{—a;t} for all t andi. Letd > max; o; ' andb > a S ", a; 2. Then settings = 3% | X; we have

2exp{—t?/32b}, 0<t< 2
P{ISI| - E|[S]]| >t} < .

b
2exp{—t/8d}, t>%

B. Concentration Inequalities for Dense Matrices withD.lRandom Entries

Concentration analysis to date has focused almost exelysin dense random matrices populated with i.i.d. entriesvd
from some distribution. Commonly, whel has sizeM x N and the entries are drawn from a suitably normalized digtioh,

then for any fixed signat € RY the goal is to prove for any € (0,1) that
P(|[@x]3 = l|z[I3] > ellz]3) < 2e7Me), ®)

wherecy(¢€) is some constant (depending enthat is typically on the order of?>. When discussing bounds such as (3) where
the probability of failure scales as X, we refer toX as the as theoncentration exponent

The past several years have witnessed the derivation ofeotnation results for a variety of (ultimately related) dam
distributions for®. A concentration result of the form (3) was originally dexvfor dense Gaussian matrices populated with
entries having mean zero and variaqge[ZS]; one straightforward derivation of this uses standaridbounds for chi-squared
random variables [7]. Using slightly more complicated anguts, similar concentration results were then derivedtamnoulli
matrices populated with randorﬁ% entries (each with probabilitg) and for a “database-friendly” variant populated with
random{\/iﬁ,o, —\/iﬁ} entries (with probabilitie{}, 2, +}) [7]. Each of these distributions, however, is itself suliggan,
and more recently it has been shown that concentrationtsestithe form (3) in fact hold foall subgaussian distributions
having variancej\% [11, 26]2 Moreover, it has been shown that a subgaussian tail bourtieoform (2) is actually necessary
for deriving a concentration result of the form (3) for a demandom matrix populated with i.i.d. entries [26]. Howewaher

forms of dense random matrices, such as those populatedavitom orthogonal rows, can also be considered [27].

C. Applications of Concentration Inequalities

One of the prototypical applications of a concentratiorultesf the form (3) is to prove that with high probabilitg
will provide a stable, distance preserving embedding of sgarticular high-dimensional signal famify ¢ R" in the low-
dimensional measurement spaké&’. For example, supposing that consists of a finite number of points and thiatis an
M x N matrix populated with i.i.d. subgaussian random variabksng varianceja—f, it is possible to apply (3) to each vector
of the formu — v for u,v € Q. Using the favorable probability of distance preservafioneach pair, one can use a union
bound to conclude that approximate isometry must hold samebusly for all of these difference vectors with prokbabt

3This fact also follows from our Theorem IlI.1 by consideritige special case wheré = 1.



leastl — 2|Q|>e—<0(<), From this fact one obtains the familiar JL lemma [6-8], whatates that
(L= )lu—vl5 < [ @(u—v)[5 < (1 +€)llu—vll3 (4)

holds for allu,v € @ with high probability supposing that/ = O (%) The stable embedding of one or more discrete
signals can be useful for solving various inference proklémthe compressive domain. Potential problems of inténetide
nearest neighbor search [25], binary detection [28], raiffhal classification [28], and so on. We revisit the prablef
compressive domain signal detection in Section V-A.

It is possible to significantly extend embedding results Hayond the JL lemma. For example, by coupling the above
union bound approach with some elementary covering argtanene can prove the RIP in CS [10, 11], which states that if
M = O (K log(N/K)) (with a mild dependence o4), the inequality (4) can hold with high probability for amfinite) set®
containing all signals with sparsiti in some basis foR". Supposing a matrix satisfies the RIP, one can derive detéstii
bounds on the performance of CS recovery algorithms such asinimization [29]. Alternately, a concentration resulttbg
form (3) has also been used to probabilistically analyzepagormance of; minimization [26]. Finally, we note that one

can also generalize these covering/embedding argumetite tcase wher€) is a low-dimensional submanifold @&” [30].

I1l. M AIN CONCENTRATION OFMEASUREINEQUALITIES

In this section we state our main concentration of measuwgalteefor Distinct Block Diagonal (DBD) and Repeated Block
Diagonal (RBD) matrices. For each type of matrix we providéesailed examination of the derived concentration ratek an
use simulations to demonstrate that our results do indegitiathe salient signal characteristics that affect thecentration

probability. We also discuss connections between the cdrateon probabilities for the two matrix types.

A. Distinct Block Diagonal (DBD) Matrices

1) Analytical Results:Before stating our first result, let us define the requisitéation. For a given signat ¢ RY/
partitioned intoJ blocks of lengthN as in (1), we define a vector describing the energy distdouéicross the blocks of:
}T

y=7() = [llzallf llwall3 - 23] € R

Also, letting M;, Ms, ..., M; denote the number of measurements to be taken of each blecklefine aJ x J diagonal

matrix containing these numbers along the diagonal:

M,
Ms

My

Using this notation, our first main result concerning theamnration of DBD matrices is captured in the following thera.



Theorem 1Il.1. Supposer € RN/, For eachj € {1,2,...,J}, suppose that/; > 0, and let®; be a randomM; x N
matrix populated with i.i.d. subgaussian entries havingiarce o> = A—lfj and Gaussian standard(¢;) € [o;,+/c - ;] for
some constant > 1. Suppose that the matrice{:{)j}j:1 are drawn independently of one another (though it is not ssagy

that they have the same subgaussian distribution), ané lbe a (Z}]:1 Mj) x N.J DBD matrix composed of®;}7_, as

in (1). Then,
2 2 —1/2 2
2 exp{— srpritiis ), 0 < e < 1ol Sl
M-17233 ) M- AT
P(||®z|3 — [|=(13] > €l=]3) < c” H B e b (5)
elly 16¢ T %y
2expl—gepr iy b0 € 2 M TS

Proof: See Appendix A.

As we can see from the tail bound (5), the concentration fnitibaof interest decays exponentially as a function of
% in the case of smalt and % in the case of largee. One striking thing about Theorem I1.1 is that, in
contrast to analogous results for dense matrices, the ntratien rate depends explicitly on characteristics of shgmal 2
being measured. To elaborate on this point, since we aredrety concerned in practice with applications wheris small,

let us focus on the first case listed in (5). We see that in ths cthe concentration exponent scales with

(6)

2
J 2
13 (ijl II:vjllz)
F = ].—‘(!T, M) = /o 5 — -
- J T
[M-1/24|2 > ”1\2]'.'2

where larger values df promote sharper concentration [pbz||3 about its mean|z||3. We can bound the range of possible

I' values as follows.
Lemma lll.1. LetT =T'(z,M) be as defined in (6). Thenin; M; <T < Z;’:l M;.

Proof: See Appendix B.

It is not difficult to see that the worst casE, = min; M}, is achieved when all of the signal energy is concentrated
into exactly one signal block where the fewest measuremametollected, i.e., whefiz;||3 = 0 except for a single index
j' € {argmin; M;} (where{argmin; M;} is the set of indices wherg\/; } is minimum). In this case the DBD matrix exhibits
significantly worse performance than a dense i.i.d. matfihe same sizeX:;.':1 M;) x NJ, for which the concentration
exponent would scale wi'@:j:1 M;. This makes some intuitive sense, as this extreme case veoutdspond to only one
block of the DBD matrix sensing all of the signal energy. Thestbcasel' = Z;’:l M;, is achieved when the number of
measurements collected for each block is proportional éosilgnal energy in that block. In other words, lettidgig(M)
represent the diagonal &, the concentration exponent scales V@]-Izl M; just as it would for a dense i.i.d. matrix of the
same size whediag(M) « « (i.e., whendiag(M) = Cy for some constanf’ > 0). This is in spite of the fact that the DBD
matrix has many fewer nonzero elements.

The probability of concentration in the second case of (H)aves similarly. For the ratiq% appearing in the
concentration exponent, one can show théah; M; < m < W/Jijle. The lower bound is again achieved

when||z;]|3 = 0 except for a single index’ € {argmin; M;}, and the upper bound is achieved when the signal energy is

uniformly distributed across the blocks and the measur¢mnsges are constant, i.e., whén; |3 = ||22]|3 = --- = ||z||% and
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Fig. 1. Test signal for concentration in a DBD matrix. (a) Test signavith length1024. (b) Energy distributiory(x) when signal is partitioned
into J = 16 blocks of lengthN = 64.

My =M;=---=M;.
The above discussion makes clear that the concentratidorpemce a DBD matrix can vary widely depending on how
well matched it is to the energy distribution of the measusigthal. In particular, DBD matrices can perform as well assge
i.i.d. matrices if they are constructed to match the numlbeneasurements in each block to the distribution of signargyn
Three final comments concerning Theorem 1ll.1 are in ordest,Rhe bounds in (5) are most favorable for matrices paieal
with strictly subgaussian random variables because thisvalone to set = 1. As mentioned in Section II-A, zero-mean
Gaussian random variables;1 Bernoulli random variables wity = 3, and uniform random variables dr-1,1] are all

examples of strictly subgaussian random variables. Seaomanay further characterize the range:dér which the two cases

of Theorem IIl.1 are relevant.
Lemma ll.2. If J > 2, the point of demarcation between the two cases of Theoreinadbeys

16c-2(v/J — 1) ming /My _ 16c|M—129)F
J=1  max; /M, ~ IM i =

Proof: See Appendix C.

Examining the bound above, we note that foe> 2 it holds that% > %

-+« = My, the first (“smalle”) case of Theorem IIl.1 is guaranteed to at least permit|0, 1—65]. Finally, Theorem IIl.1 was

. Thus, as an example, whéd; = M, =

derived by considering all signal blocks to be of equal langt By close examination of the proof, one can see that the same
theorem in fact holds for signals partitioned into blocksuagqual lengths.

2) Supporting ExperimentaiVhile the quantityl® plays a critical role in our analytical upper bound (5) on tleecentration
tail probabilities, it is reasonable to ask whether this mjifya actually plays a central role in the empirical concatibn
performance of DBD matrices. We explore this question widedes of simulations. To begin, we randomly construct aalig
of length 1024 partitioned intoJ = 16 blocks of lengthN = 64. The signalx and its energy distribution are plotted in
Figures 1(a) and 1(b), respectively. For this simulationgider to be able to ensutkag(M) o ~ with integer values for the
M;, we began by constructinyI (populated with integers) and then normalized each bloca cdindomly generated signal
to sety accordingly.

Fixing this signalz, we generate a series 8000 random64 x 1024 matrices® using zero-mean Gaussian random variables

for the entries. In one case, the matrices are fully densetandntries of each matrix have varianc4. In another case, the
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Fig. 2. Histogram of||®zx||2/||z||2 for fixedz acrossl0000 randomly generated matricés (a) Densés4 x 1024 ®. (b) DBD 64 x 1024 ®

where eacl®; has a number of rows such that didd) « ~y. (c) DBD 64 x 1024 ® where eacl®; has4 rows so that diagM) « ~. This
corresponds tb' = 32.77 < 64. (d) Modified DBD128 x 1024 ® where eacl®; has8 rows. This corresponds o~ 64.
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Fig. 3. The percentage of trials for whidh — €¢) < ||®z||2/]|z]l2 < (1 + €) as a function ot. Note that all curves overlap except for that
corresponding to the DBD matrik with diag(M)  -.

matrices are DBD withliag(M)  « and the entries in each block have variai¢@/;. Thus, we hav&' (z, M) = Z}-]:1 M;

and our Theorem lll.1 gives the same concentration bounthferDBD matrix as for the dense i.i.d. matrix of the same .size
Indeed, Figures 2(a) and 2(b) show histogramg|®f||/||z||2 for these two types of matrices and, despite the drastically
different structure of the matrices, both histograms agbtly concentrated around as anticipated. For each type of matrix,
Figure 3 also shows the percentage of trials for whith- €) < | ®x||2/||z]]2 < (1 +€) as a function ok. The curves for the
dense and DBD matrices are indistinguishable.

Finally, we consider a third scenario in which we constru@d0 randont4 x 1024 DBD matrices as above but with an
equal number of measurements in each block. In other wordsetvall\/; = 4, and obtain measurement matrices that are no
longer matched to the signal energy distribution. We géyattiis mismatch by noting thdt(z,4-1;« ;) = 32.77 < Z'j]:l M;.
Figure 2(c) shows the histogram pbz||2/|z||2 and Figure 3 shows the concentration success probabiliy tnesel 0000

random matrices. It is evident that these mismatched DBDicest provide decidedly less sharp concentratiofj®f||».

B. Repeated Block Diagonal (RBD) Matrices

1) Analytical Results:We now turn our attention to the concentration performarfcth® more restricted RBD matrices.
Before stating our result, let us again define the requisitation. Given a signat € RV partitioned into.J blocks of length

N, we define theJ x N matrix of concatenated signal blocks

X =[xy 29 - x(;]T, (7)
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and we denote the non-negative eigenvalues ofNhe N symmetric matrix4 = X7 X as{\;}}¥ . We let
A=Mz):=[A1,...,  \n]" €RY

be the vector composed of these eigenvalues. Also, wéllet= M, = M, = --- = M; denote the same number of
measurements to be taken in each block, and we refer to theunesaent matrices aB := P =Py =---=dj.

Equipped with this notation, our main result concerning ¢bacentration of RBD matrices is as follows.

Theorem 111.2. Supposer € RV, Let® be a randomM x N matrix populated with i.i.d. zero-mean Gaussian entriegitg

varianceo? = % and let® be anMJ x NJ block diagonal matrix as defined ii), with ®; =  for all j. Then

Me2|| A2 16]1A]13
2 2 | Perl=men b 0 €<
P @2 — ]3] > elle]) < L R &
2
2exp{-Toma b €2 TR

Proof: See Appendix D.
As we can see from (8), the concentration probability ofrie¢e again decays with a rate that depends on the charéicteris

of the signalx being measured. Focusing on the first case listed in (8), wdhsd the concentration exponent scales with

M|
A3

From the standard relation betweénand ¢; norms, it follows thatd < A < M min(J, N). The worst caseA = M, is

A=Az, M) :=

9)

achieved whemd = Zj :vj:v;f has only one nonzero eigenvalue, implying that the blocksire the same modulo a scaling
factor. In this case, the RBD matrix exhibits significantlprse performance than a dense i.i.d. matrix of the same size
M J x N J, for which the concentration exponent would scale wifty rather than}/. However, this diminished performance

is to be expected since the sarhds used to measure each identical signal block.

The other extreme casa,= M min(J, N) is favorable as long ag < N, in which case the concentration exponent scales
with M J just as it would for a dense i.i.d. matrix of the same size.thar case to occutd must haveJ nonzero eigenvalues
and they must all be equal. By noting that the nonzero eidaesafA = X7 X are the same as those of the Grammian matrix
G = XXT, we conclude that this most favorable case can occur onlynvthe signal blocks are mutually orthogonal and
have the same energy. Alternatively, if the signal blockansak -dimensional subspace &" we will have M < A < MK.

All of this can also be seen by observing that calculating elgenvalues ofA = X7 X is equivalent to running Principal
Component Analysis (PCA) [31] on the matriX comprised of the/ signal blocks.
We note that there is a close connection betwBesnd A that is not apparent at first glance. For a fair comparison, we

assume in this discussion thaf; = My = --- = M; = M. Now, note that|\||? = ||v||? and also that

INIZ = Al = [ XXT|F = Z lzalls +2) _(af2)? = 73 +2) (]

i>7 i>]
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Fig. 4. Test signals for concentration in a RBD matrix. (a) Sig. Jwit= 16 orthogonal blocks. (b} for Sig. 1. (c) Sig. 2 with non-orthogonal
blocks. (d)\ for Sig. 2.
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Using these two relationships, we can rewrlteas

M||\? M||y|1? M||v||?
A= [ !1 _ _ el — < ||7l|1 -T. (10)
113 7115 +2Zi>j(xi ;) 7115

From this relationship we see thatandI" differ only by the additional inner-product term in the deminator of A, and we
also see that = I' if and only if the signal blocks are mutually orthogonal.

In relation to Theorem l1ll.1, the conditions for achievirtgetoptimal concentration exponent are more stringent inoThe
rem 111.2. This is not surprising given the restricted natof the RBD matrix. Indeed, it is remarkable that for somenais,
an RBD matrix can yield the same concentration rate as a demsanatrix, though as we have discussed above this happen
only for signals containing enough intrinsic diversity tongpensate for the lack of diversity in the measurement syste

2) Supporting ExperimentaiVhile the quantityA plays a critical role in our analytical upper bound (8) on tea@centration
tail probabilities, it is reasonable to ask whether this mjifa actually plays a central role in the empirical concatibn
performance of RBD matrices. We explore this question wileres of simulations. To begin, we randomly construct aalig
of length 1024 partitioned intoJ = 16 blocks of lengthNV = 64, and we perform Gram-Schmidt orthogonalization to ensure
that theJ blocks are mutually orthogonal and have equal energy. Tineabkic (denoted “Sig. 1) is plotted in Figure 4(a),
and the nonzero eigenvalues 4f= X7 X are shown in the plot of in Figure 4(b).

As we have discussed above, for signals such as Sig. 1 wedshaueA = M .J, and Theorem IIl.2 suggests that an RBD
matrix can achieve the same concentration rate as a dersematrix of the same size. Fixing this signal, we generate a
series 0f10000 random64 x 1024 matrices® populated with zero-mean Gaussian random variables. Ircase, the matrices
are dense and each entry has variahg@4. In another case, the matrices are RBD, with a singjle 64 block repeated
along the main diagonal, comprised of i.i.d. Gaussian estwith variance}z. Figures 5(a) and 5(b) show histograms of
[|®x]|2/||z]2 for these two types of matrices and, despite the drastichffigrent structure of the matrices, both histograms are
tightly concentrated arountl as anticipated. For each type of matrix, Figure 6 also shtvgercentage of trials for which
(1 —¢) <||®zx|2/||z|l2 < (1 +€) as a function ok. The curves for the dense and RBD matrices are indistingbish

In contrast, we also construct a second sign#étienoted “Sig. 2”) that has equal energy between the blook$ ks non-
orthogonal components (resulting in non-unifoki see Figures 4(c) and 4(d). This signal was constructedisare that the
sorted entries of exhibit an exponential decay. Due to the non-orthogonalitthe signal blocks, we see for this signal that
A = 21.3284 which is approximately3 times less than the best possible valueldf/ = 64. Consequently, Theorem 111.2
provides a much weaker concentration exponent when thigkig measured using an RBD matrix than when it is measured

using a dense i.i.d. matrix. Fixing this signal, we plot igties 5(c) and 5(d) the histograms‘ IH”; for the fully dense and



12

1000, 1000

500 500 500

1 1.5 . 1 15 8.5 1 15 8.5 1 1.5

(a) (b) (c) (d)
Fig. 5. Histogram of|®zx||2/||z||2 for fixedx across 10000 randomly generated matribega) Sig. 1 with orthogonal blocks, derséex 1024
®. (b) Sig. 1 with orthogonal blocks, RBBL x 1024 ®. (c) Sig. 2 with non-orthogonal blocks, derigex 1024 ®. (d) Sig. 2 with non-orthogonal
blocks, RBD64 x 1024 ®. This corresponds th = 21.3284 < 64.
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Fig. 6. The percent of trials for whickil — €) < ||®z||2/||z||2 < (1 + €) as a function ok. Note that all curves overlap except for that
corresponding to the signal with non-orthogonal blocksi@eneasured with RBD matrices.

RBD matrices constructed above, respectively. As showinésé histograms and in Figure 6, we see that the concentratio
performance of the full dense matrix is agnostic to this nayma structure, while the concentration is clearly not harp

for the RBD matrix.

C. Increasing Measurement Rates to Protect Against Sigmaedainty

As we have seen both analytically and experimentally, gigefixed number of total measurements, the concentration
performance of a DBD matrix can be optimized if there is aahié match between the measurement allocations and the
structure of the observed signal In some cases, however, it may not be possible for a systesigrég to match the
measurement ratios to the signal structure; for examplinowt knowledge of the exact signal to be acquired, one mai wi
to design a fixed measurement system with an equal numberadurements per block. In such cases, it may still be possible
to guarantee suitable concentration performance for atyadf possible received signals by increasing thi&l number of
measurements collected.

For example, recall the experiment from Section IlI-A inkal the signal shown in Figure 1. Using an unmatched DBD
matrix with M = 4 measurements per block, we obtairigd:, M) = I'(x, M - I;« ;) = 32.77, which gave rise to a smaller
concentration exponent and worse empirical concentrgigoformance than a dense i.i.d. matrix with the same totadbar of
M J = 64 rows. However, suppose that we had the resources avaitalalequire more measurements from each block (while
keeping the number of measurements equal across the hldokghrticular, if we were to collech/ = % - M
measurements from each block, we would obtain a DBD matriosghconcentration exponent scales withe, M') =

D(x, M- I;x5) = % -T'(x, M - I;x;) = M.J, the same as a dense matrix witi.7 rows. For this specific signal
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x, we illustrate this by taking/’ = 8 ~ % - M; as shown in Figure 2(d) and Figure 3, the concentratioropednce of a
128 x 1024 DBD matrix with M’ = 8 measurements per block (we call this a “modified DBD” matnisedo its larger size)

is indistinguishable from that of a densé x 1024 Gaussian matrix. Thus, we see that it is possible to guagaamteertain
performance from DBD matrices by increasinf) to protect against signals with small ratic#%%.

Note that this apparent empirical equivalence between tineemtration performance of the modified DBD matrix and the
dense matrix does not mean that the concentration stateticformally the same. It is straightforward to verify thmgeneral,
while the probability distributions of(®x||3 will not be the same for a dense and a modified DBD matrix, théamae of
|®z||2 will be equal in both cases. This explains why the empiricalaentration performance is very similar. In the special
case that the signal blocks have equal energy and the nsaaieegpopulated with Gaussian random variables, the disitrits

will in fact be the same under both matrices. As a final remarknote that similar arguments can be made for RBD matrices

2
by increasingM to protect against signals with small rati H;
2

IV. FAVORABLE SIGNAL CLASSES

In Section 11l we demonstrated that block diagonal matricage concentration exponents that vary significantly dejpen
on the exact characteristics of the signal being measurégiohly natural to ask whether there are any realistic diglesses
where we expect most of the constituent signals to have thgepties that allow favorable concentration exponentsfR2BD
or RBD matrices. In this section, we briefly explore some gxanscenarios where we demonstrate empirically or analyic

that signals in a restricted family often have these favierabaracteristics.

A. Frequency Sparse Signals

One of the primary signal characteristics affecting thecemtration exponents in the results of Section Il is théritistion
of signal energy across blocks. Supposing that= M, = --- = M; =: M, this effect is most easily seen in the quantity
1< % < J, where the larger the value qFr the better the concentration exponent when using a DBDixn&ecause of
existing results on time-frequency uncertainty principdad the well-known incoherence of sinusoids and the caabhasis
(i.e., “spikes and sines”) [32,33], we have intuition thabshsignals that are sparse in the frequency domain showlel ha
their energy distributed relatively uniformly across tiedn the time domain. In this section, we make formal the arothat
frequency sparse signals are indeed likely to have a fal®etergy distribution, producing values Bfthat scale to within
a log factor of its maximum value.

To be concrete, let € CV' be a signal of intere$that is split into = N’/N blocks of fixed lengthV each. For simplicity,
we assume thalV divides N’ and we will consider the case whelN grows (implying the number of block$ is increasing,
since the block sizéV is fixed). The signal is further assumed to be frequency sparse, Withonzero coefficients in the
discrete Fourier transform (DFT). In other wordsZifs the DFT ofz and(Q2 C [1, N’] denotes the support af, then|Q2| < S.
We assume that the frequency locations are chosen randamly() is chosen uniformly at random frofi, N’]), but the

4We consider complex-valued signals for simplicity and ifain the exposition. A result with the same spirit that tohith high probability can be
derived for strictly real-valued signals, but this comeshat cost of a more cumbersome derivation.
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Fig. 7. Histograms of the normalized quantifyfor frequency sparse signals. (a) The distribution]{pffor randomly generated frequency
sparse signals of length’ = N x J = 64 x 64 for sparsity levelsS € {5, 30,64}. Note that% accumulates near its upper boundJof 64
for all three sparsity levels. (b) The disl‘ribution}é}7 for randomly generated frequency sparse signals @ith 5 and the number of signal

blocksJ € {64,200, 400}. Note that;— accumulates near its upper bound of 1.

values taken byt on 2 are completely arbitrary with no probability distributi@ssumed. The following theorem then gives

a lower bound on the rati% for frequency sparse signals.

Theorem IV.1. Let N, 8 > 1 be fixed and suppos¥’ = NJ > 512. Let() C [1, N’] be of sizeS < N generated uniformly
at random. Then with probability at least— O(.J(log(N’))!/2(N")~#),% every signakz € C¥" whose DFT coefficients are

supported orf2 will have T'/M lower bounded by:

0.0779J J

(3 DIosN)" (/G 1) Tog 7+ s’

> min

S

Proof: See Appendix E.

Note that asN’ grows, the lower bound oq% scales as%k;gf_w, which (treating the fixed valué&v as a constant)
is within log*(N’) of its maximum possible value of. Thus the concentration exponent for most frequency spEigsels
when measured by a DBD matrix will scale withM.J/log*(N’) for smalle, which is close to the concentration exponent
resulting from the application of a dense, i.i.d. randomriraif the same size. Also note that the failure probabilitytihe
above theorem can be bounded ®y+-+—) since bothJ andy/log(N’) are less thanV’.

To explore the analysis above we use two illustrative sitrda. For the first experiment, we generate 5000 signals wit
length N’ = NJ = 64 x 64 = 4096, using three different sparsity levefs e {5,30,64}. The DFT coefficient locations are
selected uniformly at random, and the corresponding nanzeefficient values are drawn from the i.i.d. standard Gauoss
distribution. Figure 7(a) plots the ratiﬁ, showing that this quantity is indeed near the upper bound ef64, indicating a
favorable energy distribution. This gives support to thet that the theoretical value o]% predicted in Theorem IV.1 does
not depend strongly on the exact value &f For the second experiment, we fix the sparsitySat 5 and vary the signal
block lengthJ € {64,200,400} (and thus the total signal lengtN’ = NJ changes as well). For eachwe generate 5000
random signals in the same manner as before and plot in Figlb)ethe distribution of% (note the normalization by).

5The O(-) notation is with respect t&v’. With the component lengthV fixed, this means that only the number of blockés growing with increasingV’.
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Again, it is clear that this value concentrates near the uppend of1, showing the relative accuracy of the prediction that
% scales linearly withJ. While some of the quantities in Theorem V.1 appear pessin(e.g., the scaling wit[tbg4(N’)),
these simulations confirm the intuition derived from theotteen that frequency sparse signals should indeed haveafaieor

energy distributions, and therefore favorable conceiotngtroperties when measured with DBD matrices.

B. Delay Networks and Multi-view Imaging

Additional favorable signal classes for DBD and RBD masioan occasionally arise in certain sensor network or multi-
view imaging scenarios where signals with steeply decagirngcorrelation functions are measured under small geations.
For example, consider a network dfsensors characterized by measurement operétoré,, ..., ¢y, and suppose that the
received signals, zo, ...,z € R represent observations of some common underlying protosignalz € RY. However,
due to the configurations of the sensors, these observattms with different delays or translations. More formailse might
consider the one-dimensional delay parameters,,...,d; € Z and have that for eacl, z;(n) = z(n — J;). A similar
two-dimensional translation model could be used for imgginenarios.

The characteristics of may make it well suited to observation using block diagonalkrines. Assuming: is suitably
zero-padded so that border and truncation artifacts canegéected, we will have|z;|2 = |z|2 for all z;; this gives
= Zj M;, which is the ideal case for observation with a DBD matrix.rtaver, the correlations among the components
x; can be characterized in terms of the autocorrelation fanck, of z: we will have (z;,z;) = ij:lxi(n)xj(n) =
SN | 2(n—&;)z(n — &;), which neglecting border and truncation artifacts will pisnequal R. (|6; — 4;|). Therefore, signals
z that exhibit strong decay in their autocorrelation funetisill be natural candidates for observation with RBD masi@as
well. For example, if we assume that all; = M, equation (10) gives

Al M2}
TG+ 25, Re(00 = 17

Note in the expression above that wh&a(|d; — J;|) is small for mosti and j, the quantityA is near its optimal value of
M J. Finally, we note that the repeated observation of a sigreth fmultiple translations gives rise to a structure notkeli
that which arises when considering Toeplitz matrices irbfmms such as channel sensing. In Section V-B1, we explise th

related problem in much more depth.

C. Difference Signals

Some applications of our main results could require comsigedifference vectors of the form — y wherez,y € RV,
For example, as suggested by the discussion in SectioniH-@ider to guarantee that a block diagonal measurementxmatr
& provides a stable embedding of a signal fan@lyc RV, it may be necessary to repeatedly invoke bounds such asi(5) f
many or all of the difference vectors between element§ oft is interesting to determine what signal families willvgirise
to difference vectors that have favorable values air A.

We provide a partial answer to this question by briefly exdfyiply such a favorable signal family. For the sake of siropyj,

let us restrict our attention to DBD matrices of the form i {dhere M, = M, = --- = M; =: M. Consider a sef) C R’V
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of signals that, when partitioned intbblocks of lengthV, satisfy both of the following properties: (i) eaehe @ has uniform
energy across the blocks, i.e.,||lz1[|3 = ||z2]|3 = -+ = ||lzs||3 = 3||=[3, and (i) eachw € Q has highly correlated blocks,
i.e., for somea € (0,1], (z;,z;) > a%|z|3 forall i,j € {1,2,...,J}. The first of these conditions ensures that eachQ
will have I' = MJ and thus be highly amenable to measurement by a DBD matrig.sBecond condition, when taken in
conjunction with the first, ensures that all difference vestof the formz — y wherex,y € @ will also be highly amenable

to measurement by a DBD matrix. In particular, for any € {1,2,...,J}, one can show that

V2 z|2llyll2vT —a
J )

|z = yill3 = llz; — ;]3] <

meaning that the energy differences in each block of theswiffce signals can themselves have small differences. One
implication of this bound is that as — 1, I'(z — y) — M J.

Signal families of the form specified above—with uniform egyeblocks and high inter-block correlations—may gengrall
arise as the result of observing some phenomenon that \&oiely as a function of time or of sensor position. As an emplr
demonstration, let us consider a small database of eightvadd video signals frequently used as benchmarks in ideos
compression community, where we will treat each video frame signal blocR.We truncate each video to have= 150
frames, each of siz&/ = 176 x 144 = 25344 pixels, and we normalize each video (not each frame) to haveemergy.
Because the test videos are real-world signals, they do am# perfectly uniform energy distribution across the fraptrit

we do observe that most frame energies are concentratedchéou: 0.00667.

Video name| Akiyo Bridge close| Bridge far | Carphone| Claire | Coastguard Foreman| Miss America
max(x;,z;) | 0.00682 0.00668 0.00668 | 0.00684 | 0.00690 | 0.00742 | 0.00690 0.00695
min(x;,z;) | 0.00655 0.00664 0.00665 | 0.00598 | 0.00650 | 0.00562 | 0.00624 0.00606
r/M 149.9844| 149.9998 | 149.9999| 149.9287| 149.9782| 149.2561 | 149.9329| 149.9301
TABLE |

The maximum and minimum inner products between all pairgstiret frames in each video, and the quantiggh! for each video. The best
possible value of /M isT' /M = J = 150.

For each video, we present in Table | the minimum and maximumer productsx;, z;) over alli # j, and we also list
the quantityl'/M for each video. As we can see, the minimum inner product foheédeo is indeed quite close to 0.00667,
suggesting from the arguments above that the pairwiser€iftes between various videos are likely to have highlyaunif
energy distributions. To verify this, we compute the quanii/M for all possible(g) pairwise difference signals. As we are
limited in space, we present in Figure 8 plots of the enerig$3, ||y;|/3, and||z; — y;||3 as a function of the frame index
for the pairs of videog:, y that give the best (highest) and the worst (smallest) vaifidyx — y)/M. We see that even the
smallestl” /M value is quite close to the best possible valud' gf/ = 150. All of this suggests that the information required
to discriminate or classify various signals within a famélych as a video database may be well preserved in a small numbe
of random measurements collected by a DBD matrix.

5Videos were obtained from http://trace.eas.asu.edwyuv/
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Fig. 8. Plots of the energy distributions of individual videos aridheir differences for the best video pair and the worst oigair among all
possible(g) possible video pairs. (a) The difference of the video pdrjdge close” and “Bridge far”, giving the best valueldfr — y)/M =
149.9988. (b) The difference of the video pair, “Coastguard” and “Bfsmerica”, giving the worst value @f(x — y) /M = 148.7550.

D. Random Signals

Our discussions above have demonstrated that favorabded I" values can arise for signals in a variety of practical
scenarios. This is no accident; indeed, as a blanket stateihés true that a large majority of all signalse R’Y, when
partitioned into a sufficiently small number of blocksand measured uniformly, will have favorable values of batandI.

One way of formalizing this fact is with a probabilistic ttegent such as that given in the following lemma.

Lemma IV.1. Supposer € RV is populated with i.i.d. subgaussian entries having meao amd varianceo?, and let
T = +/c- o denote the Gaussian standard of this distribution for a tamisc > 1. LetT" and A be defined as in (6) and (9)
respectively, where we assume thdt = My = --- = M; =: M. Then, supposing that < N (ﬁ — cl) log™* (1—3) for

some constant; > 0,

2
F2A2M+M<1_E) (J—1),

+e€
with probability at leastl — 2e=1%.

Proof: See Appendix F.

We see from Lemma IV.1 that when random vectors are paréitidnto a sufficiently small number of blocks, these signals
will have A andI" values close to their optimal value @f/J. One possible use of this lemma could be in studying the
robustness of block diagonal measurement systems to noibe isignal. The lemma above tells us that when the resinti
are met on the number of blocks, random noise will tend todyi#bcks that are nearly orthogonal and have highly uniform
energies, thereby guaranteeing that they will not have greergy amplified by the matrix.

To illustrate this phenomenon with an example, we.5et 16 and N = 64 and construct signals ¢ R’V populated with
i.i.d. Gaussian entries. Over 10000 random draws of theafigiigures 9(a) and 9(b) plot histograms of the resultingrdjities
I'/M and A/M, respectively. The average value BfM is 15.5, while the average value &f/M is 12.6; both represent a
large fraction of the maximum possible value Id¢f. In addition, we see that the two histograms concentratgpkharound
their means, suggesting that a large majority of all sigmélsindeed be favorable for measurement with DBD and RBD

matrices.
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Fig. 9. The histograms of (d) /M and (b)A/M for 10000 randomly drawn signals with= 16 andN = 64. In this setting, the maximum
possible value of botli /M andA /M is 16 and we see that both histograms concentrate relatil@sg to this maximum value.

V. APPLICATIONS
A. Detection in the Compressed Domain

In some settings, the ability of a measurement system t@preshe norm of an input signal is enough to make performance
guarantees when certain signal processing tasks are pexdadirectly on the measurements. For example, while thergeal
CS results mostly center around reconstructing signata rompressive measurements, there is a growing interestgoihg
this recovery process and performing the desired signalgssing directly in the compressed domain. One specific pbeam
of this involves a detection task where one is interestedeiteaing the presence of a signal from corrupted compressiv
linear measurements. It has been shown previously [2242853 that the performance of such a compressive-domaéectiet
depends on the norm of the signal being preserved in the assgd domain. Here we make explicit the role that concémtrat
of measure results play in this task by guaranteeing camigtin the detector performance, and we demonstrate thaawe
determine favorable signal classes for this task when tinepcessive matrices are block diagonal.

Specifically, consider a binary hypothesis test where wagit to detect the presence of a known signal by comparing the

two hypotheses:

Ho @ y=2=2

Hi  y=dx+z2

where® is a compressive measurement matrix arid a vector of i.i.d. zero-mean Gaussian noise with variartcé\Ve con-
struct a Neyman-Pearson (NP) style detector which maxsrtize probability of detection?p, = P {#; chosen|#; is true},
given that we can tolerate a certain probability of falseralaPr = P {#; chosen|H, is true}. Starting from the usual
likelihood ratio test, the decision for this problem is mdesed on whether or not the sufficient statistie- y” ®z surpasses
a threshold, i.e.,

H1

>
tZ kK
Ho

3
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Fig. 10. Histogram ofPp for 10000 random signals with a compressive Neyman-Peatstactor with constrainPr < o = 0.1. (a) Signals with uniform
energy across blocks (signal claSs) with both block measurement matrikpgp and full measurement matris,;;. (b) Signals with decaying energy
across blocks (signal clag%) with the same matrice®pgp and ®¢;.

wherex is chosen to meet the constraifit < « for a specifiedn. It can be shown that for such a detector,

g

Po(e) =@ (@) - 12212, (11)

with Q(a) = f;o e*“Tzdu. Notice from (11) that the performance of the detector ddpeam the norm of the signal in the
compressed domaitj®zx||2. In effect, if ® “loses” signal energy for some signals the detector perdorze will suffer, and if
® “amplifies” signal energy for some signals the detector grenfince will improve.

While achieving the best possiblé, for a given Pr is of course desirable, another very important considmmnafior a
system designer is the reliability and consistency of tlyatesn. Large fluctuations in performance make it difficulaszribe
meaning to a particular detection result and use it to takeratased on a known probability of being incorrect. Theref
we see that the concentration of measure of a malrils an important factor in the consistency of this detectigstem
by guaranteeing that®x||3 ~ ||=||3 with high probability. Of course, for block diagonal ma&gthese concentration results
depend on the statistics of the signal class. Thereforejropertant role of our results in this paper is to make explidiich
signal classes can lead to reliable detectors for the deteptoblem above whem is constrained to be block diagonal.

As an example, we consider both a DBD measurement m@tsixp € RM7>*N/ having an equal number of measurements
M; = M per block and a dense measurement madrix; € RM7*N7 In the experiment below)M = 4, J = 16 and
N = 64. For both matrices the nonzero entries are drawn as zero-imiegh Gaussian random variables; f@,;; we use
variance% and for ®ppp we use variancq\%. After generating one instance of each matrix randomly, ke tfix it. We
test the detection performance of these two measurememicesaby drawing 10000 unit-norm test signals randomly from
two classessS; having uniform energy across blocks, afighaving decaying energy across blocks. The noise variahde
chosen such that each test sigmahas a constant signal-to-noise ratio $V R = 101log;, (”Z—L‘%) = 8dB. Usinga = 0.1,
we use (11) to calculate the expectBg for each random signal and both measurement matrices.

Figure 10 shows the histogram &% for the signal/measurement combinations. We see that filoram energy signalss;,
using both®ppp and &y, results in detector performance tightly clustered arofpd= 0.9. Thus for this class of signals,

block diagonal and dense measurement matrices have thecemsistency in their performance. However, when using akblo
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measurement matri®ppp, the Pp for signal classS, is very spread out compared to using a full matbiy,;, despite having
nearly the same average performance. Although some indigignals might enjoy above average performance bechese t
measurement matrix happens to amplify the energy of thogeplar signals, other signals will have very poor perfarme
because the measurement matrix severely attenuates tieye and moreover, the composition of these “above aeérag
and “below average” signal sets will vary depending on thedcen draw of the measurement matrix. Thus, this experiment
illustrates how the signal statistics can affect perforagareliability in compressive detection tasks when the messent

matrices have block diagonal structure.

B. The Restricted Isometry Property in Linear Systems Aaipdins

Interestingly, the concentration results of this paperalan be used as an analytic tool to prove the RIP for certauctsired
matrices that arise in linear systems applications.

1) RIP for Toeplitz Matrices:Our primary example of such an application involves the saimpled compressive and non-
compressive Toeplitz measurement matrices that ariseoilgms such as channel sensing [14—22]. The convolutioratpa
defining linear time-invariant systems is equivalent to tiplication by a Toeplitz matrix, and Toeplitz matrices rn are
closely related to the RBD matrices that are the subjectisfghper. Consider the channel sensing problem, where aaehan
has an unknown impulse response RY of length N and we want to estimate this channel by probing the systeim avit

known length® signal¢ € R” and examining the system outpgit

_ o1 0 0 ]
0
oN ¢1
J=0¢%a=Dgea = (12)
op P(P-N+1)
0
0 0 op

WherecfnargC isan(N + P — 1) x N Toeplitz matrix whose columns consist of shifts ¢@f

In some applications, the channel can be assumed to be gpeagsewhen there are only a few multipath reflections), and
resource constraints lead to the desire to estimaising as few measurements (i.e., valuegés possible. In these cases,
one possible strategy is to use a random probe sigreald only measure a subset of size< N + P — 1 of the coefficients
in 7. In this case, the resulting measurement vegter R’ can be written ag = (/I;smallai Whereisman is aJ x N matrix
whose rows are a subset of those fr@grgc. In particular, we are interested in the case whier. N, making the matrix
&\)small compressive.

While the Toeplitz structure in the convolution matrix showm (12) does not immediately appear to fall into the block

diagonal structure detailed in our concentration resalseful examination reveals that it can be written in sucloranft.

Consider that every output value gfis the result of multiplying the same probe vectoby a version of the (time-reversed)
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impulse response that has been shifted by an amount depending on on the messirendex. The intuition here is that this
computation can be written as an RBD matrix with each bloakattp the probes” (i.e., M = 1), multiplied by a signak:
where each blocl;, is a time-reversed, shifted, and windowed version of theuilsg response. To make things concrete,
supposeJ < N and letiy,is,--- ,i; denote the indices of the measured coefficientg.ofFor simplicity, we assume that
the probe length? > N + J — 1 and thatiy,io,--- ,4; € [N, P], but note that we will not assume that these indices are
contiguous. Using the notation thad;, is a row vector ofL zeros, we precisely define one blogk corresponding to theé,

measurement index by appropriately shifting and zero padthie time-reversed impulse response,
o . T
T = |:O(ik—N) anN ... ajy O(P_ik):| . (13)

With this definition, we now see that can be written as the multiplication of & x P.J block diagonal matrixp times a

length-PJ signalx with J blocks:

¢>T T
= dynana = bz = C. (14)
¢" Ty
In the upcoming lemma, we will use the earlier results comiogrthe concentration of measure for RBD matrices to dgvelo
concentration results relatifg||3 to ||a||3. To simplify the statement of this lemma, it will be benefi¢c@use operator matrices
to define the shifting and windowing operations creating dtgmal blocks. Specifically, let; denote the*™ canonical basis
vector of RN+FP~1 and define the N + P — 1) x J matrix R = [e;, e;, --- e;,] that removes measurements from
the convolution operation to isolate just the selected mmemsents such that = R”y. Furthermore, define the windowing
matrix W = [eN €(N+P_1)]T to be theP x (N + P — 1) matrix that keeps only the lagt coefficients of a length-
(N + P — 1) vector. Finally, we note that we can now write the matrix ohcatenated signal block§ € R7* ¥ defined in (7)

as XT = WAR, whereA is the(N + P — 1) x (N + P — 1) circulant matrix given by

—aN o ... 0 a1 ... aN_l_
0 ' ai
A= o an 0
0 an
0
0O ... 0 a a2 ... an

The following lemma establishes the concentration of measesults for the subsampled output of the convolution auar,
and follows directly from applying Theorem 111.2 to the cent problem formulation.

"The assumptions on the probe length and index locationsetisat each measurementjrdepends on all entries af We make these assumptions merely
to simplify the subsequent computation of the value arouhc’tlw||<1>smana|\§ concentrates; removing them would change only the pointatentration.
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Lemma V.1. Leta € RY be an arbitrary vectorg € R” be a random vector with i.i.d. Gaussian entries having vacea
o? = % with J < N, and y be the convolution ofi and ¢ as defined in(12). Suppose tha? > J + N — 1 and let
i1,42, - ,iy € [N, P] denote the indices of the available measurements from ¢imgotution, such thag;, = y;, . Also, define
X as a concatenation of signal blocks as(if), with the individual signal blocks; (depending on the measurement indices

ir) defined as in(13). ThenE||y||3 = ||a||3, and

2 1672
2exp{~smerma 0 0 S €S Ipn

P {{llyl3 = llall3| > ellall3} < (15)

2
o> 160A3

2exp{~ > TRToeTATT

eJ
16(H/\||oo/HaH§)}’
where{);} are the eigenvalues oX X7 and A = [\; Ay --- Aj]7.

Proof: See Appendix G.

We first note that (15) relates the probability of conceirafor a vectora € RY to the quantity||\||.. (which is defined
in terms ofa). If the vectora is sparse, it is possible to derive a useful upper bound|#dl.. In particular, suppose that
has no more tha®' nonzero components. Then lettifi@|| denote the standard operator norm of a maiiXi.e., the largest

singular value ofD), we have
Moo = IXXT| = I X]1* < | RIPIIAIP W = || A = [ AT]|?,

since the largest singular values of bdth and R are 1. BecauseA” is a circulant matrix, its eigenvalues are equal to the
un-normalized discrete Fourier transform (DFT) of its firetv @ = [ay ...a; 0...0]. Denoting the un-normalized DFT
matrix by F € RIN+P=Dx(N+P-1) "\we see that|AT||?> = ||Fal/%,. It is shown in [22] that forS-sparse vectors, we
have| Fal|%, < S|la||3. Thus, restricting our consideration to small values: ¢fo that we are in the first case of (15)), a
concentration rate that holds for aysparse vectou is:

2y
P 2 la|i2 21 <9 B
{13 = Nall3] > ellal3} < 2exp (

Lemma V.1 basically states that arbitrary vecteorsan have favorable concentration properties when muétipghy compres-
sive Toeplitz matrices. The analysis and bound above ésitalsl that whem is a sparse vector, the concentration exponent can
be stated simply in terms of the sparsiyand number of blockg, making the concentration bounds suitable as an analysis
tool for establishing results in the CS literature. In parar, one useful application of these results is to prowRIP for
compressive Toeplitz matrices. Using standard coveriggraents and following the same steps as in [10], we arrivhet t

following theorem establishing RIP for the compressiveplive matrices relevant for the channel sensing problem.

Theorem V.1 (RIP). Supposef)sman € R7*N is a compressive Toeplitz matrix as definedd#) (with either contiguous or
non-contiguous measurement indices). Then there existamsc;, c, such that ifJ > ¢;52 log(N/S), isman will satisfy

the RIP of orderS with probability at leastl — 2 exp(—caJ).

The theorem above establishes the RIP for compressive itoephtrices with a number of measuremedtgroportional

to S2log N. We make a special note here that there are no restrictiotieiabove arguments on the measurement locations
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being contiguous, so the above theorem holds equally wellh@m-contiguous measurement locations. This result is thu
equivalent to the state-of-the-art RIP results for cortigaicompressive Toeplitz matrices [17, 18, 20, 22] and rwtiiguous
compressive Toeplitz matrices [21] in the literature. Amadhese, we note that [22] also establishes the RIP by firstidgra
concentration bound, but via different arguments. Howewneaddition to the very different technical tools we haveptoyed,
the novelty in this approach is that it provides a unified fearark for proving the RIP for compressive Toeplitz matriggth
both contiguous and non-contiguous measurements.

Using the same general approach, we can make a similar siaterbhout the RIP of non-compressive Toeplitz matrices. In
such cases, we are not concerned with the number of measusesnbut rather the length of the probe signalnecessary
to ensure the RIP with high probability. With the methodssprdged here, one can guarantee the RIP with high probabiylity
taking P proportional toS? log N. This result is comparable to the results in [18, 22] but fassrable than the state-of-the-art
result of P ~ Slog® N implied by [19].

2) RIP for Observability Matrices:As evidence of one other potential application, a recenepap the control systems
literature [36] reveals that our results for DBD and RBD rita&s also have immediate extensions to the observabilityicea
that arise in the analysis of linear dynamical systems. 8s@ghatr; denotes the state of a system at tighea matrix A
describes the evolution of the system such that= Az;_;, and a matrixC' describes the observation of the system such

thaty; = Cx;. A standard problem in observability theory is to ask whetwme initial stater; can be identified based on

a collection of successive observatigng vy - y%]T7; the answer to this question is affirmative if the correspogd
observability matrix
- . -
CA
0=
CAJfl

is full rank. A recent paper [36], however, details hGWin fact has a straightforward relationship to a block disganatrix;
how in certain settings (such as whehis unitary andC' is random)O can satisfy the RIP; and how this can enable the
recovery of sparse initial states from far fewer measurements than conventional rank-babesdreability theory suggests.

We refer the reader to [36] for a complete discussion.

VI. CONCLUSION

Our main technical contributions in this paper consist ofei@oncentration of measure bounds for random block dialgon
matrices. Our results cover two cases: DBD matrices, in we&ch block along the main diagonal is distinct and popdlate
with i.i.d. subgaussian random variables, and RBD matricewhich one block of i.i.d. Gaussian random variables eated
along the diagonal. For each type of matrix, the likelihoddhorm preservation depends on certain characteristichef t
signal being measured, with the relevant characteristisergially relating to how much intrinsic diversity the rsid has
to compensate for the constrained structure of the measmtematrix. For DBD matrices, suitable diversity arises whe

the signal energy is distributed across its component klgekportionally to the number of measurements allottedaithe
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block. For RBD matrices, suitable diversity requires nolydhat the signal energy be evenly distributed across itapanent
blocks, but also that these blocks be mutually orthogonam&kably, our main theorems show that for signals exhilpiti
these desirable properties, block diagonal matrices cae bhancentration exponents that scale at the same rate di/a fu
dense matrix, despite having a fraction of the complexisy. (block diagonal matrices require generating many feaedom
numbers). Our simulation results confirm that the main digrmeasures arising in our theorenis g¢nd A) do appear to
capture the most prominent effects governing the abilita dflock diagonal matrix to preserve the norm of a signal.

In addition to the main theoretical results above, this pamresses the important question of what signal classes ca
have favorable diversity characteristics and thus be fiightenable to measurement with block diagonal matricest Asns
out, many signal classes can have such favorable chasd®riincluding frequency sparse signals, signals withtipie
related measurements (e.g., as arise in delay networks birviewv imaging), difference vectors between highly adated
signals (e.g., between successive video frames), and masinals. Moreover, the compressive detection and corsipees
channel sensing problems we discuss in depth illustrat@dbential for finding applications of our main results in aiety
of interesting applications.

The sum total of these results and investigations lead usriolgde that block diagonal matrices can often have suffilyie
favorable concentration properties. Thus, subject to #weat that one must be mindful of the diversity characiessif the
signals to be measured, block diagonal matrices can beiteglm a number of scenarios as a sensing architecture on as a
analytical tool. These results are particularly relevamtause of the broad scope that block diagonal matrices oamiha
describing constrained systems, including communicat@amstraints in distributed systems and convolutionalesystsuch as
wireless channels.

There are many natural questions that arise from thesetsemodl are suitable topics for future research. For exaniple,
would be natural to consider whether the concentrationlteefar Gaussian RBD matrices could be extended to more géner
subgaussian RBD matrices (to match the distribution useslmDBD analysis). Also, as more applications are identified
the future, it will be important to examine the diversity cheteristics of a broader variety of signal classes to ddter their
favorability for measurement via block diagonal matridéisally, one could derive embedding results akin to (4) wberiain
signal familiesQ) are measured with block diagonal matrices. The primarylehgé in extending the covering arguments
from Section 1I-C would be in accounting for the fact the difnce vectors — v could potentially have highly variable

concentration exponents.

APPENDIXA

PROOF OFTHEOREMIII.1

Proof: Let y = ®x. For each matrixp;, we let[®,;], ~denote then™ entry of thei'" row of ;. Further, we lety; (i)

denote thei** component of measurement vecigr and we letr;(n) denote then™™ entry of signal blocke;.

N
n=1

We begin by characterizing the point of concentration. Cae write y;(i) = >, _; [®;], , z;(n), and so it follows that

2
Ey:(i) = E (ZN (@], ., :vj(n)) . Since the[®;], , are zero-mean and independent, all cross product termscaee ®

n=1

zero, and therefore we can wriy? (i) = E SN @17 23(n) = o7||z;||3 = 5 |l2;]|3. Combining all of the measurements,
’ - - - J
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we then have|y3 = 7, S0 By3(i) = S, S0 Lla = 557 a3 = 1«3,

Now, we are interested in the probability thafty||3 — [|=(|3| > €||z||3. SinceE|ly[|3 = |z|3, this is equivalent to the
condition that|[|y[|3 — E[ly[3| > ¢Ely|3. For a givenj € {1,2,...,J} andi € {1,2,...,M;}, all {[®,], }3_, are iid.
subgaussian random variables with Gaussian standards tequ@; ). From above, we know thaf; (i) can be expressed as
a linear combination of these random variables, with weigjiten by the entries of;. Thus, from Lemma 1.1 we conclude

that eachy, (i) is a subgaussian random variable with Gaussian standgr¢:)) < 7(¢,)|lx;|2. Lemma 11.2 then implies that

» I N I S WA '
P@“>>”§26p<2ﬂ@xm)§26p< w%@n%@)§26p<2¢%ﬁ> (16)

for any ¢t > 0. We recall that||y||3 = ijl wafl y;(i)* and note that all entries of this summation will be indeperde

Therefore, to obtain a concentration bound fef|3, we can invoke Theorem I1.1 for the random variablg$i) across all
j,i. From (16), we see that the assumptions of the theorem astiedtwith « = 2 and oﬁl = 2—?||a:j||§. Note thatoz;’g is

constant for a fixed. Hence, ford > max; ; o} = 2cmax; - on lz;]|3 andb > aZy 1 ZZ | of2 = 8¢? Z'j]:l =l 113,
. J

4

4b
2exp{—g5}, 0<e< gt

P([llylls = llzl3] > ellll3) < (17)

2€xp{ e||$||2} €> d\éf\b
. . _ J
Note that||z||3 = ||v[l1 and|j[|3 = ||7/]3. Substitutingd = 2c max; 5-[|z;]|3 = 2¢|[M~"y||o andd = 8¢* 325 5[5 =

8¢c2|M~1/25||3 into (17) completes the proof. [

APPENDIXB

PROOF OFLEMMA 111.1

Proof: To prove the lower bound, observe that sidieg|? > ||v||3, we can write

11 13 1 1 ,
I = > > = = min M.
M2y )[3 = IMY2y[5 T MRS max g

To prove the upper bound let us defiye:= M~'/2y andm = diag(M'/?), and observe that

’ ’ ’ J
r— IVF - IMYA R (m,y)? < lmli3 - v 13 =3
LY S N e A O - R A A a
l 73 vl5 v'l13 713
[ |
APPENDIXC

PROOF OFLEMMA 1.2

Proof: We prove the lower bound first. For simplicity and withoutdosf generality, we assume thﬁM‘l/%Hoo =

max; \/_ \/_ Ignoring the constant factor afic, we can then rewrite the numerator|@el —'/2v||3 = +Zj 2M =

IM~1/24|2, 4 |[M~1/25|2, whereq = [ys,...,7/]7 € R’-! andM is aJ — 1 x J — 1 diagonal matrix containing

the valuesMy, Ms, ..., M  along the main diagonal. For a lower bound on the numeraterthen have|M~1/2y|2 >
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IM~12]13, + 725 [M/27]13, and so
el A . S o Ll . 1SS W el PP
M~ ([ 7111 M~ lso 7111 Myl T = T IM Tyl lly ]l
Focusing on the second term in (18),
2
1 M2 1 (M2 — M2l
J=1 M Yslvly T =1 M~ lso 711 ’
1 (MR 2 MRy M2l + M2
J—1 M~ lso 7111
Combining this with the first term in (18), we obtain
IV L (MR TV 2y 22 M2 o) (19)

M~y llollylls = J =1 M=yl v]l1

To combine the first two terms in the numerator of (19), we heefact that for any, y > 0, x+y > 2,/xy, and we conclude

that
M2z 1 (2VTIMTY 2 M2 s — 2)M 2 M2 o )
IM~ Y[yl — J =1 Ml 7112
20V 1) v ) 20
J-1 M=o [7]12
Now, we definey’ := M~1/2y and observe that
M2 ][4 M2 o 17 oo 17l 1 1 T
= 7 ° 7 )y = ’ = mln (21)
M~ [lso 1711 M2 [l M2y [[17 7 [M7Y2 o [MY/2])y max; \/
Combining (20) and (21) completes our proof of the lower lwhurhe upper bound follows simply because
J ,72
—1/2.112 _ g 5 _
IMTIE=3 3 < (m;wx MJ) Z% M o]
keeping in mind thaty; > 0 and M; > 0. [

APPENDIXD

PROOF OFTHEOREMIII.2

In order to prove Theorem Il1l.2, we will require the follovgriwo lemmas.

Lemma D.1. Suppose: € RN/ and @ is an M x N matrix where®” = [¢y ¢ --- ¢ns] with eachg; € RY. Let ® be an
M.J x NJ RBD matrix as defined in (1) with alb; = ®. If y = &, then||y|3 = S, ¢7 Ap;, where A = X7 X with X
defined in (7).

Proof of Lemma D.1:We first rewrite the block measurement equationg’'as X’¢’, wherey’ consists of a rearrangement
of the elements ofy, i.e., y’ = [y1(1) -+ ys(1) y1(2) -+ ys(M)T € RMI ¢ = [¢F ¢L --- ¢T, )7 € RMN and

X' € RM/xMN s a block diagonal measurement matrix containing replda¥ along the main diagonal and zeros elsewhere.
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It follows that [|y|3 = [[y'[|3 = ¢T X'TX'¢/ = 31, 6T A, .

Lemma D.2. Suppose: € RY is a random vector with i.i.d. Gaussian entries each havieg-anean and variance?. For
any symmetriaV x N matrix A with eigenvalue§);}¥ |, there exists a collection of independent, zero-mean Gausandom

variables{w; }, with varianceo? such that:7' Az = Zi:l Aiw?.

Proof of Lemma D.2:Becaused is symmetric, it has an eigen-decompositidn= V7 DV, whereD is a diagonal matrix
of its eigenvalueg \; }¥., andV is an orthogonal matrix of eigenvectors. Then we hald: = (V2)TD(Vz) = Zf;l w2,
wherew = Vz andw = [wy, we, ---, wy]?. SinceV is an orthogonal matrix{w;}Y , are i.i.d. Gaussian random variables
with zero-mean and varianeg’. [ |

Proof of Theorem 111.2: Let y = ®x. We first calculateE||y||3 to determine the point of concentration. Applying
Lemma D.1 toy and Lemma D.2 withe = ¢; for eachi = 1,2,..., M, we havel|y||? = S, quAqbi =l S Aw?,
where eac{w; ; }, ; is an independent Gaussian random variable with zero- medivariancer? = . After switching the
order of the summations and observing tiat X’ X) = Tr(X X7T) whereTr(-) is the trace operator, we ha®&|y||3 =
S S B, = Y A = Tr(XXT) = a3,

Having established the point of concentration fiaf|3, let us now compute the probability thety||3 — [|[|3] > el|[|3.
SinceEl||y||3 = [|=[|3, this is equivalent to the condition théty[|3 — E|ly|3| > €Elly[|3. Letw;; = /Ajw; ;. Thenw, ; is a

Gaussian random variable with variankgr?, and we havd|y||3 = Zl 1 Zg L W7 ;. By Lemma II.2 we have
5 t
P(w; ; >t) <2exp (—2)\]7 , Vt>0. (22)

To obtain a concentration bound ffhy||3, we invoke Theorem I1.1 for the random variabb’éﬁ- across alli, j. From (22),
we see that the assumptions of the theorem are satisfiechwitB and ofl =2)\j0% = 2 7A;. Note thato; ! is constant for a

fixed j. Hence, ford > max; ; a; | = -2 max; \; andb > aYl;

= = M Zj )\j, the concentration of measure inequality as

13

shown in (17) holds. Note thdltz||2 = Tr(XTX) = ||A|l; and||z||5 = ||\||? since the eigenvalueﬁsxj};\]:1 are non-negative.

Substitutingd = & max; A; = 17 [ Ao @ndb = 37 3= A% = F[|All5 into (17) completes the proof. [ ]

APPENDIXE

PROOF OFTHEOREMIV.1

Our result follows from an application of the following.

Theorem E.1. [33, Theorem 3.1) etz € CN" and 8 > 1. SupposeV’ > 512 and chooseV; and N, such that:

, 573N (L logN )?
0.5583N"/q and Ny + Ng < ( )
(8 +1)log(N') (6 + 1) log(N')

Nr + Ng < (23)

Fix a subsefl" of the time domain withil"| = Nr. LetQ2 be a subset of siz&, of the frequency domain generated uniformly
at random. Then with probability at least— O((log(N"))*/2N’~#), every signak: supported o2 in the frequency domain
has most of its energy in the time domain outsidd ofn particular, ||zr|3 < ”1”2 ,wherezr denotes the restriction af to

the supportT'.
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Proof of Theorem IV.1First, observe thaty||? = ||z||3 and||y||3 = Zizl ||lzk|[5. Next, apply Theorem E.1 withg = S

and Ny = N = N’/ J, being careful to select a value fgrsuch that (23) is satisfied. In particular, we require

—~

N+5) B+ 1) log N’ + (log N')2

1o (N +8)\/(B+1)logN’ and 1o V23
q 0.5583 N’ q N/
This is satisfied if we choose
! /
¢ < min 0.5583N — N (24)
(N+59) (B—I—l)logN’ NI (B+1)log N’ + (log N')?

Choosing any; satisfying (24), we have that witkailure probability at mostO((log(N'))Y/2(N")=8), ||lzx||3 < ”Iq”% for each
k=1,---,J, implying that each block individually is favorable. Tagira union bound for alk to cover each block, we

have that with total failure probability at mo&t(J (log(N")Y/2(N")=8), |v]12 = S3i_, llzx 4 < J”z‘b . Thus with this same

allure probabllity, == = 3 > om |n|ng wit an usmgt e fact th&t< N, we thus have:
fail bability, £ = {20 > 2. Combi h (24) and he fact thsi hus h
o 0.55832N2J N2J
M = (N +9)2(8+1)log N’ 2
<(\]\;%) (B+1)log N’ + (log N’)Q)
o i) (0.55832/2%)7 J
- (B+Dlog(N) o 512 )
<\/m (ﬂ‘Fl)lOgN/‘i‘T)

APPENDIXF

PROOF OFLEMMA V.1

Proof: Let X be theJ x N matrix as defined in (7). Without loss of generality, we suggpthe nonzero eigenvalues
I }mm (.N) of XTX are sorted in order of decreasing magnitude, and weJgk := A1 and Awin := Amin(s,n)- We can

lower boundA in terms of these extremal eigenvalues by writing

M]|)|2 P DD PP Amin 22 2jri Ni Amin
A= =M J >M+M J = M + pfimn
RE Y S WD Y + M3

For some0 < ¢ < 1, let us define the following events:

(J - 1). (25)

2
A= {N02(1 —e? < ”722 < No*(1+€)? Vz € RJ}, B = {Amax < No®(1+6)°}[ ) {hmin = No?(1 - )},

¢ = Qi (1zc 2 D=Ja>mm(i=C 2(J—1)
T ) Amax  \1+e€ ’ - - 1+e¢ '

These events satisfd = B C C' C D, where the last relation follows from (25). It follows th&( D<) < P(A°), where

Ac represents the complement of eveht BecauseX” is populated with i.i.d. subgaussian random variablesplibdvs as

a corollary of Theorem 1II.1 (by setting/ < N and.J <« 1 in the context of that theorem) that for anyc R’ and
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2
e € (0,1), P(|| X"2]13 = No?||z||3| > eNo?||z[|3) < 2¢~ 3567, Thus, for an upper bound faP(A°), we can follow the

2
straightforward arguments in [10, Lemma 5.1] and conclindéP(A°) < 2 (%)] ¢~ 12567 . FOr any constant; > 0, we note

12
€

2 2 | )
that P(D<) < 2 (%)Je_ Ta5e% = 28_4-]2\]5602 +7 log( ) < 2¢— 1N holds wheneverd < N (ﬁ — Cl) log_l (%) Finally,

the fact thatl’ > A follows from (10). ]

APPENDIXG

PROOF OFLEMMA V.1

Proof: To apply Theorem lII.2 directly, we first suppose the entoéshe random probe have variances> = 1 (since

M =1 here). In this case, we haw||y||3 = ||=||3 = J||a||3, and Theorem 1.2 implies that

2exp{— ALY 0 <e<
Pimgsempz s Y =¢=

16]1A]13
[RYPIEYE

P(|lyll3 = Tllall3] > ellal3) < (26)

Al 16]|A 113
2exp{-gars ) € 2 T

Since J < N, the nonzero eigenvalues df X7 equal those ofX7 X, and so we could equivalently defife\;} as the
eigenvalues ofY X7 Note thatX X7 is a symmetric matrix, and so all of its eigenvalyes} are non-negative. Also, all of

the diagonal entries ak X7 are equal td|a/|2. Consequently, it follows thathl|, = 37, |\ = tr(X XT) = J||a||3. Using

i i 2 [BY J . L _ J
the norm inequality| A|5 < |[All1 ]|\ ]oo, WeE haveHA”% > TN=/Tal and it is easy to see th% = D=/l

By plugging these inequalities into (26), we obtain the pulities specified in (15). Finally, we note that
yll3 = Tllall3] > esllall3 <= {lI(1/V])®smanall3 ~ HaH%‘ > el|al3,
and so if we suppose the entries of the random pepbetually have variance? = % we complete our derivation of (15
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