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Abstract

Saddle point problems arise from many wireless applications, and primal-dual iterative algorithms

are widely applied to find the saddle points. In the existing literature, the convergence results

of such algorithms are established assuming the problem specific parameters remain unchanged

during the iterations. However, this assumption is unrealistic in time varying wireless systems, as

explicit message passing is usually involved in the iterations and the channel state information (CSI)

may change in a time scale comparable to the algorithm update period. This paper investigates the

convergence behavior and the tracking error of primal-dual iterative algorithms under time varying

CSI. The convergence results are established by studying the stability of an equivalent virtual dynamic

system derived in the paper, and the Lyapunov theory is applied for the stability analysis. We show

that the average tracking error is proportional to the time variation rate of the CSI. Based on these

analyses, we also derive an adaptive primal-dual algorithm by introducing a compensation term to

reduce the tracking error under the time varying CSI.

Index Terms

Saddle Point, Convex Optimization, Convergence Analysis, Time-Varying, Lyapunov Stability,

Network Utility Maximization

I. INTRODUCTION

Saddle point problems arise in a number of wireless communication applications such as resource

allocations and competitive games. Resource allocations problems can be formulated as a constrained

maximization of some utility functions. By constructing a Lagrangian function, the constrained

problem can be reformulated into an unconstrained one and be solved by computing the saddle point

of the Lagrangian function, where we maximize over the primal variables and minimize over the dual

variables. Most remarkably, primal-dual gradient methods have been widely used for computing the

saddle points of general Lagrangian functions, while they provide decentralized solutions in wireless

applications. The primal-dual gradient methods update the primal and dual variables simultaneously

by evaluating the gradient of both the primal function and dual function at the same time. A classical

study of primal-dual algorithms has been done by Arrow, Hurwicz and Uzawa in their seminal work

[1], where they constructed a continuous-time algorithm for general concave-convex functions and

derived the asymptotic properties using Lyapunov-like methods. They also provided a global stability
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result on a discrete-time algorithm with constant step sizes. Recently, Feijer et al. [2], [3] have

studied the stability of these primal-dual algorithm dynamics and extended the results to various

network resource allocations problems.

In the above literature, when people discuss the convergence behavior of the primal-dual gradient

algorithm, all the problem specific parameters are considered to be time invariant. Even in most other

literatures studying optimization problems in wireless communications, problem dependent parameters

are merely considered to be quasi-static, meaning that these time varying parameters are assumed to

be constant for a sufficiently long time until the algorithms converge. However, this assumption is

unrealistic, especially in wireless communication scenarios. For instance, the operating environment

in terms of the channel state information (CSI) may be changing frequently, such that the optimization

problem varies from time to time. On the other hand, as explicit message passing may be involved

in the iterations, the optimization algorithms cannot always converge fast enough to catch up with

time varying effects, especially for large scale problems. As is shown in our numerical example,

convergence errors would lead to performance loss in a wireless communication system. However, it

is yet unknown whether the algorithms converge or not when the quasi-static assumption is dropped,

even for strictly convex problems. Therefore, it is highly important to the study the convergence

behavior, or robustness, for primal-dual gradient algorithms under time varying CSI.

However, towards this end there are a lot of technical challenges, some of which are listed below.

• How to quantify the performance penalty due to the time varying parameters

• How to evaluate the cost-performance tradeoff

• How to enhance the algorithm

These questions are highly nontrivial due to the stochastic nature of wireless communication

problems as well as the complexities of the algorithms that solve them. There are some preliminary

works studying the effects caused by time varying parameters. For example, for resource allocation

problems, the authors in [4] had introduced stochastic perturbations to the algorithm to represent

random loads entering the network, and their analyses were based on linearization on the system.

The authors in [5] studied a stochastic network utility maximization (NUM) problem with noisy

feedback input to the algorithm. However, [4] and [5] did not consider the CSI being time varying

and hence their problems have static equilibrium points. In [6], the authors studied the performance

of gradient algorithms for a game problem with moving equilibria, and the authors in [7], [8] studied

multi-cell CDMA interference games under time varying channels. While these work [6], [7], [8]

provide some preliminary results for solving games under time varying CSI, their techniques cannot

be applied to general saddle point problems.

In this paper, we shall investigate the convergence behavior of primal-dual algorithms for solving

general saddle point problems under time varying CSI. We first define an equivalent virtual dynamic
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system, following which we study the stability of such virtual dynamic system based on the Lyapunov

theory [9] and the LaSalle’s invariance principle argument [10]. We model the dynamics of the

time varying CSI as an auto-regressive system, and the stability results are derived by constructing

Lyapunov functions along the algorithm trajectories. Based on the stability results, we derive the

convergence properties of primal-dual algorithms. We also quantify the average tracking errors in

terms of the average exogenous excitations induced to the CSI dynamics. Furthermore, to enhance

the tracking performance, we propose a novel adaptive algorithm with distributive implementation

solutions. As an illustration, we also consider two wireless application examples, based on which we

show that the numerical results match with our analysis.

The paper is organized as follows. In Section II, we introduce a general saddle point problem

as well as the primal-dual algorithm with two application examples in wireless communication. We

also introduce the time varying CSI model, and the virtual dynamic systems. Then in Section III

and Section IV, we analyze the convergence behavior of the primal-dual algorithm for the strongly

concave-convex saddle point problem and degraded saddle point problem, respectively. In Section V,

we propose a novel adaptive algorithm to reduce the tracking error in time varying CSI. Section VI

gives the simulation results and discussions. Finally, we summarize our main results in Section VII.

Notations: Matrices and vectors are denoted by capitalized and lowercase boldface letters, re-

spectively. AT (aT ) denotes the transpose of matrices (vectors) A (a), and AH denotes the complex

conjugate transpose. R and C denote the set of real numbers and complex numbers, respectively.

a � b denotes the entry-by-entry comparison and A � B means that A−B is positive semidefinite.

Unless specified in the context, ‖ � ‖ denotes the Euclidean norm.

II. SYSTEM MODEL AND VIRTUAL DYNAMIC SYSTEMS

In this section, we shall first introduce a general saddle point problem setup and illustrate with a

few examples in the context of wireless communications. We shall then define the time varying CSI

model and discuss its impact on the convergence of saddle point problems. Finally, we shall introduce

the notion of virtual dynamic system and establish the equivalence between convergence behavior of

the saddle point algorithm and the stability of the virtual dynamic system.

A. General Saddle Point Problem

We consider a min-max optimization problem

min
λ∈Rm

+

max
x∈Rn

L(x, λ; h) (1)

where the function L : Rn × Rm+ 7→ R has two vector variables. Moreover, L(x, λ; h) is strongly

concave in x ∈ Rn and convex in λ ∈ Rm+ . h ∈ H ⊆ Rq is a vector parameter that arises from
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specific optimization problems. In the context of wireless communication optimizations, the problem

parameter h can be the CSI. Under the above convexity assumption, the min-max problem has a

unique optimal solution (x∗, λ∗). Note that since the min-max problem in (1) is parameterized by h,

the optimal solution (x∗, λ∗) can also be represented as a mapping from h ∈ H to (x∗, λ∗)

x∗(h) = ψx(h), λ∗(h) = ψλ(h) ∀h ∈ H

where ψx : H 7→ Rn and ψλ : H 7→ Rm+ are C1 functions.

It is known that solving the above min-max optimization problem (1) is equivalent to computing

the saddle point of L(x, λ; h) [11]. For a given h ∈ H, a saddle point (x∗, λ∗) of L(x, λ; h) over

the set Rn × Rm+ is defined to be a vector that satisfies

L(x, λ∗; h) ≤ L(x∗, λ∗; h) ≤ L(x∗, λ; h), ∀x ∈ Rn, λ ∈ Rm+ .

It is also known that when L is strongly concave in x and convex in λ, the saddle point is unique

[11], meaning that the optimal solution to (1) is unique.

The classical primal-dual gradient algorithm dynamics1 for solving (1) are given in the following:

ẋ =
dx

dt
= κ

[
∂

∂x
L(x, λ; h(t))

]T
(2)

λ̇ =
dλ

dt
= κ

[(
− ∂

∂λ
L(x, λ; h(t))

)T]+

λ

(3)

for some step size κ > 0. The projection [�]+λ is to restrict λ in the nonnegative domain Rm+ . For scalars

ui and λi, the projection is defined to be [ui]
+
λi

:= ui if ui > 0 or λi > 0, and [ui]
+
λi

:= 0 otherwise.

For the vector case, the projection is defined entry-wide. This algorithm was first introduced by Arrow

et al. [1] and has been recently studied and applied to various resource allocations applications [3].

The asymptotic behavior has been analyzed by studying the Lyapunov function of the system state

and applying LaSalle’s invariant principle argument [9], [10].

In all these works, the convergence results were established based on the assumption that the

wireless channel state h stays time invariant before the algorithm converges. In practice, the iterations

in (2)-(3) may involve explicit message passing among nodes in a wireless network, and hence it is

quite unlikely for the h to be invariant during the iterations. When the channel state h(t) is time

varying, all the existing convergence results [1], [3] fail to apply. In this paper, we shall address the

situation where the CSI h(t) changes in a similar time scale as the primal-dual algorithm in (2)-(3),

which reflects a more realistic situation in practice.

1In this paper, we assume the step size of iterations are sufficiently small so that the primal-dual iterations can be

represented by the continuous time dynamics [1], [3].
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B. Examples of Saddle Point Problems in Wireless Communications

In this subsection, we shall illustrate various important applications of saddle point problems in

the context of wireless communications.

1) Application 1: Transmission and Jamming Strategy Optimization in MIMO Channels: Consider

a point-to-point MIMO system with a jammer as shown in Fig. 1. The transmitter and the receiver

have N antennas. The user X transmits the desired signal x ∼ CN (0,Q) to the receiver Y, while

the jammer Z transmits a jamming signal z ∼ CN (0,Z) to interfere Y. The received signal at Y is

given by y = H1x+H2z+n, where n ∼ CN (0, σ2
nI) is the additive Gaussian noise, and the mutual

information between X and Y is given by [12]

C(Q, Z) = log det
(
I +

(
σ2
nI + H2ZH

H
2

)−1
H1QHH

1

)
. (4)

Assume that both the user and jammer have perfect transmit CSI (CSIT), and they know each other’s

transmission covariance. Thus the user’s strategy is to maximize the mutual information given in

(4) based on the CSIT and the knowledge of the jammer’s transmission covariance, while the the

jammer’s strategy is to minimize that mutual information. Their strategies result in finding the saddle

point of the following saddle point problem [13], [14].

Problem 1 (Transmission and Jamming Strategy Optimization):

min
tr(Z)≤PJ

max
tr(Q)≤PT

C(Q, Z; h) = log det
(
I +

(
σ2
nI + H2ZH

H
2

)−1
H1QHH

1

)
. (5)

where h = vec ([H1 H2]), PT and PJ are the total power constraints for the user and jammer,

respectively.

Note that the saddle point problem in (5) is strongly concave in Q and strongly convex in Z

[14], and hence there exists a unique saddle point, which can be computed by a primal-dual iterative

algorithm (2)-(3). When the CSI h(t) is time invariant, the transmission policies for both the user and

jammer will converge to the saddle point of (5), and a Nash Equilibrium is achieved. However, when

the CSI h(t) is time varying in a similar timescale as the primal-dual iterations, the convergence is

not guaranteed. Hence, it is interesting to study the convergence behavior of the algorithm iterations

under time-varying CSI.

2) Application 2: Network Utility Maximization of Wireless Ad Hoc Network: In a resource

allocation problem, the communication network is modeled as a set of source nodes transmitting

traffic through a set of links. Each source node has its own concave utility function and is allocated

a portion of resources. The optimization problem is to maximize the total network utility under a set

of constraints on the total network resources. The problem is formulated as follows [4], [15].
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Problem 2 (Network Utility Maximization):

max
r�0,p�0

∑
(s, d)∈C Usd(rsd) (6)

subject to
∑

(s, d): l∈L(s, d) rsd ≤ cl(pl; h) ∀l

p ∈ P

where the ordered pair (s, d) denotes the traffic, each of which has a fixed route, that initiates

from source node s and is delivered to destination node d, rsd denotes the data rate for the traffic,

p = [p1 . . . pL]T is a vector of power allocated to L links, Usd is the utility function to evaluate

traffic rate rsd for source s, and cl(�) is a link capacity function of the transmit power pl and channel

gain (i.e. CSI) h. C denotes the collection of all traffic flows, L(s, d) denotes the set of links that

traffic (s, d) goes through, and P denotes the set of feasible power vectors. We assume both Usd(�)

and cl(�) are strongly concave and twice differentiable. Fig. 2 illustrates an example NUM problem

with 3 nodes, 2 links, and |C| = 3 traffic flows. For example, the collection of traffic flows is

given by C = {(1, 2), (1, 3), (2, 3)}, and the sets of links are L(1, 2) = {1}, L(1, 3) = {1, 2} and

L(2, 3) = {2}.

For notation convenience, we denote x = [r ; p] as a vector of the primal variables. The Lagrangian

of (6) can be written as

L(r,p, λ; h) =
∑
s∈S

U(rs)−
∑
l

λl

 ∑
s: l∈L(s)

rs − cl(pl; h)

 (7)

subjected to the power constraint p ∈ P . From the Lagrangian theory [11], solving the optimization

problem (6) is equivalent to finding the saddle point of the Lagrangian function (7),

min
λ�0

max
r�0;p∈P

L(r,p, λ; h) (8)

which is a special instance of (1), and the primal-dual algorithm (2)-(3) can be applied to solve this

problem.

Note that as solving the dual problem involves explicit message passing among nodes, the conver-

gence rate of the algorithm is critical to the solution quality of the NUM problem. Since it may not

be justified in practice that the channel state h(t) is time invariant during the algorithm convergence,

it is very important to study the convergence behavior of the primal-dual iteration in (2)-(3) when

the CSI is time varying.

C. Time Varying CSI Model

In this section, we first introduce a dynamic model for the time-varying CSI h(t). Specifically, the

CSI h(t) is modeled as a solution to the following dynamic equation

ḣ(t) =
dh(t)

dt
= A(h(t)− h̄) + u(t) (9)
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where A is a real symmetric negative definite matrix, u(t) is a vector valued complex Gaussian

process with uncorrelated real and imaginary components, and h̄ is a constant vector, corresponding

to the line-of-sight (LOS) component in the channel model. The dynamic system can be viewed as an

external disturbance u(t) being applied to an autonomous2 linear system ḣ = A(h(t)− h̄). Note that

the dynamic model (9) resembles an AR(1) process and |h(t)| has a stationary Rician distribution.

As is summarized in [16], the AR models have been successfully used to model, predict and simulate

fading channel dynamics (e.g. in [17], [16], [18]), the autocorrelation function of which was also

observed and justified in [19] to be close to that of a Rayleigh fading process.

Note that the dynamic system model of h in (9) is stable3 [9]. Firstly, if u(t) = 0, the dynamic

system (9) exponentially converges to the unique equilibrium point h = h̄. Secondly, when u(t) 6= 0,

it is also stable provided that ‖u(t)‖2 = limT→∞
1
T

∫ T
0 ‖u(t)‖2dt < ∞. This can be verified by

constructing a Lyapunov function L(h) = (h − h̄)T (h − h̄)/2 on the state h and applying the

LaSalle’s invariant principle argument [10], [9]. The stability property in the CSI model h(t) is

important because it is a necessary condition for the convergence of the primal-dual algorithm (2)-

(3).

D. Virtual Dynamic Systems

In this section, we shall first define a virtual dynamic system. We shall illustrate that studying the

convergence behavior of the primal-dual iterative algorithm for the saddle point problem in (2)-(3)

is the same as studying the stability behavior of the virtual dynamic system. As a result, the virtual

dynamic system forms a bridge between the convergence analysis of iterative algorithms and nonlinear

control theory.

Definition 1 (Virtual Dynamic System): Let x̃ = (x, λ) be the joint state of the primal and dual

variables in algorithm (2)-(3) and let f̃ : Rn × Rm+ 7→ Rn+m be the vector valued function

f̃(x̃; h(t)) ,

 κ
(
∂
∂xL(x, λ; h(t))

)T
κ
[(
− ∂
∂λL(x, λ; h(t))

)T ]+

λ

 . (10)

The state x̃ of the virtual dynamic system satisfies the following dynamic equation

X̃ : ˙̃x =
d

dt
x̃(t) = f̃(x̃; h(t)). (11)

Definition 2 (Equilibrium Point): x̃∗ is called an equilibrium point of the vector field ˙̃x = f̃(x̃; h(t)),

if f̃(x̃∗; h(t)) = 0.

2An autonomous system is a system that can be described by an ordinary differential equation ẋ = f(x) where f does

not explicitly depend on t [9].
3The concept of stability is formally introduced in Definition 4 in the following subsection.
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Note that since the vector field ˙̃x = f̃(x̃; h) is parameterized by the channel state h(t), the

equilibrium point x̃∗(h(t)) is expressed as a function of h(t). From (11) and Definition 2, we have

the following result establishing the connection between the virtual dynamic system (11) and the

primal-dual algorithm (2)-(3) for solving saddle point problems.

Theorem 1 (Connections between the Virtual Dynamic System and the Saddle Point Problem): The

equilibrium point x̃∗(h(t)) of the virtual dynamic system (11) is identical to the saddle point [x∗(h(t)), λ∗(h(t))]

of the saddle point problem (1). Furthermore, the algorithm trajectories of the primal-dual algorithm

in (2)-(3) are the same as those of the virtual dynamic system (11).

Proof: Please refer to Appendix A for the proof.

As a result of Theorem 1, the convergence behavior of the primal-dual algorithm (2)-(3) can be

visualized by the stability of the equilibrium point in the virtual dynamic system (11). For instance, the

algorithm in (2)-(3) converges to the saddle point if and only if the equilibrium point of the virtual

system (11) is asymptotically stable. When the channel state h is time invariant, the equilibrium

point x̃∗(h) is stationary and the algorithm trajectory of the primal-dual iterations can be visualized

to converge to the stationary equilibrium point. On the other hand, when the channel state h(t) is

time varying (with comparable time scale as the algorithm trajectory), the equilibrium point x̃∗(h(t))

will be time varying and the convergence of the algorithm cannot be guaranteed. This is illustrated

in Fig. 3. Due to this association, we shall focus on studying the stability of the moving equilibrium

x̃∗(h(t)) of the virtual system (11) in the rest of the paper.

Due to the time varying CSI, the equilibrium point x̃∗(h(t)) is non-stationary. For mathematical

convenience, we consider a change of state variable. Define x̃e(t) = x̃(t) − x̃∗(t). Note that x̃e(t)

represents the instantaneous error4. Let ψ(h) := (x∗(h), λ∗(h)) = x̃∗(h) be a mapping from the

CSI h ∈ H to the equilibrium point of the virtual dynamic system (11). As ˙̃xe = ˙̃x− ˙̃x
∗
, The error

process x̃e(t) satisfies the dynamic equation of the error dynamic system defined below.

Definition 3 (Error Dynamic System): The error dynamic system for the virtual system ˙̃x = f̃(x̃; h(t))

is given by

X̃e : ˙̃xe = f̃e(x̃e; h(t))− ϕ(h)ḣ(t) (12)

where f̃e(x̃e; h(t)) := f̃ (x̃e + ψ(h); h(t)) and ϕ(h) := ∂
∂hψ(h) .

Since the error state x̃e(t) and the virtual system state x̃(t) are related simply by a linear transfor-

mation, studying the stability of X̃ is equivalent to studying the stability of X̃e. Finally, we summarize

the formal definition of as follows [9].

4Using Theorem 1, x̃e(t) also represents the error between the current solution (x(t), λ(t)) driven by the iterative

algorithm in (2)-(3) and the instantaneous saddle point (x∗(t), λ∗(t)).
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Definition 4 (Exponential Stability of the Virtual Dynamic System): The equilibrium point x̃∗e = 0

of (12) is exponentially stable if there exist some positive constants c, k, and λ such that

‖x̃e(t)‖ ≤ k‖x̃e(t0)‖e−λ(t−t0), ∀‖x̃e(t0)‖ < c. (13)

It is globally exponentially stable if (13) is satisfied for any initial state x̃e(t0).

Using Theorem 1, we have global asymptotic stability of the virtual dynamic system corresponding

to the global asymptotic convergence of the primal-dual algorithm in the original saddle point problem

and vice versa.

III. CONVERGENCE ANALYSIS OF STRONGLY CONCAVE-CONVEX SADDLE POINT PROBLEMS

UNDER TIME VARYING CSI

In this section, we shall focus on the convergence analysis of strongly concave-convex saddle point

problems when the CSI is time varying. In this case, for the saddle point function L, the Hessian

∇2
xL � −MxI for Mx > 0 is negative definite and ∇2

λL �MλI for Mλ > 0 is positive definite. We

shall first establish the key stability results of the virtual dynamic system under a virtual exogenous

input. Based on that, we shall discuss the impact of time varying CSI to the convergence of the saddle

point problem, followed by some examples.

A. Stability Analysis of Virtual Dynamic System

We shall study the stability of the virtual dynamic system X̃e in (12) associated with the primal-dual

iterative algorithm of a strongly concave-convex saddle point problem in (2)-(3). We first consider

the case when the CSI is time invariant (ḣ = 0). The following lemma summarizes the key results.

Lemma 1 (Stability of X̃e with Time Invariant CSI): When the CSI h(t) is time invariant, the equi-

librium point x̃∗e = 0 of the virtual dynamic system X̃e in (12) is globally exponentially stable for

all h ∈ H.

Proof: Please refer to Appendix B for the proof.

The above convergence result is not surprising since the CSI is time invariant and similar results

have been established in [1], [3], [11] using different approaches. In the following, we shall extend

the stability result to the system with time varying CSI.

As an intermediate, we first consider a virtual dynamic system X̃e in (12) with a quasi-time varying

CSI h(t). Specifically, h(t) is time varying according to the CSI model in (9) with u(t) = 0, for

all t. As a result, the CSI h(t) varies only during some transient and will converge to h̄ as t→∞.

Define a joint system state as z̃e = (x̃e, he), where he = h− h̄, the virtual dynamic system of state

z̃e can be specified as

October 13, 2018 DRAFT
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Z̃e : ˙̃ze = Z̃(z̃e) :=

 f̃e(x̃e; he) + ϕ(he + h̄)Ahe

Ahe

 . (14)

where the A is the coefficient matrix in the channel model (9). Note that z̃∗e = 0 is an equilibrium

point for ˙̃ze = Z̃(z̃e). The following lemma summarizes the stability results of the virtual system

Z̃e.

Lemma 2 (Stability of Z̃e under Quasi-Time Varying CSI): Assume the following inequality holds

for all h ∈ H,

‖ϕ(h)A‖ < κmin{2M, −λmax(A)} (15)

where λmax(A) denotes the largest eigenvalue of A, and M = min{Mx,Mλ}. The joint virtual

system ˙̃ze = Z̃(z̃e) has an exponentially stable equilibrium at z̃∗e = 0, and there exists a Lyapunov

function V : Rn+m+q 7→ R satisfying

a1‖z̃e‖2 ≤ V (z̃e) ≤ a2‖z̃e‖2 (16)

V̇ (z̃e) =
∂V

∂ze
Z̃(z̃e) ≤ −a3‖z̃e‖2 (17)∥∥∥∥ ∂V∂z̃e
∥∥∥∥ ≤ a4‖z̃e‖ (18)

for some positive constants a1, a2, a3 and a4 > 0.

Proof: Please refer to Appendix C for the proof.

Remark 1 (Interpretation of Lemma 2): From Lemma 2, even though CSI h(t) is quasi-time vary-

ing, we still need condition (15) to guarantee globally exponential stability during the transient of h(t).

In fact, the parameter κ affects the convergence rate of the primal-dual algorithm, the eigenvalues of

A represent the the transient rate of h(t) and the value ‖ϕ(h)‖ can be considered as the sensitivity

of the moving equilibrium x̃∗e(t) to the variation of h(t). The result of Lemma 2 illustrates that when

the transient rate of h(t) is slow and the sensitivity of the moving equilibrium is small, the underlying

virtual dynamic system Z̃e still has global exponential stability. This property will be used to study

the stability of the virtual system under time varying CSI.

Finally, we consider the stability result of the virtual dynamic system Z̃e under the time varying

CSI model in (9). Specifically, the virtual dynamic system is given by

Z̃e(u) : ˙̃ze =

 f̃e(x̃e; he) + ϕ(he + h̄)Ahe

Ahe

+

 ϕ(he + h̄)

I

u(t)

= Z̃(z̃e) + Φ(he)u(t). (19)
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Note that since u(t) 6= 0, the CSI h(t) is time varying even after the transient and its impact on

the stability of the virtual system is captured by the virtual exogenous input Φ(he)u(t) in (19). The

following theorem summarizes the stability results for Z̃e(u).

Theorem 2 (Stability of Z̃e(u) for Time Varying CSI): Given ‖Φ(he)‖ ≤ γ, ‖u(t)‖2 ≤ α2, the

average trajectory ‖z̃e‖2 of the virtual dynamic system Z̃e(u) in (19) satisfies

‖z̃e‖2 = lim
T→∞

1

T

∫ T

0
‖z̃e(t)‖2dt ≤

a2
4γ

2

a2
3

α2 (20)

where ‖u(t)‖2 = limT→∞
1
T

∫ T
0 ‖u(t)‖2dt.

Proof: Please refer to Appendix D for the proof.

Note that ‖u(t)‖2 denotes the average exogenous excitation of u(t) to the virtual system Z̃e
and ‖z̃e‖2 denotes the average tracking error of the system. Based on the result in Theorem 2,

the following corollary summarizes the convergence performance of the primal-dual algorithm for a

strongly concave-convex saddle point problem in time varying CSI.

Corollary 1: (Convergence Performance of Primal-Dual Algorithms for Strongly Concave-Convex

Saddle Point Problems): Suppose ‖ϕ(h)‖ ≤ γ0 for all h ∈ H and ‖u(t)‖2 ≤ α2, the aver-

age tracking error ‖x̃e‖2 of the primal-dual algorithm under time varying CSI satisfies ‖x̃e‖2 =

limT→∞
1
T

∫ T
0 ‖x̃e(t)‖

2dt ≤ a2
4(γ2

0+1)
a2
3

α2.

Proof: Since ‖Φ(he)‖ =
√
‖ϕ(he + h̄)‖2 + 1 ≤

√
γ2

0 + 1, by Theorem 2, the average trajectory

of the corresponding virtual dynamic system Z̃e(u) for the primal-dual iterative algorithm converges

to ‖z̃e‖2 = limT→∞
1
T

∫ T
0 ‖z̃e(t)‖

2dt ≤ a2
4(γ2

0+1)
a2
3

α2. As ‖x̃e‖ ≤ ‖z̃e‖ the average trajectory ‖x̃e(t)‖2

of the error process X̃e converges to a2
4(γ2

0+1)
a2
3

α2, and equivalently, the average tracking error ‖x̃e‖2 of

the primal-dual algorithm satisfies limT→∞
1
T

∫ T
0 ‖x̃e(t)‖

2dt ≤ a2
4(γ2

0+1)
a2
3

α2. This completes the proof

of Corollary 1.

Note that the average tracking error ‖x̃e‖2 depends on α2, γ0 and a4/a3 which represents how fast

the CSI changes, how sensitive the equilibrium x̃∗(t) is w.r.t. the change of CSI h(t), and how fast the

algorithm converges, respectively. For instance, the average tracking error ‖x̃e‖2 will be smaller if the

CSI is slowly changing (i.e. ‖u(t)‖2 is small) or the convergence rate of the underlying primal-dual

algorithm (under time invariant CSI) is fast (i.e. smaller a4/a3).

B. Numerical Example

We shall illustrate the application of Theorem 2 using a numerical example from Section II-B1. Con-

sider a 2-antenna system; the fading channels are given by H1,H2 ∈ C2×2, and h = vec ([H1 H2]) ∈

C8. We choose the channel model in (9) as A = −aI , h̄ = 1 and u(t) =
√

2aw(t), where w(t)

is a zero-mean unit-variance white Gaussian process. This corresponds to a standard AR Gaussian

fading process. The parameter a controls the time-correlation of the CSI and the CSI h(t) has unity
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variance. The primal-dual algorithm for the specific example is given by dvec(Q)
dt

dvec(Z)
dt

 =


{(

∂
∂vecT (Q)C (Q, Z; h(t))

)T}
Q{(

− ∂
∂vecT (Z)C (Q, Z; h(t))

)T}
J

 , f̃(x̃; h(t)) (21)

where Q = {Q ∈ C2×2 : Q � 0, tr(Q) ≤ PT } and J = {Z ∈ C2×2 : Z � 0, tr(Z) ≤ PJ} are the

feasible sets for the transmission covariance matrices, projections {�}Q and {�}J are to restrict the

searching directions within the feasible sets Q and J , respectively, and x̃ = [vecT (Q) vecT (Z)]T .

In this numerical example, the power constraints are set to be PT = PJ = 10.

Correspondingly, the error dynamic system X̃e and the virtual dynamic system Z̃e(u) is given

by (12) and (19) respectively, with f̃(x̃; h(t)) defined in (21). The equilibrium point is defined as

f̃(x̃∗; h(t)) = 0 and the function ϕ(h) , ∂
∂h x̃

∗(h) =
(
∂
∂x̃ f̃(x̃∗; h)

)−1
∂
∂h f̃(x̃∗; h).

It can be numerically verified that ‖ϕ(h)‖ ≤ 11.22 for all possible h ∈ H ⊆ C8, and the condition

(15) in Lemma 2 is satisfied by choosing κ = 1 sec−1. Hence by Theorem 2, we conclude that the

average tracking error 1
T

∫ T
0 ‖x̃(t)− x̃∗(t)‖2dt converges to a2

4γ
2α2/a2

3 with γ =
√
‖ϕ(h)‖2 + 1 ≤

11.26, α2 = 16a and a4/a3 = 0.222 (when the CSI parameter a = 0.02 ms−1).

IV. CONVERGENCE ANALYSIS OF DEGRADED SADDLE POINT PROBLEMS UNDER TIME

VARYING CSI

In Section III, we have focused on the case where the objective function L(x, λ) is strongly concave

in x and strongly convex in λ. This property provides exponential convergence rate to the saddle

point (x∗, λ∗) of (1). In this section we shall extend the results to deal with the case when one of

the Hessians is only semidefinite. Without loss of generality, we assume ∇2
xL � −MxI for Mx > 0

and ∇2
λL � 0, and this corresponds to the case where the objective function L(x, λ) is strongly

concave in x and only convex in λ. We call such a saddle point problem the degraded saddle point

problem and the associated virtual dynamic systems the degraded virtual dynamic systems. Examples

of degraded saddle point problems include the primal-dual iterations (single time scale) of convex

optimization problems. For instance, the Lagrangian function (7) of the NUM problem (6) is strongly

concave in the primal variables r and p but only convex in the LM λ.

A. Stability Analysis of the Degraded Virtual Dynamic System

Similarly, we first consider the case when the CSI is time invariant (ḣ = 0). For degraded saddle

point problems, the exponential stability property of the associated virtual dynamic system X̃e in

Lemma 1 does not hold. We have a partial exponential stability property summarized in the following.
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Lemma 3 (Partial Exponential Stability of X̃e with Time Invariant CSI): When the CSI is time in-

variant, the equilibrium point x̃∗e = (x∗e, λ
∗
e) = 0 of the virtual dynamic system X̃e in (12) is partially

exponentially stable w.r.t. x∗e for all h ∈ H, i.e., there exists a Lyapunov function Vx : Rn+m×Rq 7→ R

defined on the virtual state x̃e that satisfies

c1‖x̃e‖2 ≤ Vx(x̃e) ≤ c2‖x̃e‖2 (22)

V̇x(x̃e) =
∂V

∂x̃e
f̃e(x̃e; h) ≤ −c3‖xe‖2 (23)∥∥∥∥∂Vx∂x̃e

∥∥∥∥ ≤ c4‖x̃e‖. (24)

The proof is similar to that in Appendix B, by simply taking a Lyapunov function Vx(x̃e) =

1
2κ x̃

T
e x̃e, and letting Mλ = 0. For this Lyapunov function, c1 = c2 = 1

2κ , c3 = 2Mx and c4 = 1/κ.

Note that, instead of possessing exponential stability on the joint state x̃∗e = (x∗e, λ
∗
e), the degraded

virtual dynamic system just has exponential stability on x∗e as shown in (23).

Similarly, we study the stability of the virtual dynamic system ˙̃xe = f̃e(x̃e; h(t))−ϕ(h)ḣ(t) with

a quasi-time varying CSI h(t) for u(t) = 0. Since we have exponential stability only on x∗e but not

on λ∗e, we define a partial state as ze = (xe, he). As a result, the trajectory of the partial state ze

satisfies the following virtual dynamic system Ze :

Ze : że = Z(ze) :=

 fe(xe, λe = 0; he + h̄) + ϕx(he + h̄)Ahe

Ahe

 (25)

where fe(xe, λe; h(t)) =
(

∂
∂xe
L(xe + x∗, λe + λ∗; h(t))

)T
and ϕx(h) = ∂

∂hx
∗(h) = ∂

∂hψx(h).

The following lemma summarizes the stability results for the virtual system że = Z(ze).

Lemma 4 (Partial Exponential Stability of Ze under Quasi-Time Varying CSI): Suppose the follow-

ing inequality holds for all h ∈ H:

‖ϕx(h)A‖ < κmin{2Mx, −λmax(A)} (26)

where λmax(A) denotes the largest eigenvalue of A. Then the system Ze in (25) is partially expo-

nentially stable, i.e., there exists a Lyapunov function for the joint state ze satisfying

a1‖ze‖2 ≤ V (ze) ≤ a2‖ze‖2 (27)

V̇ (ze) =
∂V

∂ze
Z(ze) ≤ −a3‖ze‖2 (28)∥∥∥∥ ∂V∂ze
∥∥∥∥ ≤ a4‖ze‖. (29)

Proof: Please refer to Appendix E for the proof.
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Lemma 4 suggests that as long as the transient of quasi-time varying h(t) is not changing too fast

(i.e. A has small eigenvalues) and the sensitivity of the primal part of the equilibrium x∗e w.r.t. the

change of h(t) is small (i.e. small ‖ϕx(h)‖), the virtual dynamic system Ze still possesses globally

exponential stability on the partial state ze = (xe, he).

Finally, we consider the stability result of the degraded virtual dynamic system under the time

varying CSI model in (9). The degraded virtual dynamic system Ze(u) is given by

Ze(u) : że =

 fe(xe, λe = 0; h) + ϕx(he + h̄)Ahe

Ahe

+

 ϕx(he + h̄)

I

u(t)

= Z(ze) + Φx(he)u(t). (30)

The stability result is summarized in the following theorem.

Theorem 3 (Stability of Ze(u) for Time Varying CSI): Given ‖Φx(he)‖ ≤ γx, and ‖u(t)‖2 ≤ α2,

the average trajectory ‖ze‖2 of the degraded virtual dynamic system Ze(u) satisfies

‖ze‖2 =
1

T

∫ T

0
‖ze(t)‖2dt ≤

a2
4γ

2
x

a2
3

α2

where ‖u(t)‖2 = limT→∞
1
T

∫ T
0 ‖u(t)‖2dt.

The proof can be derived similarly from that of Theorem 2 using the property of Lemma 4. As

a result, we summarize the convergence performance of the primal-dual iterative algorithm for a

degraded saddle point problem in the following corollary.

Corollary 2: (Convergence Performance of Primal-Dual Algorithms for Degraded Saddle Point

Problems): Suppose ϕx(h) ≤ γ̄x for all h ∈ Γ and ‖u(t)‖2 ≤ α2, the average tracking error ‖xe‖2

for the primal-dual algorithm under time varying CSI satisfies ‖xe‖2 = limT→∞
1
T

∫ T
0 ‖xe(t)‖

2dt ≤
a2
4(γ̄2

x+1)
a2
3

α2.

The proof can be derived similarly from that of Corollary 1, by applying Theorem 3 and using

‖Φx(he)‖ =
√
‖ϕx(he + h̄)‖2 + 1 ≤

√
γ̄2
x + 1 and ‖xe‖ ≤ ‖ze‖.

Together with Lemma 4, the above theorem and corollary establish sufficient conditions on the

convergence performance of the a primal-dual algorithm for a degraded saddle point problem under

time varying CSI. It shows that once the corresponding virtual dynamic system że = Zu(ze, u(t)) is

exponentially stable at z∗e = 0 for u(t) = 0, the system is stable for general u(t) as long as ‖u(t)‖2

is bounded. Correspondingly, the tracking error of the primal-dual algorithm under time varying CSI

is bounded and scaled according to O
(
‖u(t)‖2

)
.

Note that, due to the degraded saddle point problem in the dual variable λ, the average error bound
a2
4(γ̄2

x+1)
a2
3

α2 in Corollary 2 does not include the dual variable λe, and hence we cannot bound the

tracking error of the dual variables. This is because due to the semidefinite Hessian matrix ∇λL � 0,

the dual variable λ in the primal-dual iterative algorithm (2)-(3) may not converge exponentially fast
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to the saddle point λ∗. However, this result is still meaningful because, in many applications such as

constrained optimizations, we are mainly concerned about the behavior of the primal variable x. We

shall illustrate with an example in the next section.

B. Numerical Example

We illustrate an application of Theorem 3 using a numerical example in Section II-B2. Consider

a simple wireless network with 3 nodes depicted in Fig. 2, where the collection of traffic flows is

given by C = {(1, 2), (1, 3), (2, 3)}, and the sets of links are L(1, 2) = {1}, L(1, 3) = {1, 2} and

L(2, 3) = {2}. Pt1 and Pt2 denote the total power allocated to link 1 and link 2, respectively, and h1

and h2 are the corresponding channel gains. Let h = [h1 h2]T . Our CSI dynamic is modeled in (9),

with A = −aI and u(t) =
√

2aw(t) where w(t) is a zero-mean unit-variance white Gaussian process.

The variance of the CSI h(t) is normalized to unity and the parameter a controls the time-correlation

of the CSI. The average receiving SNR is normalized to 10 dB. We consider Usd(rsd) = log(1 + rsd)

as the cost function, and the link capacity function is given by cl(Ptl, hl) = log(1+h2
l Ptl), ∀l = 1, 2.

The Lagrangian saddle point problem for this specific example is given by

min
λ�0

max
r
L(r, λ) =

∑
(s,d)∈C

log(1+rsd)−
∑
l=1,2

λl

 ∑
(s,d):l∈L(s,d)

rsd − log(1 + h2
l Ptl)

+
∑

(s,d)∈C

λ(sd)
r rsd.

The error dynamic system and the degraded virtual dynamic system are given by (12) and (25),

respectively. Specifically, let r = [r12 r13 r23]T be the primal variable and λ be the collection

of the dual variables. Then x̃e = x̃ − x̃∗, x̃ = (r, λ), ze = (r, h), Φr(h) = [ϕr(h); I], and

ϕ(h) = ∂
∂h x̃

∗(h) =
(
∂F
∂x̃

)−1 ∂F
∂h which is derived by the implicit function theorem, where the implicit

function F (r∗, λ∗) = 0 is given by the KKT conditions

F (r∗, λ∗) =


∇rL(r∗, λ∗)

λ∗l (
∑
r∗sd − cl(Ptl, hl))

λ
(sd)∗
r r∗sd

 = 0.

Numerical results suggest that ‖ϕr(h)‖ ≤ 2.2, and hence the constants in Lemma 3 can be

chosen as κ = 0.5 sec−1, such that condition (26) in Lemma 4 is satisfied. Thus we can apply

Corollary 2, which shows that the average tracking error for the rate allocation variables ‖re‖2 =

limT→∞
1
T

∫ T
0 ‖re(t)‖

2dt ≤ a2
4

a2
3
γ2
rα

2, where γr ≤
√
‖ϕr(h)‖2 + 1 ≤ 2.42, α2 = 4a, and a4/a3 =

1.69 (when the CSI parameter a = 0.04 ms−1).

V. ADAPTIVE COMPENSATION FOR THE PRIMAL DUAL ALGORITHMS IN TIME VARYING

CHANNELS

In the previous sections, we have analyzed the convergence behavior of the primal-dual algorithms

under time varying CSI. In this section, we consider modifying the primal-dual iterations to reduce
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the tracking error in time varying CSI. To this end, we shall introduce a compensation term in the

iteration to offset the exogenous excitation to the virtual dynamic system in (19) and (30). In the

following, we shall first discuss the construction of the compensation term. Based on that, we shall

obtain a low complexity distributive implementation for the compensation method.

A. Adaptive Compensation for the Primal Dual Algorithm

We have shown in Theorem 2 and Theorem 3 that the average tracking error of a primal-dual

algorithm under time varying CSI is O(α2γ2) where α2γ2 is the square average of the norm of

the exogenous input Φ(he)u(t) to the virtual dynamic system Z̃e. Consider a particle trapped in

an energy well given by the Lyapunov function5 V (z̃e). The presence of the exogenous input term

Φ(he)u(t) to the system Z̃e excites the particle and moves it away from the equilibrium position,

and how far the particle can be moved depends on the exogenous excitation energy induced by u(t).

This phenomenon is illustrated in Fig. 4. As a result, one way to reduce the tracking error is to

compensate the disturbance from the exogenous input Φ(he)u(t). We thus introduce a compensation

term Φ̂(z̃e)u(t) to the virtual dynamic system Z̃e(u) in (19) as follows,

Z̃e(û) : ˙̃ze = Z̃(z̃e) + Φ(he)u(t)− Φ̂(z̃e)u(t) (31)

where Φ̂(z̃e) =

 ϕ̂(x̃e, he)

I

 is the compensation term to be derived. Obviously, if we could set

Φ̂(z̃e) = Φ(he), the impact of the exogenous input Φ(he)u(t) can be totally suppressed and the virtual

dynamic system Z̃e(û) will be free from exogenous excitation. However, since we do not have closed

form expression for the saddle point x̃∗(h), Φ(he) cannot be obtained during the iteration.

On the other hand, suppose that there exists a function F : Rn × Rm+ 7→ Rn+m ∈ C1 such that

F (x̃∗; h) = 0 and ∂
∂x̃F (x̃∗; h) is non-singular for all x̃∗(h) and h ∈ H ⊂ Rq. Using the implicit

function theorem, the function Φ(he) in (31) is given by

Φ(he) =

 − [ ∂∂x̃F (x̃∗(he + h̄); he + h̄)
]−1 ∂

∂hF (x̃∗(he + h̄); he + h̄)

I

 . (32)

Note that the function F (�) can be found by the optimality conditions of the saddle point problem.

For example, it can be chosen as f̃(x̃∗; h(t)) = 0 by the definition of equilibrium point (Definition

2), where f̃(�) is given in (10). Using (32), we can estimate Φ(he) by

Φ̂(z̃e) =

 − ( ∂∂x̃F (x̃(t)− x̃e; h(t))
)−1 ∂

∂hF (x̃(t)− x̃e; h(t))

I

 ,
 ϕ̂(x̃(t); h(t))

I

 . (33)

5The Lyapunov function can be interpreted as the energy function of the system state z̃e.
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Note that the joint state z̃e = (x̃e, he) and x̃(t) are the algorithm outputs at the t-th algorithm

iteration in (34)-(35). The estimate Φ̂(z̃e) in (33) is quite accurate when the algorithm trajectory x̃(t)

is close enough to the equilibrium x̃∗(h(t)) (i.e. ‖x̃e‖ is small enough). As a result, the corresponding

primal-dual algorithm iterations with compensation is given by

ẋ =
dx

dt
=

[
∂

∂x
L(x, λ; h(t)) + ϕ̂x(x, λ; h(t))T ḣ(t)

]T
(34)

λ̇ =
dλ

dt
=

[(
− ∂

∂λ
L(x, λ; h(t)) + ϕ̂λ(x, λ; h(t))T ḣ(t)

)T]+

λ

(35)

where ϕ̂x(x, λ; h(t)) and ϕ̂λ(x, λ; h(t)) are the primal and dual parts of the compensation term

ϕ̂(x̃; h(t)).

The compensation terms in (34)-(35) can also be interpreted as a predictor on where the saddle

point x̃∗(h) moves as illustrated in Fig. 5. We summarize the performance of the proposed algorithm

in the following theorem.

Theorem 4: (Tracking Performance of the Compensated Primal-Dual Iteration for Strongly Concave-

Convex Saddle Point Problems): Suppose that the compensation term ϕ̂(x̃; h(t)) is Lipschitz con-

tinuous on x̃ satisfying ‖ϕ̂(x̃(t); h(t)) − ϕ̂(x̃∗(t); h(t))‖ ≤ L‖x̃e(t)‖ for all h(t) ∈ H ⊆ Rq and

λ(t) ∈ Rm+ , and ‖u(t)‖ = limT→∞
1
T

∫ T
0 ‖u(t)‖dt = β < a3

a4L
. Then the average tracking error ‖x̃e‖2

of the proposed algorithm (34)-(35) converges to 0.

Proof: Please refer to Appendix F for the proof.

Similarly, for a degraded saddle point problem, the same proposed algorithm (34)-(35) can be

applied, and the degraded virtual dynamic system Ze(û) is given by

Ze(û) : że = Ze(ze) +
(

Φx(he)− Φ̂x(z̃e)
)
u(t) (36)

where

Φ̂x(z̃e) =

 ϕ̂x(x, λ; h(t))

I


and the associated performance is summarized below.

Corollary 3: (Tracking Performance of the Compensated Primal-Dual Iteration for Degraded Sad-

dle Point Problems): Suppose the compensation term ϕ̂x(x, λ; h(t)) is Lipschitz continuous on x

satisfying ‖ϕ̂x(x(t), λ(t); h(t) − ϕ̂x(x∗(t), λ(t); h(t))‖ ≤ Lx‖xe(t)‖ for all h(t) ∈ H ⊆ Rq and

λ(t) ∈ Rm+ , and ‖u(t)‖ = limT→∞
1
T

∫ T
0 ‖u(t)‖dt = β < a3

a4Lx
. Then the average tracking error

‖xe‖2 of the proposed algorithm (34)-(35) converges to 0.

Corollary 3 can be obtained from Theorem 4 in a straight-forward manner by replacing the variable

z̃e with ze.
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B. Distributive Implementation

The proposed algorithm (34)-(35) discussed in the previous section requires centralized computation

for the compensation term ϕ̂(x̃; h(t)). However, for a wireless network, distributive solutions are

usually desired. One way for distributive implementation is via message passing (i.e. communicating

with other nodes to obtain non-local variables), while each node computes a version of ϕ̂(x̃; h(t))

based on the global knowledge. However, this involves a significant communication overhead and

consumes a lot of computing resources. In the following, we propose a low complexity distributive

implementation for computing the compensation term.

Consider an ad hoc network topology as depicted in Problem 2 in Section II-B2. To facilitate

distributive implementation of the compensated primal-dual algorithm (34)-(35), we partition the

whole network into G groups of nodes and partition the collection of optimization variables x̃(t) =

[x̃1(t)|x̃2(t)| . . . |x̃G(t)] accordingly. Let B(t) = ∂
∂x̃F (x̃(t); h(t)) and K(t) = ∂

∂hF (x̃(t); h(t)). We

then impose a block diagonal structure to the matrix B(t) and partition K(t) as

B̂(t) = blkdiag{Bx̃1
(t), Bx̃2

(t), . . . , Bx̃G
(t)}, K̂(t)T = [KT

x̃1
(t) |KT

x̃2
(t) | . . . |KT

x̃G
(t)] (37)

where x̃i(t),∀i = 1, . . . , G is the collection of variables for the i-th group of nodes, Bx̃i
(t) =

∂
∂x̃i

Fx̃i
(x̃(t); h(t)) is a block of B(t) for the corresponding variables x̃i(t), and Kx̃i

(t) = ∂
∂hFx̃i

(x̃(t); h(t))

is a block of K(t) for the corresponding variables x̃i(t). Therefore, the compensation term for the

variable x̃i(t) is just ϕ̂x̃i
(t) = −B−1

x̃i
(t)Kx̃i

(t). For example, for a NUM problem with a topology

depicted in Fig. 2, the network can be partitioned into two parts according to the two links, where

x̃1 = {r12, r13, λ1} and x̃2 = {r23, λ2} (i.e. λi are the corresponding dual variables). The distributive

update equation for the collection of variable x̃i is

˙̃xi =
[
(∇x̃i

L(x̃; h(t)) + ϕ̂x̃i
(x̃; h(t)))T

]+

x̃i

∀i = 1, . . . , G (38)

where ∇x̃i
L(�) denotes the searching direction by the gradient of ∂L(�)

∂x̃i
and [�]+x̃i

denotes the corre-

sponding projection for the variable x̃i.

As the terms Bx̃i
(t) and Kx̃i

(t) just involve local variables, ϕ̂x̃i
(t) can be computed locally using

only local information and hence the update equation (38) can be implemented distributively. Note

that in wireless communication networks, nodes that are far away from each others usually have

weak connections, and hence B(t) is actually a sparse matrix with dense diagonal entries. Therefore,

using the block diagonal version B̂(t) in (37) will not contributes too much performance loss in the

proposed algorithm.

VI. RESULTS AND DISCUSSIONS

In this section, we shall simulate the tracking performance of the primal-dual algorithms for various

saddle point problems we studied before. We evaluate the performance of the proposed algorithms
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with the adaptive compensation term compared with the baseline algorithms in [3], [20], [21]. The

system performance loss due to the time varying channels and the tracking errors is also illustrated.

A. Convergence Performance of the Strongly Concave-convex Saddle Point Problem and the Degraded

Saddle Point Problem

The simulations of the convergence performance for the strongly concave-convex saddle point

problem and the degraded saddle point problem are based on the examples described in Section III-B

and Section IV-B, respectively. The average tracking error in the jamming problem is defined as

e2 = E
[
‖x̃(t)− x̃∗(t)‖2

]
where x̃(t) = vec([Q(t) Z(t)]), while e2 = E

[
‖r(t)− r∗(t)‖2

]
defines

the average tracking error in the NUM problem, where r(t) is the rate allocation variables. In both

cases, the CSI model is specified by an AR process ḣ = −a(h(t) − h̄) +
√

2aw(t), where h̄ = 1,

w(t) is a zero-mean unity-variance Gaussian process and a is a parameter to synthesize the fading

rate. Fig. 7 and Fig.8 illustrate the average tracking errors e2 versus the fading rate parameter a in

both of the problems. As a increases, the CSI changes more rapidly and the tracking errors of the

primal dual algorithm increase. Moreover, for the same parameter a, the larger the average receiving

SNR is, the larger tracking error will be.

B. Convergence Performance of the Proposed Algorithm with Compensation

To evaluate the algorithm performance in a more concrete communication scenario, we consider a

NUM problem of a wireless ad hoc network with 6 nodes 8 links and 8 data flows as illustrated in

Fig.6. The data flows are delivered simultaneously with fixed routes. Links from the same transmitting

node occupy different subbands while the interference at each receiving node is handled by multiuser

detection (MUD) techniques. The problem is to optimize the transmit power under the time varying

channels to support required traffic data rates. Similar ad hoc network scenario is also considered in

[22]. Similarly, the CSI model is specified by the AR process ḣ = −a(h(t)− h̄) +
√

2aw(t), where

a is a parameter to determine the CSI fading rate.

The proposed algorithms with adaptive compensations are compared with the following baseline

algorithms.

• Baseline 1 - Conventional Primal-Dual Gradient Algorithm (ConPDGA) [1], [3]: The primal

and dual variables are updated simultaneously in (2)-(3) in the gradients of the objective function.

• Baseline 2 - Averaging Primal-Dual Gradient Algorithm (AvgPDGA) [20]: The primal and

dual variables are updated in the gradients of the objective function, and the approximate primal

solutions are generated by averaging over the past primal solutions.

• Baseline 3 - Perturbed Primal-Dual Gradient Algorithm (PerPDGA) [21], [23]: The primal

and dual variables are updated in the gradients evaluated at perturbed points that are generated
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from current points via auxiliary mappings.

• Proposed Primal-Dual Algorithm - Centralized: The primal and dual variables are updated

in a compensated direction in (34)-(35) to offset the potential movement of the saddle point.

• Proposed Primal-Dual Algorithm - Distributed: The primal and dual variables are updated in

a compensated direction in (38) with imposed block diagonal structure in (37).

Fig. 9 shows the comparison of the average tracking error e2 versus a in the time varying CSI

model. The tracking errors have been reduced greatly after introducing the compensation terms in

both of the proposed algorithms.

C. Performance Loss due to Tracking Errors

In this section, we consider the degradation of the system performance (network throughput) and

the CSI fading rate. Due to the time varying channels, the problem constraints (e.g. the link capacity

constraints) may not be satisfied at every time slot. As a result, packet drops may occur and we define

the system performance as the average actual throughput given by:

R̄ = E

∑
k∈K

 ∑
(s,d)∈T (k)

rsd

× 1 {c̃k ∈ Ck(p;h)}


where K denotes the set of receiving nodes, T (k) denotes the set of traffic flows arrived at node

k, c̃k denotes the vector of link transmission rates of the links towards node k, Ck(�) denotes the

capacity region at receiving node k and 1(�) is the indicator function to account for the penalty of

constraint violation due to time varying CSI. For example, at node k = 5 in Fig. 6, the set of traffic

flows arrived is T (5) = {r22,r42,r11} and c̃5 = (r̃5, r̃7) is a rate vector corresponding to transmission

rates r̃5 and r̃7 allocated to link 5 and link 7, respectively.

Fig.10 shows the the average network throughput versus the channel fading rate a. The average

throughput decreases when the fading rate a increases, as indicated by a growing average tracking

error in Fig.9. The results also show that the proposed algorithms significantly outperform over all

the other baselines.

VII. CONCLUSIONS

In this paper, we have analyzed the convergence behavior of the primal-dual algorithm for solving a

saddle point problem under time varying CSI, which was modeled as an AR process. The convergence

results have been derived by studying the stabilities of the equivalent virtual dynamic systems based

on the Lyapunov theory from the control theoretical approach. We showed that for both the strongly

concave-convex saddle point problem and the degraded saddle point problem, the average tracking

errors were given by O(α2), where α2 represents the average power of the exogenous excitation
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induced to the CSI dynamics. Based on these analyses, we have proposed a novel adaptive primal-

dual algorithm with a predictive compensation to counteract the effects of the time varying CSI.

We showed that the average tracking error of the proposed algorithm converges to zero despite

time varying CSI. Numerical results were consistent with our analysis and the proposed algorithm

demonstrated significantly better convergence performance over the baseline schemes.

APPENDIX A

PROOF OF THEOREM 1

Proof: The equilibrium point x̃∗(h(t)) of the virtual dynamic system X̃ in (11) satisfies f̃(x̃∗(h(t)); h(t)) =

0. By Definition 1, it is equivalent to

∂

∂x
L(x∗, λ∗; h(t)) = 0, λi

∂

∂λi
L(x∗, λ∗; h(t)) = 0, ∀i (39)

which is the optimality condition for the saddle point problem. As the saddle point problem (1) is

strongly concave in x, the saddle point [x∗(h(t)), λ∗(h(t))] is uniquely determined by (39), which

proofs that the saddle point and equilibrium are identical.

From Definition 1, the virtual dynamic system (11) and the primal-dual algorithm (2)-(3) share the

same formulation. Hence the trajectories of the two are the same.

APPENDIX B

PROOF OF LEMMA 1

Proof: Take V (x̃e) = 1
2κ x̃

T
e x̃e as a Lyapunov function defined along the trajectory of the virtual

dynamic system (12). Suppose that x̃e + x̃∗ is in the interior of the domain Rn × Rm+ . From

∇f̃e(x̃e; h) = κ

 ∇2
xL ∇xλL

−∇TxλL −∇2
λL


and the strong convexity / concavity properties ∇2

xL � −MxI and ∇2
λL �MλI , we obtain

x̃Te∇f̃e(x̃e; h)x̃e ≤ −κmin{Mx, Mλ}‖x̃e‖2 , −κM‖x̃e‖2

Then V̇ (0) = 0 and for any x̃e 6= 0,

V̇ (x̃e) = ∇V (x̃e) ˙̃xe =
1

κ
x̃Te

˙̃xe =
1

κ
x̃Te f̃e(x̃e; h)

=
1

κ
x̃Te f̃e(0+; h) +

1

κ
x̃Te

∫ 1

0
∇f̃e(ξx̃e; h)dξx̃e

≤ 1

κ
x̃Te f̃e(0+; h)−

∫ 1

0

1

ξ
Md‖ξx̃e‖2

≤ −2M‖x̃e‖2

where x̃Te f̃e(0+; h) =< x̃−x̃∗,∇L̄(x̃∗;h) >≤ 0 from the optimality condition of the original saddle

point problem. Here for simplicity, we denote ∇L̄(x̃;h) = [ ∂∂xL(x, λ;h) − ∂
∂λL(x, λ;h)]T .
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Therefore, using the Lyapunov theory [9], we conclude that the virtual dynamic system is expo-

nentially stable for every time-invariant h.

APPENDIX C

PROOF OF LEMMA 2

Proof: One possible choice of Lyapunov function on virtual state z̃e along the algorithm trajectory

is V (z̃e) = 1
2κ x̃

T
e x̃e + 1

2h
T
e he. Then we have

min{ 1

2κ
,
1

2
}‖z̃e‖2 ≤ V (z̃e) =

1

2κ
‖x̃e‖2 +

1

2
‖he‖2 ≤ max{ 1

2κ
,

1

2
}‖z̃e‖2

and

V̇ (z̃e) =
∂V

∂z̃e
Z(z̃e) =

[
1
κ x̃

T
e hTe

] f̃e(x̃e; he + h̄) + ϕ(he + h̄)Ahe

Ahe


=

1

κ
x̃ef̃e(x̃e; h) + hTAh +

1

κ
x̃eϕ(h)Ah

≤ −2M‖x̃e‖2 + λmax(A)‖h‖2 +
1

κ
‖x̃e‖‖ϕ(h)A‖‖h‖

≤ −
[
min{2M, −λmax(A)} − 1

κ
‖ϕ(h)A‖

]
‖z̃e‖2

= −a3‖z̃e‖2

where a3 , min{2M, −λmax(A)} − 1
κ‖ϕ(h)A‖ > 0 by the condition in (15). In addition, we have∥∥∥∥ ∂V∂z̃e

∥∥∥∥ =
∥∥∥[ 1

κ x̃
T
e hT

]∥∥∥ ≤√ 1

κ2
‖x̃e‖2 + ‖h‖2 ≤ max{1

κ
, 1}‖z̃e‖

Therefore, using Lyapunov theory [9], we conclude that the joint system is exponentially stable and

(16)-(18) are satisfied with a1 = min{1/2κ, 1/2}, a2 = max{1/2κ, 1/2}, a3 = min{2M, −λmax(A)}−
1
κ‖ϕ(h)A‖ and a4 = max{1/κ, 1}.

APPENDIX D

PROOF OF THEOREM 2

Proof: From Lemma 2, there exists a Lyapunov function V (z̃e) defined on the joint state z̃e

along the trajectory ˙̃ze = Z̃(z̃e), satisfying (16)-(18). Then, for the system (19),

V̇ (z̃e) =
∂V

∂z̃e
Z̃(z̃e) +

∂V

∂z̃e
Φ(he)u(t) ≤ −a3‖z̃e‖2 + a4‖Φ(he)‖‖z̃e‖‖u(t)‖

Suppose there exists ε > 0, such that

lim
T→∞

1

T

∫ T

0
‖z̃e(τ)‖2dτ ≥ a2

4

a2
3

γ2α2 + ε (40)

Then given any t > 0, there exists T0(t) > 0, such that for all T > T0,

1

t+ T

∫ t+T

0
‖z̃e(τ)‖2dτ ≥ a2

4

a2
3

γ2α2 +
ε

2
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and there exists T1(t) > 0, such that for all T > T1,

1

t+ T

∫ t

0
‖z̃e(τ)‖2dτ ≤ ε

4
.

Choose 0 < η < ε
4
a2
3

a2
4γ

2 , and then from ‖u(t)‖2 = limT→∞
1
T

∫ T
0 ‖u(t)‖2dt ≤ α2, there exists

T2(t) > 0, such that for all T > T2,

1

T

∫ t+T

t
‖u(τ)‖2dτ =

t+ T

T

1

t+ T

∫ t+T

0
‖u(τ)‖2dτ ≤ t+ T

T

(
α2 + η

)
(41)

Finally, let T3(t) = max{T0(t), T1(t), T2(t)}. Then for all T > T3,

1

T

∫ t+T

t
‖z̃e(τ)‖2dτ =

t+ T

T

[
1

t+ T

(∫ t+T

0
‖z̃e(τ)‖2dτ −

∫ t

0
‖z̃e(τ)‖2dτ

)]
≥ t+ T

T

(
a2

4

a2
3

γ2α2 +
ε

4

)
(42)

Hence the T -step Lyapunov drift is given by

V (z̃e(t+ T ))− V (z̃e(t))

≤ −
∫ t+T

t
a3‖z̃e(τ)‖2dτ +

∫ t+T

t
a4γ‖z̃e(τ)‖‖u(τ)‖dτ

≤ −a3

∫ t+T

t
‖z̃e(τ)‖2dτ +

√∫ t+T

t
a2

4γ
2‖z̃e(τ)‖2dτ �

√∫ t+T

t
‖u(τ)‖2dτ

=

−a3

√∫ t+T

t
‖z̃e(τ)‖2dτ + a4γ

√∫ t+T

t
‖u(τ)‖2dτ

√∫ t+T

t
‖z̃e(τ)‖2dtτ

≤

(
−a3

√(
a2

4

a2
3

γ2α2 +
ε

4

)
(t+ T ) + a4γ

√
(α2 + η) (t+ T )

)√∫ t+T

t
‖z̃e(τ)‖2dtτ

< 0

by (41) and (42). By the property of the Lyapunov function V (z̃e) in (16) , for any given t > 0, we

have ‖z̃e(t+ T )‖ < ‖z̃e(t)‖ for all T > T3. Hence, we have limt→∞ ‖z̃e(t)‖ = 0, which contradicts

to the assumption in (40). So the average trajectory ‖z̃e‖2 ≤ a2
4

a2
3
γ2α2, which proofs the stability.

APPENDIX E

PROOF OF LEMMA 4

Proof: A simple choice of Lyapunov function is V (ze) = V0(xe) + 1
2h

T
e he, where V0(xe) =

Vx(x̃e)
∣∣
λe=0

= 1
2κx

T
e xe and ∂V0(xe)

∂x̃e
= 1

κ [xTe 0T ]. Hence we have

min{ 1

2κ
,

1

2
}‖ze‖2 ≤ c1‖xe‖2 +

1

2
‖h‖2 ≤ V (ze) ≤ c2‖xe‖2 +

1

2
‖h‖2 ≤ max{ 1

2κ
,

1

2
}‖ze‖2
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and

dV (ze)

dt
=

∂V (ze)

∂z̃e

dz̃e
dt

=
[

∂V0(xe)
∂x̃e

hTe

] f̃e(x̃e; he + h̄) + ϕ(he + h̄)Ahe

Ahe


=

∂V0(xe)

∂x̃e
f̃e(x̃e; he + h̄) +

∂V0(xe)

∂x̃e
Ahe + hTe Ahe

≤ −c3‖xe‖2 + c4‖xe‖‖ϕx(h)A‖‖he‖+ λmax(A)‖he‖2

≤ − [min{c3, −λmax(A)} − c4‖ϕx(h)A‖] ‖ze‖2

, −a3‖ze‖2

where c3 = 2Mx and c4 = 1/κ following the discussion in Lemma 3. Moreover,∥∥∥∥∂V (ze)

∂ze

∥∥∥∥ =
∥∥∥[ ∂V0(xe)

∂x̃e
hT

]∥∥∥ ≤√c2
4‖xe‖2 + ‖h‖2 ≤

√
max{ 1

κ2
, 1}‖ze‖

Therefore, using the Lyapunov theory [9], we conclude that the system że = Z(ze) is exponentially

stable for the joint state ze = (xe, h) and (27)-(29) are satisfied with a1 = min{1/(2κ), 1/2},

a2 = max{1/(2κ), 1/2}, a3 = min{2Mx, −λmax(A)}− 1
κ‖ϕx(h)A‖ and a4 =

√
max{1/κ2, 1}.

APPENDIX F

PROOF OF THEOREM 4

Proof: Consider the virtual dynamic system with compensation in (31). Since

Φ(he)− Φ̂(z̃e) =

 ϕ̂(x̃∗; h(t))− ϕ̂(x̃; h(t))

0


then ‖Φ(he) − Φ̂(z̃e)‖ = ‖ϕ̂(x̃∗; h(t)) − ϕ̂(x̃; h(t))‖ ≤ L‖x̃e‖ ≤ L‖z̃e‖. Applying the Lyapunov

function V (z̃e) in Lemma 2 to the virtual dynamic system Z̃e(û), we obtain

V̇ (z̃e) =
∂V

∂z̃e
Z̃(z̃e) +

∂V

∂z̃e
Φ(he)u(t) ≤ −a3‖z̃e‖2 + a4‖Φ(he)− Φ̂(z̃e)‖‖u(t)‖‖z̃e‖

≤ −a3‖z̃e‖2 + a4L‖u(t)‖‖z̃e‖2

Suppose there exists ε > 0, such that

lim
T→∞

1

T

∫ t+T

t
‖z̃e(τ)‖2dτ > ε (43)

Then there exists T0(t) > 0, such that for all T > T0, 1
T

∫ t+T
t ‖z̃e(τ)‖2dτ > ε

2 .

As limT→∞
1
T

∫ t+T
t ‖u(τ)‖dτ = β < a3

a4L
, we choose η =

(
a3

a4L
− β

)
/2. Then there exists

T1(t) > 0, such that for all T > T1, 1
T

∫ t+T
t ‖u(τ)‖dτ < β + η < a3

a4L
.

Observed that, z̃e(t) only depends on all the realizations before u(t−). Therefore ‖u(t)‖ and

‖z̃e(t)‖2 are independent and hence,

lim
T→∞

1

T

∫ t+T

t
‖u(τ)‖‖z̃e(τ)‖2dτ = lim

T→∞

1

T

∫ t+T

t
‖u(τ)‖dτ � 1

T

∫ t+T

t
‖z̃e(τ)‖2dτ.
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Therefore, if we choose any 0 < δ < ηε/2, then there exists T2(t) > 0, such that for all T > T2,

1

T

∫ t+T

t
‖u(τ)‖‖z̃e(τ)‖2dτ ≤ 1

T

∫ t+T

t
‖u(τ)‖dτ � 1

T

∫ t+T

t
‖z̃e(τ)‖2dτ + δ.

As a result, let T3(t) = max{T0(t), T1(t), T2(t)}, and then for all T > T3, the T -step Lyapunov drift

becomes

V (z̃e(t+ T ))− V (z̃e(t)) ≤ −
∫ t+T

t
a3‖z̃e(τ)‖2dτ + a4L

∫ t+T

t
‖u(τ)‖‖z̃e(τ)‖2dτ

≤ −
∫ t+T

t
a3‖z̃e(τ)‖2dτ + a4L

(
1

T

∫ t+T

t
‖u(τ)‖dτ

∫ t+T

t
‖z̃e(τ)‖2dτ + δT

)
≤

(
−a3 + a4L �

1

T

∫ t+T

t
‖u(τ)‖dτ

)∫ t+T

t
‖z̃e(τ)‖2dτ + a4LδT

≤ −a4Lη

∫ t+T

t
‖z̃e(τ)‖2dτ + a4LδT

≤
(
−η ε

2
+ δ
)
a4LT

< 0

By the property of the Lyapunov function V (z̃e) in (16), given any t > 0, we have ‖z̃e(t+T )‖ <

‖z̃e(t)‖ for all T > T3. Hence, limt→∞ ‖z̃e(t)‖ = 0, which contradicts to the assumption in (43). So

the average trajectory ‖z̃e‖2 converges to 0, and hence the tracking error ‖x̃e‖2 converges to 0.
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Figure 1. A system model for a point-to-point MIMO with a jammer. The user X transmits signal to Y through the channel

H1 and a jammer Z transmits a jamming signal to Y through the channel H2.

Figure 2. A specific example of the multihop wireless network with 3 nodes and 2 links, where the collection of traffic

flows is given by C = {(1, 2), (1, 3), (2, 3)}, and the sets of links are L(1, 2) = {1}, L(1, 3) = {1, 2} and L(2, 3) = {2}.

Pt1 and Pt2 denote the total power allocated to link 1 and link 2 respectively.

Figure 3. An illustration of the convergence behavior of the primal-dual algorithms. In (a), the equilibrium point in the

equivalent virtual dynamic system is asymptotically stable when the CSI h(t) is quasi-static [1]. However, in (b), when the

CSI h(t) is time-varying, the equilibrium point x̃∗(t) becomes also time-varying and the convergence is not guaranteed.
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Figure 4. An illustration of the excitation due to the exogenous input Φ(he)u(t) for the equivalent virtual dynamic

system Z̃e. We can visualize the Lyapunov function V (z̃e) as an energy function. Without the time-varying channel effect

(u(t) = 0), the algorithm trajectory will eventually converges to the equilibrium z̃∗e = 0 (corresponding to exponential

convergence of the primal-dual iterations in (2)-(3)) because there is no exogenous excitation energy applied to the system.

With the time-varying channels, there is an uncertainty region (shaded region) where the system state will converge to

(corresponds to the convergence region D̃e in Corollary 1 and De in Corollary 2). The region is bounded and the size

depends on the "energy" applied to the system due to the exogenous input Φ(he)u(t).

Figure 5. An illustration of the proposed algorithm with adaptive compensation to improve the convergence behavior of

the primal-dual iterations in time-varying channels. Instead of searching via the steepest descent direction ∇L(x̃,h) in

the conventional primal-dual algorithm, it searches in a compensated direction ∇L(x̃, h) + ϕ̂(x̃, h) to offset the potential

movement of the saddle point x̃∗(t).

Figure 6. A specific example of wireless ad hoc network with 6 nodes 8 directed links and 8 data flows. The data flows

are delivered simutaneously with fixed routes. Links from the same transmitting node occupy different subbands and do

not interfere with each other. The interference at each receiving node is handled by multiuser detection (MUD) techniques.

Allowable transmission rate for each link is determined by the capacity region at the corresponding receiving node.
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Figure 7. The convergence performance of the primal-dual algorithm for the strongly concave-convex saddle point problem

given in Section III-B. The CSI model is given by ḣ = A(h − h̄) +
√

2aw(t), where A = −aI , h̄ = 1, and w(t) is a

zero-mean unit-variance white Gaussian process. The variance of the CSI h(t) is normalized to unity, and the parameter a

controls the time-correlation of the CSI. It shows that as the SNR increases, the tracking error also increases for the same

CSI variation rate in terms of a.
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Figure 8. The convergence performance of the primal-dual algorithm for the degraded saddle point problem given in Section

IV-B. The CSI model is given by ḣ = −a(h− h̄) +
√

2aw(t), where h̄ = 1 and w(t) is a zero-mean unit-variance white

Gaussian process. The variance of the CSI h(t) is normalized to unity, and the parameter a controls the time-correlation of

the CSI. It shows that as the SNR increases, the tracking error also increases for the same CSI variation rate in terms of a.

October 13, 2018 DRAFT



30

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

20

40

60

80

100

120

140

a (ms
−1

)

A
ve
ra
ge

T
ra
ck
in
g
E
rr
o
r
e2

Proposed PD Algorithm (Centralized)

Proposed PD Algorithm (Distributed)

AvgPDGA

PerPDGA

ConPDGA

Figure 9. The convergence performance comparison of the proposed algorithms and the baseline algorithms[3], [21], [20],

which solve a NUM under the wireless network in Fig.6. The CSI model is given by ḣ = −a(h− h̄) +
√

2aw(t), where

h̄ = 1 and w(t) is a zero-mean unit-variance white Gaussian process. The variance of the CSI h(t) is normalized to unity,

and the parameter a controls the time-correlation of the CSI. The tracking errors of the proposed algorithms are much

smaller than those of the baselines.
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Figure 10. Average network throughput versus the channel fading rate parameter a, while applying the various proposed

and baseline algorithms to solve the NUM problem under the network in Fig.6. The average throughput decreases when

the fading rate a increases. The proposed algorithms have much higher network throughput than all the other baselines.
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