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Abstract— This paper considers the joint transceiver design
for downlink multiuser multiple-input single-output (MISO)
systems with coordinated base stations (BSs) where imperfect
channel state information (CSI) is available at the BSs and mobile
stations (MSs). By incorporating antenna correlation at the BSs
and taking channel estimation errors into account, we solve two
robust design problems: 1) minimizing the weighted sum of mean-
square-error (MSE) with per BS antenna power constraint, and
2) minimizing the total power of all BSs with per user MSE target
and per BS antenna power constraints. These problems are solved
as follows. First, for fixed receivers, we propose centralized and
novel computationally efficient distributed algorithms to jointly
optimize the precoders of all users. Our centralized algorithms
employ the second-order-cone programming (SOCP) approach,
whereas, our novel distributed algorithms use the Lagrangian
dual decomposition, modified matrix fractional minimization and
an iterative method. Second, for fixed BS precoders, the receivers
are updated by the minimum mean-square-error (MMSE) crite-
rion. These two steps are repeated until convergence is achieved.
In all of our simulation results, we have observed that the
proposed distributed algorithms achieve the same performance
as that of the centralized algorithms. Moreover, computer sim-
ulations verify the robustness of the proposed robust designs
compared to the non-robust/naive designs.

Index Terms— Multiuser MIMO, distributed optimization
and convex optimization.

I. I NTRODUCTION

The next generation multimedia communications are ex-
pected to support high data rates. To meet this demand
multi-antenna systems are recommended as they significantly
increase the spectral efficiency of wireless channels [1], [2].
The performance enhancement is achieved by exploiting the
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transmit and receive diversity. In [3], a fundamental relation
between mutual information and minimum mean-square-error
(MMSE) has been established for multiple-input multiple-
output (MIMO) Gaussian channels. Furthermore, it has been
shown that different transceiver optimization problems are
equivalently reformulated as a function of MMSE matrix, for
instance, minimizing bit error rate, maximizing capacity etc
[4]–[6]. For these reasons, mean-square-error (MSE)-based de-
sign problems are commonly examined in multiuser networks.

In general, the uplink channel MSE-based problems are
better understood than that of the downlink channel problems.
For this reason, most of the research works examine MSE-
based problems for the downlink multiuser systems [5], [7]–
[12]. However, all of the these papers examine their problems
for conventional downlink networks. In these networks, base
stations (BSs) from different cells communicate with their
respective remote terminals independently. Hence, in the latter
network, inter-cell interference is obliged to be considered
as a background noise. Recently, it has been shown that
BS coordination communication is a promising technique to
significantly improve the capacity of wireless channels by miti-
gating (or possibly canceling) inter-cell interference [13]–[15].
The BS coordination can be performed by two approaches.
In the first approach, BSs are coordinated at the beamform-
ing (precoder) level [14], whereas in the second approach,
coordination takes place both at the signal and beamforming
(precoder) levels [13], [15]. It is well know that the latter
coordination approach has better performance gain compared
to the former one [15], [16]. This performance improvement,
however, requires additional signal coordination. In the current
paper, we focus on the second BS coordination approach (the
approach of [13] and [15]). In [17], four MSE-based linear
transceiver optimization problems have been considered for
coordinated BS MIMO systems. These problems are examined
by assuming that the total power of each BS or the individual
power of each BS antenna is constrained. The optimization
problems of [17] are solved as follows. First, by keeping
the receivers constant, the precoders of all users are jointly
optimized using a second-order-cone programming (SOCP)
approach (SOCP problems are convex and can be solved
using interior point (IP) methods [18]). Second, for the given
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BS precoders, the receiver of each user is optimized by
the MMSE method. The first and second steps are repeated
in an iterative manner to jointly optimize the transmitters
and receivers. Thus, in [17], the receiver of each user can
be optimized independently and distributively. However, the
joint optimization of the precoders has been carried out by
a centralized algorithm. When the number of users and/or
BSs increase, the computational cost of the joint precoder
design also increases [19]. Consequently, solving the precoder
optimization problem in a centralized manner, especially for
large-scale coordinated networks, is not a computationally
efficient approach. This motivates us to develop distributed
algorithms to solve MSE-based problems for coordinated
BS systems with per BS antenna power constraints in [20].
This paper solves its optimization problems distributively by
applying the Lagrangian dual decomposition, modified matrix
fractional minimization and an iterative technique.

In the current paper, we extend the work of [20] to
robust case. The goal of this work is to jointly optimize the
transmitters and receivers of all users when imperfect channel
state information (CSI) is available both at the BSs and mobile
stations (MSs), and with antenna correlation at the BSs. It is
known in [21]–[23] that transmit antenna correlation matrices
depend on array parameters (such as array geometry, antenna
spacing), and the average angle of arrival (AOA) of scattered
signals from user and the corresponding angular spread. This
means that the transmit antenna correlation matrices (which
capture spatial variation) vary at a rate much slower than the
fast fading component (that captures temporal variations)of
downlink channel. Thus, errors caused from the estimation of
fast fading part of the channel can significantly outnumber
the errors caused from the estimation of slowly varying
antenna correlation matrices. Based upon these discussions, it
is clear that the transmit correlation matrices can be obtained
from long term channel statistics with a reasonable accuracy
[24]. Due to this reason, perfect transmit antenna correlation
matrices are assumed to be available at the BSs and MSs. We
also assume that each BS is equipped with multiple antennas
and each MS is equipped with single antenna. For our robust
transceiver designs, a stochastic approach has been utilized.
We design the transmitters and receivers by considering the
practically relevant scenario where spatial correlation matrices
as seen from each BS are different for different MSs and the
variance of the estimation errors corresponding to the estimates
of the channels are different. For this CSI model, we examine
the following MSE-based robust design problems.

1) The robust minimization of the weighted sum MSE with
per BS antenna power constraint (P1).

2) The robust minimization of the total sum power of all
BSs with per BS antenna power and per user MSE target

constraints (P2)1.
To the best of our knowledge, problemsP1 andP2 are non-
convex. Hence, convex optimization tools can not be used
to solve them. Each of these problems are solved iteratively
as follows. First, for given receivers, we propose centralized
and novel computationally efficient distributed algorithms to
design the optimal precoders of all users. Our centralized
algorithm designs the precoders of all users using SOCP
approach and our novel distributed algorithm designs the
precoders of all users by employing the Lagrangian dual
decomposition, modified matrix fractional minimization and
an iterative approach. Second, like in [17] and [20], the re-
ceiver of each user is optimized independently using minimum
average mean-square-error (MAMSE) approach. These steps
are repeated until convergence is achieved. The centralized and
distributed algorithms require the complete channel estimates
of all MSs. The centralized precoder design algorithms are
developed by extending the approach of [17] to the case where
imperfect CSI is available at the BSs and MSs. However, this
extension does not change the fact that the robust problem
can be reformulated into a SOCP problem as in the case of
non-robust problem [17]. Thus, the novelty of our current
paper relies mainly on the proposed distributed algorithms
where we have used modified matrix fractional minimization
techniques to solve the precoder design problems ofP1 and
P2 distributively. As a result, our new distributed algorithms
are able to solve the transceiver design problems ofP1 and
P2 with less computational cost than that of the centralized
algorithms. Furthermore, in all of our simulation results,we
have observed that our novel distributed algorithms achieve
the same performance as that of the centralized algorithms.
The main contributions of this paper is thus summarized as
follows.

1) We propose novel computationally efficient distributed
algorithms to jointly optimize the precoders of all users
for problemsP1 andP2. As will be clear later, the pro-
posed distributed algorithms can be extended straightfor-
wardly to solveP1 andP2 for MIMO coordinated BS
systems with per BS antenna (groups of BS antennas)
power constraints.

2) We have demonstrated that the proposed distributed
algorithms forP1 andP2 achieve the same performance
as that of the centralized algorithms proposed forP1 and
P2.

3) We examine the joint effect of channel estimation errors
and antenna correlations on the performance ofP1 and
P2.

The remaining part of this paper is organized as follows. We
present the coordinated multi-antenna BS system model in
Section II. In Section III, the multiuser channel model under

1In any transceiver design problem, the notion of power arisesat the
transmitter side. In this paper, since we are examining downlink transceiver
design problems, the power constraint appears only at the BSs. In a practical
downlink multi-antenna BS systems, each BS antenna has its ownpower
amplifier and the maximum power of each antenna is limited [25]. This
motivates us to consider the power constraint of each BS antenna. However,
as will be clear later, the proposed algorithms forP1 andP2 can be extended
straightforwardly to handle the sum power constraint of thewhole network
or groups of antennas.
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imperfect CSI is presented. Section IV discusses the robust
design problemsP1 - P2, and the proposed centralized and
distributed algorithms. The extensions of our centralizedand
distributed algorithms forP1 andP2 in a MIMO coordinated
BS system is discussed in Section V. In Section VI, computer
simulations are used to compare the performance of the
centralized and distributed algorithms, and the robust andnon-
robust/naive designs. Finally, conclusions are drawn in Section
VII.

Notations: The following notations are used throughout
this paper. Upper/lower case boldface letters denote matri-
ces/column vectors.vec(X), tr(X), X⋆, XT , XH and E(X)
denote vectorization, trace, optimal, transpose, conjugate trans-
pose and expected value ofX, respectively.In(I) is an identity
matrix of sizen × n (appropriate size) andCM×M represent
spaces ofM×M matrices with complex entries. The diagonal
and block-diagonal matrices are represented bydiag(.) and
blkdiag(.) respectively. Subject to is denoted bys.t, ‖x‖n is
the thenth norm of a vectorx.

Fig. 1. Coordinated base station system model.

II. SYSTEM MODEL

We consider a coordinated BS system as shown in Fig.
1 whereL BSs are servingK decentralized single antenna
MSs. Thelth BS is equipped withNl transmit antennas. By
denoting the symbol intended for thekth user asdk, the entire
symbol can be written in a data vectord ∈ CK×1 as d =
[d1, · · · , dK ]T . Thelth BS precodesd into anNl length vector
by using its overall precoder matrixBl = [bl1, · · · ,blK ],
whereblk ∈ CNl×1 is the precoder vector of thelth BS for
the kth MS. For convenience, we follow the same channel
vector notations as in [20]. Thekth MS employs a receiver
wk ∈ C to estimate its symboldk. The estimated symbol at

the kth MS is given by

d̂k = wH
k (

L∑

l=1

hH
lkBld+ nk) = wH

k (hH
k

K∑

i=1

bidi + nk) (1)

wherehH
k = [hH

1k, · · · ,hH
Lk] ∈ C1×N , B = [B1; · · · ;BL],

bk = [bT
1k, · · · ,bT

Lk]
T ∈ CN×1 is the precoder vector for the

kth user,N =
∑L

l=1 Nl, hH
lk ∈ C1×Nl is the channel vector

between thelth BS and thekth MS, andnk is the additive
noise at thekth MS. It is clearly seen that the last expression
of (1) has exactly the same form as the estimate ofdk for
the downlink MISO system where a BS equipped withN
transmitt antennas is servingK decentralized users. Hence, we
can interpret coordinated BS system as a one giant downlink
system [17], [19]. It is assumed thatnk is a zero-mean
circularly symmetric complex Gaussian (ZMCSCG) random
variable with the varianceσ2

k, i.e.,nk ∼ NC(0, σ2
k). We also

assume that the symboldk is a ZMCSCG random variable with
unit variance and is independent of{di}Ki=1,i6=k and noisenk,
i.e.,E{dkdHk } = 1, E{dkdHi } = 0, ∀i 6= k andE{dknH

k } = 0.
For this system model, when perfect CSI is available at the
BSs and MSs, the MSE of thekth user can be expressed as

ξk = Ed,nk
{(d̂k − dk)(d̂k − dk)

H}

= wH
k

([ L∑

l=1

hH
lkBl

][ L∑

l=1

hH
lkBl

]H
+ σ2

k

)
wk−

wH
k

L∑

l=1

hH
lkblk −

L∑

l=1

bH
lkhlkwk + 1.

III. C HANNEL MODEL

Considering antenna correlation at the BSs, we model the
Rayleigh fading MISO channel between thelth BS and the
kth MS ashH

lk = hH
wlkR̃

1/2
blk , where the elements ofhH

wlk

are independent and identically distributed (i.i.d) ZMCSCG
random variables all with unit variance and̃Rblk ∈ CNl×Nl

is the antenna correlation matrix as seen from thelth BS
[26], [24]. The channel estimation of thekth MS (hH

lk) can be
performed onhH

wlk, ∀l, using an orthogonal training method
[27]. Upon doing so, the true channel between thelth BS and
kth MS hH

lk is given by [12]

hH
lk =(ĥH

wlk + eHwlk)R̃
1/2
blk = ĥH

lk + eHwlkR̃
1/2
blk (2)

whereĥH
wlk is the MMSE estimate ofhH

wlk, ĥH
lk = ĥH

wlkR̃
1/2
blk

and eHwlk is the estimation error for which its entries are
i.i.d with CN (0, σ2

elk). In the case of linearly dependent
channel estimation errors,eHwlk andhH

lk can be expressed as
eHwlk = ẽHwlkZlk and hH

lk = ĥH
lk + ẽHwlk

¯̃Rblk, whereZlk ∈
CÑlk×Nl , Ñlk ≤ Nl, ẽHwlk ∈ C1×Ñlk = CN (0, σ̃2

elk) and
¯̃Rblk = ZlkR̃

1/2
blk . For simplicity, the current paper examines

P1 and P2 for the channel model given in (2). As will be
clear later, the approaches of this paper can also be appliedto
solveP1 andP2 with linearly dependent channel estimation
error models.

The main idea of the robust design is that{eHwlk}Kk=1, ∀l
are unknown but{ĥH

wlk, R̃blk andσ2
elk}Kk=1, ∀l are available.

We assume that thekth MS estimates its channel (i.e.,ĥH
lk, ∀l)
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and feeds{ĥH
lk andσ2

elk}, ∀l back to the BSs without any error
and delay. Since thelth BS has the channel estimates of all
MSs, it can computẽRblk locally from the long term channel
statistics ofĥH

lk [24]. Thus, both the BSs and MSs have the
same channel imperfections. The average mean-square-error
(AMSE) of thekth MS (ξk) can be expressed as

ξk =EeH
wk

{ξk}

=wH
k

([ L∑

l=1

ĥH
lkBl

][ L∑

l=1

ĥH
lkBl

]H
+

L∑

l=1

σ2
elktr{R̃1/2

blk BlB
H
l R̃

1/2
blk }+ σ2

k

)
wk−

wH
k

L∑

l=1

ĥH
lkblk −

L∑

l=1

bH
lkĥlkwk + 1

=wH
k (ĥH

k

K∑

i=1

bib
H
i ĥk + tr{R1/2

bk

K∑

i=1

bib
H
i R

1/2
bk }

+ σ2
k)wk − wH

k ĥH
k bk − bH

k ĥkwk + 1

=wH
k (ĥH

k

K∑

i=1

bib
H
i ĥk +

K∑

i=1

bH
i Rbkbi + σ2

k)wk

− wH
k ĥH

k bk − bH
k ĥkwk + 1 (3)

where ĥH
k = [ĥH

1k, · · · , ĥH
Lk], Rbk =

blkdiag(σ2
e1kR̃b1k, · · · , σ2

eLkR̃bLk), and in the second
equality we use the factEe{eHΦe} = σ2

etr{Φ}, if the
entries ofe are i.i.d withCN (0, σ2

e) andΦ is a given matrix
[12], [28]. Note that one can extend the precoder/decoder
design problems ofP1 and P2 by incorporating channel
estimation and feedback errors with time delay. In this case,
the expression of{ξk}Kk=1 will be different from (3). Hence,
solving P1 and P2 with erroneous feedback and non-zero
delay is an open research topic.

IV. PROBLEM FORMULATIONS AND PROPOSEDSOLUTIONS

In this section, we examine problemsP1 and P2. For
each problem, we use the following general optimization
framework. First, for fixed receivers, the precoders of all users
are optimized. Second, using the latter precoders, the optimal
receiver of each user is designed by the MAMSE receiver
method. Since designing the receivers by MAMSE approach is
optimal for any robust MSE-based problem,P1 andP2 utilize
the same MAMSE expression to design their receivers. Finally,
these two steps are repeated until convergence is achieved.The
MAMSE receiver of thekth user is given by [20]

wk =
ĥH
k bk

ĥH
k

∑K
i=1 bibH

i ĥk + tr{Rbk

∑K
i=1 bibH

i }+ σ2
k

. (4)

In the following, for fixed receivers{wk}Kk=1, we propose
centralized and computationally efficient distributed precoder
design algorithms for problemsP1 andP2.

A. Robust weighted sum MSE minimization problem (P1)

The robust weighted sum MSE minimization with per BS
antenna power constraint problem can be formulated as

min
{wk,bk}K

k=1

K∑

k=1

ηkξk, s.t

[ K∑

k=1

bkb
H
k

]

n,n

≤ pn, ∀n (5)

whereηk is the AMSE weighting factor of thekth user and
pn is the maximum available power at thenth BS antenna.
The antenna numbers are assigned from the first antenna of
BS1 (which corresponds to antenna 1) to the last antenna of
BSL (which corresponds to antennaN ).

1) Centralized precoder design forP1: The objective
function of the above problem can be expressed as

K∑

k=1

ηkξk =

K∑

k=1

{
bH
k (

K∑

i=1

ηiĥiwiw
H
i ĥH

i + ηiwiw
H
i Rbi)bk

− ηkw
H
k ĥH

k bk − ηkb
H
k ĥkwk + σ2

kηkw
H
k wk + ηk

}

= tr{(√ηWHĤHB−√
η)H(

√
ηWHĤHB−√

η)}
+ tr(BHΨB) + tr(σ2ηWHW) (6)

where η = diag(η1, · · · , ηK), W = diag(w1, · · · , wK),
Ĥ = [ĥ1, · · · , ĥK ], σ = diag(σ1, · · · , σK) and Ψ =∑K

i=1 ηiwiw
H
i Rbi. For fixed receivers{wk}Kk=1 and using (6),

the global optimal{bk}Kk=1 of (5) can be obtained by solving
the following problem [17]

min
χ, B

χ s.t ‖µ‖2 ≤ χ, ‖b̃n‖2 ≤ √
pn, ∀n (7)

whereµ = [vec(
√
ηWHĤHB−√

η) ; vec(
√
ΨB)] andb̃H

n

as thenth row of B. As we can see, (7) is a SOCP problem
for which the global optimal solution is obtained by existing
convex optimization tools [18]. This problem has2NK + 1
real optimization variables,N second-order-cone (SOC) con-
straints where each of them consists of2K real dimensions
and one SOC constraint with2K(K + N) real dimensions.
According to [29] (see page 196), the computational complex-
ity of the latter problem in terms of number of iterations is
upper bounded byO(

√
N + 1) where the complexity of each

iteration is within the order ofO((2KN+1)2(2K2+4KN)).
Thus, the total worst-case computational complexity of (7)is
given byO(

√
N + 1(2KN +1)2(2K2+4KN)). This shows

that for large networks, the centralized precoder design scheme
appears to be impractical. This motivates us to design the
precoders of each user distributively with less computational
cost than that of the centralized precoder design approach.

2) Distributed precoder design forP1: For fixed
{wk}Kk=1, to solve the precoders of (5) distributively, we
propose the Lagrangian dual decomposition technique2. To this
end, we first express the Lagrangian function associated with

2Since the precoder design problem of (5) is convex, there is azero duality
gap between the primal and dual problems.
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(5) as

L(λ,B) =
K∑

k=1

ηkξk +
N∑

n=1

λn

(
[
K∑

i=1

bib
H
i ]n,n − pn

)

=
K∑

k=1

{
bH
k (

K∑

i=1

ηiĥiwiw
H
i ĥH

i + ηiwiw
H
i Rbi)bk

− ηkw
H
k ĥH

k bk − ηkb
H
k ĥkwk + σ2

kηkw
H
k wk + ηk

}

+
N∑

n=1

λn

(
[
K∑

i=1

bib
H
i ]n,n − pn

)

=

K∑

k=1

{
bH
k Abk − ηkw

H
k ĥH

k bk − ηkb
H
k ĥkwk+

σ2
kηkw

H
k wk + ηk

}
−

N∑

n=1

λnpn (8)

where λ = diag(λ1, · · · , λN ) and A =∑K
i=1 ηiĥiwiw

H
i ĥH

i + ηiwiw
H
i Rbi + λ. Thus, the dual

function of (5) is

g(λ) = min
{bk}K

k=1

L(λ,B) (9)

= min
{bk}K

k=1

K∑

k=1

{
bH
k Abk − ηkw

H
k ĥH

k bk − ηkb
H
k ĥkwk

+ σ2
kηkw

H
k wk + ηk

}
−

N∑

n=1

λnpn

=
K∑

k=1

{
ηk(σ

2
kw

H
k wk + 1)− η2kw

H
k ĥH

k A−1ĥkwk

}

−
N∑

n=1

λnpn

where the third equality is obtained after substituting the
optimalbk of (9) which is given by

b⋆
k = ηkA

−1ĥkwk, ∀k ⇒ b⋆
lk = ηk[A

−1]lĥkwk ∀l, k (10)

where [A−1]l ∈ CNl×N is the submatrix ofA−1 which is
given by[A−1]l = [A−1](Fl:Fl+Nl−1,:) with Fl =

∑l−1
i=0 Ni+

1 and N0 = 0. As can be seen from (10), for a givenλ,
the precoder of each user can be optimized independently.
The optimalλ of (8) can be obtained by solving the dual
optimization problem of (5) which is given as

max
{λn≥0}N

n=1

g(λ) =

max
{λn≥0}N

n=1

K∑

k=1

{
ηk(σ

2
kw

H
k wk + 1)− η2kw

H
k ĥH

k A−1ĥkwk

}

−
N∑

n=1

λnpn. (11)

Considering the eigenvalue decomposition of
ĤWη2WHĤH , ṼΛ̃ṼH and ĤWηWHĤH +∑K

i=1 ηiwiw
H
i Rbi , V̄Λ̄V̄H , problem (11) can be written

as

min
{λn≥0}N

n=1

tr

{
FH(RRH + λ)−1F

}
+

N∑

n=1

λnpn (12)

whereF = Ṽ
√
Λ̃ andR = V̄

√
Λ̄. The above optimization

problem can be cast as a semi-definite programming (SDP)
problem where the global optimal solution can be found
by existing convex optimization tools [18]. The worst-case
computational complexity of this problem is on the order of
O((2N2 + N)2(4N)2.5) [29]. However, here our aim is to
obtain the optimal values of{λn}Nn=1 distributively with less
computational cost than that of the SDP method. In this regard,
we present the following Lemma.

Lemma 1: The optimal{λn}Nn=1 of the above optimization
problem can be obtained by solving the following problem

min
{λn,gn,tn}N

n=1

N∑

n=1

{gH
n λ−1gn + tHn tn + λnpn} , ϕ

s.t Rtn + gn = fn, ∀n (13)

wherefn is thenth column ofF.
Proof: By keepingλ constant, the Lagrangian function of

(13) is given by

L =

N∑

n=1

{gH
n λ−1gn + tHn tn + λnpn−

τH
n (Rtn + gn − fn)} (14)

whereτH
n is the Lagrangian multiplier associated with thenth

equality constraint of (13). Differentiation ofL with respect
to {gi, ti}Ni=1 yield {g⋆

i = λτ i}Ni=1 and {t⋆i = RHτ i}Ni=1.
By substituting these{g⋆

i , t
⋆
i }Ni=1 in the equality constraint of

(13), we get{τ i = (RRH + λ)−1fi}Ni=1. It follows

g⋆
i = λ(RRH + λ)−1fi, t⋆i = RH(RRH + λ)−1fi, ∀i (15)

Plugging the above optimal values into the objective function
of (13) yields

ϕ =

N∑

i=1

{gH
i λ−1gi + tHi ti + λipi}

=

N∑

i=1

{fHi (RRH + λ)−1fi}+
N∑

i=1

λipi

=tr

{
FH(RRH + λ)−1F

}
+

N∑

i=1

λipi. (16)

The above equation is the same as the objective function of
the original optimization problem (12). It follows that (12) and
(13) are equivalent problems. Note thatLemma 1is proved by
modifying the idea of matrix fractional minimization (see [18]
and [20]). It can be shown that (13) is a convex optimization
problem [18].

To develop distributed algorithm for (13), we reexpress
G = [g1, · · · ,gN ] as G = [gH

1 ; · · · ;gH
N ], wheregH

i is the
ith row of G. By doing soG⋆ = [g⋆

1, · · · ,g⋆
N ] of (15) can

also be written asG⋆ = [(g⋆
1)

H ; · · · ; (g⋆
N )H ], where

g⋆
i = λiΓ

H
i , ∀i (17)
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and Γi is the ith row of Γ = A−1F. Now, we solve (13)
distributively as follows. First, keepingλ constant, the optimal
gi can be computed independently using (17). Then, with this
g⋆
i , λi is updated by

∂ϕ

λi
= − 1

λ2
i

βi + pi = 0 ⇒ λ⋆
i =

√
βi/pi, ∀i (18)

where βi = (g⋆
i )

Hg⋆
i . As we can see from the above

expressionλ⋆
i is always non-negative. Furthermore, from (17)

and (18), one can observe thatλ⋆
i can be updated in parallel by

using onlyg⋆
i . Thus, for our problem (12), the computation

of {t⋆i ,g⋆
i }Ni=1 is not required. To summarize, problem (12)

can be solved iteratively in a distributed manner as shown in
Algorithm I .

Algorithm I : Iterative algorithm to solve (12)
1) Initialization: Set{λn = 1}Nn=1.

Repeat
2) With the currentλ, compute{gn}Nn=1 using (17) and

update{λn}Nn=1 with (18).
3) Share the above{λn}Nn=1 among all processors.
4) Calculate the objective function of (12).

Until convergence.
As we can see,Algorithm I is developed to get the
minimum value of the objective function of (12). Thus,
this algorithm should stop iteration when the objective
function of (12) is not decreasing significantly [5]. One
simple approach of doing this is to stopAlgorithm I
from iteration whenφi − φi+1 < δ, whereφi is the
objective function of (12) at theith iteration andδ
is the desired accuracy. For our simulation results, we
have used the latter approach to declare convergence of
Algorithm I with δ = 10−12.

Convergence: Since (13) is jointly convex in{gn, tn}Nn=1

and {λn}Nn=1, at each step ofAlgorithm I , the objective
function of (13) is non-increasing. This implies that at each
iteration of this algorithm, the objective function of (12)is also
non-increasing. Moreover, it is clearly seen that the objective
function of (12) is lower bounded by0. These two facts show
that Algorithm I is always convergent3. Although we are not
able to prove the global optimality ofAlgorithm I analytically,
in all of our simulation results, we have observed that the
optimal λ of (12) obtained byAlgorithm I and the SDP
method are the same.
Computational complexity: The major computational load of
Algorithm I arises from matrix inversion. According to [30],
matrix inversion has a complexity on the order ofO(N2.376).
Thus,Algorithm I requiresO(N2.376) per iteration. As will
be shown later in Section VI, in all of our simulations,
Algorithm I converges to an optimal solution in less than10
iterations. This shows that the proposed distributed algorithm
significantly reduces the computational load of the precoder
design forP1.
Note: When thenth power constraint of (5) is inactive, at
optimality, the corresponding Lagrangian multiplier should be

3Note that since the aim of problem (12) is to get any{λn}Nn=1 which
achieves the smallest objective function of (12), we believethat the con-
vergence analysis ofAlgorithm I with respect to the optimization variables
{λn}Nn=1 is not required.

zero. However, when we reformulate (12) into (13), each
of {λn}Nn=1 is not allowed to be zero. This shows that the
development of distributed algorithm for (12) with{λn ≥
0}Nn=1 is an open problem.

Using {λn}Nn=1 of Algorithm I , the optimal{blk}Kk=1, ∀l
of (5) can be computed by (10), and with these{blk}Kk=1, ∀l,
the decoder of each user can be computed by using the
MAMSE receiver approach (4). In summary, we solveP1 (5)
distributively as shown inAlgorithm II .

Algorithm II : Distributed algorithm for problemP1 (5)
Initialization: SetB = Ĥ and normalize the rows ofB
such that the power constraint of each antenna is satisfied
with equality. Then, initialize{wk}Kk=1 by MAMSE
receiver (4). Set the maximum number of iterations
imax.
Repeat

1) Compute the optimal{λn}Nn=1 with Algorithm I .
2) Solve for{bk}Kk=1 using (10).
3) Update the MAMSE receivers{wk}Kk=1 with (4).
4) Calculate the objective function of (5).

Until convergence.
In our simulation, we declare the convergence of this
algorithm when ξ̄i − ξ̄i+1 < 10−6, where ξ̄i is the
achieved weighted sum AMSE at theith iteration of
Algorithm II .
Convergence: It can be shown that at each iteration
of Algorithm II , the objective function of (5) is non-
increasing. Since we are interested to get any local
optimal {bk, wk}Kk=1 that yields the local minimum̄ξ,
the convergence analysis ofAlgorithm II with respect to
the optimization variables{bk, wk}Kk=1 is not required.

Implementation of Algorithm II: For the implementation
of this distributed algorithm, for simplicity, it is assumed that
L = N = K, andP1 is solved in a central controller which
hasK parallel processors. We can implementAlgorithm II
distributively as follows.

Initialization: Each processor sets{wk}Kk=1 as inAlgo-
rithm II and{λn = 1}Nn=1.

1) With the current{λn}Nn=1 and{wk}Kk=1, thenth proces-
sor computes̄gn using (17) and updates itsλn by (18),
∀n. Then, {λn}Nn=1 are shared among all processors.
These two steps are repeated until{λn}Nn=1 are found
to be optimal.

2) Using {λn}Nn=1 of step 1, thekth processor computes
the optimalbk by (10), ∀k and {bk}Kk=1 are shared
among all processors. Again, using these precoders, the
kth processor computeswk with (4), ∀k and {wk}Kk=1

are shared to processors.
3) Steps (1) and (2) are repeated untilAlgorithm II is

convergent.
4) The controller finally sends the optimal precoders and

decoders to the corresponding BSs and MSs, respec-
tively.

Note that in some scenario we might be obliged to design the
precoders and decoders of all users without a central controller.
In this case, one can apply the above implementation approach
just by replacing the role of processors with that of BSs.
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B. Robust power minimization problem (P2)

The robust power minimization constrained with the MSE
target of each user and the power of each BS antenna problem
is formulated as

min
{bk,wk}K

k=1

K∑

k=1

bH
k bk,

s.t [

K∑

k=1

bkb
H
k ]n,n ≤ pn, ξk ≤ εk, 0 < εk < 1, ∀k (19)

whereεk is thekth user AMSE target.
1) Centralized precoder design forP2: For fixed receivers

{wk}Kk=1, using (3) and applying the same technique as in (7),
the above problem can be equivalently expressed as [17]

min
B, χ̃

χ̃ (20)

s.t ‖vec(B)‖2 ≤ χ̃, ‖b̃n‖2 ≤ √
pn, ∀n

‖[(BH ĥkwk − θk); vec(
√
RbkBwk)]‖2 ≤√

εk − σ2
kw

H
k wk, ∀k

whereθk is a column vector of sizeK with the kth element
equal to1 and all the other elements equal to0. The above
problem is a SOCP for which the global optimal solution
can be obtained withO(

√
(K +N + 1)(2KN + 1)2(2K2 +

2NK2 + 4NK)) computational load [29].
2) Distributed precoder design forP2: For fixed

{wk}Kk=1, like in P1, we utilize the Lagrangian dual decom-
position method to solveP2 distributively. The Lagrangian
function of (19) is given as

L(λ, ν̃,B) =

K∑

k=1

{bH
k (IN +

K∑

i=1

νiĥiwiw
H
i ĥH

i + νiwiw
H
i Rbi

+ λ)bk − 2ℜ{νkwH
k ĥH

k bk}+ σ2
kνkw

H
k wk+

νk(1− εk)} −
N∑

n=1

λnpn (21)

where λ and ν̃ = diag(ν1, · · · , νK) are the Lagrangian
multipliers for the first and second constraint sets of (19),
respectively. Thus, the dual function of (19) is computed by

g(λ, ν̃) = min
{bk}K

k=1

L(λ, ν̃,B)

=
K∑

k=1

νkαk −
K∑

k=1

νkw
H
k ĥH

k Ã−1ĥkwkνk −
N∑

n=1

λnpn (22)

where αk = 1 + σ2
kw

H
k wk − εk, Ã = IN +∑K

i=1 νiĥiwiw
H
i ĥH

i +νiwiw
H
i Rbi+λ and the second equality

is obtained after substituting the optimumbk which is given
by

b⋆
k = νkÃ

−1ĥkwk, ∀k. (23)

From (4) and (23) it can be clearly seen that if (19) is
feasible,{νk > 0}Kk=1 must be satisfied. Furthermore, for
given{λn}Nn=1 and{νk}Kk=1, the precoder of each user can be
optimized distributively by using (23). The optimal{λn}Nn=1

and {νk}Kk=1 of (21) can be obtained by solving the dual
problem of (19) which can be expressed as

max
{λn≥0}N

n=1,{νk>0}K
k=1

g(λ, ν̃) =

max
{λn≥0}N

n=1,{νk>0}K
k=1

K∑

k=1

νkαk − wH
k ĥH

k Ã−1ĥkwkν
2
k

−
N∑

n=1

λnpn. (24)

It can be shown that the above problem can be formu-
lated as SDP [18]. Thus, (24) can be solved by using
convex optimization tools with complexity on the order of
O(

√
K(N + 1)(N+2K)2K(N+1)2) [29]. However, our in-

terest is to obtain the optimal values of{λn}Nn=1 and{νk}Kk=1

of the above problem distributively. The above problem can
be rewritten as

min
{λn≥0}N

n=1,{νk>0}K
k=1

K∑

k=1

νkw
H
k ĥH

k (W̄ΥW̄H + I)−1ĥkwkνk

+
N∑

n=1

λn +
K∑

k=1

νkαkpn (25)

where Υ = blkdiag(ν,λ), W̄ = [W̃ IN ], ν =
blkdiag(ν1IN , · · · , νKIN ), W̃ = [W̃b1, · · · ,W̃bK ] and
W̃bk = (wkw

H
k (ĥkĥ

H
k +Rbk))

1/2. Now, by applying matrix
fractional minimization of [18] on the first sum terms of the
above problem, we can reformulate (25) as (see page 198 of
[18])

min
{¯̄gk,t̄k,νk}K

k=1,{λn}N
n=1

K∑

k=1

¯̄gH
k Υ−1 ¯̄gk + t̄Hk t̄k +

N∑

n=1

λnpn

−
K∑

k=1

αkνk, s.t t̄k + W̄¯̄gk = νkĥkwk, ∀k. (26)

From the equality constraint of (26), we gett̄k = νkĥkwk −
W̄¯̄gk. By substituting this̄tk into the objective function of
the above problem, (26) can be rewritten as

min
{¯̄gk,νk}K

k=1,{λn}N
n=1

K∑

k=1

¯̄gH
k Υ−1 ¯̄gk + (νkĥkwk − W̄¯̄gk)

H .

(νkĥkwk − W̄¯̄gk) +

N∑

n=1

λnpn −
K∑

k=1

αkνk. (27)

For fixed {νk}Kk=1 and {λn}Nn=1, the optimal¯̄gk of problem
(27) is given by

¯̄g⋆
k =νk(Υ

−1 + W̄HW̄)−1W̄H ĥkwk

=νkΥW̄HÃ−1ĥkwk, ∀k (28)

where the second equality is obtained by employing matrix
inversion Lemma [28]. To develop distributed algorithm for
the above problem, we introduce the following variables:
{G̃⋆

k ∈ CN×K as the ¯̄G⋆
[N(k−1)+1:Nk,:]}Kk=1 submatrix of

¯̄G⋆ = [¯̄g⋆
1, · · · , ¯̄g⋆

K ] and {(ū⋆
n)

H as theKN + n}Nn=1 row
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of ¯̄G⋆. For the given{νk}Kk=1 and{λn}Nn=1, G̃⋆
k and (ū⋆

n)
H

can also be computed as

G̃⋆
k = νkW̃

H
bkΓ̃, ∀k, ū⋆

n = λnΓ̃
H
n , ∀n (29)

whereΓ̃ = Ã−1ĤWν̃ and Γ̃n is thenth row of Γ̃.
Now, we solve problem (27) distributively as follows. First,

for fixed {νk}Kk=1 and {λn}Nn=1, the optimal¯̄gk of (27) and
the introduced variables (̃G⋆

k, ū
⋆
n) are computed using (28) and

(29), respectively. Then, using these¯̄g⋆
k, G̃⋆

k and ū⋆
n, νk and

λn are updated independently and distributively by

ν⋆k = min
νk>0

ν2kρk1 − νkρk2 +
ρk3
νk

(30)

λ⋆
n =

√
ρn0
pn

, ∀n (31)

where ρk1 = ĥH
k wH

k wkĥk, ρk2 = 2ℜ{wH
k ĥH

k W̄¯̄g⋆
k} + αk,

ρk3 = tr{G̃⋆
k(G̃

⋆
k)

H} and ρn0 = (ū⋆
n)

H ū⋆
n. If ρk1 6= 0, by

applying first order derivative, it can be shown that (30) has
exactly one real solution which is given by [31]

ν⋆k =
1

6ρk1

[
ρk2 + µk1 + µk2

]
, ∀k (32)

where µk1 = 3

√
1
2

[
2ρ3k2 + ck − ζk

]
, µk2 =

3

√
1
2

[
2ρ3k2 + ck + ζk

]
, ck = 108ρ2k1ρk3 and ζk =

√
ck(ck + 4ρ3k2). One can easily see thatρk1 ≥ 0, µk1 ≥ 0,

µk2 ≥ 0 and ρk2 > 0. Moreover, whenρk1 > 0, ν⋆k of
(32) is always positive. To summarize, (25) can be solved
distributively in an iterative manner as inAlgorithm III .

Algorithm III : Distributed algorithm to solve (25)
1) Initialization: Set{λn = 1}Nn=1 and{νk = 1}Kk=1.

Repeat
2) With the current {λn}Nn=1 and {νk}Kk=1, compute

¯̄gk, G̃k andūn using (28) and (29),∀k, n. Then, update
λn andνk by (31) and (32), respectively,∀n, k.

3) Share the above{λn}Nn=1 and{νk}Kk=1 among all pro-
cessors.

4) Calculate the objective function of (25).
Until convergence.

Feasibility study for P2: The problem (19) is infeasible, if
there exists at least one MS with eitherρk1 = 0 or ν⋆k ≫ 0.
This can be justified as follows. For the former case (i.e.,∃k
such thatρk1 = 0), one can easily verify that (19) is infeasible.
For the latter case (i.e., when{ρk1 > 0}Kk=1 and∃k such that
ν⋆k ≫ 0), althoughν⋆k are not permitted to be∞, ν⋆k can be
arbitrarily very large number. And whenν⋆k is large, one can
use (23) to show that thekth MS needs additional power at
least in one of the BS antennas to satisfy its AMSE target. This
case corresponds to the scenario where (25) is an unbounded
problem. During the iterative stages ofAlgorithm III , when
(19) is infeasible, we have observed from the simulation results
that{νk}Kk=1 of (32) increases rapidly for at least one MS and
the latter algorithm never converges to a point.
Convergence:If P2 is feasible, it can be shown thatAlgo-
rithm III is guaranteed to converge. However, we are not able

to show the global optimality ofAlgorithm III analytically.
Nonetheless, in all simulation results we observe that the
optimalλ and ν̃ of (25) obtained by the latter algorithm and
SDP method are the same.
Computational complexity: As can be seen from (28) and
(29), in the proposed distributed algorithm, the main com-
putational load comes from the computation ofÃ−1 which
can also be computed efficiently withO(N2.376) [30]. More-
over, in all of our simulation results, we have observed that
Algorithm III converges to an optimal solution within few
iterations.

Once we get the optimal{λn}Nn=1 and {νk}Kk=1, like in
P1, the precoders and decoders of each user can be optimized
using (23) and (4), respectively. It follows thatP2 (19) can
be solved distributively like inAlgorithm II of P1.

V. EXTENSION TO MIMO COORDINATED BASE STATION

SYSTEMS

For multiuser MIMO coordinated BS systems, the solution
approaches of Section IV can be applied to solve the following
problems. (1) The robust minimization of symbol (user) wise
weighted sum MSE with per BS antenna power constraint
problem. (2) The robust minimization of the total sum power
of all BSs with per BS antenna power and per symbol
(user) MSE target constraints. In this section, we examine the
robust symbol wise weighted sum MSE minimization with a
per BS antenna power constraint problem for the multiuser
MIMO coordinated BS systems (̃P1) only4. For the MIMO
coordinated BS systems, the channel estimation technique of
Section III can be utilized. Upon doing so, the true channel
between thelth BS and thekth userHH

lk and its MMSE
estimateĤH

lk are related by [11]

HH
lk =ĤH

lk +EH
wlkR̃

1/2
blk = ĤH

lk +EH
lk (33)

whereEH
lk ∈ CMk×Nl andMk are the estimation error matrix

and number of antennas of thekth MS, respectively, and the
entries ofEH

wlk are i.i.d with CN (0, σ2
elk). Like in (3), the

AMSE of thekth MS ith symbol (̄ξki) can be expressed as

ξ̄ki =1 +wH
ki(Ĥ

H
k

K∑

j=1

Sj∑

m=1

bjmbH
jmĤk+

tr{Rbk

K∑

j=1

Sj∑

m=1

bjmbH
jm}IMk

+ σ2
kIMk

)wki−

bH
kiĤkwki −wH

kiĤ
H
k bki (34)

wherebki ∈ CN×1 andwki ∈ CMk×1 are the precoder and
decoder vectors of thekth MS ith symbol, respectively, and
ĤH

k = [ĤH
1k, · · · , ĤH

Lk] ∈ CMk×N . Using (33) and (34), we
can formulateP̃1 as

min
{wki,bki}K

k=1

K∑

k=1

Sk∑

i=1

ηkiξki,

s.t

[ K∑

k=1

Sk∑

i=1

bkib
H
ki

]

n,n

≤ pn, ∀n (35)

4Note that all the other problems of this section can be examinedlike in
P̃1.
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whereηki is the AMSE weighting factor of thekth MS ith
symbol. For given precoder vectors{bki, ∀i}Kk=1, the receivers
{wki, ∀i}Kk=1 of the above problem can be optimized by the
following MAMSE approach

wki =

(
ĤH

k

K∑

j=1

Sj∑

m=1

bjmbjmĤk+ (36)

tr{Rbk

K∑

j=1

Sj∑

m=1

bjmbH
jm}IMk

+ σ2
kIMk

)−1

ĤH
k bki, ∀k, i.

Next, for fixed {wki, ∀i}Kk=1, we summarize the centralized
and distributed precoder design algorithms ofP̃1.

A. Centralized precoder design of̃P1

By employing (34),
∑K

k=1

∑Sk

i=1 ξ̄ki can be written as a
quadratic expression like that of (6). This shows that the
precoder design problem of (35) can be formulated as SOCP
for which the global optimal solution can be obtained using
convex optimization tools (see also [17]).

B. Distributed precoder design of̃P1

Here like in P1, the precoder design problem of̃P1
can be solved distributively by applying the Lagrangian dual
decomposition and modified matrix fractional minimization
approaches. After some straightforward steps, the Lagrangian
function associated with̃P1 can be expressed as

L(λ, {bki, ∀i}Kk=1) =
K∑

k=1

Sk∑

i=1

{
bH
ki
˜̃
Abki − ηkiw

H
kiĤ

H
k bki−

ηkib
H
kiĤkiwki + σ2

kηkiw
H
kiwki + ηki

}
−

N∑

n=1

λnpn (37)

where λ = diag(λ1, · · · , λN ) are the Lagrangian multipli-

ers corresponding to the constraint sets of (35) and˜̃
A =∑K

j=1

∑Sj

m=1 ηjmĤjwjmwH
jmĤH

j + tr{wH
jmwjm}Rbj + λ.

By employing the above expression and after some mathemat-
ical manipulations, the dual problem of (35) can be formulated
as

max
{λn≥0}N

n=1

min
{bki,∀i}K

k=1

L(λ, {bki, ∀i}Kk=1) =

max
{λn≥0}N

n=1

K∑

k=1

Sk∑

i=1

{
ηki(σ

2
kw

H
kiwki + 1)−

η2kiw
H
kiĤ

H
k
˜̃
A

−1

Ĥkwki

}
−

N∑

n=1

λnpn. (38)

This problem has exactly the same structure at that of (11).
Thus, with the help ofLemma 1, we can develop distributed
algorithm to solve the above problem. Consequently,P̃1 can
be solved distributively like that ofP1.

VI. SIMULATION RESULTS

In this section, we present the simulation results for
problemsP1 andP2. The spacial antenna correlation matrix
between thelth BS and thekth user R̃blk is taken from
a widely used exponential correlation model as{R̃blk =

ρ
|i−j|
blk }Kk=1, ∀l, where 0 ≤ ρblk < 1 and 1 ≤ i(j) ≤ Nl,

and {σ2
e1k = σ2

e2k =, · · · ,= σ2
eLk = σ2

ek}Kk=1. We have
used exponential correlation model because of the following
two reasons. First, exponential correlation model is physically
reasonable in a way that the correlation between two transmit
antennas decreases as the distance between them increases
[32]. Second, this model is a widely used antenna correlation
model for an urban area communications [26].
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Fig. 2. The average power utilized by the first antenna of BS2 for the
robust centralized, robust distributed, non-robust centralized [17] and non-
robust distributed [20] designs whenρb11 = 0.25, ρb12 = 0.5, ρb13 =
0.2, ρb14 = 0.4, ρb21 = 0.6, ρb22 = 0.1, ρb23 = 0.8 andρb24 = 0.15.

A. Simulation results forP1

In this subsection, we consider a system withL = 2 BSs
where each BS has2 antennas andK = 4 MSs. We useρb11 =
0.25, ρb12 = 0.5, ρb13 = 0.2, ρb14 = 0.4, ρb21 = 0.6, ρb22 =
0.1, ρb23 = 0.8 andρb24 = 0.15, andσ2

e1 = 0.01, σ2
e2 = 0.02,

σ2
e3 = 0.03 andσ2

e4 = 0.04. It is assumed that{σ2
k = σ2}Kk=1,

{pn = 2}4n=1 and{ηk = 1}Kk=1. All simulation results of this
subsection are averaged over100 randomly chosen channel
realizations.

The optimal transmit power of the first antenna of BS2 as
a function of the noise power is plotted in Fig. 2. This figure
shows that the power utilized by the centralized algorithms
of the robust and non-robust/naive designs are the same as
that of the distributed algorithms of the robust and non-robust
designs, respectively. The non-robust/naive design refers to
the design in which the estimated channel is considered as
perfect [17], [20]. The latter figure also shows that all antennas
do not necessarily utilize their full powers to minimize the
total sum AMSE of the system in the robust and non-robust
designs5. Furthermore, the power utilized by the first antenna

5This behavior has also been observed in [17] and [20] where the sum MSE
minimization with per BS antenna power constraint problem is examined.
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of BS2 for both of these designs are not necessarily the same.
Although the robust and non-robust designs do not use the
same power at each antenna, we have noticed at all SNR
values that the average total sum power of all antennas of the
latter designs are almost the same. In the sequel, we compare
the performance of the robust centralized, robust distributed,
non-robust centralized and non-robust distributed algorithms in
terms of sum AMSE. For this purpose, we define the signal-
to-noise ratio (SNR) asPsum/σ

2, wherePsum is the total sum
power utilized by all BS antennas of the robust distributed
algorithm andσ2 is the noise variance. The SNR is controlled
by varyingσ2.

We first compare the performance of the robust centralized
and robust distributed algorithms in terms of sum AMSE.
Fig. 3 shows that the robust centralized and distributed al-
gorithms achieve the same sum AMSE. Next, we compare
the performance of the robust and non-robust/naive designs.
In [20], we have shown that [17] and [20] achieve the same
sum MSE. Thus, it is sufficient to compare the performance
of our robust designs with the non-robust design of [20].
As can be seen from Fig. 3, the proposed robust designs
have better performance than that of the non-robust design
in [20] and this improvement is better at high SNR regions.
As can be seen from the second equality of (3), when SNR is
high (i.e., whenσ2

k = σ2 is low), σ2 is negligible compared
to

∑L
l=1 σ

2
elktr{R̃

1/2
blk BlB

H
l R̃

1/2
blk } (the term due to channel

estimation error). Thus, in the high SNR region, since the
non-robust design does not take into account the effect of∑L

l=1 σ
2
elktr{R̃

1/2
blk BlB

H
l R̃

1/2
blk } which is the dominant term,

the sum AMSE of this design increases significantly. These
discussions help us to understand why the performance of
non-robust design worsens in the high SNR region. From this
explanation, we can imply that the sum AMSE gap between
robust and non-robust designs increases as the SNR increases.

To see the effect of antenna correlation matrix on the
achievable sum AMSE of robust and non-robust designs,
we change the latter{ρblk}Kk=1, ∀l to ρb11 = 0.35, ρb12 =
0.5, ρb13 = 0.3, ρb14 = 0.4, ρb21 = 0.6, ρb22 = 0.2, ρb23 = 0.8
andρb24 = 0.25. For this setting, we plot the total sum AMSE
of our robust design and the non-robust design of [20] in Fig.
4. By examining this figure and Fig. 3, one can see that the
sum AMSE increases as the antenna correlation coefficient
increases for both the robust and non-robust designs. This is
because when{ρblk, ∃l, k} increases, the number of symbols
with low channel gain increases (this can be easily seen
from the eigenvalue decomposition ofRbk). Consequently,
for a given SNR value, the total sum AMSE also increases.
The above scenario gracefully fits to that of [12] where the
robust weighted sum MSE minimization with a total BS power
constraint problem is examined for the conventional downlink
MIMO systems.

B. Simulation results forP2

For the simulation result ofP2, we also consider a system
with L = 2 BSs where each BS has2 antennas andK = 4
MSs. We useρb11 = 0.25, ρb12 = 0.5, ρb13 = 0.2, ρb14 =
0.4, ρb21 = 0.6, ρb22 = 0.1, ρb23 = 0.8 and ρb24 = 0.15, and
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Fig. 3. Comparison of the robust centralized design, distributed design
and the non-robust design of [20] whenρb11 = 0.25, ρb12 = 0.5, ρb13 =
0.2, ρb14 = 0.4, ρb21 = 0.6, ρb22 = 0.1, ρb23 = 0.8 andρb24 = 0.15.
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Fig. 4. Comparison of the robust design and non-robust designof [20] when
ρb11 = 0.35, ρb12 = 0.5, ρb13 = 0.3, ρb14 = 0.4, ρb21 = 0.6, ρb22 =
0.2, ρb23 = 0.8 andρb24 = 0.25.

σ2
e1 = 0.01, σ2

e2 = 0.02, σ2
e3 = 0.03 and σ2

e4 = 0.04. It is
assumed that{σ2

k = σ2}Kk=1, {pn = 15}4n=1 and the AMSE
target of each user is set to{εk = 0.2}Kk=1

6. For better expla-
nation of the simulation results of this subsection, we use the
following channel estimate obtained from the above settings.
where the rows of̂HH

P2 represent the channel estimate between
all BSs and thekth MS. We first compare the performance
of the robust centralized and robust distributed algorithms in
terms of the total sum power of all BSs. Fig. 5 shows that
the robust centralized and distributed algorithms utilizethe
same total power. Then, we compare the performance of the
proposed robust design and the non-robust design of [20]7 in
terms of total sum power of all BSs which is also plotted

6Note that the feasible initial{wk}Kk=1 for problemP2 can be obtained
from the solution ofP1.

7For P2, we have also shown in the latter paper that [17] and [20] have
the same performance.
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ĤH
P2 =




0.2328− 0.0868i 0.1344 + 0.3848i 0.2407− 0.3118i −0.2276− 1.3829i
1.6717 + 0.4976i 0.5254− 0.9034i 0.0206 + 0.1318i 1.1292− 0.8314i
−0.0426 + 1.7262i −0.6380− 0.5663i −0.2765− 0.4716i −0.2760− 0.1349i
0.3266 + 0.0882i −0.3655 + 0.8997i −0.5944− 1.1556i −0.2692− 0.6244i


 (39)

in Fig. 5. This figure shows that the robust design utilizes
more power than that of the non-robust design for all noise
variances. Now, for the total power given in the latter figure,
the AMSE of each user for both designs are plotted in Fig.
6. This figure shows that for all noise variances, the non-
robust design does not satisfy the AMSE requirement but
the proposed robust design ensures the AMSE requirement
efficiently. To ensure the latter AMSE, however, the robust
design utilizes more power than that of the non-robust design.
This shows that Fig. 6 does not reveal the actual performance
of the proposed robust design. Thus, for a fair comparison, we
tune{σ2

ek}Kk=1 such that the total power utilized by the robust
and non-robust designs are the same (or very close to each
other)8 and then we compare the performance of these two
designs by their achieved AMSEs of each user. For the power
requirement of Fig. 7, the AMSE of each user is plotted in
Fig. 8. The latter figure shows that for the same total power,
the robust design still outperforms the non-robust design.
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Fig. 5. Comparison of the robust centralized algorithm, distributed algorithm
and the non-robust distributed algorithm of [20].

For P2, we have noticed that for each channel estimate
different error variance (after numerical tuning) is required to
get the same total sum powers for the robust and non-robust
designs. However, the performance behavior exhibited in all
channel estimates fits to that of̂HH

P2. The detail simulation
results of this problem for the other channel estimates are
omitted to reduce redundancy. Moreover, to see the effect
of antenna correlation factor forP2, we use the previously
mentioned AMSE targets (i.e.,{εk = 0.2}Kk=1 ). With these

8In the robust design, for each noise level, we perform numerical search
to get the appropriate{σ2

ek}Kk=1 that yields the same (or very close) total
transmit power as that of the non-robust design. This task is termed as
numerical tuning.
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Fig. 6. Comparison of the AMSE achieved in each user for the robust design
and non-robust design of [20].
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Fig. 7. The power utilized by the robust design and non-robust design of
[20] with the desired error variances{σ̃2

ek}Kk=1.

AMSE targets, when we increase the antenna correlation
factor, we observe that the total power requirement of the
whole network also increases. The simulation results which
show this fact has not been included for conciseness.

C. Convergence characteristics ofAlgorithm I

As we have mentioned in Section IV-A.1, the centralized
algorithm to solve (7) has limited practical interest when the
number of BSs and/or MSs are large. Moreover, in Section IV-
A.2, the computational complexity of our distributed algorithm
to solve (12) (once the complexity of (12) withAlgorithm
I is studied, the complexity of (7) with this algorithm is
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Fig. 8. Comparison of the AMSE achieved in each user for the robust design
and non-robust design of [20] after tuning the error variance.

immediate) is provided for a single iteration (i.e., per iteration
of Algorithm I ). Thus, to show the computational advantage
of our distributed algorithm compared to that of the centralized
algorithm, the number of required iterations for convergence
of Algorithm I (I1) needs to be accessed for large scale
networks. However, we are not able to computeI1 analytically.
Due to this, we examine the convergence characteristics of
Algorithm I for a 19-cell hexagonal structure coordinated
BS system as in [33]. Each BS is located at the center of
its cell, whereas each MS is located randomly inside these
19-cells with uniform distribution. The propagation model
between each BS and MS contains two components. One
is the path loss component decaying with distance, and the
other one is the Rayleigh fading random component which
has a zero mean and unit variance. For this simulation, we
use {ηk = 1, σ2

elk = 0.02, ρblk = 0.25, ∀l}Kk=1 and all the
other parameter settings are summarized as shown in Table I.
For the channel realizations of these parameters, we examine
the convergence characterstics ofAlgorithm I at different
iterative stages ofAlgorithm II (i.e., with different{wk}Kk=1)
as shown in Fig. 9. As can be seen from this figure,Algorithm
I converges to an optimal solution in less than10 iterations.

TABLE I

SIMULATION PARAMETERS FOR CONVERGENCE OFAlgorithm I

Number of BSs 19
Number of antennas at each BS 2
Transmit power of each BS antenna 5W
Radius of each cell 1.6km
Reference distance (d0) 1.6km
Path loss exponent 3.8
Mean path loss atd0 134dB
Channel bandwidth 5MHz
Receiver noise figure 5dB
Receiver vertical antenna gain 10.3dBi
Receiver temperature 300K
SNR 18dB
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Fig. 9. Convergence characteristics ofAlgorithm I at different iterative
stages ofAlgorithm II .

D. Overall computational complexity to solve (7)

In Section IV-A.1, we have presented the worst-case com-
putational cost of IP methods to solve (7) centrally. However,
in most practical problems, IP methods require less computa-
tional cost than that of their worst-case complexities. To the
best of our knowledge, computing the exact computational
complexity of IP methods for this problem requires immense
effort and time. Hence, we believe that such a task is beyond
the scope of our current work. However, we have carried out
extensive simulations to compare the computational time of
our proposed distributed algorithm with that of the centralized
algorithm which uses IP method. In the following, we describe
the simulation platform and methodology we have used, and
discuss the results.

According to [34], MOSEC is a computationally efficient
optimization package which uses IP methods to solve large-
scale optimization problems. Moreover, for SOCP problems,
MOSEC requires less computational time than that of SeDuMi,
LOQO, SDPT3 and CPLEX [35], [36]. This motivates us to
compare the computational time ofAlgorithm I with that of
MOSEC to solve (7). Our Matlab codes were run on a personal
computer with 1.6 GHz, 2GB dual core processor under Win-
dows XP. For comparison between these two algorithms, we
have used a coordinated BS system withL = N/2, N = K,
{ρblk = 0.25, σ2

elk = 0.02, σ2
k = 0.1, }Kk=1 and{pn = 2}Nn=1.

It is assumed that problem (7) has been solved by a central
controller withK processors and all other parameters are taken
as mentioned in the first paragraph of Section VI. Table II
shows the amount of time required to solve (7) byAlgorithm
I9 and MOSEC at different iterative stages ofAlgorithm II
(i.e., for different{wk}Kk=1). As can be seen from Table II,
our proposed distributed algorithm requires less computational
time than that of MOSEC. From this table we can notice that
our distributed algorithm has practical interest especially when

9To get the computational time ofAlgorithm I per processor, first we
get the computational time ofAlgorithm I by assuming one processor (i.e.,
personal computer), then, we divide the latter computationaltime by K.
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K(N) is large.

TABLE II

COMPUTATIONAL TIME OF Algorithm I AND MOSECFOR (7) (IN

SECONDS)

K 4 10 20 30 40
A: MOSEC 0.0031 0.0213 0.2182 0.8833 2.3598
B: Algorithm I

processor
0.0012 0.0020 0.0041 0.0086 0.0118

A/B 2.52 10.455 52.643 133.874 200.336

The convergence characteristics ofAlgorithm III and the
overall computational complexity of (20) can be studied like
in Sections VI-C and VI-D, respectively.

VII. C ONCLUSIONS

This paper considers the joint transceiver design for mul-
tiuser MISO systems with coordinated BSs where imperfect
CSI is available at the BSs and MSs. By incorporating antenna
correlation at the BSs and taking channel estimation errors
into account, we solve two robust design problems. The
problems are solved as follows. First, for fixed receivers,
we propose centralized and novel computationally efficient
distributed algorithms to jointly optimize the precoders of all
users. The centralized algorithms employ the SOCP approach,
whereas the distributed algorithms use the Lagrangian dualde-
composition, modified matrix fractional minimization and an
iterative method. Second, for fixed BS precoders, the receivers
are updated by the MAMSE criterion. These two steps are
repeated until convergence is achieved. Computer simulations
demonstrate that our proposed distributed algorithms achieve
the same performance as that of the centralized algorithms.
Simulation results also verify the superior performance of
the stochastic robust designs compared to that of the non-
robust/naive designs.
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