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Abstract— This paper considers the joint transceiver design transmit and receive diversity. In [3], a fundamental rielat
for tdownlif_ltlii multicli{sert ?lﬁtiple-ifgptl_lt SifigBlg-(;Utpilth (N'”SO)f tbetween mutual information and minimum mean-square-error
systems with coordinated base stations s) where imperfec ; el e
channel state information (CSI) is available at the BSs and mobile (MMSE) has been e.Stab“Shed for multiple Input_ multiple
stations (MSs). By incorporating antenna correlation at the BSs output (MlMO_) Gaussian chqnnels. F_ur.theimore, it has been
and taking channel estimation errors into account, we solve two Shown that different transceiver optimization probleme ar
robust design problems: 1) minimizing the weighted sum of mean- equivalently reformulated as a function of MMSE matrix, for
square-error (MSE) with per BS antenna power constraint, and jnstance, minimizing bit error rate, maximizing capacitg e
2) minimizing the total power of all BSs with per user MSE target [4]-[6]. For these reasons, mean-square-error (MSE)ebdse

and per BS antenna power constraints. These problems are solved - . bl | ined i i twork
as follows. First, for fixed receivers, we propose centralized and sign problems are commonly examined In multiuser Networks.

novel computationally efficient distributed algorithms to jointly In general, the uplink channel MSE-based problems are
optimize the precoders of all users. Our centralized algorithms better understood than that of the downlink channel problem
employ the second-order-cone programming (SOCP) approach, For this reason, most of the research works examine MSE-
whereas, our novel distributed algorithms use the Lagrangian 550 problems for the downlink multiuser systems [5], [7]-
dual decomposition, modified matrix fractional minimization and . . !

an iterative method. Second, for fixed BS precoders, the recairs 121 However, all of the these papers examine their problem
are updated by the minimum mean-square-error (MMSE) crite-  for conventional downlink networks. In these networks,ebas
rion. These two steps are repeated until convergence is achieved stations (BSs) from different cells communicate with their
In all of our simulation results, we have observed that the respective remote terminals independently. Hence, inatterl
proposed distributed algorithms achieve the same performance network, inter-cell interference is obliged to be consider

as that of the centralized algorithms. Moreover, computer sim- back d - R tv. it h b h that
ulations verify the robustness of the proposed robust designs as a background noise. kecently, It has been shown tha

compared to the non-robust/naive designs. BS coordination communication is a promising technique to
Index Terms— Multiuser MIMO, distributed optimization 5|gi1|flcant|y Improve the cgpaglty of ergless channels b-m
and convex optimization. gating (or possibly canceling) inter-cell interferenc8]H[15].

The BS coordination can be performed by two approaches.
In the first approach, BSs are coordinated at the beamform-
) ] ) o ing (precoder) level [14], whereas in the second approach,
The next generation multimedia communications are €sordination takes place both at the signal and beamforming
pected to support high data rates. To meet this demapgdacoder) levels [13], [15]. It is well know that the latter
multi-antenna systems are recommended as they significanthodination approach has better performance gain compare
increase the spectral efficiency qf erelless channels [2|]] [to the former one [15], [16]. This performance improvement,
The performance enhancement is achieved by exploiting fi§yever, requires additional signal coordination. In therent
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BS precoders, the receiver of each user is optimized by constraints P2)!.
the MMSE method. The first and second steps are repeatefthe best of our knowledge, probler® and P2 are non-
in an iterative manner to jointly optimize the transmittergonvex. Hence, convex optimization tools can not be used
and receivers. Thus, in [17], the receiver of each user cesolve them. Each of these problems are solved iteratively
be optimized independently and distributively. Howevése t as follows. First, for given receivers, we propose certeali
joint optimization of the precoders has been carried out Byd novel computationally efficient distributed algorithio
a centralized algorithm. When the number of users andi@ésign the optimal precoders of all users. Our centralized
BSs increase, the computational cost of the joint precodglgorithm designs the precoders of all users using SOCP
design also increases [19]. Consequently, solving theoplgc approach and our novel distributed algorithm designs the
optimization problem in a centralized manner, especialy fprecoders of all users by employing the Lagrangian dual
large-scale coordinated networks, is not a computatipnatiecomposition, modified matrix fractional minimizationdan
efficient approach. This motivates us to develop distributean jterative approach. Second, like in [17] and [20], the re-
algorithms to solve MSE-based problems for coordinategiver of each user is optimized independently using minimu
BS systems with per BS antenna power constraints in [2@erage mean-square-error (MAMSE) approach. These steps
This paper solves its optimization problems distribuiivey  are repeated until convergence is achieved. The centiadize
applying the Lagrangian dual decomposition, modified matrdistributed algorithms require the complete channel exts
fractional minimization and an iterative technique. of all MSs. The centralized precoder design algorithms are
developed by extending the approach of [17] to the case where
imperfect CSl is available at the BSs and MSs. However, this
In the current paper, we extend the work of [20] t@xtension does not qhange the fact that the rpbust problem
robust case. The goal of this work is to jointly optimize th&2" Pe reformulated into a SOCP problem as in the case of

transmitters and receivers of all users when imperfect mbian"ON-robust problem [17]. Thus, the novelty of our current

state information (CSI) is available both at the BSs and teobP2Pe" relies mainly on th_g propos_ed dist_ributed_ glgprithms
stations (MSs), and with antenna correlation at the BSs |tv|vhere we have used modified matrix fractional minimization

known in [21]-[23] that transmit antenna correlation nes techniques to solve the precoder design problem# biand

depend on array parameters (such as array geometry, amﬁaéilstnbutwely. As a result, our new distributed algoritam
spacing), and the average angle of arrival (AOA) of scadter@'€ aple to solve the t_ranscelver design problem@bfand.
signals from user and the corresponding angular spreas. Th With less computational cost than that of the centralized
means that the transmit antenna correlation matrices fwhfa9°rthms. Furthermore, in all of our simulation resulig
capture spatial variation) vary at a rate much slower than tj2ve observed that our novel distributed algorithms aehiev
fast fading component (that captures temporal variatiaris) the same performance as that of the centralized algorithms.

downlink channel. Thus, errors caused from the estimatfon Brllle main contributions of this paper is thus summarized as
fast fading part of the channel can significantly outnumbd&!lows. . o o
the errors caused from the estimation of slowly varying 1) We propose novel computationally efficient distributed

antenna correlation matrices. Based upon these discassion algorithms to jointly optimize the precoders of all users
is clear that the transmit correlation matrices can be nbthi for problemsP1 andP2. As will be clear later, the pro-
from long term channel statistics with a reasonable acgurac ~ Posed distributed algorithms can be extended straightfor-
[24]. Due to this reason, perfect transmit antenna coioslat wardly to solveP1 and P2 for MIMO coordinated BS

matrices are assumed to be available at the BSs and MSs. We Systems with per BS antenna (groups of BS antennas)

also assume that each BS is equipped with multiple antennas POWer constraints.

and each MS is equipped with single antenna. For our robus) We have demonstrated that the proposed distributed

transceiver designs, a stochastic approach has beeredtiliz ~ @lgorithms forP1 and>2 achieve the same performance

We design the transmitters and receivers by considering the as that of the centralized algorithms proposedAdrand

practically relevant scenario where spatial correlatiairioes P2.

as seen from each BS are different for different MSs and the3) We examine the joint effect of channel estimation errors

variance of the estimation errors corresponding to theneséis and antenna correlations on the performanc# ofand

of the channels are different. For this CSI model, we examine P2.

the following MSE-based robust design problems. The remaining part of this paper is organized as follows. We
present the coordinated multi-antenna BS system model in
Section II. In Section Ill, the multiuser channel model unde

1in any transceiver design problem, the notion of power ariseshe
transmitter side. In this paper, since we are examining dolrtliansceiver
design problems, the power constraint appears only at the IBSspractical
downlink multi-antenna BS systems, each BS antenna has its power
1) The robust minimization of the weighted sum MSE witlamplifier and the maximum power of each antenna is limited [25]s Th
H motivates us to consider the power constraint of each BS aatdtiowever,
per BS antenr_]a. p.owe.r ConStralmlo' s will be clear later, the proposed algorithmsf andP2 can be extended
2) The robust minimization of the total sum power of alztraightforwardly to handle the sum power constraint of wiele network

BSs with per BS antenna power and per user MSE targefgroups of antennas.



imperfect CSI is presented. Section IV discusses the robtis¢ kth MS is given by

design problems$P1 - P2, and the proposed centralized and L K
distributed algorithms. The extensions of our centraliaed  j, — w?(z hZB.d + ny) = w? (b Zbidi +nr) ()
distributed algorithms fo?1 andP2 in a MIMO coordinated Pt ’ =

BS system is discussed in Section V. In Section VI, computer

H _ H .. H 1xN _
simulations are used to compare the performance of t gerehk = [hyy, - hy] € C » B = [By;--- By,

_ T ... T 1T NX1 ;
centralized and distributed algorithms, and the robustrend k= [biy bt ec I 1S fl:(]ewp.recoder vector for the
robust/naive designs. Finally, conclusions are drawn ttiGe kth user, N = 21:1 Ni, by € C is the .channel vgptor
VI between thdth BS and thekth MS, andn; is the additive

oise at thekth MS. It is clearly seen that the last expression
[ (1) has exactly the same form as the estimatei,offor

the downlink MISO system where a BS equipped with
transmitt antennas is servirg decentralized users. Hence, we
can interpret coordinated BS system as a one giant downlink
system [17], [19]. It is assumed that, is a zero-mean
a?ircularly symmetric complex Gaussian (ZMCSCG) random
variable with the variance?, i.e., ny ~ N'C(0,03). We also
assume that the symbd@j, is a ZMCSCG random variable with
unit variance and is independent{cd,;}fil_#k and noiseny,,
i.e,E{dpd'} =1, B{dyd"} = 0, Vi # k andE{dyni’} = 0.

For this system model, when perfect CSI is available at the
BSs and MSs, the MSE of theth user can be expressed as

Notations: The following notations are used throughouP
this paper. Upper/lower case boldface letters denote ma
ces/column vectorsvec(X), tr(X), X*, X7, X# and EK)
denote vectorization, trace, optimal, transpose, comgugans-
pose and expected valueXf respectivelyl,, (I) is an identity
matrix of sizen x n (appropriate size) and™*M represent
spaces of\/ x M matrices with complex entries. The diagon
and block-diagonal matrices are representeddby(.) and
blkdiag(.) respectively. Subject to is denoted by, ||x||,, is
the thenth norm of a vecto.

' LY & = B, {(dy — di) (dy — di) ™}
BS: |- MS: ‘ i .,
- ( [Z h{,ﬂBl} {Z hf,ﬁBl} + 0,3) e
. =1 . =1
BS, | MSz‘Y wi Y hifby = Y bflhywy + 1.
z =1 =1

IIl. CHANNEL MODEL

. Considering antenna correlation at the BSs, we model the

Rayleigh fading MISO channel between titb BS and the

kth MS ashfl = hf, R;/?, where the elements di”,,

are independent and identically distributed (i.i.d) ZM@SC

random variables all with unit variance ai;, € CN1*N

is the antenna correlation matrix as seen from ithe BS

MSe LY [26], [24]. The channel estimation of thigh MS (h/) can be
performed onh!l, Vi, using an orthogonal training method

[27]. Upon doing so, the true channel betweentheBS and

kth MS h/f is given by [12]

Fig. 1. Coordinated base station system model. h{,ﬁ _(ﬁHlk n eHlk)R1/2 _ Bﬁ + eH”CRI/2 (2)
= yik wik) ™ bl — w blk

BS. |

SHO . o SH Opl/2
whereh’,, is the MMSE estimate oh,,, hZf = b, R,/;

and e, is the estimation error for which its entries are
Il. SYSTEM MODEL i.id with CA(0,0%,). In the case of linearly dependent

i i H H
We consider a coordinated BS system as shown in Fl%rannel Nestlmatlon EITOre, ), and hy, can be expressed as

. . . _ aH H __ H ~H B
1 where L BSs are servings' decentralized single antenna®uwix —Newljczlk and hfﬁ = hyj, f}gmeblk: whe~r2e Zy, €
MSs. Thelth BS is equipped withV, transmit antennas. By € ™, Nygl/zé Ny, &y, € ¢ = CN(0,67,,) and
denoting the symbol intended for tti¢h user asly, the entire Ru = ZiwR,j;, . For simplicity, the current paper examines

symbol can be written in a data vectdre CX¥*! asd = P1 and P2 for the channel model given in (2). As will be
[dy,---,dx]T. Thelth BS precoded into anN; length vector clear later, the approaches of this paper can also be applied
by using its overall precoder matriB; = [b;,---,b;x], SolveP1 andP2 with linearly dependent channel estimation

whereb;, € CNi*1 is the precoder vector of theh BS for error models.
the kth MS. For convenience, we follow the same channel The main idea of the robust design is tHaf), };_,, VI
vector notations as in [20]. Theth MS employs a receiver are unknown buth’,, . Ry andc?, }i ,, VI are available.

wyg € C to estimate its symbal,. The estimated symbol at We assume that theth MS estimates its channel (i.&;;;,w)



and feedgh/! ando?, }, VI back to the BSs without any errorA. Robust weighted sum MSE minimization probl@hh)(

and delay. Since théh BS has the channel estimates of all ) o .
MSs, it can comput@yy;, locally from the long term channel The robust weighted sum MSE minimization with per BS

statistics OﬂAle [24]. Thus, both the BSs and MSs have th@ntenna power constraint problem can be formulated as

same channel imperfections. The average mean-square-erro K X

(AMSE) of the kth MS (£,,) can be expressed as min Z”kgk’ ot {Z byb/
k=1

{wrk 7bk}£{:1 k=1

< Pn, V0 (5)

n,n

gk :Eegk {gk}
L L H wheren; is the AMSE weighting factor of théth user and
:wfqz h{ZB[} {Z thkBl} + pn is the maximum available power at theh BS antenna.
=1 =1 The antenna numbers are assigned from the first antenna of
L s 1 BS; (which corresponds to antenna 1) to the last antenna of
Z o2 tr{Ry BBI R} + Uﬁ)wk— BS;, (which corresponds to antenid).
=1 1) Centralized precoder design fdP1: The objective

L L .
~ ~ function of the above problem can be expressed as
wi Y hifby = Y bfihjwy + 1
=1 =1

K K K
K K ra H n Hy H H
o =~ Mep = {bk () mihyww; hy' + nyww;” Ry, )by,
=wfl (01> bl hy + tr{Ry[* > bbIR;[’ ,;1 ; ; e o ‘
i=1 i=1
+ o2)wy, — wihi by, — b hywy, + 1 — mrwi b by — mbi hywy + o npwi wi + nk}
K . K _ HitHp _ H HitHp
RIS by 3 bRy, + o) = (VAW HB — i) (VAW BB - /i)
im1 =1 +tr(BAWB) + tr(a?nWHTW) (6)
where n = diag(ni, - ,nx), W = diag(wi, - ,wk),
where EkH = [:ﬁﬁw 7}A1£{1J1 Ryr = H = [hl"” ’hK]’ o = dlag(o-la"' aaK) and ¥ =

nd Zfil niw;wl Ry;. For fixed receivergw,, } | and using (6),
the global optimal{b;.} X, of (5) can be obtained by solving
the following problem [17]

blkdiag(o2, Roik, - ;0% Ror), and in the seco
equality we use the facE.{e®e} = o2tr{®}, if the
entries ofe are i.i.d withCA(0,02) and @ is a given matrix
[12], [28]. Note that one can extend the precoder/decoder ) ~

design problems ofP1 and P2 by incorporating channel HEX st [lpllz < [ballz < v, Y0 ()
estimation and feedback errors with time delay. In this case

the expression of&, 1< | will be different from (3). Hence, wherep = [vec(,/TWHHHB — /7)) ; vec(vEB)] andb
solving P1 and P2 with erroneous feedback and non-zerQq henth row of B. As we can see,7 (7) is a SOCP pronblem
delay is an open research topic. for which the global optimal solution is obtained by existin
convex optimization tools [18]. This problem ha&v K + 1
real optimization variablesy second-order-cone (SOC) con-
IV. PROBLEM FORMULATIONS AND PROPOSEDSOLUTIONS  straints where each of them consists2df real dimensions
and one SOC constraint withK (K + N) real dimensions.
In this section, we examine problen®l and P2. For Aaccording to [29] (see page 196), the computational complex
each problem, we use the following general optimizatiofy of the latter problem in terms of number of iterations is
framework. First, for fixed receivel's, the preCOdel'S of abins upper bounded b@(« /N + 1) where the Comp|exity of each
are optimized. Second, using the latter precoders, thenapti jteration is within the order oD((2K N +1)2(2K2+4K N)).
receiver of each user is designed by the MAMSE receivghys, the total worst-case computational complexity ofi§7)
method. Since designing the receivers by MAMSE approachdgen by O(vN + 1(2K N +1)2(2K2 + 4K N)). This shows
optimal for any robust MSE-based problef andP2 utilize  that for large networks, the centralized precoder desiparse
the same MAMSE expression to design their receivers. finalhppears to be impractical. This motivates us to design the
these two steps are repeated until convergence is achielied. precoders of each user distributively with less computeatio
MAMSE receiver of thekth user is given by [20] cost than that of the centralized precoder design approach.

~y 2) Distributed precoder design forP1: For fixed

— _ hj by 4y {wr}f,, to solve the precoders of (5) distributively, we
hZ YK bibHhy, + tr{Rey, Y1 bibH} + 02 propose the Lagrangian dual decomposition techifiqlethis

end, we first express the Lagrangian function associated wit

Wi

In the following, for fixed receiverwy;}X_ ,, we propose

Cent[ra"zed a_md computationally efficient distributedoureter 2Since the precoder design problem of (5) is convex, thereziera duality
design algorithms for problen®1 and P2. gap between the primal and dual problems.



(5) as

LA B) =

77k§1€ + Z )\'rL( Z b b n n pn>

K
{bllj(z nihiw;w! b + nswwl Ry )by,

1 i=1

Dllﬂx i Mx

E
Il

— mewi b by — by hpwe + ofmrwwy, + nk}

N K
n=1 i=1
K ~ ~
= Z{kaAbk — mrwihfby, — b hyw,+
k=1

O’I%nkwlj;{wk + nk} - Z )‘npn (8)

where A = diag(A1,--+,Axy) and A
ZiK=1 nihiwiwﬁhfi + nwswHRy; + A Thus, the dual
function of (5) is

g(A) = min L(X,B) 9)
{br}f_,
K
= min Z{bk Aby — newf hiby, — b hjwy,
{bk}k 1 k=1

+ o wy, + Tik} > Aupn

K
Z{ (oPwfwy +1) — nfwk hHA 1hkwk}
k=1

- Z )\npn

n=1

gr = ARRY + N7, tF =

as

min
{An >0}

tr{FH (RRY +X)~ } Z Anpn - (12)

n=1

whereF = V\/X andR = VVA. The above optimization
problem can be cast as a semi-definite programming (SDP)
problem where the global optimal solution can be found
by existing convex optimization tools [18]. The worst-case
computational complexity of this problem is on the order of
O((2N? + N)?(4N)?5) [29]. However, here our aim is to
obtain the optimal values of)\,, }_; distributively with less
computational cost than that of the SDP method. In this tegar
we present the following Lemma.

Lemma 1 The optimal{ )\, }_, of the above optimization
problem can be obtained by solving the following problem

min Z{g AT gn + tftn + )\npn} £ ¥
{An.8n, w}n 1p=1

s.t Rt, +g, =1£,, Vn (13)

wheref,, is thenth column ofF.
Proof: By keepingA constant, the Lagrangian function of
(13) is given by
N
L= Z{gf)‘_lgn + tftn + /\npn_

n=1
TH(Rt, + g, —£.)} (14)

wherer!I is the Lagrangian multiplier associated with th
equahty constraint of (13). Differentiation af with respect
to {g;, t;}Y, yield {gf = Ar;}Y, and {t; = R¥r;}Y,

By substituting theség?, t*} , in the equality constralnt of
(13), we get{T; = (RR" + A) L3N It follows

RA(RRY + X\)~If;, Vi (15)

Plugging the above optimal values into the objective fuorcti

where the third equality is obtained after substituting ther (13) yields

optimal by, of (9) which is given by

bt = ne A 'hywy, VEk = b}, = ne[Ahywy, VI, k (10)

where [A71]; € CN*N is the submatrix ofA~! which is
given by [A™']; = [A7 (g 4N, -1, With Fy = Zl LN+
1 and Ny = 0. As can be seen from (10), for a givex

the precoder of each user can be optimized independently.
The optimal A of (8) can be obtained by solving the dual

optimization problem of (5) which is given as

g(A)
K

o 1;1%;( Z{nk(aiw,?wk +1) = PwlhfA- lhkwk}
n=1 k=1

max
{An>0}N_,

n=1
Considering  the eigenvalue decomposition
HWnZWH HY £ VAVH and HWnWHHH +
A

Zz:l MW, W, HRypi

Adlso be written a&a3* = [(g5)¥; - --

£ VAVH problem (11) can be written

{g{{)‘_lgz‘ + tflti + \ipi}

WE

Y=
1

-
I

N
{£TRRT + X))+ D Aipi

1 =1

N
:tr{FH(RRH + A)le} + Z Aip;.-

=1

M=

(16)

The above equation is the same as the objective function of
the original optimization problem (12). It follows that (1&nd
(13) are equivalent problems. Note thatmma 1is proved by
modifying the idea of matrix fractional minimization (sek8]
and [20]). It can be shown that (13) is a convex optimization
problem [18].

To develop distributed algorithm for (13), we reexpress
G = [g1,--,8nv] asG = [gf;--- ;g8N], whereg] is the
ith row of G. By doing soG* = [g},--- ,g}x] of (15) can
: (gx)™], where
Vi

= \IH, (17)



andT; is the ith row of ' = A~'F. Now, we solve (13) zero. However, when we reformulate (12) into (13), each

distributively as follows. First, keepiny constant, the optimal of {\,

N
n=1

is not allowed to be zero. This shows that the

g, can be computed independently using (17). Then, with thievelopment of distributed algorithm for (12) with\,, >

gr, \; is updated by

0 1
7)\? =—ghitpi=0= AL = Bi/pi, Vi
where 5; =

0}, is an open problem.
Using {\, }_; of Algorithm |, the optimal{by; }} ,, Vi
(18)  of (5) can be computed by (10), and with thede;. } X, VI,
the decoder of each user can be computed by using the
(g7)"g;. As we can see from the aboveMAMSE receiver approach (4). In summary, we soRe (5)

expression\; is always non-negative. Furthermore, from (17alistributively as shown irAlgorithm 1l .
and (18), one can observe thgtcan be updated in parallel by
using onlyg;. Thus, for our problem (12), the computation
of {tr,gr}¥, is not required. To summarize, problem (12)
can be solved iteratively in a distributed manner as shown in
Algorithm | .

1)
2)

3)
4)

Convergence: Since (13) is jointly convex in{g,,t, }V
and {\,}_,,

Algorithm | : Iterative algorithm to solve (12)
Initialization: Set{\, = 1}_,.

Repeat 1)
With the current\, compute{g, }_, using (17) and 2)
update{\,} N, with (18). 3)
Share the abové\,, }Y_, among all processors. 4)

Calculate the objective function of (12).

Until convergence.

As we can seeAlgorithm | is developed to get the
minimum value of the objective function of (12). Thus,
this algorithm should stop iteration when the objective
function of (12) is not decreasing significantly [5]. One
simple approach of doing this is to st@dgorithm |

from iteration wheng; — ¢;11 < d, where ¢; is the
objective function of (12) at theth iteration andd

is the desired accuracy. For our simulation results, we
have used the latter approach to declare convergence of
Algorithm | with 6 = 10~'2,

n=1

at each step ofAlgorithm |, the objective

Implementation of Algorithm II:
of this distributed algorithm, for simplicity, it is assuthéhat
L =N = K, andP1 is solved in a central controller which

Algorithm I : Distributed algorithm for probler®1 (5)
Initialization: SetB = H and normalize the rows dB
such that the power constraint of each antenna is satisfied
with equality. Then, initialize{w;}5_, by MAMSE
receiver (4). Set the maximum number of iterations
tmazx-

Repeat

Compute the optimaf\,, }_; with Algorithm 1 .

Solve for{b;}%_, using (10).

Update the MAMSE receiver§wy, H< | with (4).
Calculate the objective function of (5).

Until convergence.

In our simulation, we declare the convergence of this
algorithm when¢; — &, < 1076, where¢; is the
achieved weighted sum AMSE at théh iteration of
Algorithm Il .

Convergence: It can be shown that at each iteration
of Algorithm 11 , the objective function of (5) is non-
increasing. Since we are interested to get any local
optimal {by, wx }_, that yields the local minimung,

the convergence analysisAfgorithm Il with respect to
the optimization variablegby,, wy, }X_, is not required.
For the implementation

function of (13) is non-increasing. This implies that at heachasK parallel processors. We can implemesigorithm Il
iteration of this algorithm, the objective function of (l1i2)also distributively as follows.

non-increasing. Moreover, it is clearly seen that the dbjec
function of (12) is lower bounded by. These two facts show

that Algorithm | is always convergefit Although we are not
able to prove the global optimality éflgorithm I analytically,

1)

in all of our simulation results, we have observed that the

optimal A of (12) obtained byAlgorithm |

and the SDP

method are the same.

Computational complexity: The major computational load of

Algorithm | arises from matrix inversion. According to [30], 2)
matrix inversion has a complexity on the order@fN?2-376).

Thus, Algorithm | requiresO(N?2-376) per iteration. As will

be shown later in Section VI, in all of our simulations,
Algorithm | converges to an optimal solution in less than 3)

iterations. This shows that the proposed distributed &tyor
significantly reduces the computational load of the precode
design forP1. 4

Note: When thenth power constraint of (5) is inactive, at
optimality, the corresponding Lagrangian multiplier shible

SNote that since the aim of problem (12) is to get ay, }_, which
achieves the smallest objective function of (12), we belitvat the con-
vergence analysis ohlgorithm | with respect to the optimization variables
{An}_, is not required.

Initialization: Each processor sefs;, }/_, as inAlgo-
rithm 11 and {\, = 1}2_,.

With the currenf\,, }2_, and{wy }%_,, thenth proces-

sor computeg,, using (17) and updates its, by (18),

Vn. Then, {\,})_, are shared among all processors.
These two steps are repeated ufitil,}N_, are found

to be optimal.

Using {\,}_, of step 1, thekth processor computes
the optimalb,, by (10), V& and {b,}/_, are shared
among all processors. Again, using these precoders, the
kth processor computes;, with (4), Vk and {wy, } 1<,

are shared to processors.

Steps (1) and (2) are repeated umtigorithm Il
convergent.

is

) The controller finally sends the optimal precoders and

decoders to the corresponding BSs and MSs, respec-
tively.

Note that in some scenario we might be obliged to design the

precoders and decoders of all users without a central dartro
In this case, one can apply the above implementation approac
just by replacing the role of processors with that of BSs.



B. Robust power minimization probler®?%) and {v}X, of (21) can be obtained by solving the dual

The robust power minimization constrained with the MsEreblem of (19) which can be expressed as

target of each user and the power of each BS antenna problem max 9N D) =
is formulated as O =01 {03 7
K K

: Hp H A —11 2
min E b by, E Vo — wy hy A7 hywgyg

max )
{br,wr} £, {An >0} {ve>0}E |

k=1 k=1
K N
st D bibfun <pu. & <er 0<e, <1, Vk (19) = Aupa- (24)
k=1 n=1
whereey, is the kth user AMSE target. It can be shown that the above problem can be formu-

1) Centralized precoder design f2: For fixed receivers lated as SDP [18]. Thus, (24) can be solved by using
{wi },, using (3) and applying the same technique as in (HPnvex optimization tools with complexity on the order of
the above problem can be equivalently expressed as [17] O(v/K(N +1)(N+2K)*K (N +1)?) [29]. However, our in-

terest is to obtain the optimal values 0¥, }2_, and{v; }X_,

n=1

gﬂg X (20)  of the above problem distributively. The above problem can
7 P be rewritten as
st [[vee(B)ll2 <X, [[bull2 < v/Pn, Y1
1B Beawy, — 0,); vee(v/RocBug)]ls < R (WAWH + 1)1
kW k); vec bk DWE)|[|2 < min Z vewih (WYWH 1+ 1)~ hwgvy,
2 H {)‘WZO}#:D Vk>0}§:1 k=1
\/ex — opw wy, Yk *N X«
where@,, is a column vector of sizé& with the kth element ) A+ ) vkawpn (25)
equal tol and all the other elements equal Go The above n=1 k=1

problem is a SOCP for which the global optimal solution o . S .
can be obtained wit)(y/(K + N + D)(2KN + 1222 + oo T = blkdiagl. ) W= [W Lyl v =
2NK? + 4NK)) computational load [29]. b}kdlag(leN},' 'é’fglN)’ Wl . [Wor, -, W] and
2) Distributed precoder design forP2: For fixed Wi, = (wiwy! (hihi! +Ryy))!/2. Now, by applying matrix
{we ), like in P1, we utilize the Lagrangién dual decom fractional minimization of [18] on the first sum terms of the
kfk=11 ’ y
position method to solvéP2 distributively. The Lagrangian above problem, we can reformulate (25) as (see page 198 of

function of (19) is given as [18])
K % K N
. =H~r—1= FHZT
. ~ ~ Y tit AnDn
LA, D,B) = Z{bf(l]\r + E vihyww?h? + viwwl Ry, {Ek,ik,uk?g,l-,{/\n}fa kzzl B g hhe T 7;1 !
k=1 =1 N K
+ A)bk - 2%{kal?thbk} + UI%VkU)fwk"' — Z aplg, s.t Ek + Wék = Vkﬁkwk, VEk. (26)
N k=1
Vk(l - Ek)} - )\npn (21) ) . _ ~
; From the equality constraint of (26), we gt = vyhywi —
. . . Wg;. By substituting thist; into the objective function of
where A and v = diag(vi, -, vx) are the Lagrangian wo"poue problem, (26) can be rewritten as
multipliers for the first and second constraint sets of (195, '
respectively. Thus, the dual function of (19) is computed by K - - R .
~ ~ _ min ng T_lgk + (thkwk — ng) .
g(A, D)= min L(A,D,B) {er v i Dl T
{br}i, N K
K K N N xr=
~gv 1o vihpwy — Wegk) + > Appp — Y aplg. (27)
= Z VpQy — Z vewi hi? A" hywgyy, — Z Anpn (22) ( ) n; ;
k=1 k=1 n=1
- For fixed {v }/<, and {\,})\_,, the optimalg;, of problem
where ag = 1 + o,%wfwk — e, A = Iy + (27) is gi\;{en}tl;;l { } !
SR vibyww h 4vww Ry + X and the second equality S
is obtained after substituting the optimumy which is given gr =p(Y 1 + WEW) "W hjwy,
by —u YWH A hywy, Yk (28)
bt = A hywy, V. (23)

where the second equality is obtained by employing matrix
From (4) and (23) it can be clearly seen that if (19) i#version Lemma [28]. To develop distributed algorithm for
feasible, {v, > 0}, must be satisfied. Furthermore, fothe above problem, we introduce the following variables:
given{\, }_, and {1, }X_,, the precoder of each user can bdGj, € CY** as the Giy ;) 1. vy, ko1 Submatrix of
optimized distributively by using (23). The optim@\,,}Y_, G* = [gf,---,g%] and {(u;)¥ as theKN + n}Y_; row



of G*. For the given{v;,}X_, and{\,}2_,, Gt and (u%)” to show the global optimality oAlgorithm 1Il analytically.
can also be computed as Nonetheless, in all simulation results we observe that the
S <FrHE e\ BH optimal A and» of (25) obtained by the latter algorithm and
F =Wl Wk, w, = ATy, Ve (29) Spp method are the same.
whereT = A~ '"HWw# andT,, is thenth row of I. Computational complexity: As can be seen from (28) and

Now, we solve problem (27) distributively as follows. First(29); in the proposed distributed algorithm, the main com-
for fixed {1}, }1, and {\,}Y_,, the optimalg; of (27) and putational load comes from the computation Af-! which

n=11 .. . amp
the introduced variable€¥;, a*) are computed using (28) andcan also be computed efficiently WIth(N>37%) [30]. More-
(29), respectively. Then, using thegg é; andu*, v, and OVver in all of our simulation results, we have observed that

n1

)\, are updated independently and distributively by {?Igotr'ithm Il converges to an optimal solution within few
iterations.
vh = mi% VEpk1 — Vkpr2 + Pks (30) Once we get the optimal\,, }2_; and {v;} |, like in
e Vi ‘P1, the precoders and decoders of each user can be optimized
A= /p"o, n (31) using (23) and (4), respectively. It follows th&2 (19) can
DPn be solved distributively like ilAlgorithm Il of P1.

where pj; = }Efwfwkhk’ Pk2 = 2§ngfthW§;} T Q. V. EXTENSION TOMIMO COORDINATED BASE STATION
prs = tr{G}(G})"} and p,o = (ay)"ay,. If pr1 # 0, by SYSTEMS
applying first order derivative, it can be shown that (30) has

exactly one real solution which is given by [31] For multiuser MIMO coordinated BS systems, the solution

approaches of Section IV can be applied to solve the follgwin
problems. (1) The robust minimization of symbol (user) wise
weighted sum MSE with per BS antenna power constraint
problem. (2) The robust minimization of the total sum power
_ 3/1]9 3 _of all BSs with per BS antenna power and per symbol
where /i - \/2 {20’“2 o Ck} 1k " (user) MSE target constraints. In this section, we exantiee t
robust symbol wise weighted sum MSE minimization with a
i*/% {Qpig + ck +Ck}, [ 1O8pi1pk3 and ¢, = per BS antenna power constraint problem for the multiuser
] MIMO coordinated BS systemsP(l) only*. For the MIMO
ci(ck + 4p3,). One can easily see that, > 0, px1 > 0, coordinated BS systems, the channel estimation technifjue o
fir2 > 0 and ppz > 0. Moreover, whenpy: > 0, vi of  gection 11l can be utilized. Upon doing so, the true channel
(32).'5 glways pos.,mve.. To summarize, (25) can be solvggbtyeen thelth BS and thekth userH/! and its MMSE
distributively in an iterative manner as Wgorithm 11l . estimateﬁ{z are related by [11]

Algorithm [Il : Distributed algorithm to solve (25)

vy =—— | pr2 + a1 + 2|, Yk (32)
6pk1

e H _{yH H pl/2 _ yH H
1) Initialization: Set{\, = 1}N_, and {v, = 1}/ ,. Hyp =Hjj, + By Ry = Hy + Egy, (33)
Repeat whereE/l € CMx*Ni and M, are the estimation error matrix

2) With the current{\,};7, and {v};_,, compute and number of antennas of tii¢h MS, respectively, and the
8k, G andu, using (28) and (29)yk,n. Then, update entries of Ef, are i.i.d with CA/(0,52,). Like in (3), the

An andy;, by (31) and (32), respectivelyn, k. AMSE of the kth MS ith symbol €;;) can be expressed as
3) Share the abové\,}_; and {v;}/£, among all pro- K S
cessors. f_kz -1+ Wg(ﬁkH Z Z bjmbgnﬁk‘F

4) Calculate the objective function of (25). o]
Until convergence. K S

Feasibility study for P2: The problem (19) is infeasible, if tr{Rox Z Z bjmeHm}Ij\lk + 020, ) Whi—
there exists at least one MS with either, = 0 or vf > 0. =1 m=1
This can be justified as follows. For the former case (Hé., He HfyHyp

such thaipg; = 0), one can easily verify that (19) is infeasible. breiHiewik: — wiiHi: b (34)
For the latter case (i.e., whelpy; > 0}X_ | and 3k such that whereb,; € CV*! andwy,; € C*+*! are the precoder and
vi > 0), althoughv} are not permitted to beo, v} can be decoder vectors of théth MS ith symbol, respectively, and

arbitrarily very large number. And whery; is large, one can Hy = [HI . . JHIL] e ¢MexN_Using (33) and (34), we
use (23) to show that theth MS needs additional power atcan formulateP1 as

least in one of the BS antennas to satisfy its AMSE targes Thi K Sk

case corresponds to the scenario where (25) is an unbounded min « Z an{ki,

problem. During the iterative stages Afgorithm 1l , when {wiabribiny 23520

(19) is infeasible, we have observed from the simulationltes K Sk

that {1, }1<, of (32) increases rapidly for at least one MS and s.t {Z Zbkzb,ﬁ} < Pn, Vn (35)

the latter algorithm never converges to a point. k=1i=1
Convergence:If P2 is feasible, it can be shown thago- “Note that all the other problems of this section can be examikedn

rithm Il is guaranteed to converge. However, we are not abife.



whereny; is the AMSE weighting factor of théth MS ith VI. SIMULATION RESULTS

symbol. For given precoder vectofby;, i}, the receivers o this section, we present the simulation results for
{wy;, i}, of the above problem can be optimized by thgroblems?1 and P2. The spacial antenna correlation matrix
following MAMSE approach between thelth BS and thekth user Ry, is taken from
K s a ‘widely used exponential correlation model Ry =
J i—jly K
s b, H MY, where 0 < pyi < 1 and 1 < i(j) < N,
Wii (Hk z:lz:lbjmbijk‘F (36) and {02 = USZk =, = ng — ek}kzl We have
j=1m=

used exponential correlation model because of the follgwin

K3 -t two reasons. First, exponential correlation model is ptafsi
pH AT 2 Hb,, i N ’ ; .
tr{Rex Z; Zl b by, Har, + UkIJm-) Hj bii, VE, . oasonable in a way that the correlation between two transmi
=1 m=

antennas decreases as the distance between them increase:
[32]. Second, this model is a widely used antenna correlatio

Next, for fixed {wy;, Vi , We summarize the centralized o
{ws, Vil model for an urban area communications [26].

and distributed precoder design algorithmsFf.

2— ‘ ; ;
. . > = © = Robust Centralized Algorithm
A. Centralized precoder design &il o 1.9/l = * ~Robust Distributed Algorithm Y 4 i
By employing (34),5°/C, %, & can be witen as a . | 2\ bt
quadratic expression like that of (6). This shows that tr o 18 7 1
precoder design problem of (35) can be formulated as SOt ®
for which the global optimal solution can be obtained usin 2 |
convex optimization tools (see also [17]). “;’ |
g
()
L o g ]
B. Distributed precoder design 6?1 E’
Here like in P1, the precoder design problem @1 <

can be solved distributively by applying the Lagrangian|du
decomposition and modified matrix fractional minimizatiol
approaches. After some straightforward steps, the Lagaang
function associated witP1 can be expressed as

Fig. 2. The average power utilized by the first antenna of B& the
robust centralized, robust distributed, non-robust edz&d [17] and non-
K Sk robust distributed [20] designs whem,;; = 0.25,pp12 = 0.5, pp13 =

LA {bgi, Viliy) = Z{kaiAbki — Mo WHHE bri— 02,14 = 04, 21 = 0.6, proz = 0.1, poog = 0.8 and prag = 0.15.
k=1i=1

N
Z)\npn (37) A Simulation results foP1

n=1 In this subsection, we consider a system with= 2 BSs
where each BS hasantennas an& = 4 MSs. We usey,;; =
0.25, pp12 = 0.5, pp13 = 0.2, pp14 = 0.4, ppo1 = 06 s Pp22 =
ers correspondlng to the constraint sets of (35) @d= 0.1, ppos = 0.8 and pyos = 0.15, ando?, = 0.01, 02, = 0.02,
Z o Zm 1 nij]wjmemHH + tr{wl win}Ry; + A 023 = 0.03 andoZ, = 0.04. Itis assumed thafo} = o2},
By employing the above expression and after some mathemit, = 2}%_, and {n;, = 1}/ . All simulation results of this
ical manipulations, the dual problem of (35) can be fornmadat subsection are averaged ovEi0 randomly chosen channel

Hiy 2 H
NP Hri Wi + 03Nk Wie Wi + nki} -

where A = diag(\y,---,Ay) are the Lagrangian multipli-

as realizations.
The optimal transmit power of the first antenna of;B&
max min L\, {by;, Vi} ) = a function of the noise power is plotted in Fig. 2. This figure
{An 203y {bki Vil shows that the power utilized by the centralized algorithms
K Sk o 1 of the robust and non-robust/naive designs are the same as
o H;%f Z Z{nkTi(kakiwki +1)— that of the distributed algorithms of the robust and nonisbb
"l k=li=1 designs, respectively. The non-robust/naive design sefier

the design in which the estimated channel is considered as
nwiHy A ka’“ - Z Anpn- (38) perfect [17], [20]. The latter figure also shows that all anizs
n=1 do not necessarily utilize their full powers to minimize the
This problem has exactly the same structure at that of (1igtal sum AMSE of the system in the robust and non-robust
Thus, with the help oLemma 1 we can develop distributed eS|gn§ Furthermore, the power utilized by the first antenna

algorithm '[O_ SO_|VE _the apove problem. Consequerfly,can 5This behavior has also been observed in [17] and [20] wherstim MSE
be solved distributively like that oP1. minimization with per BS antenna power constraint problemxiangined.
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of BS;, for both of these designs are not necessarily the sar

Although the robust and non-robust designs do not use 1 L4 _;_Robust éemranzed A;gorithm
same power at each antenna, we have noticed at all S 1] -+- Robust Distributed Algorithm /
values that the average total sum power of all antennas of —&6— Non-Robust Distributed Algorithm
latter designs are almost the same. In the sequel, we comp W 4} Perfect CSI Distributed Algorithm
the performance of the robust centralized, robust didieithu =
non-robust centralized and non-robust distributed atlyors in g 0.8f
terms of sum AMSE. For this purpose, we define the signe ®
to-noise ratio (SNR) a&s.., /02, wherePy,,, is the total sum %0-5’
power utilized by all BS antennas of the robust distribute g
algorithm ands? is the noise variance. The SNR is controllec & %4[
by varyingo?.

) . 0.2

We first compare the performance of the robust centraliz

and robust distributed algorithms in terms of sum AMSE ol ‘ ‘ ‘ ‘
Fig. 3 shows that the robust centralized and distributed 10 15 20 25 30

gorithms achieve the same sum AMSE. Next, we compéau. SNR (dB)

the performance of the robust and non'rObUSt_/na'Ve de&gp@_ 3. Comparison of the robust centralized design, disteith design
In [20], we have shown that [17] and [20] achieve the sam®d the non-robust design of [20] wheg,; = 0.25, py12 = 0.5, pp13 =

sum MSE. Thus, it is sufficient to compare the performande pvi4 = 0.4, py21 = 0.6, praz = 0.1, ppoz = 0.8 and ppo4 = 0.15.

of our robust designs with the non-robust design of [201.
As can be seen from Fig. 3, the proposed robust desic

have better performance than that of the non-robust des 14 —&0— Non-Robust Distributed Algorithm /’
in [20] and this improvement is better at high SNR region: = = = Robust Distributed Algorithm
As can be seen from the second equality of (3), when SNR 1.2} Perfect CS| Distributed Algorithm ]
high (i.e., wheno? = o2 is low), 0% is negligible compared u
to S°X 02, tr{R,/’B,BER,/’} (the term due to channel = [
estimation error). Thus, in the high SNR region, since tf g 08
non-robust design does not take into account the effect :’)
SF, o2 tr{Ry/ BB R/} which is the dominant term, 2 0.6
the sum AMSE of this design increases significantly. The: §
discussions help us to understand why the performance < 04|
non-robust design worsens in the high SNR region. From tt 02
explanation, we can imply that the sum AMSE gap betwes '
robust and non-robust designs increases as the SNR insree ol—i i i i i
To see the effect of antenna correlation matrix on t 10 5 SI\ZJCI’? (dB) % 3
achievable sum AMSE of robust and non-robust designs,
we change the lattefpyx}_;, V! 10 pp11 = 0.35,p012 =  Fig. 4. Comparison of the robust design and non-robust desigzo] when

0.5, pp13 = 0.3, pp14a = 0.4, pp21 = 0.6, pr22 = 0.2, ppa3 = 0.8 pp11 = 0.35, pp12 = 0.5, pp13 = 0.3, pp14 = 0.4, pp21 = 0.6, ppaa =
and py24 = 0.25. For this setting, we plot the total sum AMSE?-2: pv23 = 0.8 and ppa4 = 0.25.

of our robust design and the non-robust design of [20] in Fig.
4. By examining this figure and Fig. 3, one can see that thg 5 5 5 .
sum AMSE increases as the antenna correlation coefficidnt ~ -01, T2 = 0'(2]2’K‘763 = 0.03 arld oe = 0.04 Itis
increases for both the robust and non-robust designs. shi@psumed thafoy = o=}y, {pn = 115(}71;1 and the AMSE
because whefipyy,, 31, k} increases, the number of symbold2'9¢t of each user is set {a. = 0.2};_,°. For better expla-
with low channel gain increases (this can be easily se?ﬁ“on_ of the S|mulat|(_)n results Qf this subsection, we m?t
from the eigenvalue decomposition &,;). Consequently, ollowing channeIAeHstlmate obtained from the gbove sedting
for a given SNR value, the total sum AMSE also increase\g’.here the rows oH ;, represent the channel estimate between
The above scenario gracefully fits to that of [12] where thiz’eII BSs and thekth MS' We first compare the performance
robust weighted sum MSE minimization with a total BS powe‘?f the robust centralized and robust distributed algorithm

constraint problem is examined for the conventional domknli (€7MS Of the total sum power of all BSs. Fig. 5 shows that
MIMO systems. the robust centralized and distributed algorithms utiline

same total power. Then, we compare the performance of the
_ _ proposed robust design and the non-robust design of [20]
B. Simulation results foP2 terms of total sum power of all BSs which is also plotted
For the simulation result dP2, we also consider a system o .
with I, = 2 BSs where each BS hasantennas andd — 4 ®Note that the feasible initiaf{wy }7—, for problemP2 can be obtained
from the solution ofPP1.
MSs. We Us€pp11 = 0.257/)1,12 = 0.5,/)1,13 = 0.2,/)1,14 =

“For P2, we have also shown in the latter paper that [17] and [20] have
0.4, ppa1 = 0.6, ppa2 = 0.1, ppas = 0.8 and pp24 = 0.15, and  the same performance.
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0.2407 — 0.3118:
0.0206 + 0.1318:
—0.2765 — 0.47164
—0.5944 — 1.15561¢

—0.2276 — 1.3829:
1.1292 — 0.8314¢
—0.2760 — 0.1349¢
—0.2692 — 0.62444¢

0.2328 — 0.0868:
1.6717 + 0.4976¢
—0.0426 + 1.7262i

0.1344 + 0.3848¢
0.5254 — 0.90344
—0.6380 — 0.5663¢

(39)

0.3266 4 0.08827  —0.3655 + 0.8997:

in Fig. 5. This figure shows that the robust design utilize

more power than that of the non-robust design for all noit User 1 Non—Robust
variances. Now, for the total power given in the latter figure  0.28f User 1 Robust 4
the AMSE of each user for both designs are plotted in Fi 571 User 2 Non-Robust i
6. This figure shows that for all noise variances, the no & ¥ User 2 Robust

. . . 5 0.26F User 3 Non-Robust g
robust design does not _satlsfy the AMSE requ|reme_nt b2 —e— User 3 Robust
the proposed robust design ensures the AMSE requirem g o.25} User 4 Non—Robust E
efficiently. To ensure the latter AMSE, however, the robu: 2 0.24 —O— User 4 Robust ﬁ
design utilizes more power than that of the non-robust aesic u? ' T |
This shows that Fig. 6 does not reveal the actual performar g 0.23¢ 1
of the proposed robust design. Thus, for a fair comparis@n, ' < ¢, ]
tune{o?, }X_, such that the total power utilized by the robus
and non-robust designs are the same (or very close to e %2 i
otherf and then we compare the performance of these t 0 28—~ :_12 —1=o -~ _g ” 4 = ¢
designs by their achieved AMSEs of each user. For the pov oz(dB)

requirement of Fig. 7, the AMSE of each user is plotted i..
Fig. 8. The latter figure shows that for the same total p()W%rig. 6. Comparison of the AMSE achieved in each user for thesbesign

the robust design still outperforms the non-robust design. and non-robust design of [20].

257 T T T T 15 T T T T T T
Robust Centralized Algorithm Robust Distributed Algorithm with desired aik /
—®— Robust D|str|bu.teq Algorithm . = = = Non-Robust Distributed Algorithm
20F = = = Non-Robust Distributed Algorithm
- =
[5) (3] L i
g . % 10
o , ;.
4

g ’ S
7] ’ n
— 10} ’ , —
[o ’ ©
3 . 5 5 1
[ Lot [

5 PR i 1

- ’
0‘ ==---" i i i i i 0
-16 -14 -12 -10 -8 -6 -4 -2 0 -16 -14 =12 -10 -8 -6 -4 -2 0
2
o’ (dB) o (dB)

Fig. 5. Comparison of the robust centralized algorithm, itisted algorithm  Fig. 7. The power utilized by the robust design and non-robesign of
and the non-robust distributed algorithm of [20]. [20] with the desired error variance{s?gk}f:l.

For P2, we have noticed that for each channel estimate ] )
different error variance (after numerical tuning) is reqdito AMSE targets, when we increase the antenna correlation

get the same total sum powers for the robust and non-rob{R#Cr, we observe that the total power requirement of the
designs. However, the performance behavior exhibited lin whole n_etwork also increases. The S|mulat|on results which
channel estimates fits to that &%,. The detail simulation Show this fact has not been included for conciseness.
results of this problem for the other channel estimates are

omitted to reduce redundancy. Moreover, to see the efféet Convergence characteristics Afgorithm |

of antenna correlation factor faP2, we use the previously  As we have mentioned in Section IV-A.1, the centralized
mentioned AMSE targets (i.e{sx = 0.2}f—, ). With these algorithm to solve (7) has limited practical interest whae t
number of BSs and/or MSs are large. Moreover, in Section IV-
A.2, the computational complexity of our distributed altfom

to solve (12) (once the complexity of (12) withlgorithm

| is studied, the complexity of (7) with this algorithm is

8In the robust design, for each noise level, we perform nuraksearch
to get the appropriat({agk},‘?:1 that yields the same (or very close) total
transmit power as that of the non-robust design. This tasleiméad as
numerical tuning.



12

0.297

User 1 Non—-Robust
0.28} User 1 Robust
o\ User 2 Non-Robust
5 027 v v —&— User 2 Robust -
o) User 3 Non—-Robust S
= 0.26} —©— User 3 Robust s
% User 4 Non—-Robust 5
© 0.25¢ —&— User 4 Robust S
S | 2
O O o O O - ()
H)J 0.24T < hd hd hd T %
> < < < < 2,
< 0.23} ] '8
25¢ ]
0.22 I
021 : : : : : ; : ol
-6 -14 -12 -10 2‘8 6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
o° (dB) Number of Iterations

Fig. 8. Comparison of the AMSE achieved in each user for thesbtlesign Fig. 9. Convergence characteristics Algorithm | at different iterative
and non-robust design of [20] after tuning the error varganc stages ofAlgorithm 11 .

immediate) is provided for a single iteration (i.e., peratéen D. Overall computational complexity to solve (7)

of Algorithm ). Thus, to show the computational advantage In Section IV-A.1, we have presented the worst-case com-
of our distributed algorithm compared to that of the ceitesl putational cost of IP methods to solve (7) centrally. Howgve
algorithm, the number of required iterations for convemgenin most practical problems, IP methods require less computa
of Algorithm | (I;) needs to be accessed for large scal®nal cost than that of their worst-case complexities. fie t
networks. However, we are not able to compliit@nalytically. best of our knowledge, computing the exact computational
Due to this, we examine the convergence characteristics agimplexity of IP methods for this problem requires immense
Algorithm | for a 19-cell hexagonal structure coordinateéffort and time. Hence, we believe that such a task is beyond
BS system as in [33]. Each BS is located at the center thfe scope of our current work. However, we have carried out
its cell, whereas each MS is located randomly inside thesgtensive simulations to compare the computational time of
19-cells with uniform distribution. The propagation modebur proposed distributed algorithm with that of the cefutead
between each BS and MS contains two components. Calgorithm which uses IP method. In the following, we deserib
is the path loss component decaying with distance, and tie simulation platform and methodology we have used, and
other one is the Rayleigh fading random component whichiscuss the results.
has a zero mean and unit variance. For this simulation, we According to [34], MOSEC is a computationally efficient
use {n; = 1,02, = 0.02,pp, = 0.25,VI}X | and all the optimization package which uses IP methods to solve large-
other parameter settings are summarized as shown in Tablseckle optimization problems. Moreover, for SOCP problems,
For the channel realizations of these parameters, we examiMOSEC requires less computational time than that of SeDuMi,
the convergence characterstics Aligorithm | at different LOQO, SDPT3 and CPLEX [35], [36]. This motivates us to
iterative stages oflgorithm Il (i.e., with different{w; }/_|) compare the computational time Afgorithm I with that of
as shown in Fig. 9. As can be seen from this figédgorithm  MOSEC to solve (7). Our Matlab codes were run on a personal
| converges to an optimal solution in less thihiterations. computer with 1.6 GHz, 2GB dual core processor under Win-
dows XP. For comparison between these two algorithms, we

TABLE | have used a coordinated BS system with= N/2, N = K,
_ 2 2 _ K _ N
SIMULATION PARAMETERS FOR CONVERGENCE OFAlgorithm | {p_blk - 0'25’Uelk = 0.02, O = 0.1, }kzl and {pn - 2}n=1-
It is assumed that problem (7) has been solved by a central
Number of BSs 19 controller with K" processors and all other parameters are taken
Number of antennas at each BS 2 as mentioned in the first paragraph of Section VI. Table Il
Transmit power of each BS antenfja 5W . ; .
Radius of each cell T 6km shows the amount of time required to solve (7)Agorithm
Reference distancelq) 1.6km 1° and MOSEC at different iterative stages Algorithm |I
Path loss exponent 38 (i.e., for different{w;}X ;). As can be seen from Table I,
Mean path loss aty 134dB ot q : ; ;
i our proposed distributed algorithm requires less comjmutak
Channel bandwidth 5MHz . . .
Receiver noise figure 5dB time than that of MOSEC. From this table we can notice that
Receiver vertical antenna gain 10.3dBi our distributed algorithm has practical interest espgcighen
Receiver temperature 300K
SNR 18dB 9To get the computational time oflgorithm | per processor, first we

get the computational time dflgorithm | by assuming one processor (i.e.,
personal computer), then, we divide the latter computatitime by K.



K(N) is large. [10]
TABLE Il
COMPUTATIONAL TIME OF Algorithm | AND MOSECFOR(7) (IN 11
SECONDY
K 4 10 20 30 40
A MOSEC 0.0031 | 0.0213 | 0.2182| 0.8833 | 2.3598
B: AlZorhimn 176 6012 | 0.0020 | 0.0041| 00086 | 00118 | (17
AlB 252 | 10.455| 52.643 | 133.874| 200.336
[13]
The convergence characteristicsAdforithm 1l and the

overall computational complexity of (20) can be studiec lik[14
in Sections VI-C and VI-D, respectively.

[15]
VIlI. CONCLUSIONS

This paper considers the joint transceiver design for mul-
tiuser MISO systems with coordinated BSs where imperfeéf!
CSlis available at the BSs and MSs. By incorporating antenna
correlation at the BSs and taking channel estimation errors
into account, we solve two robust design problems. TH¥]
problems are solved as follows. First, for fixed receivers,
we propose centralized and novel computationally efficient
distributed algorithms to jointly optimize the precodefsat  [18]
users. The centralized algorithms employ the SOCP approagh;
whereas the distributed algorithms use the Lagrangiandagsal
composition, modified matrix fractional minimization and a
iterative method. Second, for fixed BS precoders, the reczeiv[zo]
are updated by the MAMSE criterion. These two steps are
repeated until convergence is achieved. Computer simulti
demonstrate that our proposed distributed algorithmseaehi [,
the same performance as that of the centralized algorithms.
Simulation results also verify the superior performance of
the stochastic robust designs compared to that of the non-
robust/naive designs.

[\
N
—
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