
1

Efficient Sampling of Band-limited Signals
from Sine Wave Crossings

J. Selva

Abstract— This correspondence presents an efficient method
for reconstructing a band-limited signal in the discrete domain
from its crossings with a sine wave. The method makes it
possible to design A/D converters that only deliver the crossing
timings, which are then used to interpolate the input signal
at arbitrary instants. Potentially, it may allow for reductions
in power consumption and complexity in these converters. The
reconstruction in the discrete domain is based on a recently-
proposed modification of the Lagrange interpolator, which is
readily implementable with linear complexity and efficiently,
given that it re-uses known schemes for variable fractional-delay
(VFD) filters. As a spin-off, the method allows one to perform
spectral analysis from sine wave crossings with the complexity of
the FFT. Finally, the results in the correspondence are validated
in several numerical examples.

I. I NTRODUCTION

The analog-to-discrete (A/D) conversion is the first step
for the discrete-time processing of continuous signals. This
conversion is fundamentally based on the Sampling Theorem,
which states that a band-limited signal can be recovered from
its regularly-spaced samples taken at least at twice the Nyquist
rate. However, some authors early noticed that this recovery
is also possible from the signal’s zeros, or from its crossings
with another signal like a sine wave, [1]–[4]. This is due to
the fact that a band-limited signal is an entire function of
exponential type, for which there is a factorization in terms of
its roots akin to that of conventional polynomials, (Hadamard’s
factorization theorem [5, chapter 2]). A consequence of this
is that it would be possible, in principle, to design A/D
converters in which the sample quantization is substituted
by a zero crossing detector and an accurate timing, [6].
This new procedure would eliminate the need to quantize
any signal samples, so decreasing the complexity and power
consumption of A/D converters, provided there is an accurate
timing available. Besides, it would mainly re-use existing
technologies, given that zero crossing detection is implicit in
many existing systems. This last point can be readily seen in
the current trend in A/D converter design, in which the sample
amplitudes are turned into zero crossings, which can then be
accurately detected with low-power consumption, [7], [8].

The main obstacle for this alternative procedure is how the
signal should be reconstructed or processed in the discrete
domain, since Hadamard’s factorization theorem does not
directly lead to efficient implementations, due to its slow
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convergence rate. Here, the usual approach in the litera-
ture consists in approximating the signal in a finite interval
using a trigonometric polynomial, [6], [9], [10]. But then
the interpolation error decreases only asO(1/N), while the
complexity per interpolated value isO(N), whereN is the
number of crossings inside the interval. So, in this approach
it is necessary to employ a largeN to ensure an acceptable
accuracy, with the associated high complexity.

The purpose of this correspondence is to present a method
for overcoming this obstacle, that makes it possible to re-
construct the bandlimited signal from its sine wave crossings
efficiently. The method is based on viewing the reconstruction
as a problem of interpolation from nonuniform samples, to
which the efficient technique in [11] is applied. Relative to
the state of the art, it has several advantages:

• The complexity is reduced significantly. If in the approach
in [6], [9], [10], a complexityO(N) (per interpolated
value) gives an interpolation errorO(1/N), with the
proposed method a complexityO(N) gives an error
O(e−π(1−BT )N), whereB is the signal’s two-sided band-
width andT is the average crossing separation. In practice
this means that “any” accuracy can be achieved with a
smallN .

• The method is based on the evaluation of a fixed smooth
function and on the Lagrange interpolator. Besides, it
can be evaluated with costO(N) per interpolated value,
and can be implemented by re-using efficient designs for
variable fractional-delay (VFD) filters, [11, Sec. IV].

• As a spin-off, the method permits one to perform spec-
tral analysis from sine wave crossings with complexity
O(N logN), while the usual method has complexity
O(N2), [6, Sec. IV].

The correspondence has been organized as follows. The next
section reviews the state of the art and presents the problem
formulation. In it, it is shown that the reconstruction from sine
wave crossings can be turned into an interpolation problem
from nonuniform samples. Then, this last problem is addressed
in Sec. III, where the solution adopted is that in the recent
reference [11], based on the Lagrange interpolator. The main
result is a simple interpolation formula for reconstructing the
signal from its sine wave crossings. Then, Sec. IV addresses
the problem of analyzing the spectrum from sine wave cross-
ings in the light of the formula in Sec. III. It turns out that
this formula makes it possible to reduce the complexity from
the usualO(N2) order to orderO(N logN). Finally, Sec. V
validates the results in the correspondence through a numerical
example.

II. STATE OF THE ART AND PROBLEM FORMULATION

The usual representation for a real finite-energy signals(t)
with spectrum inside[−B/2, B/2] is given by the Sampling
Theorem. If the sampless(n/B) are known, this theorem
states thats(t) can be perfectly reconstructed using the series

s(n/B + u) =
∞
∑

p=−∞

s((n− p)/B)sinc(p+Bu), (1)



2

where n is an integer andu is any time shift following
−1/(2B) ≤ u < 1/(2B). This series is the basis of most
processing algorithms for continuous signals in the discrete
domain. Several authors [1], [2], [4] soon noticed thats(t)
can alternatively be viewed as apolynomial of infinite degree,
which can be described in terms of its roots. The reason why
is that a band-limited signal can be regarded as an analytic
function over the whole complex plane, if thet variable is
allowed to take complex values. Besides, this kind of function
is bounded on the real axis (realt), and its maximum growth
rate is that ofeπB|t| along the imaginary axis. It can be shown
that this kind of signal admits the representation

s(t) = K lim
R→∞

∏′

|τp|≤R

(1− t/τp), (2)

whereK is a real constant, and theτp are complex roots which
appear in conjugate pairs,τp 6= 0, and may not be distinct,
[12, Theorem VI]. The prime (’) means that the factor should
be replaced witht if tp = 0 1. Eq. (2) is the explicit root
factorization ofs(t) as infinite-degree polynomial, and from
it it is obvious that the rootsτp determine the signal except
for the scale factorK. The root density in any circle|t| < τ
follows the same rule as the sample density in (1), i.e, the
circle |t| < τ contains either2τB samples in (1) or2τB
roots in (2) asymptotically.

The factorization in Eq. (2) suggested the possibility of
performing the usual processing of continuous signals in the
discrete domain using the zeros of the signal instead of
its samples. In such approach, the analog-to-discrete (A/D)
conversion would consist in acquiring the signal’s zeros, and
the discrete-to-analog (D/A) conversion would be based on the
evaluation of a formula like (2). However, it was soon realized
that there were two main problems, [4], [6]. The first was how
the roots should be located efficiently in the A/D conversion,
since they may have a non-null imaginary part. And the second
was how the infinite product in (2) should be approximated so
as to implement the D/A conversion, since in practice only a
finite sequence of rootsτp is known, and (2) converges slowly.

A solution for the first problem was readily found [4, Sec
V], and consisted in subtracting a sinusoidalAs sin(πBt) to
s(t), where

As = sup
t real

|s(t)|. (3)

This simple procedure actually solved the problem of locating
the roots, because the subtraction of this sine wave “moves”all
roots to the real axis, due to a theorem of Duffin and Schaeffer,
[13]. Specifically,s(t)−As sin(πBt) can only have zeros on
the real axis, and each of them can be viewed as a zero of
A sin(πBt), which has been shifted by at most1/(2B). So,
in notation, all zeros ofs(t) − As sin(πBt) have the form

1The factorization in (2) is due to Titmarsch [12, Theorem VI], and is
a refinement of Hadamard’s factorization theorem [5, chapter 2] for s(t)
bounded on the real axis. Note that there is a bug in Eq. [4] of [11]. This last
equation is Hadamard’s factorization and its correct form is

φ(t) ≡ Ae−t
∑

n
1/tn

∞∏′

n=−∞

(1− t/tn)e
t/tn .

n/B+ δn, wheren is an integer and|δn| ≤ 1/(2B), and two
consecutive zeros may overlap only at instantsn/B+1/(2B).
Using this description, the factorization in Eq. (2) fors(t) −
As sin(πBt) is

s(t)−As sin(πBt) = K ′(t0−t)

∞
∏

k=1

(

1−
t

t−k

)(

1−
t

tk

)

, (4)

whereK ′ is a real constant and

tn ≡ n/B + δn. (5)

From Eq. (4), the basic design for the desired A/D converter
was clear. First an oscillator would be used to generate the
wave As sin(πt/B), which would then be subtracted from
s(t). Afterward, the zero crossings would be detected using
a gate, and the converter output would be the sequence of
shifts δn in Eq. (5).

As to the second problem, the usual solution to date
consists in approximating the signal using a trigonometric
polynomial, [6]. In short, if the finite sequence of roots
tn, tn+1, . . . , tn+M−1 is known, thens(t) − As sin(πBt) is
interpolated using a trigonometric polynomial of orderM
which is zero attn+m, 0 ≤ m < M . However, this solution
is not satisfactory since its accuracy is poor even for a large
number of roots. This complexity issue is the main obstacle
for achieving efficient implementations.

The purpose of this correspondence is to provide an efficient
solution to this second problem. The key point is to realize that
approximatings(t) from the rootstn of s(t)−As sin(πBt) is
the same as approximatings(t) from its value at these instants,
sinces(tn) = As sin(πBtn). So, this is actually a problem of
interpolation from nonuniform samples.

III. PROPOSED SOLUTION

Reference [11] presents an efficient and accurate inter-
polator for band-limited signals from nonuniform samples,
applicable to signals of the same type ass(t), (bandwidthB,
supremum amplitudeAs). Consider one such signalz(t) and
assume it is known at a set of instantsτp of the form

τp ≡ pT + ηp, −P ≤ p ≤ P, (6)

where the periodT and the shiftsηp follow BT < 1 and
ηp < T/2 (strict inequalities). The approach in [11] consists
in applying the Lagrange interpolator to the productz(t)γ(t),
whereγ(t) is a fixed function, and then solving for the value
of z(t). The interpolator’s formula is

z(t) ≈
1

γ(t)

P
∑

p=−P

z(τp)γ(τp)
L(t)

L′(τp)(t− τp)
, (7)

where

L(t) ≡

P
∏

p=−P

t− τp, (8)

andγ(t) is given in Ap. I and only depends onB, T andP .
Usually, Eq. (7) is applied for|t| ≤ T/2, though wider ranges
are allowed. In [11], it was shown that the accuracy of (7)
increases exponentially withP . So, in practice a smallP is
enough to obtain high accuracy.



3

To assess the accuracy of (7), assumeBT = 0.7 and
|z(t)| ≤ 1. Then, following the analysis in [11, Sec. III], the
interpolation error of (7) for the functionγ(t) specified in Ap.
I is well fitted by

ǫ (dB) ≈ 4.12106 + 66.6044 δ− 9.35838 δ2

− 8.30873P + 3.13419 δP − 0.125803 δ2P,
(9)

whereδ is a bound on the deviations of the instantsτp from a
uniform grid with spacingT andδ < T/2. So, if δ = T/4 the
valueP = 10 gives an interpolation error belowǫ = −55 dB,
andP = 16 gives an error belowǫ = −100 dB. Any practical
accuracy can be obtained by slightly increasingP for fixed δ.
(For a detailed analysis, see the previous reference.)

Coming back to the problem in the previous section, the
sine wave crossings are equivalent to nonuniform samples ofa
form similar to that in (7). Specifically, the crossing instants in
(5) have a maximum deviation from the uniform grid,|δn| ≤
1/(2B), and the sample values are given by the sine wave,
since

s(tn) = As sin(πBtn) = As(−1)n sin(πBδn). (10)

However Eq. (7) is not applicable tos(t) since the regular
grid in (5) matches exactly the Nyquist rate and it may
be |δn| = 1/(2B), while in (6) there is some sampling
inefficiency,BT < 1, and it is always|ηp| < T/2. These latter
conditions can be easily imposed on the sampling scheme by
slightly increasing the amplitude and frequency of the sine
wave. So ifAs sin(πBt) in (4) is replaced by another sine
waveA sin(πt/T ), with amplitudeA > As and semi-period
fulfilling T > 0 and BT < 1, the theorem of Duffin and
Schaeffer in the previous section ensures that the only zeros
of the signal

s(t)−A sin(πt/T ) (11)

are simple and occur at positions

tn = nT + δn (12)

for integer n. Besides, the shiftsδn now follow the strict
inequality |δn| ≤ δ < T/2, where

δ ≡ (T/π) arcsin(As/A), (13)

since there can be no zero crossings whenever
A| sin(πt/T )| > As.

To check these conditions numerically, consider the BPSK
signal in Fig. 1. This signal was generated by modulating a
raised cosine pulse of roll-off 0.2 and bandwidthB = 0.7/T
with a sequence of random amplitudes±1. Then the signal’s
peak amplitude was scaled to 1. Fig. 2 shows the zone
marked with a rectangle in Fig. 1, together with the sine wave
A sin(πt/T ). The conditions in (12) and (13) mean that the
crossings with the sine wave can only take place inside the
shaded rectangles, and there is exactly one in each of them,
as can be seen in this example.

Let us derive the final interpolation formula. Assumes(t)
must be interpolated at an arbitraryt from the crossings
with A sin(πt/T ), (A > As, BT < 1). Any t can be
written uniquely in the formt = nT + u with integern and
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Fig. 1. Random BPSK signal with bandwidthB = 0.7/T and peak
amplitude 1. The symbols used to generate this signal were random±1 values,
and the modulating pulse was a raised cosine with roll-off factor 0.2. The
signal’s peak amplitude was scaled to one.

54 56 58 60 62 64
−1.5

−1

−0.5

0

0.5

1

1.5

t/T

N
or

m
al

iz
ed

am
p
li
tu

d
e

(|
s(

t)
|
≤

1)

Fig. 2. Short piece of the BPSK signal in Fig. 1, overlapped with the sine
waveA sin(πt/T ), with A = 1.1. The stems indicate the positions of the
crossings with the sine wave. These can only take place inside the rectangles,
and there is exactly one in each of them.

−T/2 ≤ u < T/2. Besides the signalz(u) = s(nT + u) with
time variableu is of the same type ass(t), since a time shift
affects neither the bandwidth nor the supremum amplitude. So
(7) is valid onz(u) with instantsτp = pT + δn+p and values
z(pT + δn+p) = A(−1)n+p sin(πδn+p/T ), i.e, it is

s(nT + u) ≈
1

γ(u)
·

P
∑

p=−P

A(−1)n+p sin(πδn+p/T )γ(pT + δn+p)Ln(u)

L′
n(pT + δn+p)(u− pT − δn+p)

=
A(−1)n

γ(u)
·

P
∑

p=−P

(−1)p sin(πδn+p/T )γ(pT + δn+p)Ln(u)

L′
n(pT + δn+p)(u − pT − δn+p)

(14)

where

Ln(u) ≡

P
∏

p=−P

u− pT − δn+p. (15)

Eq. (14) is the final interpolation formula.
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(a) P = 2
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(b) P = 3

Fig. 3. Sample BPSK signal in 2 and interpolated signal using(14) for
P = 2, 3.

For the example in Fig. 2, Fig. 3(a) shows the signal and its
interpolated version using (14) forP = 2. The discontinuities
in the interpolated signal take place att = nT + T/2, integer
n, because the set of crossings used is different for eachn.
Notice however that just five crossings (P = 2) give a good
accuracy. Fig. 3(b) shows the same comparison but forP = 3,
(seven crossings). The difference between both signals is much
smaller than in Fig. 3(a). ForP > 3 the error becomes too
small to be represented this way. For an error analysis see Sec.
V.

The formula in Eq. (14) yields discrete-time processing
methods for delivering samples ofs(t) with any spacing,
simply by assigning proper values ton andu. The simplest
case is for spacingT , simply by settingu = 0. For a generic
grid of instantsn1T1 with T1 > 0 and integern1, the grid
samples(n1T1) is obtained from (14), simply by settingn
andu equal to the modulo-T decomposition ofn1T1 in (14),
i.e,

n = ⌊n1T1/T + 1/2⌋ and u = n1T1 − nT. (16)

As to the efficient implementation of Eq. (14), it was shown
in [11, Sec. IV] that it can be evaluated with cost justO(N).
See also the numerical examples in [11, Sec. V].
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Fig. 4. Error in the interpolation ofs(t) from its sine wave crossings versus
index P . The error norm is the supremumsupt∈I |s(t) − ŝ(t)| where ŝ(t)
is the interpolated signal.

IV. SPECTRAL ESTIMATION FROM SINE WAVE CROSSINGS

The formula in (14) makes it possible to interpolate the
input signal at any instant from its crossings with the sine
wave, and the cost of this operation is justO(− log ǫ), where
ǫ is a bound on the interpolation error. This is because the
error of (14) decreases exponentially with trende−π(1−BT )P .
So, if ǫ is set below the working numerical error, Eq. (14)
allows one to obtain one sample ofs(t) with a small and
constant computational cost. Therefore, the cost of computing
N samples in a regular grid with arbitrary spacingT1 is
O(N). Once these samples are available, the situation is
the usual one in which the signal’s spectrum is estimated
from regularly spaced samples, and any of the well-known
techniques in spectral analysis becomes applicable, [14].Since
these techniques are based on the FFT whose complexity
is O(N logN), it is clear that the total complexity is also
O(N logN). A numerical example is presented in the next
section.

V. NUMERICAL EXAMPLES

A. Sampling of a BPSK signal

To validate the results in a specific example, a BPSK signal
s(t) was generated with the following parameters,

• Modulating pulse: raised cosine with roll-off0.2.
• Random amplitudes equal to±1.
• Total two-sided bandwidthB = 0.7/T .
• Time intervalI = [0, (N − 1)T ] with N = 1024.

Then several numerical experiments were conducted.
The first experiment consisted in interpolatings(t) in I from

its sine wave crossings. The result is shown in Fig. 4 forA =
1.1 andA = 16, where the error norm is the maximum over
I, that is, if ŝ(t) is the interpolated signal, then the ordinate
in this figure is

sup
t∈I

|s(t)− ŝ(t)|. (17)

Notice that this error decreases exponentially withP . Besides,
the values ofδ for A = 1.1 andA = 16 are0.36T and0.02T ,
respectively, but the error is roughly the same in both cases.
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Fig. 5. RMS error versus the SNR in the interpolation of the sampless(nT )
from the sine wave crossings of the noisy realizations(t) + w(t).
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Fig. 6. Maximum difference between the sampless(nT )+w(nT ) and their
interpolated values from sine wave crossings versus the SNR. The error norm
if that defined in (19).

So, the fact that the sampling instants may differ from the grid
nT (integern) has a minimal effect on the performance.

In the second experiment, a white noise processw(t) of
bandwidthB was added tos(t). Then,s(t)+w(t) was sampled
at instantsnT (integern) in I, and these samples were also
interpolated from the sine wave crossings ofs(t) + w(t) for
A = 3 andP = 4 and9. Fig. 5 shows the resulting root-mean-
square (RMS) error. The crosses (+) indicate the deviation of
sampless(nT ) + w(nT ). The other two curves are the RMS
errors forP = 4 andP = 9, given by

( 1

N

∑

nT∈I

|s(nT )− ŝ1(nT )|
2
)1/2

, (18)

where s1(t) is the value interpolated from the sine wave
crossings of the noisy signals(t)+w(t). The curve for either
value of P overlaps the sample deviation up to an SNR
threshold which is fixed by the specific value ofP . So, below
this threshold, the performance is the same if either the signal
is directly sampled, or if it is interpolated from its sine wave
crossings. The threshold can be fixed to an SNR as large as
desired, simply by slightly increasingP , due to the exponential
dependence of the interpolation error onP .
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Fig. 7. Amplitude spectrum of sequences(nT )+w(nT ) for nT in I. The
spectrum’s maximum value has been normalized to one.

B. Spectral analysis

As to the spectral analysis, it is worth comparing the
conventional procedure from uniform samples, with the one
proposed in this correspondence from sine wave crossings.
In the conventional procedure, the sampless(nT ) + w(nT )
would be delivered by an A/D converter, and then any of
the existing spectral analysis methods would be applied to
these data, [14]. And in the proposed procedure, the A/D
converter would deliver the sine wave crossing timingsδn,
then the uniform sampless1(nT ) would be computed using
Eq. (14), and finally the spectral analysis would be the same
as in the conventional procedure, i.e, it would be performed
on the sampless1(nT ) instead ofs(nT ) + w(nT ). The fact
is that the result of both procedures would bethe sameup
to the numerical accuracy in use. This can be readily seen in
Fig. 6, in which the error measure is the maximum difference
betweens(nT ) + w(nT ) and s1(nT ),

sup
nT∈I

|s(nT ) + w(nT )− s1(nT )|. (19)

This coincidence is due to the fact that the interpolator in 14 is
also reconstructing the noise realizationw(t), since it is also a
signal with bandwidthB. Fig. 7 shows the amplitude spectrum
of the sequences(nT )+w(nT ), where the maximum has been
normalized to0 dB. If this spectrum were computed from the
sine wave crossings, the it would differ from that if Fig. 7 by
the amplitude given in Fig. 8.

VI. CONCLUSIONS

A method has been presented that makes it possible to
recover a band-limited signal from its crossings with a sine
wave. It allows one to design A/D converters which only
deliver the timing of the sine wave crossings, so allowing for
a smaller complexity and power consumption in the converter.
The method is based on viewing the problem as one of
interpolation from nonuniform samples, to which a recent
efficient technique is applied. This technique is based on the
Lagrange interpolator and allows for efficient implementations
based on current designs of VFD filters. As a spin-off, the
method permits one to perform spectral analysis from the sine
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Fig. 8. Amplitude of the difference between the spectrum ofs(nT )+w(nT )
and that ofs1(nT ).

wave crossings with the complexity of the FFT. The method
has been validated in several numerical examples.

APPENDIX I
WEIGHT FUNCTION FOR THELAGRANGE INTERPOLATOR

Following [11], it is first necessary to define a band-limited
window functionw(t) that approximately selects a finite time
range. This function is the inverse Fourier transform of the
Kaiser-Bessel window,

w(t) ≡
sinc(Bw

√

t2 − T 2
w)

sinc(jBwTw)
, (20)

where
Bw ≡ 1/T −B and Tw = PT. (21)

Note that in (20) the argument of the sinc functions may be
pure imaginary. In this case, the sinc can be evaluated from
the hyperbolic sine since, for reala, it is

sinc(ja) =
sin(jπa)

jπa
=

e−πa − eπa

(2j)(jπa)
=

sinh(πa)

πa
. (22)

The weight functionγ(t) in Sec. III is then given by

γ(t) ≡
(−1)P

(P !)2
w(t)Lo(t)

sin(πt/T )
, (23)

whereLo(t) is the Lagrange kernel for the instantspT , |p| ≤
P ,

Lo(t) ≡

P
∏

p=−P

t− pT.
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