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Regularized Modified BPDN for Noisy Sparse
Reconstruction with Partial Erroneous Support
and Signal Value Knowledge

Wei Lu and Namrata Vaswani

Abstract

We study the problem of sparse reconstruction from noisyetsampled measurements when the
following knowledge is available. (1) We are given partiahd partly erroneous, knowledge of the
signal’s support, denoted by. (2) We are also given an erroneous estimate of the signaksabn
T, denoted by(ji)r. In practice, both of these may be available from prior kremlge. Alternatively,
in recursive reconstruction applications, like real-tichgmvamic MRI, one can use the support estimate
and the signal value estimate from the previous time insafft and (/i)7. In this work, we introduce
regularized modified-BPDN (reg-mod-BPDN) to solve thishjem and obtain computable bounds on
its reconstruction error. Reg-mod-BPDN tries to find thenalghat is sparsest outside the §&twhile
being “close enough” t¢/i)r on T and while satisfying the data constraint. Correspondirsylte for
modified-BPDN and BPDN follow as direct corollaries. A seddtey contribution is an approach to
obtain computable error bounds that hold without any seidficconditions. This makes it easy to compare
the bounds for the various approaches. Empirical recoctstruerror comparisons with many existing
approaches are also provided.

Index Terms

compressive sensing, sparse reconstruction, modifiegg@8ally known support

. INTRODUCTION

The goal of this work is to solve the sparse recovery prob8], [4], [5], [6]. We try to reconstruct
an m-length sparse vector;, with support, N, from ann < m length noisy measurement vectgt,
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satisfying
y&E Az +w Q)

when the following two things are available: (i) partial,dapartly erroneous, knowledge of the signal’s
support, denoted b¥’; and (ii) an erroneous estimate of the signal valuesi'ordenoted by(i)r. In
@), w is the measurement noise addis the measurement matrix. For simplicity, in this work, wstj
refer toz as the signabnd to A as the measurement matridowever, in general; is the sparsity basis
vector (which is either the signal itself or some linear sfanm of the signal) andl = H® where H
is the measurement matrix adeis the sparsity basis matrix. | is the identity matrix then: is the
signal itself.

The true support of the signal, can be rewritten as

N=TUA\A, (2)

where
A= N\TandA, 2T\ N (3)

are the errors in the support estimaié,is the complement set af and) is the set difference notation
(N\T 2 NNT°).
The signal estimate is assumed to be zero alBfgi.e.
- ()
fi = 4)
[ OTC

and the signal itself can be rewritten as

() Nur = (1) NuUT + €
(@)ne =0 (5)

wheree denotes the error in the prior signal estimate. It is assutimatthe error energyje||3, is small
compared to the signal enerdj||3.

In practical applications]’ and: may be available from prior knowledge. Alternatively, inpéipations
requiring recursive reconstruction of (approximatelyarse signal or image sequences, with slow time-
varying sparsity patterns and slow changing signal valoles,can use the support estimate and the signal
value estimate from the previous time instant as the “primvidedge”. A key domain where this problem
occurs is in fast (recursive) dynamic MRI reconstructioonir highly undersampled measurements. In
MRI, we typically assume that the images are wavelet spaeeshow slow support and signal value
change for two medical image sequences in[Hig. 1. From thesfigee can see that the maximum support
changes for both sequences are less than 2% of the supporrgizalmost all signal values’ changes
are less thar).16% of the signal energy. Slow signal value change also imples & signal value is
small before it gets removed from the support. Other paéafpplications include single-pixel camera
based real-time video imagingl[7]; video compression; RE™ (recursive projected CS) based video
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Fig. 1. In (a), we show two medical image sequences (a cardiac angraxlaequence). In (b); is the two-level
Daubechies-4 2D discrete wavelet transform (DWT) of thaliear or the larynx image at timeand the setV;
is its 99% energy support (the smallest set containing 99%h@fvector's energy). Its siz¢V;| varied between
4121-4183 & 0.07m) for larynx and between 1108-112% (0.06m) for cardiac.Notice that all support changes
are less than 2% of the support size and almost all signalesmkthanges are less than 4% |{fc:) v, ||2-

denoising or video layering (separating video in foregeband background layers)|[8]./[9]; and spectral
domain optical coherence tomography|[10] based dynamigiimga
This work has the following contributions.

1) We introduce regularized modified-BPDN (reg-mod-BPDNJl @btain a computable bound on its
reconstruction error using an approach motivated by [3fj-Red-BPDN solves

mbin v||bre

1 1 .
1+ 5 lly = AblE + S — e

(6)

i.e. it tries to find the signal that is sparsest outside th& sevhile being “close enough” tg on
T, and while satisfying the data constraint. Reg-mod-BPDésuke fact thai” is a good estimate
of the true support)V, and thatir is a good estimate ofr. In particular, fori € A., this implies

that|/;| is close to zero (since; = 0 for i € A,).

2)

Our second key contribution is to show how to use the rdcection error bound result to obtain

another computable bound that holds without any sufficiemid@ions and is tighter. This allows
easy bound comparisons of the various approaches. A sineitait for mod-BPDN and BPDN
follows as a direct corollary.
3) Reconstruction error comparisons with these and margr @kisting approaches are also shown.
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A. Notations and Problem Definition

For any setl’ and vectorb, by denotes a sub-vector containing the elements with indices inT'.
||b]| refers to thel;, norm of the vectob. Also, ||b||o counts the number of nonzero elements.of

The notation7 denotes the set complement®f i.e., 7¢ = {i € [1,...,m|,i ¢ T}. 0 is the empty
set.

We use’ for transpose. For the matrid, Ar denotes the sub-matrix containing the columnsdof
with indices in7. The matrix norm||A|,, is defined ag|A||, £ max, ”m&?. I7 is an identity matrix

on the set of rows and columns indexed by elements.iBr g is a zero matrix on the set of rows and

columns indexed by elements i and .S respectively.

The notationV L(b) denotes the gradient of the functidr{b) with respect tob.

When we say is supported of"U S we mean that the support df(set of indices wheré is nonzero)
is a subset of " U S.

Our goal is to reconstruct a sparse vectgrwith support,N, from the noisy measurement vectgr,
satisfying [1). We assume partial knowledge of the suppimoted byT", and of the signal estimate on
T, denoted by(i1)7. The support estimate may contain errors — misagsand extrasA., defined in
(). The signal estimatgi, is assumed to be zero alofiy, i.e it satisfies[(#) and the signal, satisfies

@).

B. Related Work

The sparse reconstruction problem, without using any saipposignal value knowledge, has been
studied for a long time_]2],[13],[14],[15],[16]. It tries to findhe sparsest signal among all signals that
satisfy the data constraint, i.e. it solvesn, ||bl|p s.t. y = AB. This brute-force search has exponential
complexity. One class of practical approaches to solveishizmsis pursuit which replacd$|o by [|0]/1
[2]. The ¢; norm is the closest norm tf that makes the problem convex. For noisy measurements, the
data constraint becomes an inequality constraint. Howéhier assumes that the noise is bounded and
the noise bound is available. In practical applications nettbis may not be available, one can use the
Lagrangian version which solves

min Al + 5y — 4b[3 ™)

This is calledbasis pursuit denoising (BPDNJ) |[2]Since this solves an unconstrained optimization
problem, it is also faster. An error bound of BPDN was obtdiire[3]. Error bounds for its constrained
version were obtained in [11], [12].

The problem of sparse reconstruction with partial suppoxvidedge was introduced in our work
[13], [14]; and also in parallel in Khajehnejad et @l [15] andvonBorries et al[[16]. In[[13],[[14], we
proposed an approach calletbdified-CSwhich tries to find the signal that is sparsest outside thd'set
and satisfies the data constraint. We obtained exact reactieh conditions for it by using the restricted
isometry approach [17]. When measurements are noisy, éosdime reasons as above, one can use the
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Lagrangian version: .
1+ §Hy — Abl3 (8)

mbin ~||bre

We call thismodified-BPDN (mod-BPDN]Jts error was bounded in the conference version of this work
[1], while the error of its constrained version was boundedacques [18].

In [15], Khajehnejad et al assumed a probabilistic suppodr@and proposed a weighted solution.
They also obtained exact reconstruction thresholds foghted ¢, by using the overall approach of
Donoho [19]. In Fig[2, we show comparisons with the noisy aagian version ofveighted/; which
solves:

min byl + 7/ Iorls + 5l — 4b]3 ©)

Our earlier work on Least Squares CS-residual (LS-CS) andh&a Filtered CS-residual (KF-CS)
[20], [21] can also be interpreted as a possible solutiorifercurrent problem, although it was proposed
in the context of recursive reconstruction of sparse sigegliences.

Reg-mod-BPDN may also be interpreted as a Bayesian CS or &l+haded CS approach. Recent

work in this area includes [22]. [23], [24], [25], [26], [27]28].

C. Some Related Approaches**

Before going further, we discuss belavfew approaches that are related to, but different from reg-
mod-BPDN, and we argue when and why these will be worse tlggmosl-BPDN This section may be
skipped on a quick reading. We show comparisons with allethiesig.[2.

The first is what can be calle@S-residual or CS-diffivhich computes

& = i+ b, whereb solves
. 1 .
min by + Slly = Ajx — Ab3 (10)

This has the following limitation. It does not use the fadttivhenT is an accurate estimate of the true
support,(x)7r- is much more sparse compared with the full- i) (the support size ofr- is |A| while
that of (x — 1) is |T| + |A| which is much larger). The exception is if the signal valuepis so strong
that (x — 1) is zero (or very small) on all or a part @f.

CS-residual is also related to LS-CS and KF-CS. LS-CS sdl@sbut with /i being the LS estimate
computed assuming that the signal is supported’aand with (&) = 0. For a static problem, KF-CS
can be interpreted as computing the regularized LS estimaté and using that ag;. LS-CS and
KF-CS also have a limitation similar to CS-residual.

Another seemingly related approach is what can be c&@lgdnod-residuallt computes

&1 = i, @re = b,, whereb, solves

.1 N
min i”y—AT,UT_ATCbCH%+7|’b0|’1 (1)
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whereb, stands for(b)r-. This is solving a sparse recovery problem@f i.e. it is implicitly assuming
that 2 is either equal tqi or very close to it. Thus, this also works only when the sigradlie prior
is very strong.

Both CS-residual and CS-mod-residual can be interpretexi@mnsions of BPDN, andl[3, Theorem 8]
can be used to bound their error. In either case, the bouthdavitain terms proportional to(xr — fi7)||2
and as a result, it will be large whenever the prior is notmj,renougﬂ. This is also seen from our
simulation experiments shown in Flgd. 2 where we provide camspns for the case of good signal value
prior (0.1% error in initial signal estimate) and bad sigvedlie prior (10% error in initial signal estimate).
We vary support errors from 5% to 20% misses, while keepiegetkiras fixed at 10%.

Reg-mod-BPDN can also be confused wittodified-CS-residualhich compute$§[29]

&=/ + b, whereb solves

1 .
min |y — Aft = Abl[3 + y[lbr- (12)

This is indeed related to reg-mod-BPDN and in fact this irexpit. We studied this empirically if_[29].
However, one cannot get good error bounds for it in any easlyida. Notice that the minimization is
over the entire vectob, while the¢; cost is only onb;e.

One may also consider solving the following variant of regghBPDN (we call thiseg-mod-BPDN-
var):

. 1 1 .
min  Aflbres + 51y — 4bl3 + S M - Al (13)

Sinceji is supported ofT’, the regularization term can be rewritten)d$— 1|3 = A|\bz — i ||3+A||br- ||3.

Thus, in addition to th&; norm cost onby. imposed by the first term, this last term is also imposing
an /5 norm cost on it. IfA is large enough, thé, norm cost will encourage the energy of the solution
to be spread out off*, thus causing it to be less sparse. Since the iri very sparse off’“ (|A| is
small compared to the support size also), we will end up withrger recovery errEr [see Fig[2(a)].
However, if we compare the two approaches for compressipf@bsequences, e.g. the larynx sequence,
it is difficult to say which will be better [see Fig] 4].

Finally, one may solve the followingne can call it reg-BPDI)

. 1 1 X
min bl + 5y — ABJ3 + SAIb — Al (14)

This has two limitations. (1) Like CS-residual, this alseedmot use the fact that whé@his an accurate
estimate of the true suppofty)r. is much more sparse compared with the full- /). (2) Its last term
is the same as that of reg-mod-BPDN-var which also causesdime problem as above.

In either case, one can assume that- 1) is supported omA and the “noise” isw + Ar(zr — jir). Thus, CS-residual
error can be bounded (A, A)(||wl|2 + ||Ar(xT — fiT)]|2) while CS-mod-residual error can be bounded|lby — fir||2 +
C(Are, A)(lwll2 + | Az (z1 — fir)]]2).-

%In the limit if \/X/2 is much larger thany, we may get a completely non-sparse solution.
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D. Paper Organization

We introduce reg-mod-BPDN in Sec. Il. We obtain computaldanals on its reconstruction error in
Sec. lll. The simultaneous comparison of upper bounds ofipielapproaches becomes difficult because
their results hold under different sufficient conditions Sec. IV, we address this issue by showing how to
obtain a tighter error bound that also holds without any sigffit conditions and is still computable. In both
sections, the bounds for mod-BPDN and BPDN follow as direcbltaries. In Sec V, the above result is
used for easy numerical comparisons between the upper bainarious approaches — reg-mod-BPDN,
mod-BPDN, BPDN and LS-CS and for numerically evaluatingtingss of the bounds with both Gaussian
measurements and partial Fourier measurements. We algig@nm@construction error comparisons with
CS-residual, LS-CS, KF-CS, CS-mod-residual, mod-CSdtediand reg-mod-BPDN-var, as well as with
weighted/;, mod-BPDN and BPDN for (a) static sparse recovery from ramé&aussian measurements;
and for (b) recovering a larynx image sequence from simdl&dtRl measurements. Conclusions are
given in Sec. VI.

Il. REGULARIZED MODIFIED-BPDN (REG-MOD-BPDN)

Consider the sparse recovery problem when partial suppowledge is available. As explained earlier,
one can use mod-BPDN given il (8). When the support estirsadedurate, i.gA| and|A.| are small,
mod-BPDN provides accurate recovery with fewer measurésmdan what BPDN needs. However, it
puts no cost orbr except the cost imposed by the data term. Thus, when very feasurements are
available or when the noise is large; can become larger than required (in order to reduce the data
term). A similar, though lesser, bias will occur with weigtl’; also whem’ < ~. To address this, when
reliable prior signal value knowledge is available, we castéad solve

. 1 1 N
min - L(b) = y[lbre ] + 5]y - Ab|I3 + SAlbr = irl3 (15)

which we callreg-mod-BPDN Its solution, denoted by, serves as the reconstruction of the unknown
signal,z. Notice that the first term helps to find the solution that iarspst outsid€”, the second term
imposes the data constraint while the third term imposeseciess tq; alongT'.

Mod-BPDN is the special case df {15) when= 0. BPDN is also a special case with= 0 and
T = () (so thatA = N).

A. Limitations and Assumptions

A limitation of adding the regularizing termy||br — jir||3 is as follows. It encourages the solution
to be close to(i)a, which is not zero. As a resul{i)a, will also not be zero (except if\ is very
small) even thougliz)a, = 0. Thus, even in the noise-free case, reg-mod-BPDN will nbiea® exact
reconstruction. In both noise-free and noisy cases/i)f, is large, (Z)a, being close to(ii)a, can

e

result in large error. Thus, we need the assumption ¢hat, is small.
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For the reason above, when we estimate the suppaftt @fe need to use a nonzero threshold, i.e.
compute
N ={i:|&] > p} (16)
with ap > 0. We note that thresholding as above is dong/ for support estimation and not for improving
the actual reconstruction. Support estimation is requinedynamic reg-mod-BPDN (described below)
where we use the support estimate from the previous timarhsts the support knowledd€, for the
current time.
In summary, to get a small error reconstruction, reg-mo@BRequires the following (this can also
be seen from the result of Theorem 1):
1) T is a good estimate of the true signal’'s suppddt,i.e. |A| and|A.| are small compared taV|;
and
2) [ is a good estimate ofp. Fori € A, this implies that/ji;| is close to zero (since; = 0 for
1€ A).
3) For accurate support estimation, we also need that mosteno elements of are larger than
;] (for exact support estimation, we need this to hold for alhzeyo elements af).

maxieA,
The smallest nonzero elements ofare usually on the sef. In this case, the third assumption is
equivalent to requiring that most elementsaof are larger thamax;eca, |/;].

B. Dynamic Reg-Mod-BPDN for Recursive Recovery

An important application of reg-mod-BPDN is for recursivetconstructing a time sequence of sparse
signals from undersampled measurements, e.g. for dynarRt ¥b do this, at timet we solve [(15)
with 7' = N,_1, ()7 = (#—1)7 and (i)p- = 0. Here N,_, is the support estimate of the previous
reconstructiong;_1. At the initial time, ¢ = 0, we can either initialize with BPDN, or with mod-BPDN
using T' from prior knowledge, e.g. for wavelet sparse imaggéscould be the set of indices of the
approximation coefficients. We summarize the stepwise hjmaeg-mod-BPDN approach in Algorithm
. Notice that at = 0, one may need more measurements since the prior knowled@entdy not be
very accurate. Hence, we ugg= Agxg +wy Where Ay is anng x m measurement matrix withg > n.

In Algorithm [, we should reiterate that for support estimat we need to use a threshagid> 0.
The threshold should be large enough so that most elemenis pf= 17"\ N; = Ny \ N; do not get
detected into the support.

We briefly discuss here the stability of dynamic reg-mod-BPPeconstruction error and support
estimation errors bounded by a time-invariant and smalle/at all times). Using an approach similar
to that of [30], it should be possible to show the followind.(i) p is large enough (so thaV, does
not falsely detect any element that got removed frai; (i) the newly added elements to the current
support,V;, either get added at a large enough value to get detecteddrately, or within a finite delay
their magnitude becomes large enough to get detected; @nthéi matrix A satisfies certain conditions
(for a given support size and support change size); reg-BRMAN will be stable.
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Algorithm 1 Dynamic Reg-mod-BPDN
At t = 0, computed, as the solution ofnin,  ~|[(b)r[|1 + |lyo — Ab||3, whereT is either empty
or is available from prior knowledge. Computé, = {i € [1,...,m] : |(Z0):| > p}. SetT « N, and
(1) < (&o)r Fort >0, do

1) Reg-Mod-BPDN.Let T = N,_; and letiir = (#;—1)7. Computez; as the solution of [(15).

2) Estimate Support.N; = {i € [1,....,m] : |(&)]; > p}.

3) Output the reconstructiofy.

Feedbacth andz;; incrementt, and go to step]1.

I1l. BOUNDING THE RECONSTRUCTIONERROR

In this section, we bound the reconstruction error of reghB&®DN. Since mod-BPDN and BPDN are
special cases, their results follow as direct corollaridse result for BPDN is the same as [3, Theorem
8]. In Sec. llI-A, we define the terms needed to state our tebulll-B we state our result and discuss
its implications. In 1lI-C, we give the proof outline.

A. Definitions

We begin by defining the function that we want to minimize as

L(b) £ Ly(b) + y|bre |1 (17)
where . .
Lyi(b) & §Hy — Ab||3 + 5)\W)T — o3 (18)

contains the twd; norm terms (data fidelity term and the regularization terinjve constrainb to be
supported orf’ U S for someS C T, then the minimizer ofl;(b) will be the regularized least squares
(LS) estimator obtained when we put a weighon ||br — 7|2 and a weight zero ofibs — jis||3.

Let S be a given subset aA. Next, we define three matrices which will be frequently useaur

results. Let
Ir 0
Qr(S) = Arus’ Arus + A s (19)
Os7 Oss
Mry 21— Ap(Ap' Ap + M)t A7 (20)
Pr(S) 2 (As'MprAg)™! (21)

whereIr is a|T'| x |T'| identity matrix and0r s, 057, 05,5 are all zeros matrices with sizég| x |S|,
|S| x |T'| and|S| x |S|.

Assumption 1:We assume thaDr (A) is invertible. This implies that, for ang C A, the functions
L(b) and L, (b) are strictly convex over the set of all vectors supported’an S.
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10

Proposition 1: When A > 0, Q71 (5) is invertible if Ag has full rank. Whem\ = 0 (mod-BPDN),
this will hold if A7 has full rank.
The proof is easy and is given in Appendix A.

Let S C A. Consider minimizingL(b) overb supported orii’U.S. Whenb(zg)- = 0 and Assumption
[ holds, L(brus) is strictly convex and thus has a unique minimizer. The saoidshfor L, (bryus).
Define their respective unique minimizers as

dr(S) £ arg mbin L(b) subjectto biryg)e =0 (22)
CT7)\(S) = arg Hlbin Ll(b) SUbjeCt to b(TUS)C =0 (23)

As explained earliergr A (S) is the regularized LS estimate ofwhen assuming that is supported on
T U S and with the weights mentioned earlier. It is easy to see that

A
Os

[er A(S)](1us)- =0 (24)

lerA(S)]Tus = QrA(S) ™ <ATUS/y +

In a fashion similar to[[3], define

ERCpA(S)£1 - Jmax | Pra(S)As'Mr xAullx (25)
This is different from the ERC of [3] but simplifies to it whefi = (), S = N and A = 0. In [3], the
ERC, which in our notation i€ RCy (V), being strictly positive, along with approaching zero, ensured
exact recovery of BPDN in the noise-free case. Hence,linBIC was an acronym fdExact Recovery
Coefficient In this work, the same holds for mod-BPDN.AIRCro(A) > 0, the solution of mod-BPDN
approaches the true as~ approaches zero. We explain this further in Remark 2 belosweéver, no
similar claim can be made for reg-mod-BPDN. On the other h#émdthe reconstruction error bounds,
ERC serves the exact same purpose for reg-mod-BPDN as itfdo&PDN in [3]: ERCypA(A) > 0
and~ greater than a certain lower bound ensures that the regBR&N (or mod-BPDN) error can be
bounded by modifying the approach of [3].

B. Reconstruction error bound

The reconstruction error can be bounded as follows.
Theorem 1:1f Q7 \(A) is invertible, ERCr x(A) > 0 and

2 1A@ua)y'(y — Aer (D))o
N ERCr)(A)

SERNCN (26)

then,
1) L(b) has a unique minimizet;.
2) The minimizer,z, is equal todr x(A), and thus is supported di U A.
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11

3) Its error can be bounded as

2 = &2 < VIAIF(A) + Mfa(A)Jer — firl2
+f3(A)][wll2
where
fi(a) =
VIAT Az + A7)~ A AsPra(A) 3 + [ Pra()13,
f2(B) 2 1QA(A) 2,
f3(A) 2 1QrA(A) T Aua2, (27)

Pr(A) is defined in[(2ll) and)7 »(A) in (19).

Corollary 1 (corollaries for mod-BPDN and BPDN)The result for mod-BPDN follows by setting
A = 0 in Theorem[l. The result for BPDN follows by setting= 0, 7 = () (and soA = N).
This result is the same ds| [3, Theorem 8].

Remark 1 (smallest): Notice that the error bound above is an increasing function.orhus~ =
77, (A) gives the smallest bound.

In words, Theorem 1 says that, @7 ,(A) is invertible, ERC7 z(A) is positive, andy is large
enough (larger than*), then L(b) has a unique minimizer;, andz is supported o' UA = N U A..
This means that the only wrong elements that can possiblyadoeqb the support of: are elements
of A.. Moreover, the error between and the truer is bounded by a value that is small as long as
the noise,||w

2, is small, the prior term|zr — fir[]2, is small andy7,,(A) is small. By rewriting
y—Acpa(A) = A(x —er A (A)) +w and using Lemma 2 (given in the Appendix) one can upper bound
~* by terms that are increasing functions|f||» and ||z — fir||2. Thus, as long as these are small, the
bound is small.

As shown in Proposition 197 \(A) is invertible if A > 0 and A is full rank or if Apya is full rank.

Next, we use the idea of [[3, Corollary 10] to show t#aRC7 ((A) is anExact Recovery Coefficient
for mod-BPDN.

Remark 2 (ERC and exact recovery of mod-BPDRYr mod-BPDN¢7 o (A) is the LS estimate when
x is supported o7’ U A. Using [24), [1), and the fact thatis supported onV C T'U A, it is easy to
see that in the noise-freev (= 0) case,cr,o(A) = zrua. Hence the numerator of;. ,(A) will be zero.
Thus, using Theorem 1, iERCro(A) > 0, the mod-BPDN error satisfigge — 2(|2 < v/[A[f1(A).
Thus the mod-BPDN solutiors;, will approach the truer as~ approaches zero. Moreover, as long as

min;ey |@;]

TS VA @)

We show a numerical comparison of the results of reg-mod{BRDod-BPDN and BPDN in Table |
(simulation details given in Sec. V). Notice that BPDN need% of the measurements for its sufficient

, at least the support af will equal the true supporty .

3If we bounded the/, norm of the error as done ifil[3] we would get a looser upper daamthe allowedy’s for this.
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conditions to start holding (ERC to become positive) wheneed-BPDN only need$9%. Moreover,
even with90% of the measurements, the ERC of BPDN is just positive and sergll. As a result, its
error bound is large2(% normalized mean squared error (NMSE)). Similarly, noticat tmod-BPDN
needs: > 19%m for its sufficient conditions to start holdingl¢,a to become full rank which is needed
for Qr0(A) to be invertible). For reg-mod-BPDN which only needg to be full rank,n = 13%m
suffices.

Remark 3: A sufficient conditions comparison only provides a compari®f when a given result
can be applied to provide a bound on the reconstruction.elmoother words, it tells us under what
conditions we can guarantee that the reconstruction effrar given approach will be small (below a
bound). Of course this does not mean that we cannot get smail @en when the sufficient condition
does not hold, e.g., in simulations, BPDN provides a goodnsttuction using much less than 90% of
the measurements. However, wher< 90%m we cannot bound its reconstruction error using Theorem
1 above.

C. Proof Outline

To prove Theorerill, we use the following approach motivatethht of [3].
1) We first bound|dr x(A) — crx(A)|2 by simplifying the necessary and sufficient condition for it
to be the minimizer of.(b) whenb is supported orf’ U A. This is done in Lemma 1 in Appendix
Bl
2) We bound|cy ) (A)—z||2 using the expression fef ,(A) in (24) and substituting = Aruazrua+
w in it (recall thatz is zero outsidél” U A). This is done in Lemma 2 in AppendiX B.
3) We can bound|dr \(A) — z||2 using the above two bounds and the triangle inequality.
4) We use an approach similar {d [3, Lemma 6] to find the sufitcd®nditions under whichr »(A)
is also the unconstrained unique minimizerlab), i.e. & = dr z(A). This is done in Lemma 3 in
Appendix[B.
The last step (Lemma 3) helps prove the first two parts of Tdraat. Combining the above four steps,
we get the third part (error bound). We give the lemmas in ApelB. They are proved in Appendix
01, 02 and D3.

Two key differences in the above approach with respect tadhkalt of [3] are

o cr A (A) is the regularized LS estimate instead of the LS estimat&]inThis helps obtain a better
and simpler error bound of reg-mod-BPDN than when using tBettimate. Of course, when= 0
(mod-BPDN or BPDN)cro(A) is just the LS estimate again.

« For reg-mod-BPDN (and also for mod-BPDN), the subgradienotthel; term iso||bre||1]p—q,. , (a)
and so anyp in this set is zero off’, and only hag|¢all- < 1. Since|A| < |N|, this helps to get
a tighter bound onjcz A (A) — drA(A)]|2 in step 1 above as compared to that for BPDN [3] (see

proof of Lemma 1 for details).
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IV. TIGHTER BOUNDS WITHOUT SUFFICIENT CONDITIONS

The problem with the error bounds for reg-mod-BPDN, mod-BPBPDN or LS-CS[[31] is that
they all hold under different sufficient conditions. Thiskea it difficult to compare them. Moreover, the
bound is particularly loose whemis such that the sufficient conditions just get satisfiedsThibecause
the ERC is just positive but very small (resulting in a verggay* and hence a very large bound). To
address this issue, in this section, we obtain a bound tHds lathout any sufficient conditions and that
is also tighter, while still being computable. The key idbattwe use is as follows:

« we modify Theorem 1 to hold for “sparse-compressible” sigral], i.e. for sparse signals;, in
which some nonzero coefficients out of the getare small (“compressible”) compared to the rest;
and then

« We minimize the resulting bound over all allowed split-ugsaointo non-compressible and com-
pressible parts.

Let A C A be such that the conditions of Theorem 1 hold for it. Then tree itep involves modifying
Theorem 1 to bound the error for reconstructinghen we treatr, ; as the “compressible” part. The
main difference here is in boundifigs,x(A) — x|z which now has a larger bound becausergf . We
do this in Lemmal4 in the Appendix] C. Notice from the proofs eithma 1 and Lemma 3 in Appendix
DI and D3 that nothing in their result changes if we replacby a A C A. Combining Lemma 4 with
Lemmas 1 and 3 applied fak instead ofA leads to the following corollary.

Corollary 2: Consider aA C A. If Q7. (A) is invertible, ERCy \(A) > 0, andy = 'Y:*F,A(A)' then

lz = &l < F(T, A A, A 375 (A)) (28)
where
FTAA A7) 2\ |AIf1(A) + Afo (D)2 — firl
+A) [wllz + fa(A) [z &2, (29)
A2\ J1QraB) 1Ay 3" Apal3+ 1, (30)

f1()f2(), f3() are defined in[(27) and;, , (A) in @8).
Proof: The proof is given in Appendik C1.

In order to get a bound that depends only|jon — fir||2, ||xA\AH2, the noiseyw, and the set¥, A, A,
we can further bounds. , (A A) by rewriting y — AcrA(A) = A(z — epa(A)) +w and then bounding
|z — (cr.A(A))]]2 using Lemma 4. Doing this gives the following corollary.

Corollary 3: If Q7.\(A) is invertible, ERC7x(A) > 0, andy = fyT’A(A), then

|z — 22 < g(A) (31)
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where

9(A) 2 gillar — fir]]2 + go||w|2 + gsllza\all2 + 94 (32)
_ v/|A]fi(A)maxcofA)
2\ fo(A < +1),
g1 =M fa(A)( ERCrA(B) )
|A|f1(A) f3(A)maxcotA) i
gQé ~ +f3(A)>
ERCr A\(A)
Al f1(A) f4(A)maxcofA) N
93é ~ +f4(A)>
ERC’T7>\(A)
a |A|\|A(TUA)C/W||oof1(A)
o ERCrA(A) ’
maxcofA) 2 max || A/ Arualle,
i¢(TUA)

FO).f2(), f5() and f4() are defined in[[27) and(B0), ang. ,(A) in @8).
Proof: The proof is given in Appendik C2.
Using the above corollary and minimizing over all allowAds, we get the following result.
Theorem 2:Let

A* 2 argming(A) (33)
Acg
where
GE{A:ACA ERCrA(A)>0,Qr,(A) is invertible} (34)

If v= 7}7A(A*), then
1) L(b) has a unique minimizet;, supported orf’ U A*.
2) The error bound is
Iz — &[> < g(A%) (35)

(7 (A) is defined in [(26)).

Proof: This result follows by minimizing over all allowed’s from Corollary[3.

Compare Theorem 2 with Theorem 1. Theorem 1 holds only whercémplete sef\ belongs tog,
whereas Theorem 2 holds always (we only need toysappropriately). Moreover, even whek does
belong toG, Theorem 1 gives the error bound by choosiy = A. However, Theorem 2 minimizes
over all allowedA'’s, thus giving a tighter bound, especially for the case whensufficient conditions
of Theorem 1 just get satisfied adRC7 ,(A) is positive but very small. A similar comparison also
holds for the mod-BPDN and BPDN results.
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The problem with Theorem 2 is that its bound is not computéhle computational cost is exponential
in |A[). Notice thatg(A*) := minz_; g(A) can be rewritten as

g(A*) 2 ming(A) = min ming(A) where

Aeg 0<k<|A| Gk
G 2GN{ACA:|A|=k} (36)
Let d := |A|. The minimization overy; is expensive since it requires searching over(%)l size k

subsets ofA to first find which ones belong tg, and then find the minimum over all C G;.. The
total computation cost to do the former for all s€ig Gi,...Gy is O(Zﬁzo (z)) = 0(29), ie. it is
exponential ind. This makes the bound computation intractable for largélpros.

A. Obtaining a Computable Bound

In most cases of practical interest, the term that has thémuem variability over different sets g,
is HxA\AHQ. The multipliersgy, g2, g3 and g4 vary very slightly for different sets in a give@,. Using
this fact, we can obtain the following upper boundwaing, g(A) which is only slightly looser and also
holds without sufficient conditions, but is computable idyp@mial time.

Define A**(k) and By, as follows

A (k)& i ;
208 s Ry sl
A (k) it A (k
Bké{sﬂ (k) if A7 (k) € G an
00 otherwise
Then, clearly
ming(A) < By (38)

sinceming, g(A) < g(A) for any A € G, and it is also less than infinity. For ary the setA** (k) can
be obtained by sorting the elementsagf in decreasing order of magnitude and lettiag*(k) contain
the indices of the: largest elements. Doing this tak€4d log d) time since sorting take@(d log d) time.
Computation ofB;, requires matrix multiplications and inversions which arg:3). Thus, the total cost
of doing this is at mosO(d*) which is still polynomial ind.
Therefore, we get the following bound that ég@mputable in polynomial time and that still holds
without sufficient conditions and is much tighter than Tleeorl
Theorem 3:Let
kmin =arg min B, and
0<k<|A|
A 2 A (i) (39)

where By, and A**(k) are defined in[(37). Ify = vj,,(A™),
1) L(b) has a unique minimizet;, supported orf’ U A**,
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2) The error bound is
lz — &[> < g(A™) (40)

(7. (A) is defined in [(Z6)).

Corollary 4 (corollaries for mod-BPDN and BPDN)The result for mod-BPDN follows by setting
A = 0 in TheoremB. The result for BPDN follows by setting= 0, T = () (and soA = N) in
TheoreniB.

Whenn ands £ |N| are large enough, the above bound is either only slighttyelaror often actually
equal, to that of Theorem 2 (e.g. in Fig. 5(a), = 256, n = 0.13m = 33, s = 0.1m = 26). The
reason for the equality is that the minimizing valuekofs the one that is small enough to ensure that
91,92, 93,94 are small. Wherk is small, g1, g2, g3, 94, ERC and Q(A) have very similar values for
all setsA of the same sizé. In (32), the only term with significant variability for défent setsA of
the same sizé: is HmA\AHQ. Thus, (a)argming, g(A) = argming, HxA\AHQ and (b) Gy, is equal to
{A C A,|A| = k}. Thus, [38) holds with equality and so the bounds from Thasr8 and 2 are equal.
As n ands = |N| approach infinity,it is possible to use a law of large numbers (LLN) argument to
prove that both bounds will be equal with high probability.i{yp.) The key idea will be the same as
above: show that as, s go to infinity, w.h.p.,g1, g2, 93, g1, @ and ERC' are equal for all setd of any
given sizek. We will develop this result in future work.

V. NUMERICAL EXPERIMENTS

In this section, we show both upper bound comparisons andlaconstruction error comparisons.
The upper bound comparison only tells us that the performauarantees of reg-mod-BPDN are better
than those for the other methods. To actually demonstraterdy-mod-BPDN outperforms the others,
we need to compare the actual reconstruction errors. Thi$ogseis organized as follows. After giving
the simulation model in Sec V-A, we show the reconstructigorecomparisons for recovering simulated
sparse signals from random Gaussian measurements in Sed¢nvagc V-C, we show comparisons for
recursive dynamic MRI reconstruction of a larynx image ssme. In this comparison, we also show
the usefulness of the Theorem 3 in helping us select a goagk\@l~. In the last three subsections,
we show numerical comparisons of the results of the varibasrems. The upper bound comparisons of
Theorem 3 and the comparison of the corresponding recatistnuerrors suggests that the bounds for
reg-mod-BPDN and BPDN are tight under the scenarios evaduatence, they can be used as a proxy
to decide which algorithm to use when. We show this for botmdoan Gaussian and partial Fourier
measurements.

A. Simulation Model

The notationz = +a means that we generate each element of the vectodependently and each
is either+a or —a with probability 1/2. The notation ~ A/(0,%) means that is generated from a
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Gaussian distribution with mean 0 and covariance mairiXVe use|a| to denote the largest integer less
than or equal ta.. Independent and identically distributed is abbreviatedd Also, N-RMSE refers to
the normalized root mean squared error.

We use the recursive reconstruction application [20], f@4hotivate the simulation model. In this case,
assuming that slow support and slow signal value change[beklFig[l], we can use the reconstructed
value of the signal at the previous time @snd its support ag’. To simulate the effect of slow signal
value change, we lety = uny + v wherev is a small iid Gaussian deviation and we [gt~n = prnn
(and sozrnn = fiTnN + VraN).

The extras setA, = 7'\ N, contains elements that got removed from the support atuhert time
or at a few previous times (but so far did not get removed fromdupport estimate). In most practical
applications, only small valued elements at the previooe tget removed from the support and hence
the magnitude ofi on A, will be small. We use3; to denote this small magnitude, i.e. we simulate
(t)a, = £Ps.

The misses’ set at time, A, definitely includes the elements that just got added to tippart at
t or the ones that previously got added but did not get detdatedthe support estimate so far. The
new elements typically get added at a small value and théwevslowly increases to a large one. Thus,
elements inA will either have small magnitude (corresponding to the entrmewly added ones), or will
have larger magnitude but still smaller than that of elemaiteady inVNT'. To simulate this, we do the
following. (a) We simulate the elements &hN 7" to have large magnitude;, i.e. we let(u) nnr = 0.

(b) We split the set\ into two disjoint partsA; and Ay = A\ A;. The setA; contains the small (e.g.
newly added) elements, i.€u)a, = +5,. The setA, contains the larger elements, though still with
magnitudes smaller than those MN T, i.e. (u)a, = £Bm, Wheres; > B, > Bs.

In summary, we use the following simulation model.

(@)= ()N +v, v~ N(©O,020)
()ne=0 (41)
where (u)nnr==+5
()a, =£B8s, (W), =+Bm
(1)ne=0 (42)
and
()1on = ()N = 06,
()a, ==%B5s
(1) =0 (43)
We generate the support af N, of size |N|, uniformly at random from[1,...,m|. We generateA

with size |A| and A, with size |A.| uniformly at random fromN and from N¢ respectively. The set
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Fig. 2. The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS, KF-@&jghted/;, CS-residual, CS-mod-
residual and modified-CS-residual are plotted. ko 0.13m , reg-mod-BPDN has smaller errors than those of
mod-BPDN and the gap is larger when the signal estimate isl.géor n = 0.3m, the errors of reg-mod-BPDN,
mod-BPDN and weighted,; are close and all small.

A, of size |A,| = [|A]/2] is generated uniformly at random frol. The setA; = A\ A;. We let
T =NUA,.\ A. We generatg: and thenz using [42) and[(41). We generateusing [43).

In some simulations, we simulated the more difficult caseralte, = 5,. In this case, all elements
on A were identically generated and hence we did not ned

B. Reconstruction Error Comparisons

In Fig.[2, we compare the Monte Carlo average of the recoctitru error of reg-mod-BPDN with
that of mod-BPDN, BPDN, weighted, [15] given in [9), CS-residual given i _(L0), CS-mod-resitu
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Fig. 3. Plot of Fig[2(@) extended all the way td\|/|N| = 1 (which is the same a& = N). Notice that if
|A.| = 0, then the pointA|/|N| = 1 of reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in lot,
|A.] = 3 and hence the two points are different, even though the & quite similar.

given in [11) and modified-CS-residual[29] given in](12)m8lation was done according to the model
specified above. We used random Gaussian measurements sirthilation, i.e. we generatetl as an
n X m matrix with iid zero mean Gaussian entries and normalizedh €@lumn to unit/s; norm.

We experimented with two choices of n = 0.13m (where reg-mod-BPDN outperforms mod-BPDN)
andn = 0.3m (where both are similar) and two values @f, o2 = 0.001 (good prior) ando? = 0.1
(bad prior). For the cases of Hig 2(a) € 0.13m, o = 0.001) and Figl2(b) ¢ = 0.13m, o3 = 0.1), we
used signal lengthn = 256, support siz¢ N| = 0.1m = 26 and support extras siz&\.| = 0.1|N| = 3.
The misses’ sizelA|, was varied between 0 arid2| N| (these numbers were motivated by the medical
imaging application, we used larger numbers than what avenstin Fig.[1). We used; = 1, 3,, = 0.4
and 8, = 0.2. The noise variance was2, = 10~°. For the last two figures, Figl 2(c)(= 0.3m,

o2 = 0.001) and Fig[2(d) & = 0.3m, o2 = 0.1), for which n was larger, we useg,, = 3, = 0.25
which is a more difficult case for reg-mod-BPDN. For Hig. 2(e)e also used a larger noise variance

o2, =10~ All other parameters were the same.

In Fig. [3, we show a plot of reg-mod-BPDN and BPDN from Fig Péxtended all the way to
|A|/|N] = 1 (which is the same a& = N). Notice that if[A.| = 0, then the poinjA|/|N| = 1 of
reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in fid, |A.| = 3 and hence the two
points are different, even though the errors are quite amil

For applications where some training data is availapland A for reg-mod-BPDN can be chosen by
interpreting the reg-mod-BPDN solution as the maximum agrami (MAP) estimate under a certain

prior signal model (assumer is Gaussian with meapr and variancerg and xp- is independent of
xp and is iid Laplacian with parameté). This idea is explained in detail in [14]. However, therenes
easy way to do this for the other methods. Alternatively,asiog~y and A according to Theorem 3 gives
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Fig. 4. Reconstructing a32 x 32 block of the actual (compressible) larynx sequence frontigdaFourier
measurements. Measurements= 0.18m for ¢ = 0 andn = 0.06m for ¢ > 0. Reg-mod-BPDN has the smallest
reconstruction error among all methods.

another good start point. We can do this for mod-BPDN and BPIRN we cannot do this for the other
methods (we show examples using this approach later). Fair &ffor comparison, for each algorithm,
we selectedy from a set of value$0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1]. We tried all
these values for a small number of simulations (10 simuiali@and then picked the best one (one with
the smallest N-RMSE) for each algorithm. For weightedeconstruction, we also pick the begtin (@)
from the same set in the same @gaFor reg-mod-BPDNA\ should be larger when the signal estimate
is good and should be decreased when the signal estimate sorgood. We can usk = aafv/ag to
adaptively determine its value for different choicesodf and ag. In our simulations, we used = 0.2

for Fig.[2 (a), (b) and (d) and: = 0.05 for Fig.[2(c).

We fixed the chosen, ' and A and did Monte Carlo averaging over 100 simulations. We aafel
the following. (1) When the signal estimate is not good (Bp),(d)) or whemnn is small (Fig[2(a),(b)),
CS-residual and CS-mod-residual have significantly laegssr than reg-mod-BPDN. (2) In case of Fig.
[2((d) (» = 0.3m), they also have larger error than mod-BPDN. (3) In all foases, weighed, and mod-
BPDN have similar performance. This is also similar to thiteg-mod-BPDN in case of = 0.3m,
but is much worse in case af= 0.13m. (4) We also show a comparison with regmodBPDN-var in Fig.
[Zl(a). Notice that it has larger errors than reg-mod-BPDNréasons explained in Sec. I-C.

“To give an example, our finally selected numbers for Elg. &d)e~ = 0.01, 0.001, 0.001, 0.001, 0.001, 0.001, 0.01, 0.01
for BPDN, mod-BPDN, reg-mod-BPDN, weighted, LS-CS, CS-residual, CS-mod-residual, mod-CS-residespectively and
~' = 0.0001
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C. Dynamic MRI application using from Theorem 3

In Fig.[4, we show comparisons for simulated dynamic MR imggif an actual larynx image sequence
(Fig.[d (a)(i)). The larynx image is not exactly sparse bubmsy compressible in the wavelet domain.
We used a two-level Daubechies-4 2D discrete wavelet wams{DWT). The99%-energy support size
of its wavelet transform vectofV;| ~ 0.07m. Also, |A| ~ 0.001m and|A.;| ~ 0.002m. We used a
32 x 32 block of this sequence and at each time and simulated undplsd MR, i.e. we selected 2D
discrete Fourier transform (DFT) coefficients using theialdle density sampling scheme of [32], and
added iid Gaussian noise with zero mean and variarice- 10 to each of them. Using a smaip x 32
block allows easy implementation using CVX (for full sizetldge sequences, one needs specialized
code). We useay = 0.18m att =0 andn = 0.06m att > 0.

We implemented dynamic reg-mod-BPDN as described in Allgoril. In this problem, the matriX =
F,-W~—! whereF,, contains the selected rows of the 2D-DFT matrix &¥ids the inverse 2D-DWT matrix
(for a two-level Daubechies-4 wavelet). Reg-mod-BPDN wampared with similarly implemented reg-
mod-BPDN-var and CS-residual algorithms (CS-residuay aollved simple BPDN at = 0). We also
compared with simple BPDN (BPDN done for each frame sepgjateor reg-mod-BPDN and reg-mod-
BPDN-var, the support estimation threshgidwas chosen as suggestedinl [14]: we used20 which is
slightly larger than the smallest magnitude element in9$t&-energy support which is5. At ¢t = 0, we
usedT; to be the set of indices of the wavelet approximation coeifits. To choose and\ we tried two
different things. (a) We usedl and~ from the se{0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1]
to do the reconstruction for a short training sequence (@ds), and used the average error to pick the
best\ and~. We call the resulting reconstruction error plot reg-mdeEBN-opt. (b) We computed the
average of the/* obtained from Theorem 3 for the 5-frame training sequenckewsed this ag for the
test sequence. We selectédrom the above set by choosing the one that minimizes theageeof the
bound of Theorem 3 for the 5 frames. We call the resultingrgstot reg-mod-BPDNy*. The same two
things were also done for BPDN and CS-residual as well. Fgpimmed-BPDN-var, we only did (a).

From Fig.[4, we can conclude the following. (1) Reg-mod-BP&ghificantly outperforms the other
methods when using so few measurements. (2) Reg-mod-BRDMNnd reg-mod-BPDN have similar
performance in this case. (3) The reconstruction perfon@ar reg-mod-BPDN using* from Theorem
3 is close to that of reg-mod-BPDN using the bgesthosen from a large set. This indicates that Theorem
3 provides a good way to selegtin practice.

D. Comparing the result of Theorem 1

In Table |, we compare the result of Theorem 1 for reg-mod-RP®od-BPDN and BPDN. We used
m = 256, [N| =26 = 0.1m, |A] = 0.04|N| = [A.|, 02 = 1073, 5, = 1 and 3,, = 8, = 0.25. Also,
o2 = 1075 and we variedn. For each experiment with a given we did the following. We didl00
Monte Carlo simulations. Each time, we evaluated the safficconditions for the bound of reg-mod-
BPDN to hold. We say the bountbldsif all the sufficient conditions hold for at leas8 realizations.
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If this did not happen, we recondot holdin Table I. If this did happen, then we record %

whereE[-] denotes the Monte Carlo average computed over those rgatigefor which the sufficient
conditions do hold. Here, “bound” refers to the right handesof [27) computed withy = fy:*F,A(A)
given in [26). An analogous procedure was followed for bottdrBPDN and BPDN.
The comparisons are summarized in Table |. For reg-mod-BR&@Nselected from the sef0.00001 0.00005 0.0001 0.(
by picking the one that gave the smallest bound. Clearlyegemod-BPDN result holds with the smallest
n, while the BPDN result needs a very large(n > 90%). Also even withn = 90%, the BPDN error
bound is very large.

n Reg-mod-BPDN| Mod-BPDN | BPDN
0.13m 0.885 not hold not hold
0.19m 0.161 0.303 not hold
0.5m 0.0199 0.0199 not hold
0.9m 0.014 0.014 0.27

TABLE |

SUFFICIENT CONDITIONS AND NORMALIZED BOUNDS COMPARISON OF RG-MOD-BPDN, MOD-BPDN AND
BPDN. SGNAL LENGTH m = 256, SUPPORT SIZEN| = 0.1m, |A| = 4%|N|, A. = 4%|N|, 02, = 1075 AND
ag = 1073, “NOT HOLD” MEANS THE ONE OR ALL OF THE SUFFICIENT CONDITIONS DOES NOT HQL

E. Comparing Theorems 1, 2, 3

In Fig.[3 (a), we compare the results from Theorems 1, 2 andr e simulation. We plo ”C;lfgd
for |A|/|N| ranging from 0 to 0.2. Also, we useah = 256, |N| = 26, |A.| = 0.1| V|, af) = 1073,
B =1andp, = Bs = 0.25. Also, n = 0.13m andc? = 107°. We usedy = v* given in the respective
theorems, and we set = 10030/012). We notice the following. (1) The bound of Theorem 1 is much
larger than that of Theorem 2 or 3, even fdt| = 0.04|N|. (2) For larger values ofA|, the sufficient
conditions of Theorem 1 do not hold and hence it does not geoad bound at all. (3) For reasons
explained in Sec. IV, in this case, the bound of Theorem 3 imktp that of Theorem 2. Recall that the
computational complexity of the bound from Theorem 2 is epuial in|A|. However if |A] is small,

e.g. in our simulation$A| < 5, this is still doable.

F. Upper bound comparisons using Theorem 3

In Fig.[B(b), we do two things. (1) We compare the reconsimacérror bounds from Theorem 3 for
reg-mod-BPDN, mod-BPDN and BPDN and compare them with thentde for LS-CS error given in [31,
Corollary 1]. All bounds hold without any sufficient conaitis which is what makes this comparison
possible. (2) We also use thg" given by Theorem 3 to obtain the reconstructions and comfhée
Monte Carlo averaged N-RMSE. Comparing this with the Mongel&€ averaged upper bound on the

October 23, 2018 DRAFT



N-RMSE

10

23

n=0.13m ¢’=10" and 0;: 107 |N|=26 m=0.13m 2= 10° and 0§= 107 IN1226 n=0.17m ¢’=10°° and 0§: 107 N=26

10?‘

+

regmodBPDNbounds*
regmodBPDNrecon

heorem 1|
_.V Theorem 2|
5 heorem 3|

o,
.,
",
.,

10" sfesnenn , ................... @/ BPDNrecon
s ‘-‘.‘u e, k. SCShound
gt ">' R LSCSrecon

vé

N-RMSE

I X I I I I
0.15 0.2 0 0.05 0.15 0.2 0 0.05 0.15 0.2

01
Ay

0.1 01
AVINI VNI

(@ n=0.13m,02 =10"%02 =107° (b) n = 0.13m,07 = 10 %02, = 10" (©)n=01Tm,0ol =10"302 =103

Fig. 5. In (a), we compare the three bounds from Theorem 1, 2 and 3rerrealization ofz. In (b) and (c),
we compare the normalized average bounds from Theorem 3emodstruction errors with random Gaussian and
partial Fourier measurements respectively.

N-RMSE,,/ %ﬂfig‘;ﬁ‘g], allows us to evaluate the tightness of a bound. Hiredenotes the mean computed
over 100 Monte Carlo simulations and “bound” refers to tlytrihand side of(40). We used = 256,
IN| =26, |Ac| = 0.1IN|, 02 = 1073, 3 = 1, B, = B = 0.25, and|A| was varied from 0 td).2|N|.
Also, n = 0.13m ando? = 107>,

From the figure, we can observe the following. (1) Reg-mo@®@RmMas much smaller bounds than those
of mod-BPDN, BPDN and LS-CS. The differences between reg-BBDN and mod-BPDN bounds is
minor when|A| is small but increases a4 | increases. (2) The conclusions from the reconstructiaor err
comparisons are similar to those seen from the bound cosgres; indicating that the bound can serve
as a useful proxy to decide which algorithm to use when (edbicund computation is much faster than
computing the reconstruction error). (3) Also, reg-modEBPand mod-BPDN bounds are quite tight as
compared to the LS-CS bound. BPDN bound and error are battt. 100% error is seen because the
reconstruction is the all zeros’ vector.

In Fig. [H(c), we did a similar set of experiments for the caseerg A corresponds to a simulated
MRI experiment, i.e.A = F, - W~! where F,, contains randomly selected rows of the 2D-DFT matrix
and W is the inverse 2D-DWT matrix (for a two-level Daubechies-dvelet). We used, = 0.17m and
o2 = 1073, All other parameters were the same as in Elg. 5(b). Our csiahs are also the same.

The complexity for Theorem 3 is polynomial {iA| whereas that of the LS-CS bourid [31, Corollary
1] is exponential ifA|. To also show comparison with the LS-CS bound, we had to éhaasnall value
of m = 256 so that the maximum value ¢0f\| = 0.2|N| = 5 was small enough. In terms of MATLAB
time, computation of the Theorem 3 bound for reg-mod-BPDbdkt6.2 seconds while computing the
LS-CS bound took 1.2 seconds. For all methods except LS-@Syeve able to do the same thing fairly
quickly even form = 4096, or even larger. It took only seconds to compute the bound of Theorem 3
whenm = 4096, n = 0.13m, |N| = 410 = 0.1m and|A| = |A.| = 0.1|N| = 41.

October 23, 2018 DRAFT



24

VI. CONCLUSIONS ANDFUTURE WORK

In this work we studied the problem of sparse reconstrudtiom noisy undersampled measurements
when partial and partly erroneous, knowledge of the signalipport and an erroneous estimate of the
signal values on the “partly known support” is also avaéalilenote the support knowledge Byand the
signal value estimate df by ji. We proposed and studied a solution called regularized firdelBPDN
which tries to find the signal that is sparsest outsidewhile being “close enough” tg. on T', and
while satisfying the data constraint. We showed how to obtaimputable error bounds that hold without
any sufficient conditions. This made it easy to compare bsdodthe various approaches (corresponding
results for modified-BPDN and BPDN follow as direct coralis). Empirical error comparisons with
these and many other existing approaches are also provided.

In ongoing work, we are evaluating the utility of reg-modB® for recursive functional MR imaging
to detect brain activation patterns in response to stirf@8j.[On the other end, we are also working on
obtaining conditions under which it will remain “stabletqierror will be bounded by a time-invariant and
small value) for a recursive recovery problem.[In|[30], tha&s been done for the constrained version of
reg-mod-BPDN. That result uses the restricted isometngtzors (RIC) and the restricted orthogonality
constants (ROC) [17].[11] in its sufficient conditions aralihds. However, this means that the conditions
and bounds are not computable. Also, since the stabilitgshohder a different set of sufficient conditions
and has a different error bound than that for mod-C$ [34] o1QS5[20] or CS[[11], comparison of the
various results is difficult. An open question is how to exi¢ine results of the current work (which are
computable) to show the stability of unconstrained reg-+B&MDN.

APPENDIX
A. Proof of Proposition 1

When\ =0, Qr0(S) = Arus’ Arus. Thus,Qr A (S) is invertible iff A7y is full rank. When\ > 0,
Q1 (S) is as defined in[(19). Apply block matrix inversion lemma
1

‘A B|]

c D]

[ (A-BD!C)! —(A-BD'C)"'BD!
-D'!C(A-BD'C)"! D'+D!C(A-BD 'C)"'BD!

with A = A7’ Ap + Np, B = A7/ Ag, C = A’ Ap andD = Ag'Ag, clearly Q7 \(S) is invertible iff
As'As and A7/ RAr + M are invertible wherer := [I — Ag(Ag'Ag) ' A%]. When Ag is full rank, (i)
Ag'Ag is full rank; and (i) R is a projection matrix. Thu® = R'R and soA7' RAr = (RAT)'(RAT)

is positive semi-definite. As a resul;;’ RAr -+ Ml is positive definite and thus invertible. Hence, when
Ag is invertible, Q7 1 (S) is also invertible.

October 23, 2018 DRAFT



25

B. Proof of Theorem 1

In this subsection, we give the three lemmas for the prooffegdofem 1.To keep notation simple we
remove the subscripts) from Q(A), M, P(A), d(A), ¢(A), ERC(A) in this and other Appendices.
Lemma 1:Suppose tha®(A) is invertible, then

[d(A) — c(A)]l2 < yVIA]- f1(A) (44)

Lemma 1 can be obtained by settiRgL(b) = 0 and then using block matrix inversion é(A). The
proof of Lemma 1 is in Appendik D1. Nexfc(A) — z[|2 can be bounded using the following lemma.
Lemma 2: Suppose thaf)(A) is invertible. Then

le(A) = zll2 < Mfa(A)llzr — frllz + f3(A)[[wll (45)

The proof of Lemma 2 is in AppendxD2.

Lemma 3:If Q(A) is invertible, ERC(A) > 0, andy > ~*(A), then L(b) has a unique minimizer
which is equal tad(A) .

Lemma 3 can be obtained in a fashion similar[ib [B], [1]. Iteqdris given in AppendiXx DB.

Combining Lemmas 1, 2 and 3, and using the fattA) — z|js < [|[d(A) — c(A)]]2 + ||c(A) — z]|2,
we get Theorem 1.

C. Proof of Theorem 2

The following lemma is needed for the proof of the corollarieading to Theorem 2.
Lemma 4: Suppose thaf(A) is invertible. Then

le(A) = |2 <

AMa(B)llzr — iz + f3(A) w2 + fa(A) [z x\All2 (46)

Sincec(A) is only supported o' U A andy = Ay x27 4 + Ap\a%a\a + w, the last term of[(46)
can be obtained by separatimg\A out. The proof of Lemma&l4 is given in AppendixDA4.

Using Lemma 4, we can obtain Corollary 1 and then Corollarytn minimize over all allowed\'s
in Corollary 2, we get Theorem 2. The proof of Corollary 1 andr2 given as follows.

1) Proof of Corollary 1: Notice from the proof of Lemma 1 and Lemma 3 that nothing in résult
changes if we replac& by a A C A. By Lemma 1 forA, we are able to bounfld(A) — ¢(A)]fz.
Hence, we get the first term df (29). Next, invoke Lemma 4 tortbj{:(A) — z||2 and we can obtain the
rest three terms of (29). Lemma 3 fdr gives the sufficient conditions under whidhA) is the unique
unconstrained minimizer ok (b).
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2) Proof of Corollary 2: Corollary 2 is obtained by bounding*(A). v*(A) = 14 ruay’ (v

Ac(A))||oo/ERC(A) can be bounded by rewriting — Ac(A) = Arua(zroa — (c(A ))TuA) + w and
then bounding|zrua — (¢(A))ruall2 = ||z — ¢(A)||2 using Lemma 4. Doing this, we get

HA(TUA)c/(?J - AC(A))”OO
< max |4/ Aroa(rroa — (C(A))TuA)\ + |4 w)

i¢TUA
< max |4/ Aroallllzroa — (e(A))rua) e + 145 w)|
i¢TUA
< maxcofA)Afa(A) |z — prll2 +maxcofA) f3(A)|wl|2
+maxcofA) f1(A) ||z 412 + 14705, vl
Using the above inequality to bound (A) and replacingy in f(T, X\, A, A, ~), given in [29), by this
bound, we can gef (B1).

D. Proof of Lemmas 1, 2, 3, 4

1) Proof of Lemma 1:We use the approach dfl[3, Lemma 3]. We can minimize the fancfi(b)
over all vectors supported on sEtJ A by minimizing:

1 1 .
F®) = 5ly - Aquabroalls + JAllor — prl3 + ball (47)
SinceQ(A) is invertible, F(b) is strictly convex as a function dfrya. Then at the unique minimizer,
d(A), 0 € VE(b)[p=q(a)- Lt [|bre1|,—aa) denote the subgradient set (ffr-[|; atb = d(A). Then
clearly any¢ in this set satisfies
¢r=0 (48)
|67 [loo <1 (49)
Now, 0 € VF(b)[p—a(a) implies that
(ATUA/ATUA)[d(A)]TUA — Aruay

[d(A)]r — fir
A

+A +v¢rua =0 (50)

Simplifying the above equation, we get

[d(A)rua = Q(A) ™ (Azua’y + A gi ~ Yé1UA) (51)
Therefore, using(48) and (P4), we have _
[e(A)]rua — [d(A)]Tua = Q(A)™ ,:;‘FA] (52)
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Since
AT/AT + M AT/AA

A) =
a) AN Ap Apn'Ap

; (53)

using the block matrix inversion lemma

- ~1
A B

C D

A1+ A-'B(D - CA'B)"'CA~! —A-!B(D - CA!B)"!
I —(D-CA'B)"'CA™! (D-CA'B)™!
with A = A7’ Ar + M1, B = A7’ Ax, C = AxAr andD = Ap'Aa and usinggr = 0, we obtain

[e(A)]rua = [d(A)]rua =

—Y(Ar’ Ar + Mp)) " Ap A (Aa"MAN) " éa
(A" MAA) oA

Since||pa|lo < 1, the bound of[(44) follows.

2) Proof of Lemma 2:Recallc(A) is given in [24). Since both: andc(A) are zero outsidg” U A,
then||c(A) — z||2 = ||[c(A)]rua — zruall2. With y = Az + w and Az = Apyazrua, We have

Arua'y = Arua’(Aruazrua + w) (54)
. , It Org , . . .
Notice A/, A Arua = Q(A) — A . Using [54), we obtain the following equation
Os7 Oss
/ LT /
Arun'y = Q(A)rrua — A + Aruaw (55)
A
Then, using[(24) we can obtain
1 | — T 1 /
[c(A)]rua — xTuA = AQ(A) [ 0 +Q(A) Arua'w
A

Finally, this gives[(4b).

3) Proof of Lemma 3:The proof is similar to that in[[3] and [1]. Recall thdfA) minimizes the
function L(b) over all b supported orl’ U A. We need to show that iy > v*(A), thend(A) is the
unique global minimizer of.(b).

The idea is to prove under the given condition, any smallypkationh on d(A) will increase function
L(d(A)),i.e. L(d(A) 4+ h) — L(d(A)) > 0,Y||h]l < € for e small enough. Then sinck(b) is a convex
function, d(A) will be the unique global minimizer|3].

Similar to [1], we first split the perturbation into two paris= u + v wherew is supported o’ U A
andv is supported off7" U A)¢. Clearly ||ull < ||h|lcc < €. We consider the case# 0 since the case
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v =0 is already covered in Lemma 1. Then

L((8) + 1) = g ly — A(A) +u) — Av] +

1 A
M) + ur +vr — firl|2 4 7][(d(A) + u)pe + vre|y
Then, we can obtain

L(d(A) + h) = L(d(A)) = L(d(A) + u) — L(d(A))

1
+§HAUH§ —(y — Ad(A), Av) + (Au, Av) +7|lvre|)x

Sinced(A) minimizesL(b) over all vectors supported RUA, L(d(A)+u)—L(d(A)) > 0. Then since
L(d(A) +u) — L(d(A)) > 0 and || Av||3 > 0, we need to prove that the rest are positivesj|ir.
(y — Ad(A), Av) + (Au, Av) > 0. Instead, we can prove this by proving a stronger condiifyre||; —
[y — Ad(A), Av)| — |(Au, Av)| > 0. Since(y — Ad(A), Av) = v'A'(y — Ad(A)) andv is supported on
(TuA)S,

1 —

[y — Ad(D), Av)| = |vruay' Aoy (y — Ad(D)))
<l Auay’ (v — Ad(A)) oo
Thus,
[(y — Ad(A), Av)| < max_[(y — Ad(A), Aw)|lv]l1
wgTUA

Meanwhile,
|(Au, Av)| < [|A" Aulloo ||v]l1 < €| A"Alloo|v]12 (56)

And ||v||; = ||vpe

1 sincew is supported off7' U A) C T°. Then what we need to prove is

- — Ad(A), AL)] — €| A Al oo 0 o7
[v wﬁé‘ﬁ@@ (A), Ay)| — €[l A" Al|oo ] [|v[|1 > (57)

Since we can seleet> 0 as small as possible, then we just need to show

_ — Ad(A), A, 58
¥ wngagAKy (A),A,)| >0 (58)

Sincey — Ad(A) = (y — Ac(A)) + A(c(A) — d(A)), and by Lemma 1 we knowd(c(A) — d(A)) =
YMAA(AA' M AN)"1pa and since|dall < 1, we conclude thatl(A) is the unique global minimizer
if

[4¢roay!(y = Ac(A)) oo < 1[1 = max IP(A)As"M A1) (59)

Next, we will show thatd(A) is also the unique global minimizer under the following cibiod
[ Aruay' (v = Aera(A)) oo =1 = max [[P(A)As"MAu1] (60)

Since the perturbatioh # 0, thenu # 0 or v # 0. Therefore, we will discuss the following three cases.
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1) u # 0. In this case, we know.(d(A) + u) — L(d(A)) > 0 sinced(A) is the unique minimizer
over all vectors supported dfiuU A. Therefore,L(d(A) + h) — L(d(A)) > 0 if (60) holds.
2) u=0, v # 0 andv is not in the null space ofl, i.e., Av # 0. In this case, we knoWAv|% > 0.
Hence,L(d(A) + h) — L(d(A)) > 0 when [60) holds.
3) u=0,v#0andAv = 0. In this caseL(d(A)+ h) — L(d(A)) = ~v||vpe|l1- Thus,L(d(A)+h) —
L(d(A)) > 0 if v > 0. Clearly, L(d(A) + h) — L(d(A)) > 0 when [60) holds.
Finally, combining [(5B) and[(60), we can conclude thWan) is the unique global minimizer if the
following condition holds

[Aua)'(y = Ac(A)) [l < YERTA) (61)

4) Proof of Lemma 4Consider aA C A such thatd 5 has full rank. Sincel, 1"y = Ay & (Ar xTroa+
w+ A5\ AT \A): €XPanding these terms we have

xT

Ara'y = Q(A)zp z — A + Ap o w + Ar i AnATA\A (62)

A
Then, using this in the expression fefA) from (24), we get

AQ(A)! [‘1 - ””T]

[C(A)]TUA — TTUA = 0z
OA\A
+ Q(A)_IATUA,w] + Q(A)_IATUA/AA\A‘TA\A] (63)
OA\& —TA\A
Therefore, we ge{(46).
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