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Regularized Modified BPDN for Noisy Sparse

Reconstruction with Partial Erroneous Support

and Signal Value Knowledge
Wei Lu and Namrata Vaswani

Abstract

We study the problem of sparse reconstruction from noisy undersampled measurements when the

following knowledge is available. (1) We are given partial,and partly erroneous, knowledge of the

signal’s support, denoted byT . (2) We are also given an erroneous estimate of the signal values on

T , denoted by(µ̂)T . In practice, both of these may be available from prior knowledge. Alternatively,

in recursive reconstruction applications, like real-timedynamic MRI, one can use the support estimate

and the signal value estimate from the previous time instantasT and (µ̂)T . In this work, we introduce

regularized modified-BPDN (reg-mod-BPDN) to solve this problem and obtain computable bounds on

its reconstruction error. Reg-mod-BPDN tries to find the signal that is sparsest outside the setT , while

being “close enough” to(µ̂)T on T and while satisfying the data constraint. Corresponding results for

modified-BPDN and BPDN follow as direct corollaries. A second key contribution is an approach to

obtain computable error bounds that hold without any sufficient conditions. This makes it easy to compare

the bounds for the various approaches. Empirical reconstruction error comparisons with many existing

approaches are also provided.

Index Terms

compressive sensing, sparse reconstruction, modified-CS,partially known support

I. INTRODUCTION

The goal of this work is to solve the sparse recovery problem [2], [3], [4], [5], [6]. We try to reconstruct

an m-length sparse vector,x, with support,N , from ann < m length noisy measurement vector,y,
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satisfying

y , Ax+ w (1)

when the following two things are available: (i) partial, and partly erroneous, knowledge of the signal’s

support, denoted byT ; and (ii) an erroneous estimate of the signal values onT , denoted by(µ̂)T . In

(1), w is the measurement noise andA is the measurement matrix. For simplicity, in this work, we just

refer tox as the signaland toA as the measurement matrix. However, in general,x is the sparsity basis

vector (which is either the signal itself or some linear transform of the signal) andA = HΦ whereH

is the measurement matrix andΦ is the sparsity basis matrix. IfΦ is the identity matrix thenx is the

signal itself.

The true support of the signal,N , can be rewritten as

N = T ∪∆ \∆e (2)

where

∆ , N \ T and∆e , T \N (3)

are the errors in the support estimate,T c is the complement set ofT and\ is the set difference notation

(N \ T , N ∩ T c).

The signal estimate is assumed to be zero alongT c, i.e.

µ̂ =

[

(µ̂)T

0T c

]

(4)

and the signal itself can be rewritten as

(x)N∪T =(µ̂)N∪T + e

(x)Nc =0 (5)

wheree denotes the error in the prior signal estimate. It is assumedthat the error energy,‖e‖22, is small

compared to the signal energy,‖x‖22.

In practical applications,T andµ̂ may be available from prior knowledge. Alternatively, in applications

requiring recursive reconstruction of (approximately) sparse signal or image sequences, with slow time-

varying sparsity patterns and slow changing signal values,one can use the support estimate and the signal

value estimate from the previous time instant as the “prior knowledge”. A key domain where this problem

occurs is in fast (recursive) dynamic MRI reconstruction from highly undersampled measurements. In

MRI, we typically assume that the images are wavelet sparse.We show slow support and signal value

change for two medical image sequences in Fig. 1. From the figure, we can see that the maximum support

changes for both sequences are less than 2% of the support size and almost all signal values’ changes

are less than0.16% of the signal energy. Slow signal value change also implies that a signal value is

small before it gets removed from the support. Other potential applications include single-pixel camera

based real-time video imaging [7]; video compression; ReProCS (recursive projected CS) based video
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(i) a larynx (vocal tract) image sequence (ii) cardiac imagesequence
(a)
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‖(xt−xt−1)Nt∪Nt−1

‖2

‖(xt)Nt
‖2

(b)

Fig. 1. In (a), we show two medical image sequences (a cardiac and a larynx sequence). In (b),xt is the two-level
Daubechies-4 2D discrete wavelet transform (DWT) of the cardiac or the larynx image at timet and the setNt

is its 99% energy support (the smallest set containing 99% ofthe vector’s energy). Its size,|Nt| varied between
4121-4183 (≈ 0.07m) for larynx and between 1108-1127 (≈ 0.06m) for cardiac.Notice that all support changes
are less than 2% of the support size and almost all signal values changes are less than 4% of‖(xt)Nt

‖2.

denoising or video layering (separating video in foreground and background layers) [8], [9]; and spectral

domain optical coherence tomography [10] based dynamic imaging.

This work has the following contributions.

1) We introduce regularized modified-BPDN (reg-mod-BPDN) and obtain a computable bound on its

reconstruction error using an approach motivated by [3]. Reg-mod-BPDN solves

min
b

γ‖bT c‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖bT − µ̂T ‖22 (6)

i.e. it tries to find the signal that is sparsest outside the set T , while being “close enough” tôµT on

T , and while satisfying the data constraint. Reg-mod-BPDN uses the fact thatT is a good estimate

of the true support,N , and thatµ̂T is a good estimate ofxT . In particular, fori ∈ ∆e, this implies

that |µ̂i| is close to zero (sincexi = 0 for i ∈ ∆e).

2) Our second key contribution is to show how to use the reconstruction error bound result to obtain

another computable bound that holds without any sufficient conditions and is tighter. This allows

easy bound comparisons of the various approaches. A similarresult for mod-BPDN and BPDN

follows as a direct corollary.

3) Reconstruction error comparisons with these and many other existing approaches are also shown.
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A. Notations and Problem Definition

For any setT and vectorb, bT denotes a sub-vector containing the elements ofb with indices inT .

‖b‖k refers to theℓk norm of the vectorb. Also, ‖b‖0 counts the number of nonzero elements ofb.

The notationT c denotes the set complement ofT , i.e., T c = {i ∈ [1, ...,m], i /∈ T}. ∅ is the empty

set.

We use′ for transpose. For the matrixA, AT denotes the sub-matrix containing the columns ofA

with indices inT . The matrix norm‖A‖p, is defined as‖A‖p , maxx 6=0
‖Ax‖p

‖x‖p
. IT is an identity matrix

on the set of rows and columns indexed by elements inT . 0T,S is a zero matrix on the set of rows and

columns indexed by elements inT andS respectively.

The notation∇L(b) denotes the gradient of the functionL(b) with respect tob.

When we sayb is supported onT ∪S we mean that the support ofb (set of indices whereb is nonzero)

is a subset ofT ∪ S.

Our goal is to reconstruct a sparse vector,x, with support,N , from the noisy measurement vector,y

satisfying (1). We assume partial knowledge of the support,denoted byT , and of the signal estimate on

T , denoted by(µ̂)T . The support estimate may contain errors – misses,∆, and extras,∆e, defined in

(3). The signal estimate,̂µ, is assumed to be zero alongT c, i.e it satisfies (4) and the signal,x, satisfies

(5).

B. Related Work

The sparse reconstruction problem, without using any support or signal value knowledge, has been

studied for a long time [2], [3], [4], [5], [6]. It tries to findthe sparsest signal among all signals that

satisfy the data constraint, i.e. it solvesminb ‖b‖0 s.t. y = Aβ. This brute-force search has exponential

complexity. One class of practical approaches to solve thisis basis pursuit which replaces‖b‖0 by ‖b‖1
[2]. The ℓ1 norm is the closest norm toℓ0 that makes the problem convex. For noisy measurements, the

data constraint becomes an inequality constraint. However, this assumes that the noise is bounded and

the noise bound is available. In practical applications where this may not be available, one can use the

Lagrangian version which solves

min
b

γ‖b‖1 +
1

2
‖y −Ab‖22 (7)

This is calledbasis pursuit denoising (BPDN) [2]. Since this solves an unconstrained optimization

problem, it is also faster. An error bound of BPDN was obtained in [3]. Error bounds for its constrained

version were obtained in [11], [12].

The problem of sparse reconstruction with partial support knowledge was introduced in our work

[13], [14]; and also in parallel in Khajehnejad et al [15] andin vonBorries et al [16]. In [13], [14], we

proposed an approach calledmodified-CSwhich tries to find the signal that is sparsest outside the setT

and satisfies the data constraint. We obtained exact reconstruction conditions for it by using the restricted

isometry approach [17]. When measurements are noisy, for the same reasons as above, one can use the
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Lagrangian version:

min
b

γ‖bT c‖1 +
1

2
‖y −Ab‖22 (8)

We call thismodified-BPDN (mod-BPDN). Its error was bounded in the conference version of this work

[1], while the error of its constrained version was bounded in Jacques [18].

In [15], Khajehnejad et al assumed a probabilistic support prior and proposed a weightedℓ1 solution.

They also obtained exact reconstruction thresholds for weighted ℓ1 by using the overall approach of

Donoho [19]. In Fig. 2, we show comparisons with the noisy Lagrangian version ofweightedℓ1 which

solves:

min
b

γ‖bT c‖1 + γ′‖bT ‖1 +
1

2
‖y −Ab‖22 (9)

Our earlier work on Least Squares CS-residual (LS-CS) and Kalman Filtered CS-residual (KF-CS)

[20], [21] can also be interpreted as a possible solution forthe current problem, although it was proposed

in the context of recursive reconstruction of sparse signalsequences.

Reg-mod-BPDN may also be interpreted as a Bayesian CS or a model-based CS approach. Recent

work in this area includes [22], [23], [24], [25], [26], [27], [28].

C. Some Related Approaches**

Before going further, we discuss belowa few approaches that are related to, but different from reg-

mod-BPDN, and we argue when and why these will be worse than reg-mod-BPDN.This section may be

skipped on a quick reading. We show comparisons with all these in Fig. 2.

The first is what can be calledCS-residual or CS-diffwhich computes

x̂ = µ̂+ b̂, whereb̂ solves

min
b

γ‖b‖1 +
1

2
‖y −Aµ̂−Ab‖22 (10)

This has the following limitation. It does not use the fact that whenT is an accurate estimate of the true

support,(x)T c is much more sparse compared with the full(x− µ̂) (the support size ofxT c is |∆| while

that of (x− µ̂) is |T |+ |∆| which is much larger). The exception is if the signal value prior is so strong

that (x− µ̂) is zero (or very small) on all or a part ofT .

CS-residual is also related to LS-CS and KF-CS. LS-CS solves(10) but withµ̂T being the LS estimate

computed assuming that the signal is supported onT and with (µ̂)T c = 0. For a static problem, KF-CS

can be interpreted as computing the regularized LS estimateon T and using that aŝµT . LS-CS and

KF-CS also have a limitation similar to CS-residual.

Another seemingly related approach is what can be calledCS-mod-residual.It computes

x̂T = µ̂T , x̂T c = b̂c, whereb̂c solves

min
bc

1

2
‖y −AT µ̂T −AT cbc‖22 + γ‖bc‖1 (11)

October 23, 2018 DRAFT
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wherebc stands for(b)T c . This is solving a sparse recovery problem onT c, i.e. it is implicitly assuming

that xT is either equal tôµT or very close to it. Thus, this also works only when the signalvalue prior

is very strong.

Both CS-residual and CS-mod-residual can be interpreted asextensions of BPDN, and [3, Theorem 8]

can be used to bound their error. In either case, the bound will contain terms proportional to‖(xT−µ̂T )‖2
and as a result, it will be large whenever the prior is not strong enough1. This is also seen from our

simulation experiments shown in Fig. 2 where we provide comparisons for the case of good signal value

prior (0.1% error in initial signal estimate) and bad signalvalue prior (10% error in initial signal estimate).

We vary support errors from 5% to 20% misses, while keeping the extras fixed at 10%.

Reg-mod-BPDN can also be confused withmodified-CS-residualwhich computes[29]

x̂= µ̂+ b̂, whereb̂ solves

min
b

1

2
‖y −Aµ̂−Ab‖22 + γ‖bT c‖1 (12)

This is indeed related to reg-mod-BPDN and in fact this inspired it. We studied this empirically in [29].

However, one cannot get good error bounds for it in any easy fashion. Notice that the minimization is

over the entire vectorb, while theℓ1 cost is only onbT c .

One may also consider solving the following variant of reg-mod-BPDN (we call thisreg-mod-BPDN-

var):

min
b

γ‖bT c‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖b− µ̂‖22 (13)

Sinceµ̂ is supported onT , the regularization term can be rewritten asλ‖b−µ̂‖22 = λ‖bT−µ̂T‖22+λ‖bT c‖22.
Thus, in addition to theℓ1 norm cost onbT c imposed by the first term, this last term is also imposing

an ℓ2 norm cost on it. Ifλ is large enough, theℓ2 norm cost will encourage the energy of the solution

to be spread out onT c, thus causing it to be less sparse. Since the truex is very sparse onT c (|∆| is

small compared to the support size also), we will end up with alarger recovery error2. [see Fig. 2(a)].

However, if we compare the two approaches for compressible signal sequences, e.g. the larynx sequence,

it is difficult to say which will be better [see Fig. 4].

Finally, one may solve the following (we can call it reg-BPDN)

min
b

γ‖b‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖b− µ̂‖22 (14)

This has two limitations. (1) Like CS-residual, this also does not use the fact that whenT is an accurate

estimate of the true support,(x)T c is much more sparse compared with the full(x− µ̂). (2) Its last term

is the same as that of reg-mod-BPDN-var which also causes thesame problem as above.

1In either case, one can assume that(x − µ̂) is supported on∆ and the “noise” isw + AT (xT − µ̂T ). Thus, CS-residual

error can be bounded byC(A,∆)(‖w‖2 + ‖AT (xT − µ̂T )‖2) while CS-mod-residual error can be bounded by‖xT − µ̂T ‖2 +

C(ATc ,∆)(‖w‖2 + ‖AT (xT − µ̂T )‖2).

2In the limit if
√

λ/2 is much larger thanγ, we may get a completely non-sparse solution.
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D. Paper Organization

We introduce reg-mod-BPDN in Sec. II. We obtain computable bounds on its reconstruction error in

Sec. III. The simultaneous comparison of upper bounds of multiple approaches becomes difficult because

their results hold under different sufficient conditions. In Sec. IV, we address this issue by showing how to

obtain a tighter error bound that also holds without any sufficient conditions and is still computable. In both

sections, the bounds for mod-BPDN and BPDN follow as direct corollaries. In Sec V, the above result is

used for easy numerical comparisons between the upper bounds of various approaches – reg-mod-BPDN,

mod-BPDN, BPDN and LS-CS and for numerically evaluating tightness of the bounds with both Gaussian

measurements and partial Fourier measurements. We also provide reconstruction error comparisons with

CS-residual, LS-CS, KF-CS, CS-mod-residual, mod-CS-residual and reg-mod-BPDN-var, as well as with

weightedℓ1, mod-BPDN and BPDN for (a) static sparse recovery from random-Gaussian measurements;

and for (b) recovering a larynx image sequence from simulated MRI measurements. Conclusions are

given in Sec. VI.

II. REGULARIZED MODIFIED-BPDN (REG-MOD-BPDN)

Consider the sparse recovery problem when partial support knowledge is available. As explained earlier,

one can use mod-BPDN given in (8). When the support estimate is accurate, i.e.|∆| and |∆e| are small,

mod-BPDN provides accurate recovery with fewer measurements than what BPDN needs. However, it

puts no cost onbT except the cost imposed by the data term. Thus, when very few measurements are

available or when the noise is large,bT can become larger than required (in order to reduce the data

term). A similar, though lesser, bias will occur with weightedℓ1 also whenγ′ < γ. To address this, when

reliable prior signal value knowledge is available, we can instead solve

min
b

L(b) , γ‖bT c‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖bT − µ̂T ‖22 (15)

which we callreg-mod-BPDN. Its solution, denoted bŷx, serves as the reconstruction of the unknown

signal,x. Notice that the first term helps to find the solution that is sparsest outsideT , the second term

imposes the data constraint while the third term imposes closeness tôµ alongT .

Mod-BPDN is the special case of (15) whenλ = 0. BPDN is also a special case withλ = 0 and

T = ∅ (so that∆ = N ).

A. Limitations and Assumptions

A limitation of adding the regularizing term,λ‖bT − µ̂T ‖22 is as follows. It encourages the solution

to be close to(µ̂)∆e
which is not zero. As a result,(x̂)∆e

will also not be zero (except ifλ is very

small) even though(x)∆e
= 0. Thus, even in the noise-free case, reg-mod-BPDN will not achieve exact

reconstruction. In both noise-free and noisy cases, if(µ̂)∆e
is large, (x̂)∆e

being close to(µ̂)∆e
can

result in large error. Thus, we need the assumption that(µ̂)∆e
is small.
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For the reason above, when we estimate the support ofx̂, we need to use a nonzero threshold, i.e.

compute

N̂ = {i : |x̂i| > ρ} (16)

with aρ > 0. We note that thresholding as above is doneonly for support estimation and not for improving

the actual reconstruction. Support estimation is requiredin dynamic reg-mod-BPDN (described below)

where we use the support estimate from the previous time instant as the support knowledge,T , for the

current time.

In summary, to get a small error reconstruction, reg-mod-BPDN requires the following (this can also

be seen from the result of Theorem 1):

1) T is a good estimate of the true signal’s support,N , i.e. |∆| and |∆e| are small compared to|N |;
and

2) µ̂T is a good estimate ofxT . For i ∈ ∆e, this implies that|µ̂i| is close to zero (sincexi = 0 for

i ∈ ∆e).

3) For accurate support estimation, we also need that most nonzero elements ofx are larger than

maxi∈∆e
|µ̂i| (for exact support estimation, we need this to hold for all nonzero elements ofx).

The smallest nonzero elements ofx are usually on the set∆. In this case, the third assumption is

equivalent to requiring that most elements ofx∆ are larger thanmaxi∈∆e
|µ̂i|.

B. Dynamic Reg-Mod-BPDN for Recursive Recovery

An important application of reg-mod-BPDN is for recursively reconstructing a time sequence of sparse

signals from undersampled measurements, e.g. for dynamic MRI. To do this, at timet we solve (15)

with T = N̂t−1, (µ̂)T = (x̂t−1)T and (µ̂)T c = 0. Here N̂t−1 is the support estimate of the previous

reconstruction,̂xt−1. At the initial time, t = 0, we can either initialize with BPDN, or with mod-BPDN

using T from prior knowledge, e.g. for wavelet sparse images,T could be the set of indices of the

approximation coefficients. We summarize the stepwise dynamic reg-mod-BPDN approach in Algorithm

1. Notice that att = 0, one may need more measurements since the prior knowledge ofT may not be

very accurate. Hence, we usey0 = A0x0+w0 whereA0 is ann0×m measurement matrix withn0 > n.

In Algorithm 1, we should reiterate that for support estimation, we need to use a thresholdρ > 0.

The threshold should be large enough so that most elements of∆e,t := T \Nt = N̂t−1 \Nt do not get

detected into the support.

We briefly discuss here the stability of dynamic reg-mod-BPDN (reconstruction error and support

estimation errors bounded by a time-invariant and small value at all times). Using an approach similar

to that of [30], it should be possible to show the following. If (i) ρ is large enough (so that̂Nt does

not falsely detect any element that got removed fromNt); (ii) the newly added elements to the current

support,Nt, either get added at a large enough value to get detected immediately, or within a finite delay

their magnitude becomes large enough to get detected; and (iii) the matrixA satisfies certain conditions

(for a given support size and support change size); reg-mod-BPDN will be stable.
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Algorithm 1 Dynamic Reg-mod-BPDN

At t = 0, computex̂0 as the solution ofminb γ‖(b)T c‖1 + 1
2‖y0 − Ab‖22, whereT is either empty

or is available from prior knowledge. ComputêN0 = {i ∈ [1, ...,m] : |(x̂0)i| > ρ}. SetT ← N̂0 and

(µ̂)T ← (x̂0)T For t > 0, do

1) Reg-Mod-BPDN.Let T = N̂t−1 and letµ̂T = (x̂t−1)T . Computex̂t as the solution of (15).

2) Estimate Support.N̂t = {i ∈ [1, ...,m] : |(x̂t)|i > ρ}.
3) Output the reconstruction̂xt.

FeedbackN̂t and x̂t; incrementt, and go to step 1.

III. B OUNDING THE RECONSTRUCTIONERROR

In this section, we bound the reconstruction error of reg-mod-BPDN. Since mod-BPDN and BPDN are

special cases, their results follow as direct corollaries.The result for BPDN is the same as [3, Theorem

8]. In Sec. III-A, we define the terms needed to state our result. In III-B we state our result and discuss

its implications. In III-C, we give the proof outline.

A. Definitions

We begin by defining the function that we want to minimize as

L(b) , L1(b) + γ‖bT c‖1 (17)

where

L1(b) ,
1

2
‖y −Ab‖22 +

1

2
λ‖bT − µ̂T ‖22 (18)

contains the twoℓ2 norm terms (data fidelity term and the regularization term).If we constrainb to be

supported onT ∪ S for someS ⊂ T c, then the minimizer ofL1(b) will be the regularized least squares

(LS) estimator obtained when we put a weightλ on ‖bT − µ̂T‖22 and a weight zero on‖bS − µ̂S‖22.
Let S be a given subset of∆. Next, we define three matrices which will be frequently usedin our

results. Let

QT,λ(S),AT∪S
′AT∪S + λ

[

IT 0T,S

0S,T 0S,S

]

(19)

MT,λ, I −AT (AT
′AT + λIT )

−1AT
′ (20)

PT,λ(S), (AS
′MT,λAS)

−1 (21)

whereIT is a |T | × |T | identity matrix and0T,S , 0S,T , 0S,S are all zeros matrices with sizes|T | × |S|,
|S| × |T | and |S| × |S|.

Assumption 1:We assume thatQT,λ(∆) is invertible. This implies that, for anyS ⊆ ∆, the functions

L(b) andL1(b) are strictly convex over the set of all vectors supported onT ∪ S.
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Proposition 1: Whenλ > 0, QT,λ(S) is invertible if AS has full rank. Whenλ = 0 (mod-BPDN),

this will hold if AT∪S has full rank.

The proof is easy and is given in Appendix A.

Let S ⊆ ∆. Consider minimizingL(b) overb supported onT ∪S. Whenb(T∪S)c = 0 and Assumption

1 holds,L(bT∪S) is strictly convex and thus has a unique minimizer. The same holds for L1(bT∪S).

Define their respective unique minimizers as

dT,λ(S), argmin
b

L(b) subject to b(T∪S)c = 0 (22)

cT,λ(S), argmin
b

L1(b) subject to b(T∪S)c = 0 (23)

As explained earlier,cT,λ(S) is the regularized LS estimate ofx when assuming thatx is supported on

T ∪ S and with the weights mentioned earlier. It is easy to see that

[cT,λ(S)]T∪S =QT,λ(S)
−1

(

AT∪S
′y +

[

λµ̂T

0S

])

[cT,λ(S)](T∪S)c =0 (24)

In a fashion similar to [3], define

ERCT,λ(S), 1− max
ω/∈T∪S

‖PT,λ(S)AS
′MT,λAω‖1 (25)

This is different from the ERC of [3] but simplifies to it whenT = ∅, S = N andλ = 0. In [3], the

ERC, which in our notation isERC∅,0(N), being strictly positive, along withγ approaching zero, ensured

exact recovery of BPDN in the noise-free case. Hence, in [3],ERC was an acronym forExact Recovery

Coefficient. In this work, the same holds for mod-BPDN. IfERCT,0(∆) > 0, the solution of mod-BPDN

approaches the truex as γ approaches zero. We explain this further in Remark 2 below. However, no

similar claim can be made for reg-mod-BPDN. On the other hand, for the reconstruction error bounds,

ERC serves the exact same purpose for reg-mod-BPDN as it doesfor BPDN in [3]: ERCT,λ(∆) > 0

andγ greater than a certain lower bound ensures that the reg-mod-BPDN (or mod-BPDN) error can be

bounded by modifying the approach of [3].

B. Reconstruction error bound

The reconstruction error can be bounded as follows.

Theorem 1:If QT,λ(∆) is invertible,ERCT,λ(∆) > 0 and

γ ≥ γ∗T,λ(∆) ,
‖A(T∪∆)c

′(y −AcT,λ(∆))‖∞
ERCT,λ(∆)

(26)

then,

1) L(b) has a unique minimizer,̂x.

2) The minimizer,x̂, is equal todT,λ(∆), and thus is supported onT ∪∆.
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3) Its error can be bounded as

‖x− x̂‖2 ≤ γ
√

|∆|f1(∆) + λf2(∆)‖xT − µ̂T ‖2
+f3(∆)‖w‖2

where

f1(∆) ,
√

‖(AT
′AT + λIT )−1AT

′A∆PT,λ(∆)‖22 + ‖PT,λ(∆)‖22,

f2(∆) , ‖QT,λ(∆)−1‖2,

f3(∆) , ‖QT,λ(∆)−1AT∪∆
′‖2, (27)

PT,λ(∆) is defined in (21) andQT,λ(∆) in (19).

Corollary 1 (corollaries for mod-BPDN and BPDN):The result for mod-BPDN follows by setting

λ = 0 in Theorem 1. The result for BPDN follows by settingλ = 0, T = ∅ (and so∆ = N ).

This result is the same as [3, Theorem 8].

Remark 1 (smallestγ): Notice that the error bound above is an increasing function of γ. Thusγ =

γ∗T,λ(∆) gives the smallest bound.

In words, Theorem 1 says that, ifQT,λ(∆) is invertible, ERCT,λ(∆) is positive, andγ is large

enough (larger thanγ∗), thenL(b) has a unique minimizer,̂x, and x̂ is supported onT ∪∆ = N ∪∆e.

This means that the only wrong elements that can possibly be part of the support of̂x are elements

of ∆e. Moreover, the error between̂x and the truex is bounded by a value that is small as long as

the noise,‖w‖2, is small, the prior term,‖xT − µ̂T ‖2, is small andγ∗T,λ(∆) is small. By rewriting

y−AcT,λ(∆) = A(x− cT,λ(∆))+w and using Lemma 2 (given in the Appendix) one can upper bound

γ∗ by terms that are increasing functions of‖w‖2 and‖xT − µ̂T‖2. Thus, as long as these are small, the

bound is small.

As shown in Proposition 1,QT,λ(∆) is invertible if λ > 0 andA∆ is full rank or if AT∪∆ is full rank.

Next, we use the idea of [3, Corollary 10] to show thatERCT,0(∆) is anExact Recovery Coefficient

for mod-BPDN.

Remark 2 (ERC and exact recovery of mod-BPDN):For mod-BPDN,cT,0(∆) is the LS estimate when

x is supported onT ∪∆. Using (24), (1), and the fact thatx is supported onN ⊆ T ∪∆, it is easy to

see that in the noise-free (w = 0) case,cT,0(∆) = xT∪∆. Hence the numerator ofγ∗T,0(∆) will be zero.

Thus, using Theorem 1, ifERCT,0(∆) > 0, the mod-BPDN error satisfies‖x − x̂‖2 ≤ γ
√

|∆|f1(∆).

Thus the mod-BPDN solution,̂x, will approach the truex asγ approaches zero. Moreover, as long as

γ < mini∈N |xi|√
|∆|f1(∆)

, at least the support of̂x will equal the true support,N 3.

We show a numerical comparison of the results of reg-mod-BPDN, mod-BPDN and BPDN in Table I

(simulation details given in Sec. V). Notice that BPDN needs90% of the measurements for its sufficient

3If we bounded theℓ∞ norm of the error as done in [3] we would get a looser upper bound on the allowedγ’s for this.
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conditions to start holding (ERC to become positive) whereas mod-BPDN only needs19%. Moreover,

even with90% of the measurements, the ERC of BPDN is just positive and verysmall. As a result, its

error bound is large (27% normalized mean squared error (NMSE)). Similarly, notice that mod-BPDN

needsn ≥ 19%m for its sufficient conditions to start holding (AT∪∆ to become full rank which is needed

for QT,0(∆) to be invertible). For reg-mod-BPDN which only needsA∆ to be full rank,n = 13%m

suffices.

Remark 3:A sufficient conditions comparison only provides a comparison of when a given result

can be applied to provide a bound on the reconstruction error. In other words, it tells us under what

conditions we can guarantee that the reconstruction error of a given approach will be small (below a

bound). Of course this does not mean that we cannot get small error even when the sufficient condition

does not hold, e.g., in simulations, BPDN provides a good reconstruction using much less than 90% of

the measurements. However, whenn < 90%m we cannot bound its reconstruction error using Theorem

1 above.

C. Proof Outline

To prove Theorem 1, we use the following approach motivated by that of [3].

1) We first bound‖dT,λ(∆)− cT,λ(∆)‖2 by simplifying the necessary and sufficient condition for it

to be the minimizer ofL(b) whenb is supported onT ∪∆. This is done in Lemma 1 in Appendix

B.

2) We bound‖cT,λ(∆)−x‖2 using the expression forcT,λ(∆) in (24) and substitutingy = AT∪∆xT∪∆+

w in it (recall thatx is zero outsideT ∪∆). This is done in Lemma 2 in Appendix B.

3) We can bound‖dT,λ(∆)− x‖2 using the above two bounds and the triangle inequality.

4) We use an approach similar to [3, Lemma 6] to find the sufficient conditions under whichdT,λ(∆)

is also the unconstrained unique minimizer ofL(b), i.e. x̂ = dT,λ(∆). This is done in Lemma 3 in

Appendix B.

The last step (Lemma 3) helps prove the first two parts of Theorem 1. Combining the above four steps,

we get the third part (error bound). We give the lemmas in Appendix B. They are proved in Appendix

D1, D2 and D3.

Two key differences in the above approach with respect to theresult of [3] are

• cT,λ(∆) is the regularized LS estimate instead of the LS estimate in [3]. This helps obtain a better

and simpler error bound of reg-mod-BPDN than when using the LS estimate. Of course, whenλ = 0

(mod-BPDN or BPDN),cT,0(∆) is just the LS estimate again.

• For reg-mod-BPDN (and also for mod-BPDN), the subgradient set of theℓ1 term is∂‖bT c‖1|b=dT,λ(∆)

and so anyφ in this set is zero onT , and only has‖φ∆‖∞ ≤ 1. Since|∆| ≪ |N |, this helps to get

a tighter bound on‖cT,λ(∆) − dT,λ(∆)‖2 in step 1 above as compared to that for BPDN [3] (see

proof of Lemma 1 for details).
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IV. T IGHTER BOUNDS WITHOUT SUFFICIENT CONDITIONS

The problem with the error bounds for reg-mod-BPDN, mod-BPDN, BPDN or LS-CS [31] is that

they all hold under different sufficient conditions. This makes it difficult to compare them. Moreover, the

bound is particularly loose whenn is such that the sufficient conditions just get satisfied. This is because

the ERC is just positive but very small (resulting in a very large γ∗ and hence a very large bound). To

address this issue, in this section, we obtain a bound that holds without any sufficient conditions and that

is also tighter, while still being computable. The key idea that we use is as follows:

• we modify Theorem 1 to hold for “sparse-compressible” signals [31], i.e. for sparse signals,x, in

which some nonzero coefficients out of the set∆ are small (“compressible”) compared to the rest;

and then

• we minimize the resulting bound over all allowed split-ups of x into non-compressible and com-

pressible parts.

Let ∆̃ ⊆ ∆ be such that the conditions of Theorem 1 hold for it. Then the first step involves modifying

Theorem 1 to bound the error for reconstructingx when we treatx∆\∆̃ as the “compressible” part. The

main difference here is in bounding‖cT,λ(∆̃)−x‖2 which now has a larger bound because ofx∆\∆̃. We

do this in Lemma 4 in the Appendix C. Notice from the proofs of Lemma 1 and Lemma 3 in Appendix

D1 and D3 that nothing in their result changes if we replace∆ by a ∆̃ ⊆ ∆. Combining Lemma 4 with

Lemmas 1 and 3 applied for̃∆ instead of∆ leads to the following corollary.

Corollary 2: Consider a∆̃ ⊆ ∆. If QT,λ(∆̃) is invertible,ERCT,λ(∆̃) > 0, andγ = γ∗T,λ(∆̃), then

‖x− x̂‖2 ≤ f(T, λ,∆, ∆̃, γ∗T,λ(∆̃)) (28)

where

f(T, λ,∆, ∆̃, γ),γ

√

|∆̃|f1(∆̃) + λf2(∆̃)‖xT − µ̂T ‖2
+f3(∆̃)‖w‖2 + f4(∆̃)‖x∆\∆̃‖2, (29)

f4(∆̃),
√

‖QT,λ(∆̃)−1AT∪∆̃
′A∆\∆̃‖22 + 1, (30)

f1(·),f2(·), f3(·) are defined in (27) andγ∗T,λ(∆̃) in (26).

Proof: The proof is given in Appendix C1.

In order to get a bound that depends only on‖xT−µ̂T ‖2, ‖x∆\∆̃‖2, the noise,w, and the setsT,∆,∆e,

we can further boundγ∗T,λ(∆̃) by rewriting y − AcT,λ(∆̃) = A(x − cT,λ(∆̃)) + w and then bounding

‖x− (cT,λ(∆̃))‖2 using Lemma 4. Doing this gives the following corollary.

Corollary 3: If QT,λ(∆̃) is invertible,ERCT,λ(∆̃) > 0, andγ = γ∗T,λ(∆̃), then

‖x− x̂‖2 ≤ g(∆̃) (31)
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where

g(∆̃), g1‖xT − µ̂T‖2 + g2‖w‖2 + g3‖x∆\∆̃‖2 + g4 (32)

g1,λf2(∆̃)(

√

|∆̃|f1(∆̃)maxcor(∆̃)

ERCT,λ(∆̃)
+ 1),

g2,

√

|∆̃|f1(∆̃)f3(∆̃)maxcor(∆̃)

ERCT,λ(∆̃)
+ f3(∆̃),

g3,

√

|∆̃|f1(∆̃)f4(∆̃)maxcor(∆̃)

ERCT,λ(∆̃)
+ f4(∆̃),

g4,

√

|∆̃|‖A(T∪∆̃)c
′w‖∞f1(∆̃)

ERCT,λ(∆̃)
,

maxcor(∆̃), max
i/∈(T∪∆̃)c

‖Ai
′AT∪∆‖2,

f1(·),f2(·), f3(·) andf4(·) are defined in (27) and (30), andγ∗T,λ(∆̃) in (26).

Proof: The proof is given in Appendix C2.

Using the above corollary and minimizing over all allowed∆̃’s, we get the following result.

Theorem 2:Let

∆̃∗ , argmin
∆̃∈G

g(∆̃) (33)

where

G , {∆̃ : ∆̃ ⊆ ∆, ERCT,λ(∆̃) > 0, QT,λ(∆̃) is invertible} (34)

If γ = γ∗T,λ(∆̃
∗), then

1) L(b) has a unique minimizer,̂x, supported onT ∪ ∆̃∗.

2) The error bound is

‖x− x̂‖2 ≤ g(∆̃∗) (35)

(γ∗T,λ(∆̃) is defined in (26)).

Proof: This result follows by minimizing over all allowed̃∆’s from Corollary 3.

Compare Theorem 2 with Theorem 1. Theorem 1 holds only when the complete set∆ belongs toG,

whereas Theorem 2 holds always (we only need to setγ appropriately). Moreover, even when∆ does

belong toG, Theorem 1 gives the error bound by choosing∆̃∗ = ∆. However, Theorem 2 minimizes

over all allowed∆̃’s, thus giving a tighter bound, especially for the case whenthe sufficient conditions

of Theorem 1 just get satisfied andERCT,λ(∆) is positive but very small. A similar comparison also

holds for the mod-BPDN and BPDN results.
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The problem with Theorem 2 is that its bound is not computable(the computational cost is exponential

in |∆|). Notice thatg(∆̃∗) := min∆̃∈G g(∆̃) can be rewritten as

g(∆̃∗) , min
∆̃∈G

g(∆̃) = min
0≤k≤|∆|

min
Gk

g(∆̃) where

Gk , G ∩ {∆̃ ⊆ ∆ : |∆̃| = k} (36)

Let d := |∆|. The minimization overGk is expensive since it requires searching over all
(

d
k

)

size k

subsets of∆ to first find which ones belong toGk and then find the minimum over all̃∆ ⊆ Gk. The

total computation cost to do the former for all setsG0,G1, . . . Gd is O(
∑d

k=0

(d
k

)

) = O(2d), i.e. it is

exponential ind. This makes the bound computation intractable for large problems.

A. Obtaining a Computable Bound

In most cases of practical interest, the term that has the maximum variability over different sets inGk
is ‖x∆\∆̃‖2. The multipliersg1, g2, g3 andg4 vary very slightly for different sets in a givenGk. Using

this fact, we can obtain the following upper bound onminGk
g(∆̃) which is only slightly looser and also

holds without sufficient conditions, but is computable in polynomial time.

Define∆̃∗∗(k) andBk as follows

∆̃∗∗(k), arg min
{∆̃⊆∆,|∆̃|=k}

‖x∆\∆̃‖2

Bk,

{

g(∆̃∗∗(k)) if ∆̃∗∗(k) ∈ Gk
∞ otherwise

(37)

Then, clearly

min
Gk

g(∆̃) ≤ Bk (38)

sinceminGk
g(∆̃) ≤ g(∆̃) for any ∆̃ ∈ Gk and it is also less than infinity. For anyk, the set∆̃∗∗(k) can

be obtained by sorting the elements ofx∆ in decreasing order of magnitude and letting∆̃∗∗(k) contain

the indices of thek largest elements. Doing this takesO(d log d) time since sorting takesO(d log d) time.

Computation ofBk requires matrix multiplications and inversions which areO(k3). Thus, the total cost

of doing this is at mostO(d4) which is still polynomial ind.

Therefore, we get the following bound that iscomputable in polynomial time and that still holds

without sufficient conditions and is much tighter than Theorem 1.

Theorem 3:Let

kmin, arg min
0≤k≤|∆|

Bk and

∆̃∗∗, ∆̃∗∗(kmin) (39)

whereBk and∆̃∗∗(k) are defined in (37). Ifγ = γ∗T,λ(∆̃
∗∗),

1) L(b) has a unique minimizer,̂x, supported onT ∪ ∆̃∗∗.
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2) The error bound is

‖x− x̂‖2 ≤ g(∆̃∗∗) (40)

(γ∗T,λ(∆̃) is defined in (26)).

Corollary 4 (corollaries for mod-BPDN and BPDN):The result for mod-BPDN follows by setting

λ = 0 in Theorem 3. The result for BPDN follows by settingλ = 0, T = ∅ (and so∆ = N ) in

Theorem 3.

Whenn ands , |N | are large enough, the above bound is either only slightly larger, or often actually

equal, to that of Theorem 2 (e.g. in Fig. 5(a),m = 256, n = 0.13m = 33, s = 0.1m = 26). The

reason for the equality is that the minimizing value ofk is the one that is small enough to ensure that

g1, g2, g3, g4 are small. Whenk is small, g1, g2, g3, g4, ERC and Q(∆̃) have very similar values for

all sets∆̃ of the same sizek. In (32), the only term with significant variability for different sets∆̃ of

the same sizek is ‖x∆\∆̃‖2. Thus, (a)argminGk
g(∆̃) = argminGk

‖x∆\∆̃‖2 and (b)Gk is equal to

{∆̃ ⊆ ∆, |∆̃| = k}. Thus, (38) holds with equality and so the bounds from Theorems 3 and 2 are equal.

As n and s , |N | approach infinity,it is possible to use a law of large numbers (LLN) argument to

prove that both bounds will be equal with high probability (w.h.p.). The key idea will be the same as

above: show that asn, s go to infinity, w.h.p.,g1, g2, g3, g4, Q andERC are equal for all sets̃∆ of any

given sizek. We will develop this result in future work.

V. NUMERICAL EXPERIMENTS

In this section, we show both upper bound comparisons and actual reconstruction error comparisons.

The upper bound comparison only tells us that the performance guarantees of reg-mod-BPDN are better

than those for the other methods. To actually demonstrate that reg-mod-BPDN outperforms the others,

we need to compare the actual reconstruction errors. This section is organized as follows. After giving

the simulation model in Sec V-A, we show the reconstruction error comparisons for recovering simulated

sparse signals from random Gaussian measurements in Sec V-B. In Sec V-C, we show comparisons for

recursive dynamic MRI reconstruction of a larynx image sequence. In this comparison, we also show

the usefulness of the Theorem 3 in helping us select a good value of γ. In the last three subsections,

we show numerical comparisons of the results of the various theorems. The upper bound comparisons of

Theorem 3 and the comparison of the corresponding reconstruction errors suggests that the bounds for

reg-mod-BPDN and BPDN are tight under the scenarios evaluated. Hence, they can be used as a proxy

to decide which algorithm to use when. We show this for both random Gaussian and partial Fourier

measurements.

A. Simulation Model

The notationz = ±a means that we generate each element of the vectorz independently and each

is either+a or −a with probability 1/2. The notationν ∼ N (0,Σ) means thatν is generated from a
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Gaussian distribution with mean 0 and covariance matrixΣ. We use⌊a⌋ to denote the largest integer less

than or equal toa. Independent and identically distributed is abbreviated as iid. Also, N-RMSE refers to

the normalized root mean squared error.

We use the recursive reconstruction application [20], [14]to motivate the simulation model. In this case,

assuming that slow support and slow signal value change hold[see Fig. 1], we can use the reconstructed

value of the signal at the previous time asµ̂ and its support asT . To simulate the effect of slow signal

value change, we letxN = µN + ν whereν is a small iid Gaussian deviation and we letµ̂T∩N = µT∩N

(and soxT∩N = µ̂T∩N + νT∩N ).

The extras set,∆e = T \N , contains elements that got removed from the support at the current time

or at a few previous times (but so far did not get removed from the support estimate). In most practical

applications, only small valued elements at the previous time get removed from the support and hence

the magnitude of̂µ on ∆e will be small. We useβs to denote this small magnitude, i.e. we simulate

(µ̂)∆e
= ±βs.

The misses’ set at timet, ∆, definitely includes the elements that just got added to the support at

t or the ones that previously got added but did not get detectedinto the support estimate so far. The

new elements typically get added at a small value and their value slowly increases to a large one. Thus,

elements in∆ will either have small magnitude (corresponding to the current newly added ones), or will

have larger magnitude but still smaller than that of elements already inN ∩T . To simulate this, we do the

following. (a) We simulate the elements onN ∩T to have large magnitude,βl, i.e. we let(µ)N∩T = ±βl.
(b) We split the set∆ into two disjoint parts,∆1 and∆2 = ∆ \∆1. The set∆1 contains the small (e.g.

newly added) elements, i.e.(µ)∆1
= ±βs. The set∆2 contains the larger elements, though still with

magnitudes smaller than those inN ∩ T , i.e. (µ)∆2
= ±βm, whereβl ≥ βm ≥ βs.

In summary, we use the following simulation model.

(x)N =(µ)N + ν, ν ∼ N (0, σ2
pI)

(x)Nc =0 (41)

where (µ)N∩T =±βl
(µ)∆1

=±βs, (µ)∆2
= ±βm

(µ)Nc =0 (42)

and

(µ̂)T∩N =(µ)T∩N = ±βl
(µ̂)∆e

=±βs
(µ̂)T c =0 (43)

We generate the support ofx, N , of size |N |, uniformly at random from[1, ...,m]. We generate∆

with size |∆| and∆e with size |∆e| uniformly at random fromN and fromN c respectively. The set
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Fig. 2. The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS, KF-CS,weightedℓ1, CS-residual, CS-mod-

residual and modified-CS-residual are plotted. Forn = 0.13m , reg-mod-BPDN has smaller errors than those of

mod-BPDN and the gap is larger when the signal estimate is good. Forn = 0.3m, the errors of reg-mod-BPDN,

mod-BPDN and weightedℓ1 are close and all small.

∆1 of size |∆1| = ⌊|∆|/2⌋ is generated uniformly at random from∆. The set∆2 = ∆ \ ∆1. We let

T = N ∪∆e \∆. We generateµ and thenx using (42) and (41). We generatêµ using (43).

In some simulations, we simulated the more difficult case where βm = βs. In this case, all elements

on ∆ were identically generated and hence we did not need∆1.

B. Reconstruction Error Comparisons

In Fig. 2, we compare the Monte Carlo average of the reconstruction error of reg-mod-BPDN with

that of mod-BPDN, BPDN, weightedℓ1 [15] given in (9), CS-residual given in (10), CS-mod-residual
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Fig. 3. Plot of Fig 2(a) extended all the way to|∆|/|N | = 1 (which is the same as∆ = N ). Notice that if

|∆e| = 0, then the point|∆|/|N | = 1 of reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in our plot,

|∆e| = 3 and hence the two points are different, even though the errors are quite similar.

given in (11) and modified-CS-residual[29] given in (12). Simulation was done according to the model

specified above. We used random Gaussian measurements in this simulation, i.e. we generatedA as an

n×m matrix with iid zero mean Gaussian entries and normalized each column to unitℓ2 norm.

We experimented with two choices ofn, n = 0.13m (where reg-mod-BPDN outperforms mod-BPDN)

andn = 0.3m (where both are similar) and two values ofσ2
p, σ2

p = 0.001 (good prior) andσ2
p = 0.1

(bad prior). For the cases of Fig 2(a) (n = 0.13m, σ2
p = 0.001) and Fig 2(b) (n = 0.13m, σ2

p = 0.1), we

used signal lengthm = 256, support size|N | = 0.1m = 26 and support extras size,|∆e| = 0.1|N | = 3.

The misses’ size,|∆|, was varied between 0 and0.2|N | (these numbers were motivated by the medical

imaging application, we used larger numbers than what are shown in Fig. 1). We usedβl = 1, βm = 0.4

and βs = 0.2. The noise variance wasσ2
w = 10−5. For the last two figures, Fig 2(c) (n = 0.3m,

σ2
p = 0.001) and Fig 2(d) (n = 0.3m, σ2

p = 0.1), for which n was larger, we usedβm = βs = 0.25

which is a more difficult case for reg-mod-BPDN. For Fig. 2(c), we also used a larger noise variance

σ2
w = 10−4. All other parameters were the same.

In Fig. 3, we show a plot of reg-mod-BPDN and BPDN from Fig 2(a)extended all the way to

|∆|/|N | = 1 (which is the same as∆ = N ). Notice that if |∆e| = 0, then the point|∆|/|N | = 1 of

reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in thisplot, |∆e| = 3 and hence the two

points are different, even though the errors are quite similar.

For applications where some training data is available,γ andλ for reg-mod-BPDN can be chosen by

interpreting the reg-mod-BPDN solution as the maximum a posteriori (MAP) estimate under a certain

prior signal model (assumexT is Gaussian with mean̂µT and varianceσ2
p and xT c is independent of

xT and is iid Laplacian with parameterb). This idea is explained in detail in [14]. However, there isno

easy way to do this for the other methods. Alternatively, choosingγ andλ according to Theorem 3 gives
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Fig. 4. Reconstructing a32 × 32 block of the actual (compressible) larynx sequence from partial Fourier

measurements. Measurementsn = 0.18m for t = 0 andn = 0.06m for t > 0. Reg-mod-BPDN has the smallest

reconstruction error among all methods.

another good start point. We can do this for mod-BPDN and BPDN, but we cannot do this for the other

methods (we show examples using this approach later). For a fair error comparison, for each algorithm,

we selectedγ from a set of values[0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1]. We tried all

these values for a small number of simulations (10 simulations) and then picked the best one (one with

the smallest N-RMSE) for each algorithm. For weightedℓ1 reconstruction, we also pick the bestγ′ in (9)

from the same set in the same way4. For reg-mod-BPDN,λ should be larger when the signal estimate

is good and should be decreased when the signal estimate is not so good. We can useλ = ασ2
w/σ

2
p to

adaptively determine its value for different choices ofσ2
w andσ2

p. In our simulations, we usedα = 0.2

for Fig. 2 (a), (b) and (d) andα = 0.05 for Fig. 2(c).

We fixed the chosenγ, γ′ andλ and did Monte Carlo averaging over 100 simulations. We conclude

the following. (1) When the signal estimate is not good (Fig.2(b),(d)) or whenn is small (Fig. 2(a),(b)),

CS-residual and CS-mod-residual have significantly largererror than reg-mod-BPDN. (2) In case of Fig.

2(d) (n = 0.3m), they also have larger error than mod-BPDN. (3) In all four cases, weighedℓ1 and mod-

BPDN have similar performance. This is also similar to that of reg-mod-BPDN in case ofn = 0.3m,

but is much worse in case ofn = 0.13m. (4) We also show a comparison with regmodBPDN-var in Fig.

2(a). Notice that it has larger errors than reg-mod-BPDN forreasons explained in Sec. I-C.

4To give an example, our finally selected numbers for Fig. 2(d)wereγ = 0.01, 0.001, 0.001, 0.001, 0.001, 0.001, 0.01, 0.01

for BPDN, mod-BPDN, reg-mod-BPDN, weightedℓ1, LS-CS, CS-residual, CS-mod-residual, mod-CS-residual respectively and

γ′ = 0.0001
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C. Dynamic MRI application usingγ from Theorem 3

In Fig. 4, we show comparisons for simulated dynamic MR imaging of an actual larynx image sequence

(Fig. 1 (a)(i)). The larynx image is not exactly sparse but isonly compressible in the wavelet domain.

We used a two-level Daubechies-4 2D discrete wavelet transform (DWT). The99%-energy support size

of its wavelet transform vector,|Nt| ≈ 0.07m. Also, |∆t| ≈ 0.001m and |∆e,t| ≈ 0.002m. We used a

32×32 block of this sequence and at each time and simulated undersampled MRI, i.e. we selectedn 2D

discrete Fourier transform (DFT) coefficients using the variable density sampling scheme of [32], and

added iid Gaussian noise with zero mean and varianceσ2
w = 10 to each of them. Using a small32× 32

block allows easy implementation using CVX (for full sized image sequences, one needs specialized

code). We usedn0 = 0.18m at t = 0 andn = 0.06m at t > 0.

We implemented dynamic reg-mod-BPDN as described in Algorithm 1. In this problem, the matrixA =

Fu·W−1 whereFu contains the selected rows of the 2D-DFT matrix andW is the inverse 2D-DWT matrix

(for a two-level Daubechies-4 wavelet). Reg-mod-BPDN was compared with similarly implemented reg-

mod-BPDN-var and CS-residual algorithms (CS-residual only solved simple BPDN att = 0). We also

compared with simple BPDN (BPDN done for each frame separately). For reg-mod-BPDN and reg-mod-

BPDN-var, the support estimation threshold,ρ, was chosen as suggested in [14]: we usedρ = 20 which is

slightly larger than the smallest magnitude element in the99%-energy support which is15. At t = 0, we

usedT0 to be the set of indices of the wavelet approximation coefficients. To chooseγ andλ we tried two

different things. (a) We usedλ andγ from the set[0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1]

to do the reconstruction for a short training sequence (5 frames), and used the average error to pick the

bestλ andγ. We call the resulting reconstruction error plot reg-mod-BPDN-opt. (b) We computed the

average of theγ∗ obtained from Theorem 3 for the 5-frame training sequence and used this asγ for the

test sequence. We selectedλ from the above set by choosing the one that minimizes the average of the

bound of Theorem 3 for the 5 frames. We call the resulting error plot reg-mod-BPDN-γ∗. The same two

things were also done for BPDN and CS-residual as well. For reg-mod-BPDN-var, we only did (a).

From Fig. 4, we can conclude the following. (1) Reg-mod-BPDNsignificantly outperforms the other

methods when using so few measurements. (2) Reg-mod-BPDN-var and reg-mod-BPDN have similar

performance in this case. (3) The reconstruction performance of reg-mod-BPDN usingγ∗ from Theorem

3 is close to that of reg-mod-BPDN using the bestγ chosen from a large set. This indicates that Theorem

3 provides a good way to selectγ in practice.

D. Comparing the result of Theorem 1

In Table I, we compare the result of Theorem 1 for reg-mod-BPDN, mod-BPDN and BPDN. We used

m = 256, |N | = 26 = 0.1m, |∆| = 0.04|N | = |∆e|, σ2
p = 10−3, βl = 1 andβm = βs = 0.25. Also,

σ2
w = 10−5 and we variedn. For each experiment with a givenn, we did the following. We did100

Monte Carlo simulations. Each time, we evaluated the sufficient conditions for the bound of reg-mod-

BPDN to hold. We say the boundholds if all the sufficient conditions hold for at least98 realizations.
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If this did not happen, we recordnot hold in Table I. If this did happen, then we recorded
√

E[bound2]
E[‖x‖2

2
]

whereE[·] denotes the Monte Carlo average computed over those realizations for which the sufficient

conditions do hold. Here, “bound” refers to the right hand side of (27) computed withγ = γ∗T,λ(∆)

given in (26). An analogous procedure was followed for both mod-BPDN and BPDN.

The comparisons are summarized in Table I. For reg-mod-BPDN, we selectedλ from the set[0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1]

by picking the one that gave the smallest bound. Clearly the reg-mod-BPDN result holds with the smallest

n, while the BPDN result needs a very largen (n ≥ 90%). Also even withn = 90%, the BPDN error

bound is very large.

n Reg-mod-BPDN Mod-BPDN BPDN

0.13m 0.885 not hold not hold

0.19m 0.161 0.303 not hold

0.5m 0.0199 0.0199 not hold

0.9m 0.014 0.014 0.27

TABLE I

SUFFICIENT CONDITIONS AND NORMALIZED BOUNDS COMPARISON OF REG-MOD-BPDN, MOD-BPDN AND

BPDN. SIGNAL LENGTH m = 256, SUPPORT SIZE|N | = 0.1m, |∆| = 4%|N |, ∆e = 4%|N |, σ2
w = 10−5 AND

σ2
p = 10−3. “ NOT HOLD” MEANS THE ONE OR ALL OF THE SUFFICIENT CONDITIONS DOES NOT HOLD.

E. Comparing Theorems 1, 2, 3

In Fig. 5 (a), we compare the results from Theorems 1, 2 and 3 for one simulation. We plotbound
‖x‖2

for |∆|/|N | ranging from 0 to 0.2. Also, we usedm = 256, |N | = 26, |∆e| = 0.1|N |, σ2
p = 10−3,

βl = 1 andβm = βs = 0.25. Also, n = 0.13m andσ2
w = 10−5. We usedγ = γ∗ given in the respective

theorems, and we setλ = 10σ2
w/σ

2
p. We notice the following. (1) The bound of Theorem 1 is much

larger than that of Theorem 2 or 3, even for|∆| = 0.04|N |. (2) For larger values of|∆|, the sufficient

conditions of Theorem 1 do not hold and hence it does not provide a bound at all. (3) For reasons

explained in Sec. IV, in this case, the bound of Theorem 3 is equal to that of Theorem 2. Recall that the

computational complexity of the bound from Theorem 2 is exponential in |∆|. However if |∆| is small,

e.g. in our simulations|∆| ≤ 5, this is still doable.

F. Upper bound comparisons using Theorem 3

In Fig. 5(b), we do two things. (1) We compare the reconstruction error bounds from Theorem 3 for

reg-mod-BPDN, mod-BPDN and BPDN and compare them with the bounds for LS-CS error given in [31,

Corollary 1]. All bounds hold without any sufficient conditions which is what makes this comparison

possible. (2) We also use theγ∗ given by Theorem 3 to obtain the reconstructions and computethe

Monte Carlo averaged N-RMSE. Comparing this with the Monte Carlo averaged upper bound on the
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Fig. 5. In (a), we compare the three bounds from Theorem 1, 2 and 3 for one realization ofx. In (b) and (c),

we compare the normalized average bounds from Theorem 3 and reconstruction errors with random Gaussian and

partial Fourier measurements respectively.

N-RMSE,
√

E[bound2]
E[‖x‖2

2
] , allows us to evaluate the tightness of a bound. HereE[·] denotes the mean computed

over 100 Monte Carlo simulations and “bound” refers to the right hand side of (40). We usedm = 256,

|N | = 26, |∆e| = 0.1|N |, σ2
p = 10−3, βl = 1, βm = βs = 0.25, and |∆| was varied from 0 to0.2|N |.

Also, n = 0.13m andσ2
w = 10−5.

From the figure, we can observe the following. (1) Reg-mod-BPDN has much smaller bounds than those

of mod-BPDN, BPDN and LS-CS. The differences between reg-mod-BPDN and mod-BPDN bounds is

minor when|∆| is small but increases as|∆| increases. (2) The conclusions from the reconstruction error

comparisons are similar to those seen from the bound comparisons, indicating that the bound can serve

as a useful proxy to decide which algorithm to use when (notice bound computation is much faster than

computing the reconstruction error). (3) Also, reg-mod-BPDN and mod-BPDN bounds are quite tight as

compared to the LS-CS bound. BPDN bound and error are both100%. 100% error is seen because the

reconstruction is the all zeros’ vector.

In Fig. 5(c), we did a similar set of experiments for the case whereA corresponds to a simulated

MRI experiment, i.e.A = Fu ·W−1 whereFu contains randomly selected rows of the 2D-DFT matrix

andW is the inverse 2D-DWT matrix (for a two-level Daubechies-4 wavelet). We usedn = 0.17m and

σ2
w = 10−3. All other parameters were the same as in Fig. 5(b). Our conclusions are also the same.

The complexity for Theorem 3 is polynomial in|∆| whereas that of the LS-CS bound [31, Corollary

1] is exponential in|∆|. To also show comparison with the LS-CS bound, we had to choose a small value

of m = 256 so that the maximum value of|∆| = 0.2|N | = 5 was small enough. In terms of MATLAB

time, computation of the Theorem 3 bound for reg-mod-BPDN took 0.2 seconds while computing the

LS-CS bound took 1.2 seconds. For all methods except LS-CS, we were able to do the same thing fairly

quickly even form = 4096, or even larger. It took only8 seconds to compute the bound of Theorem 3

whenm = 4096, n = 0.13m, |N | = 410 = 0.1m and |∆| = |∆e| = 0.1|N | = 41.
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VI. CONCLUSIONS AND FUTURE WORK

In this work we studied the problem of sparse reconstructionfrom noisy undersampled measurements

when partial and partly erroneous, knowledge of the signal’s support and an erroneous estimate of the

signal values on the “partly known support” is also available. Denote the support knowledge byT and the

signal value estimate onT by µ̂T . We proposed and studied a solution called regularized modified-BPDN

which tries to find the signal that is sparsest outsideT , while being “close enough” tôµT on T , and

while satisfying the data constraint. We showed how to obtain computable error bounds that hold without

any sufficient conditions. This made it easy to compare bounds for the various approaches (corresponding

results for modified-BPDN and BPDN follow as direct corollaries). Empirical error comparisons with

these and many other existing approaches are also provided.

In ongoing work, we are evaluating the utility of reg-mod-BPDN for recursive functional MR imaging

to detect brain activation patterns in response to stimuli [33]. On the other end, we are also working on

obtaining conditions under which it will remain “stable” (its error will be bounded by a time-invariant and

small value) for a recursive recovery problem. In [30], thishas been done for the constrained version of

reg-mod-BPDN. That result uses the restricted isometry constants (RIC) and the restricted orthogonality

constants (ROC) [17], [11] in its sufficient conditions and bounds. However, this means that the conditions

and bounds are not computable. Also, since the stability holds under a different set of sufficient conditions

and has a different error bound than that for mod-CS [34] or LS-CS [20] or CS [11], comparison of the

various results is difficult. An open question is how to extend the results of the current work (which are

computable) to show the stability of unconstrained reg-mod-BPDN.

APPENDIX

A. Proof of Proposition 1

Whenλ = 0, QT,0(S) = AT∪S
′AT∪S . Thus,QT,λ(S) is invertible iff AT∪S is full rank. Whenλ > 0,

QT,λ(S) is as defined in (19). Apply block matrix inversion lemma
[

A B

C D

]−1

=

[

(A−BD
−1

C)−1 −(A−BD
−1

C)−1
BD

−1

−D−1
C(A−BD

−1
C)−1

D
−1 +D

−1
C(A−BD

−1
C)−1

BD
−1

]

with A = AT
′AT + λIT , B = AT

′AS , C = AS
′AT andD = AS

′AS , clearlyQT,λ(S) is invertible iff

AS
′AS andAT

′RAT +λIT are invertible whereR := [I−AS(AS
′AS)

−1A′
S]. WhenAS is full rank, (i)

AS
′AS is full rank; and (ii)R is a projection matrix. ThusR = R′R and soAT

′RAT = (RAT )
′(RAT )

is positive semi-definite. As a result,AT
′RAT +λIT is positive definite and thus invertible. Hence, when

AS is invertible,QT,λ(S) is also invertible.
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B. Proof of Theorem 1

In this subsection, we give the three lemmas for the proof of Theorem 1.To keep notation simple we

remove the subscriptsT,λ from Q(∆), M , P (∆), d(∆), c(∆), ERC(∆) in this and other Appendices.

Lemma 1:Suppose thatQ(∆) is invertible, then

‖d(∆)− c(∆)‖2 ≤ γ
√

|∆| · f1(∆) (44)

Lemma 1 can be obtained by setting∇L(b) = 0 and then using block matrix inversion onQ(∆). The

proof of Lemma 1 is in Appendix D1. Next,‖c(∆)− x‖2 can be bounded using the following lemma.

Lemma 2:Suppose thatQ(∆) is invertible. Then

‖c(∆)− x‖2 ≤ λf2(∆)‖xT − µ̂T ‖2 + f3(∆)‖w‖2 (45)

The proof of Lemma 2 is in Appendix D2.

Lemma 3: If Q(∆) is invertible,ERC(∆) > 0, andγ ≥ γ∗(∆), thenL(b) has a unique minimizer

which is equal tod(∆) .

Lemma 3 can be obtained in a fashion similar to [3], [1]. Its proof is given in Appendix D3.

Combining Lemmas 1, 2 and 3, and using the fact‖d(∆) − x‖2 ≤ ‖d(∆) − c(∆)‖2 + ‖c(∆) − x‖2,
we get Theorem 1.

C. Proof of Theorem 2

The following lemma is needed for the proof of the corollaries leading to Theorem 2.

Lemma 4:Suppose thatQ(∆̃) is invertible. Then

‖c(∆̃)− x‖2 ≤

λf2(∆̃)‖xT − µ̂T ‖2 + f3(∆̃)‖w‖2 + f4(∆̃)‖x∆\∆̃‖2 (46)

Sincec(∆̃) is only supported onT ∪ ∆̃ andy = AT∪∆̃xT∪∆̃ + A∆\∆̃x∆\∆̃ + w, the last term of (46)

can be obtained by separatingx∆\∆̃ out. The proof of Lemma 4 is given in Appendix D4.

Using Lemma 4, we can obtain Corollary 1 and then Corollary 2.Then minimize over all allowed̃∆’s

in Corollary 2, we get Theorem 2. The proof of Corollary 1 and 2are given as follows.

1) Proof of Corollary 1: Notice from the proof of Lemma 1 and Lemma 3 that nothing in theresult

changes if we replace∆ by a ∆̃ ⊆ ∆. By Lemma 1 for∆̃, we are able to bound‖d(∆̃) − c(∆̃)‖2.
Hence, we get the first term of (29). Next, invoke Lemma 4 to bound ‖c(∆̃)−x‖2 and we can obtain the

rest three terms of (29). Lemma 3 for̃∆ gives the sufficient conditions under whichd(∆̃) is the unique

unconstrained minimizer ofL(b).
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2) Proof of Corollary 2: Corollary 2 is obtained by boundingγ∗(∆̃). γ∗(∆̃) = ‖A(T∪∆̃)c
′(y −

Ac(∆̃))‖∞/ERC(∆̃) can be bounded by rewritingy − Ac(∆̃) = AT∪∆(xT∪∆ − (c(∆̃))T∪∆) + w and

then bounding‖xT∪∆ − (c(∆̃))T∪∆‖2 = ‖x− c(∆̃)‖2 using Lemma 4. Doing this, we get

‖A(T∪∆̃)c
′(y −Ac(∆̃))‖∞

≤ max
i/∈T∪∆̃

|Ai
′AT∪∆(xT∪∆ − (c(∆̃))T∪∆)|+ |Ai

′w|

≤ max
i/∈T∪∆̃

‖Ai
′AT∪∆‖2‖xT∪∆ − (c(∆̃))T∪∆)‖2 + |Ai

′w|

≤ maxcor(∆̃)λf2(∆̃)‖xT − µT‖2 + maxcor(∆̃)f3(∆̃)‖w‖2
+maxcor(∆̃)f4(∆̃)‖x∆\∆̃‖2 + ‖A(T∪∆̃)c

′w‖∞

Using the above inequality to boundγ∗(∆̃) and replacingγ in f(T, λ,∆, ∆̃, γ), given in (29), by this

bound, we can get (31).

D. Proof of Lemmas 1, 2, 3, 4

1) Proof of Lemma 1:We use the approach of [3, Lemma 3]. We can minimize the function L(b)

over all vectors supported on setT ∪∆ by minimizing:

F (b) =
1

2
‖y −AT∪∆bT∪∆‖22 +

1

2
λ‖bT − µ̂T ‖22 + γ‖b∆‖1 (47)

SinceQ(∆) is invertible,F (b) is strictly convex as a function ofbT∪∆. Then at the unique minimizer,

d(∆), 0 ∈ ∇F (b)|b=d(∆). Let ∂‖bT c‖1|b=d(∆) denote the subgradient set of‖bT c‖1 at b = d(∆). Then

clearly anyφ in this set satisfies

φT =0 (48)

‖φT c‖∞≤ 1 (49)

Now, 0 ∈ ∇F (b)|b=d(∆) implies that

(AT∪∆
′AT∪∆)[d(∆)]T∪∆ −AT∪∆

′y

+λ

[

[d(∆)]T − µ̂T

0∆

]

+ γφT∪∆ = 0 (50)

Simplifying the above equation, we get

[d(∆)]T∪∆ = Q(∆)−1(AT∪∆
′y + λ

[

µ̂T

0∆

]

− γφT∪∆) (51)

Therefore, using (48) and (24), we have

[c(∆)]T∪∆ − [d(∆)]T∪∆ = Q(∆)−1

[

0T
γφ∆

]

(52)
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Since

Q(∆) =

[

AT
′AT + λIT AT

′A∆

A∆
′AT A∆

′A∆

]

, (53)

using the block matrix inversion lemma
[

A B

C D

]−1

=

[

A
−1 +A

−1
B(D−CA

−1
B)−1

CA
−1 −A−1

B(D−CA
−1

B)−1

−(D−CA
−1

B)−1
CA

−1 (D−CA
−1

B)−1

]

with A = AT
′AT + λIT , B = AT

′A∆, C = A∆
′AT andD = A∆

′A∆ and usingφT = 0, we obtain

[c(∆)]T∪∆ − [d(∆)]T∪∆ =
[

−γ(AT
′AT + λI|T |)

−1ATA∆(A∆
′MA∆)

−1φ∆

γ(A∆
′MA∆)

−1φ∆

]

Since‖φ∆‖∞ ≤ 1, the bound of (44) follows.

2) Proof of Lemma 2:Recallc(∆) is given in (24). Since bothx andc(∆) are zero outsideT ∪∆,

then‖c(∆) − x‖2 = ‖[c(∆)]T∪∆ − xT∪∆‖2. With y = Ax+ w andAx = AT∪∆xT∪∆, we have

AT∪∆
′y = AT∪∆

′(AT∪∆xT∪∆ + w) (54)

NoticeA′
T∪∆AT∪∆ = Q(∆)− λ

[

IT 0T,S

0S,T 0S,S

]

. Using (54), we obtain the following equation

AT∪∆
′y = Q(∆)xT∪∆ − λ

[

xT

0∆

]

+AT∪∆
′w (55)

Then, using (24) we can obtain

[c(∆)]T∪∆ − xT∪∆ = λQ(∆)−1

[

µ̂T − xT

0∆

]

+Q(∆)−1AT∪∆
′w

Finally, this gives (45).

3) Proof of Lemma 3:The proof is similar to that in [3] and [1]. Recall thatd(∆) minimizes the

function L(b) over all b supported onT ∪ ∆. We need to show that ifγ ≥ γ∗(∆), then d(∆) is the

unique global minimizer ofL(b).

The idea is to prove under the given condition, any small perturbationh on d(∆) will increase function

L(d(∆)),i.e. L(d(∆) + h)− L(d(∆)) > 0,∀‖h‖∞ ≤ ǫ for ǫ small enough. Then sinceL(b) is a convex

function,d(∆) will be the unique global minimizer[3].

Similar to [1], we first split the perturbation into two partsh = u+ v whereu is supported onT ∪∆
andv is supported on(T ∪∆)c. Clearly‖u‖∞ ≤ ‖h‖∞ ≤ ǫ. We consider the casev 6= 0 since the case
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v = 0 is already covered in Lemma 1. Then

L(d(∆) + h) =
1

2
‖y −A(d(∆) + u)−Av‖22 +

1

2
λ‖[d(∆)]T + uT + vT − µ̂T ‖22 + γ‖(d(∆) + u)T c + vT c‖1

Then, we can obtain

L(d(∆) + h)− L(d(∆)) = L(d(∆) + u)− L(d(∆))

+
1

2
‖Av‖22 − 〈y −Ad(∆), Av〉 + 〈Au,Av〉 + γ‖vT c‖1

Sinced(∆) minimizesL(b) over all vectors supported onT ∪∆, L(d(∆)+u)−L(d(∆)) ≥ 0. Then since

L(d(∆) + u)− L(d(∆)) ≥ 0 and‖Av‖22 ≥ 0, we need to prove that the rest are positive,i.e.,γ‖vT c‖1 −
〈y−Ad(∆), Av〉+ 〈Au,Av〉 ≥ 0. Instead, we can prove this by proving a stronger conditionγ‖vT c‖1−
|〈y −Ad(∆), Av〉| − |〈Au,Av〉| ≥ 0. Since〈y−Ad(∆), Av〉 = v′A′(y−Ad(∆)) andv is supported on

(T ∪∆)c,

|〈y −Ad(∆), Av〉|= |v(T∪∆)c
′A(T∪∆)c

′(y −Ad(∆))|

≤ ‖v‖1‖A(T∪∆)c
′(y −Ad(∆))‖∞

Thus,

|〈y −Ad(∆), Av〉| ≤ max
ω/∈T∪∆

|〈y −Ad(∆), Aω〉‖v‖1

Meanwhile,

|〈Au,Av〉| ≤ ‖A′Au‖∞‖v‖1 ≤ ǫ‖A′A‖∞‖v‖1 (56)

And ‖v‖1 = ‖vT c‖1 sincev is supported on(T ∪∆)c ⊆ T c. Then what we need to prove is

[

γ − max
ω/∈T∪∆

|〈y −Ad(∆), Aω〉| − ǫ‖A′A‖∞
]

‖v‖1 > 0 (57)

Since we can selectǫ > 0 as small as possible, then we just need to show

γ − max
ω/∈T∪∆

|〈y −Ad(∆), Aω〉| > 0 (58)

Sincey − Ad(∆) = (y − Ac(∆)) + A(c(∆) − d(∆)), and by Lemma 1 we knowA(c(∆) − d(∆)) =

γMA∆(A∆
′MA∆)

−1φ∆ and since‖φ∆‖∞ ≤ 1, we conclude thatd(∆) is the unique global minimizer

if

‖A(T∪∆)c
′(y −Ac(∆))‖∞ < γ

[

1− max
ω/∈T∪∆

‖P (∆)A∆
′MAω‖1

]

(59)

Next, we will show thatd(∆) is also the unique global minimizer under the following condition

‖A(T∪∆)c
′(y −AcT,λ(∆))‖∞ = γ

[

1− max
ω/∈T∪∆

‖P (∆)A∆
′MAω‖1

]

(60)

Since the perturbationh 6= 0, thenu 6= 0 or v 6= 0. Therefore, we will discuss the following three cases.
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1) u 6= 0. In this case, we knowL(d(∆) + u) − L(d(∆)) > 0 sinced(∆) is the unique minimizer

over all vectors supported onT ∪∆. Therefore,L(d(∆) + h)− L(d(∆)) > 0 if (60) holds.

2) u = 0, v 6= 0 andv is not in the null space ofA, i.e.,Av 6= 0. In this case, we know‖Av‖22 > 0.

Hence,L(d(∆) + h)− L(d(∆)) > 0 when (60) holds.

3) u = 0, v 6= 0 andAv = 0. In this case,L(d(∆)+h)−L(d(∆)) = γ‖vT c‖1. Thus,L(d(∆)+h)−
L(d(∆)) > 0 if γ > 0. Clearly,L(d(∆) + h)− L(d(∆)) > 0 when (60) holds.

Finally, combining (59) and (60), we can conclude thatd(∆) is the unique global minimizer if the

following condition holds

‖A(T∪∆)c
′(y −Ac(∆))‖∞ ≤ γERC(∆) (61)

4) Proof of Lemma 4:Consider ã∆ ⊆ ∆ such thatA∆̃ has full rank. SinceAT∪∆̃
′y = AT∪∆̃

′(AT∪∆̃xT∪∆̃+

w +A∆\∆̃x∆\∆̃), expanding these terms we have

AT∪∆̃
′y = Q(∆)xT∪∆̃ − λ

[

xT

0∆̃

]

+AT∪∆̃
′w +AT∪∆̃

′A∆\∆̃x∆\∆̃ (62)

Then, using this in the expression forc(∆̃) from (24), we get

[c(∆̃)]T∪∆ − xT∪∆ =









λQ(∆̃)−1

[

µ̂T − xT

0∆̃

]

0∆\∆̃









+

[

Q(∆̃)−1AT∪∆̃
′w

0∆\∆̃

]

+

[

Q(∆̃)−1AT∪∆̃
′A∆\∆̃x∆\∆̃

−x∆\∆̃

]

(63)

Therefore, we get (46).
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