
ar
X

iv
:1

10
6.

05
41

v1
  [

cs
.IT

]  
3 

Ju
n 

20
11

1

Sum rate analysis of a reduced feedback

OFDMA system employing joint scheduling

and diversity
Seong-Ho (Paul) Hur∗ Student Member, IEEE,Bhaskar D. Rao,Fellow, IEEE,

Abstract

We consider joint scheduling and diversity to enhance the benefits of multiuser diversity in an

OFDMA system. The OFDMA spectrum is assumed to consist ofNRB resource blocks and the reduced

feedback scheme consists of each user feeding back channel quality information (CQI) for only the best-

NFB resource blocks. Assuming largest normalized CQI scheduling and a general value forNFB, we develop

a unified framework to analyze the sum rate of the system for both the quantized and non-quantized CQI

feedback schemes. Based on this framework, we provide closed-form expressions for the sum rate for

three different multi-antenna transmitter schemes; Transmit antenna selection (TAS), orthogonal space

time block codes (OSTBC) and cyclic delay diversity (CDD). Furthermore, we approximate the sum rate

expression and determine the feedback ratio(
NFB
NRB

) required to achieve a sum rate comparable to the sum

rate obtained by a full feedback scheme.
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I. INTRODUCTION

Diversity is a common technique employed to mitigate the harmful effects of fading in a wireless

channel and to achieve reliable communication [1]–[3]. This is achieved by creating and combining

independent multiple copies of a signal between a transmitter and a receiver over various dimensions

such as time, frequency and space [1]–[3]. On the other hand,when fading is viewed in a multiuser

communication context and scheduling of users is introduced for sharing the common resources, multiuser

diversity can be exploited to significantly increase the system throughput [4], [5]. To exploit multiuser

diversity inherent in a wireless network with multiple users, it is necessary to schedule a transmission,

at any scheduling instant, to a user with the best channel condition [4], [5], which is also known as

opportunistic scheduling [6]. However, fairness becomes an issue in a system with asymmetric user

fading statistics which leads to channel resources being dominated by strong users [5]. In order to provide

fairness, in addition to exploiting multiuser diversity, anormalized signal to noise ratio (SNR)-based or

channel quality information (CQI)-based scheduling scheme is considered [7]. This can be regarded as a

form of proportional fair scheduling [8].

The gain from multiuser diversity usually increases with the number of independent users in a system

and with a large dynamic range for the channel fluctuation within the time of the scheduling window

[5], [9]. To enhance the sum rate of a system, joint consideration of scheduling and traditional diversity

schemes such as transmit antenna selection (TAS) and maximal ratio combining (MRC) at a receiver is

addressed in [10], [11] and the references therein. The basic principle of joint consideration is to enhance

multiuser diversity by increasing the number of independent candidates for selection directly proportional

to the number of transmit antennas [10], [11], or by increasing the variation in the channels between the

transmitter and receivers as in the opportunistic beamforming methods [5], [9]. For the purpose of user

scheduling and rate adaptation at the transmitter, information about the channel quality has to be fed

back to the transmitter by the receivers. As the number of users as well as the antennas at the transmitter

increases, the amount of feedback becomes large placing an enormous burden on the feedback link traffic.

In particular, the amount of feedback may become prohibitive when we consider OFDMA systems which

have emerged as the basic physical layer communication technology to meet the high data rate services

in future wireless communication standards [12]. With the goal of exploiting frequency diversity in user

scheduling, subcarriers in OFDMA systems are grouped into resource blocks and used as the basic unit

for user scheduling [12]. When we consider joint schedulingand diversity in OFDMA systems, feedback

may be needed for all the resource blocks as well as the antennas, which may easily overwhelm the
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feedback link traffic even for a system with a small number of users. This motivates our research into

schemes with reduced feedback.

Feedback reduction has received much interest in wireless communications research [13]. There are

two main methods: feedback rate reduction related to quantization, and feedback number reduction related

to reducing the number of parameters being fed back. See, forexample, [14], [15] and references therein.

For the feedback number reduction, a threshold-based technique is usually considered, so that only the

users with a large probability of being scheduled feedback their information [16]. LetNRB denote the total

number of resource blocks in OFDMA systems or spatial degrees of freedom in a space division multiple

access system. The feedback number reduction can be obtained by letting users feed back information

about only the best-NFB blocks or fewer modes whenNFB is smaller thanNRB [11], [17]–[19]. For OFDMA

systems employing joint scheduling and diversity, the performance of schemes employing feedback about

the best-NFB blocks, for a generalNFB, has not been rigorously studied. Only the performance for abest-1

feedback (NFB = 1) or a full feedback scheme (NFB = NRB) without consideration of diversity options are

given in [17]. The analysis in [19] is for a generalNFB. However, it deals with a single-input single-output

(SISO) system with quantized CQI feedback and consequentlydoes not consider the various multi-antenna

diversity techniques.

In this paper, we consider an OFDMA system employing joint scheduling as well as using a multi-

antenna transmit diversity technique. Various diversity options are considered in this work; Transmit

antenna selection (TAS), orthogonal space time block codes(OSTBC) and cyclic delay diversity (CDD).

For rate adaptation and user scheduling, we assume that users feedback to the transmitter the CQI values

of the best-NFB resource blocks out of a total ofNRB values. For a practical variant of the feedback system,

we also consider quantized CQI. The transmitter schedules atransmission in each resource block to a user

with largest normalized CQI among users who provided feedback, where normalization is considered to

assure fairness across users. We develop a unified frameworkconsisting of four steps to analyze the sum

rate of the system with partial feedback of either non-quantized or quantized CQI for a generalNFB, and

present closed-form expressions.

Our results show that the performance gap between a full feedback scheme and a best-1 (NFB = 1)

feedback scheme is not negligible even when there are a moderate number of users. Then the question

arises as to how many CQI values should be fed back to the transmitter to make the gap negligible while

minimizing uplink feedback overhead. This issue is also addressed in our work based on the derived

equations for the sum rate. Specifically, we approximate thesum rate ratio,i.e., the ratio of the sum rate

obtained by a partial feedback scheme to the sum rate obtained by a full feedback scheme. We express
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the sum rate ratio as a function of the feedback ratio(
NFB
NRB

), i.e., the amount of feedback normalized by

the total number of blocks. We show that the sum rate ratio is approximately the same as the probability

of the complement of a scheduling outage which corresponds to the case that no user provides CQI to

the transmitter for a certain block. This enables us to provide a simple equation to determine the required

feedback ratio for a pre-determined sum rate ratio. In the case of quantized CQI feedback, we also discuss

a feedback design strategy to enhance the sum rate under a fixed feedback load.

In summary, the paper has three main contributions. First, we present the cumulative distribution

function (CDF) for the SNR of a selected user in the best-NFB feedback system. This result has a convenient

form in terms of apolynomialof the CDF of each user’s CQI, which isamenableto further analytical

evaluation. Second, we develop a unified framework to analyze the sum rate of a reduced feedback

OFDMA system employing joint scheduling and diversity, andderive closed-form expressions for both

the non-quantized and quantized CQI feedback schemes. Third, we approximate the sum rate result and

develop an analytical and simple expression for the required feedback ratio to achieve a pre-determined

sum rate ratio.

This paper is organized as follows. In Section II, we describe the system model and provide an overview

of the unified framework for the analysis. In Section III, we develop the framework and analyze the sum

rate of the TAS scheme. In Section IV, we analyze the sum rate for both OSTBC and CDD schemes

employing the framework. In Section V, we develop the relation between the sum rate ratio and feedback

ratio, and derive the expression for the required feedback ratio. In Section VI, we show numerical results

and they support the analytical results. We conclude in Section VII.

II. SYSTEM MODEL AND OVERVIEW OF THE FRAMEWORK

In this section, we first describe the system model and then provide an overview of the unified

framework for the sum rate analysis.

A. System model

We consider a multiple-input single-output (MISO) complexGaussian broadcast channel with one base

station equipped withNT transmit antennas andNUS users each equipped with a single antenna, as shown

in Fig. 1. An OFDMA system is assumed. In a multiuser OFDMA system the throughput is larger when

the resource allocation is flexible and has high granularity, e.g.,assignment at the individual subcarrier

level. However, the complexity and feedback overhead can beprohibitive, calling for simpler approaches.

In our work, the overall subcarriers are grouped intoNRB resource blocks (RB), and each block contains
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Fig. 1. System block diagram of a multiuser OFDMA system.

contiguous subcarriers. The assignment is done at the blocklevel, i.e., a resource block is assigned to a

user. The block size is assumed to be known and in practice canbe determined at the medium access

control (MAC) layer taking into account the number of users.For this system, we showed in [9] that

the optimal channel selectivity maximizing the sum rate is flat within each block and independent across

blocks. We assume the optimal channel selectivity condition in our analysis of the system performance.

Let Hk,r,i denote the channel between transmit antenna-i and the receive antenna of user-k for resource

block-r, where1 ≤ k ≤ NUS, 1 ≤ r ≤ NRB and 1 ≤ i ≤ NT . We assume thatHk,r,i follows a complex

Gaussian distribution,i.e.,CN (0, ck),1 whereck denotes the average channel power of user-k and reflects

the fact that the users are distributed asymmetrically. We assume thatck for each user is known to the

transmitter by infrequent feedback from users. We also assume thatHk,r,i is independent across users (k),

blocks (r) and transmit antennas (i). Then, the received signal of user-k at block-r satisfies the equation

yk,r = Hk,r sk,r + nk,r (1)

wheresk,r is the transmitted symbol andnk,r is additive white Gaussian noise (AWGN) withCN (0, σ2
w).

We note thatHk,r is the equivalent channel depending on the specific diversity technique and is a function

of Hk,r,i, which will be shown in later sections.

For reliable and adaptive communication, the knowledge of the channel between the transmitter and

receiver is required at the transmitter. For this purpose, we assume that channel quality information (CQI)

of resource blocks is fed back from users to the transmitter.The feedback policy is that users measure

CQI for each block at their receiver and feed back the CQI values of the best-NFB resource blocks from

1CN (µ,σ2) denotes a circularly symmetric complex Gaussian distribution with meanµ and varianceσ2.
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among the totalNRB values [17]. Since we assume that the users are asymmetrically distributed in their

average SNR, scheduling is based on CQI normalized by each user’s mean value at the transmitter. For

each block, the user with largest normalized CQI is chosen from among the users who fed back CQI to the

transmitter for that block. If no user provides CQI for a certain block,i.e., the case of a scheduling outage

in the block [17], we assume that the transmitter does not utilize that block. However, one can easily

incorporate other variations such as round-robin scheduling or a scheduling scheme which maintains the

previously assigned user. For diversity, we consider threedifferent multiple transmit antenna techniques;

transmit antenna selection (TAS) [20], cyclic delay diversity (CDD) [21],2 and orthogonal space time

block codes (OSTBC) [22]. LetZk,r denote CQI of user-k at block-r, which will be the starting point

of the analysis. Then,Zk,r depends on the diversity technique, the noise variance and channelHk,r,i.

As the number of users increases, the amount of feedback willbe prohibitive for a full feedback

scheme,i.e., CQI feedback for all the resource blocks, so that we focus on the sum rate for partial

feedback schemes with a generalNFB. Instead of investigating the asymptotic property of the sum rate

for a very large or infinite number of users [23], [24], we focus on the exact sum rate for the system

with a finite number of users. Specifically, we develop a unified framework consisting of four steps to

analyze the sum rate of this system with partial feedback of either non-quantized or quantized CQI, and

present closed-form expressions. An overview of the framework is provided next.

B. Overview of the unified framework

The framework for the sum rate analysis consists of four steps, where then-th step is denoted as

Step-n. We first discuss the analysis in the non-quantized CQI case.We find F
Zk

in Step-1, i.e., the

CDF of Zk,r which is the CQI of user-k at block-r at a receiver.3 This depends on the choice of the

diversity technique. We findF
Yk

in Step-2, i.e., the CDF ofYk,r denoting the SNR of user-k for resource

block-r as seen by the transmitter as a consequence of partial feedback. We findF
X|cond in Step-3, i.e.,

the conditional CDF ofXr denoting the SNR of a selected user as a consequence of scheduling. The

conditioning in Step-3 is related to the asymmetric user distribution in their average SNR and the number

of contending users for the block. The important characteristics ofF
X|cond is that it has a convenient form

2For CDD, we consider that phases are multiplied on the basis of a block to maintain the characteristic of flat fading inside

a block. In a strict sense, the scheme we consider is classified as CDD when the block consists of a single subcarrier, and as

the frequency domain opportunistic beamforming when the block consists of more than one subcarriers [5].

3Since we assume that blocks are identically distributed, for notational simplicity, we omitr in F
Zk,r

, which is also the case

for other notations of CDFs.
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in terms of apolynomial inF
Zk

, which isamenableto further integration to obtain the sum rate in Step-4.

Thus, once we findF
Zk

and we have the integration result for a throughput equationwith respect to an

arbitrary power ofF
Zk
(x), i.e.,

∫∞
0 log2(1 + x) d{F

Zk
(x)}n for an arbitrary positive integern, we can

obtain closed-form sum rate expressions in a straightforward manner.

In the quantized CQI case, following the same approach as thefirst two steps in the non-quantized

case, we findF
W

, the CDF ofWk,r denoting the normalized CQI at a receiver andF
U

, the CDF of

Uk,r denoting the normalized CQI as seen by the transmitter. Then, we findP
X

Q
|cond in Step-3, i.e., the

conditional probability mass function (PMF) ofX
Q

r , the SNR of a selected user. By taking an average

of throughputs over the PMF found, we can obtain closed-formsum rate expressions in Step-4. For easy

reference, we summarize the steps in Table I.

TABLE I

THE MAIN STEPS FOR THE UNIFIED FRAMEWORK TO OBTAIN THE SUM RATE.

Framework Non-quantized CQI feedback Quantized CQI feedback

Random variable Output Random variable Output

Step-1 Zk,r: CQI at a receiver F
Zk

Wk,r: Normalized CQI at a receiver F
W

Step-2 Yk,r: SNR seen at a transmitter F
Yk

Uk,r: Normalized CQI seen at a transmitter F
U

Step-3 Xr: SNR of a selected user F
X|cond X

Q

r : SNR of a selected user P
X

Q
|cond

Step-4 EcondEXr
[log2(1 +Xr)|cond] EcondEX

Q
r
[log2(1 +X

Q

r )|cond]

k: user index,r: block index.

In summary, Step-1 of the unified framework depends on the diversity technique.The next two

steps (Step-2 and Step-3) depend on the feedback and scheduling policy. Step-4 involves evaluating

the performance measure. We explain the procedure by providing details of the four steps for the TAS

scheme in Section III. Then in Section IV, we focus on finding the CDF ofZk,r in Step-1 for OSTBC

and CDD. Step-2 and Step-3 do not require much additional effort, and we provide the sumrate result

utilizing Step-4.

III. SUM RATE ANALYSIS WITH APPLICATION TO TAS

In this section, we explain the details of the framework, consisting of the four steps in Table I, with

application to the transmit antenna selection (TAS)-baseddiversity scheme for both non-quantized CQI

and quantized CQI.

A. Sum rate analysis for non-quantized CQI

November 21, 2018 DRAFT



8

1) Step-1, finding F
Zk
(x): This step consists of finding the distribution of CQI. In TAS,a transmit

antenna with the best channel condition among all the transmit antennas is selected for transmission

[20]. Thus, the equivalent channel at block-r of user-k is a channel with maximum CQI across transmit

antennas,i.e., Hk,r = Hk,r,i∗ wherei∗ = argmax1≤i≤NT
|Hk,r,i|2. Since we assume thatHk,r,i follows

CN (0, ck), |Hk,r,i|2 follows the Gamma distributionG(1, 1
ck
) [25, (17.6)]. Here,G(α, β) denotes the

Gamma distribution whose CDF is given by [25, (17.3)]

F (x) = Γ̃(α, βx) =
1

Γ(α)

∫ βx

0
tα−1e−tdt, (2)

whereΓ̃(·, ·) is the incomplete Gamma function ratio given byΓ̃(a, x) = 1
Γ(a)

∫ x

0 ta−1e−tdt [25, (17.3)]

andΓ(·) is the Gamma function given byΓ(a) =
∫∞
0 ta−1e−tdt [26]. Then, equivalent CQI in TAS is

Zk,r = |Hk,r|2 = max1≤i≤NT
|Hk,r,i|2. From the assumption of the independent and identical distribution

(i.i.d.) for Hk,r,i’s in i, the CDF ofZk,r is given by

F
Zk
(x) = Pr

{
Zk,r ≤ x

} (a)
=

[
Pr

{
|Hk,r,i|2 ≤ x

}]NT
(b)
=

[
Γ̃(1, x

ck
)
]NT (3)

where(a) follows from the order statistics [27, 2.1.1] thatZk,r is the maximum of independent|Hk,r,i|2s,

and(b) follows from the fact that|Hk,r,i|2 has the distributionG(1, 1
ck
). We note that the SNR at block-r

of user-k is SNRk,r = ρZk,r whereρ = P/σ2
w when the total transmit power isP .

2) Step-2, findingF
Yk
(x): This step considers the distribution of CQI as a result of partial feedback.

As a reminder, each user feeds back the best-NFB CQI values to the transmitter. LetZk,(ℓ) denote the order

statistics ofZk,r’s of user-k, whereZk,(1) ≤ · · · ≤ Zk,(NRB)
. Then, the feedback scheme is equivalent to

each user determining the order statistics for its CQI and feeding back CQIZk,(ℓ)’s, for NRB −NFB +1 ≤
ℓ ≤ NRB and the corresponding resource block indices. LetYk,r denote the SNR corresponding to received

CQI at the transmitter for user-k at block-r through feedback. If user-k provides feedback containing CQI

for block-r, then based on thei.i.d. assumption ofZk,r’s in r, the SNRYk,r viewed from the transmitter

can be interpreted as any one of the best-NFB values multiplied byρ. To capture this aspect, letRk,r denote

a random variable with a probability mass function ofPr{Rk,r = ℓ} = 1
NFB

, for NRB −NFB +1 ≤ ℓ ≤ NRB.

ThenYk,r is given by

Yk,r = ρZk,(Rk,r). (4)

The CDF ofYk,r, FYk
(x), is given in the following lemma.

Lemma 1:For F
Zk
(x) in (3), the CDF ofYk,r in (4) is given by

F
Yk
(x) =

NFB−1∑

m=0

e1(NRB, NFB,m){F
Zk
(x
ρ
)}NRB−m (5)
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where

e1(NRB, NFB,m) =

NFB−1∑

ℓ=m

NFB−ℓ

NFB

(NRB
ℓ

)(
ℓ
m

)
(−1)ℓ−m. (6)

Proof: See Appendix A.

Corollary 1: When NFB = NRB (i.e., full feedback),e1(NRB, NRB,m) = 1 for m = NRB − 1, and 0

otherwise.

Proof: See Appendix B.

For example in best-1 feedback (NFB = 1), sincee1(NRB, 1,m) is only non-zero form = 0 and the value

is 1, we can verify that (5) reduces toF
Yk
(x) = {F

Zk
(x
ρ
)}NRB , which confirmsYk,r = ρ×max1≤r′≤NRB

Zk,r′

[27, 2.1.1]. In full feedback (NFB = NRB), sincee1(NRB, NRB,m) = 1 for m = NRB − 1 and zero otherwise

from Corollary 1, we can verify that (5) reduces toF
Yk
(x) = F

Zk
(x
ρ
), which confirms thatYk,r = ρZk,r.

That is,Yk,r has the same statistics as SNRk,r for full feedback.

3) Step-3, finding the conditional CDF ofXr: This step involves finding the distribution of the SNR

of the channel of the user selected in the scheduling step based on partial feedback. Since a channel

is assumed to bei.i.d. across the resource blocks for each user, the probability that a user provides the

transmitter with CQI for block-r is
NFB
NRB

. Let Sr denote a set of users who provided CQI to the transmitter

for block-r. Since the channel is independent across users, the number of users who provided CQI at

block-r, i.e., |Sr|, follows the binomial distribution with the probability mass function [28]

Pr{|Sr| = n} =

(
NUS

n

)(
NFB

NRB

)n(
1− NFB

NRB

)NUS−n

, 0 ≤ n ≤ NUS. (7)

For Step-3 related to theuser selectionin Table I, letUk,r = Yk,r

ρck
, i.e., normalized CQI of user-k in

block-r viewed at the transmitter. Based on the scheduling policy, auser with the largestUk,r among

users inSr is scheduled on block-r by the transmitter. In our assumption,Yk,r’s are independent but not

identically distributed ink due to the different average SNR distribution (i.e., different ck) across users.

However,Uk,r’s are i.i.d. in k as well because they are normalized by their average SNR,i.e., ρck. Let

k∗r denote a random variable representing a selected user for transmission on block-r by the transmitter

andXr be the SNR of the selected user. Since, in our model we do not utilize a block when|Sr| = 0,

we concentrate on the case|Sr| 6= 0. Note that|Sr| = 0 corresponds to a scheduling outage. Then, it is

shown in Appendix C that the conditional CDF ofXr is given by

F
X| k∗

r=k,|Sr|=n
(x) =

{
F
Yk
(x)

}n
. (8)

SinceF
Yk
(x) = F

Zk
(x
ρ
) for full feedback (NFB = NRB) and F

Yk
(x) = {F

Zk
(x
ρ
)}NRB for best-1 feedback

November 21, 2018 DRAFT



10

(NFB = 1), for these two special cases we have

F
X| k∗

r=k,|Sr|=n
(x) =





[
F
Zk
(x
ρ
)
]n

: Full FB
[
F
Zk
(x
ρ
)
]nNRB

: Best-1 FB
(9)

with F
Zk
(x) given in (3). For the general case, substitutingF

Yk
(x) from Lemma 1 into (8), we have the

following result.

Lemma 2:For F
Zk
(x) in (3), the conditional CDF ofXr in (8) is given by

F
X| k∗

r=k,|Sr|=n
(x) =

n(NFB−1)∑

m=0

e2(NRB, NFB, n,m)
{
F
Zk
(x
ρ
)
}nNRB−m

(10)

wheree2(NRB, NFB, n,m) is given by

e2(NRB, NFB, n,m) =





{e1(NRB, NFB, 0)}n, m = 0

1
me1(NRB ,NFB ,0)

∑min{m,NFB−1}

ℓ=1 {(n+ 1)ℓ−m}

×e1(NRB, NFB, ℓ)e2(NRB, NFB, n,m− ℓ), 1 ≤ m < n(NFB − 1)

{e1(NRB, NFB, NFB − 1)}n, m = n(NFB − 1).

(11)

Proof: See Appendix D.

4) Step-4, finding the sum rate:Now we use the derived CDF to obtain the sum rate of the OFDMA

system. Since blocks are identically distributed, the sum rate isRSUM = 1
NRB

∑NRB
r=1 E[log(1 + Xr)] =

E[log(1 +Xr)]. From the property of the conditional expectation [28], we have

RSUM = Ek∗
r
E

|Sr|

[
E

Xr

[
log(1 +Xr) | |Sr| = 0

]
+ E

Xr

[
log(1 +Xr) | |Sr| 6= 0

] ]
. (12)

SinceXr = 0 when |Sr| = 0, the first term is zero and does not contribute to the sum rate.Other

variations on the scheduling when there is a scheduling outage, as mentioned in Section II-A, can be

readily incorporated into the first term. Concentrating on the second term, the sum rate is further developed

as follows:

RSUM = Ek∗
r
E

|Sr|

[∫ ∞

0
log(1 + x) d

{
F

X| k∗
r=k,|Sr|=n

(x)
} ∣∣ |Sr| = n 6= 0

]

(a)
= Ek∗

r
E

|Sr|

[ n(NFB−1)∑

m=0

e2(NRB, NFB, n,m)

∫ ∞

0
log(1 + x) d

{
F
Zk
(x
ρ
)
}nNRB−m ∣∣ |Sr| = n 6= 0

]

(b)
= 1

NUS

N
US∑

k=1

N
US∑

n=1

(
NUS
n

) (NFB
NRB

)n (
1− NFB

NRB

)NUS−n
n(NFB−1)∑

m=0

e2(NRB, NFB, n,m)I1(1,
1

ρck
, (nNRB −m)NT),

(13)
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where (a) follows from the conditional CDF ofXr in (10); (b) follows from the fact that the PMF

Pr{k∗r = k} = 1
NUS

, becauseUk,r for user selection isi.i.d. in k, andPr{|Sr| = n} is given by (7), and

that we have the following integration identity for the CDFF
Z
(x) with the form given in (2) [10]

∫ ∞

0
log(1 + x) d{F

Z
(x)}n = I1(α, β, n). (14)

It is shown in Appendix E thatI1(x, y, z) is given by

z
(x−1)! ln 2

z−1∑

k=0

(−1)k
(
z−1
k

) k(x−1)∑

i=0

bk,i
(x+i−1)!
(k+1)x+i

x+i−1∑

ℓ=0

{(k + 1)y}ℓ Γ(−ℓ, (k + 1)y)e(k+1)y (15)

whereΓ(a, x) =
∫∞
x

ta−1e−tdt is the incomplete Gamma function [26, 8.350.2] and

bk,i =






1, i = 0

1
i

∑min{i,x−1}
n=1

n(k+1)−i
n! bk,i−n, 1 ≤ i < k(x− 1)

1
[(x−1)!]k , i = k(x− 1)

. (16)

Whenx = 1, I1(x, y, z) is further reduced to [10], [29]

I1(1, y, z) =
1

ln 2

z∑

k=1

(−1)k−1
(
z
k

)
Γ(0, ky)eky. (17)

We note that the conditional CDF ofXr in (10) is amenable to the integration since it is represented in

terms of a polynomial inF
Zk
(x) and we have the integration result in (14). Although we can represent

the incomplete Gamma function in (15) using a finite summation as in [10] and [30],i.e., Γ(−ℓ, (k +

1)y) = (−1)ℓ

ℓ!

[
Γ(0, (k+1)y)− e−(k+1)y

∑ℓ−1
m=0

(−1)mm!
{(k+1)y}m+1

]
, we note that the form in (15) is much more

appropriate for easy, fast and precise evaluation especially for large z, which is related toNRB, NUS, and

NT .

The expression can be simplified to obtain the sum rate for thespecial cases of best-1 and full feedback.

RSUM =





1
N

US

∑NUS
k=1 I1(1,

1
ρck

, NUSNT) : Full FB

1
N

US

∑NUS
k=1

∑NUS
n=1

(
NUS
n

) (
1

NRB

)n (
1− 1

NRB

)N
US
−n

I1(1,
1

ρck
, nNRBNT) : Best-1 FB

. (18)

B. Sum rate analysis for quantized CQI

In this subsection, we provide the sum rate for the partial feedback TAS-system with quantized CQI.
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0ξ 1ξ 2ξ Lξ1Lξ −2Lξ −

0J 1J LJ1LJ −

1Lξ +

2J Region 
index

Normalized 
CQI

Fig. 2. Quantization region for normalized CQI.(ξ0 = 0, ξL+1 = ∞)

1) Feedback procedure and scheduling for the quantized system: For quantization purposes, it is useful

to work with normalized CQI defined asWk,r =
Zk,r

ck
. Each user computesWk,r for all the resource blocks

and finds the best-NFB Wk,r’s. Then, each user quantizes the selectedWk,r values using a quantization

policy depicted in Fig. 2. In the figure,Jℓ for 0 ≤ ℓ ≤ L denotes the quantization region index andξℓ

denotes the boundary value between regions. More specifically, quantization is done as follows:

qk,r = Q(Wk,r) = Jℓ, if ξℓ ≤ Wk,r < ξℓ+1. (19)

Then, each user feeds back the quantized region indicesqk,r’s for the selected best-NFB blocks to the

transmitter together with the corresponding resource block indices. To exploit multiuser diversity as in the

non-quantized CQI case, we assume for the scheduling policythat the transmitter schedules a transmission

for each block to a user with the largest quantization regionindex. When multiple users provide the same

quantization index, the transmitter randomly selects a user.

2) Step-1, findingF
W
(x): The step is related to determining the distribution of normalized CQI. Since

normalized CQI isWk,r =
Zk,r

ck
andPr{Wk,r ≤ x} = Pr{Zk,r ≤ ckx}, the CDF ofWk,r with the TAS

diversity scheme is given from (3) by

F
W
(x) = F

Zk
(ckx) = {Γ̃(1, x)}NT . (20)

3) Step-2, finding F
U
(x): The step is related to the feedback policy and involves determining the

order statistics for normalized CQI,Wk,(1) ≤ · · · ≤ Wk,(NRB)
, quantizingWk,(ℓ) for NRB − NFB + 1 ≤

ℓ ≤ NRB, and sending back the corresponding quantized region indices together with block indices.

Defining Uk,r = Yk,r

ρck
, from Section III-A3 it denotes normalized CQI as seen by thetransmitter. Since

Pr{Uk,r ≤ x} = Pr{Yk,r ≤ ρckx}, the CDF ofUk,r in TAS is given by

F
U
(x) = F

Yk
(ρckx)

(a)
=

NFB−1∑

m=0

e1(NRB, NFB,m){Γ̃(1, x)}(NRB−m)NT (21)
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where(a) follows from (5) and (20), ande1(NRB, NFB,m) is given in (6).4 For the two special cases, we

haveF
U
(x) = {Γ̃(1, x)}NT for full feedback(NFB = NRB) from Corollary 1 andF

U
(x) = {Γ̃(1, x)}NRBNT

for best-1 feedback(NFB = 1).

Let U
Q

k,r denote the quantization index received at the transmitter through feedback, which is equivalent

to quantizingUk,r based on the policy in (19). The distribution ofU
Q

k,r can be readily determined from

the distribution ofUk,r given above. It is shown in Appendix F thatU
Q

k,r is i.i.d. in k andr. Then, a user

with the largestU
Q

k,r is selected for block-r by the transmitter in the next step.

4) Step-3, finding the conditional PMF ofX
Q

r : Let X
Q

r denote the SNR of a user selected for a

transmission in block-r. Suppose thatn users provided the quantization index for block-r, i.e., |Sr| = n

recalling thatSr denotes the set of those users. We note that the probability for each user to be selected

is equal sinceU
Q

k,r’s are i.i.d. across users. For the selected quantization index to beJℓ, no one should

provide a larger quantization index thanJℓ (i.e., U
Q

k,r ≤ Jℓ) and at least one user should provide the

quantization index equal toJℓ. Thus, it is shown in Appendix G that the conditional PMF ofX
Q

r is given

by

Pr{XQ

r = ρckξℓ | |Sr| = n} = 1
NUS

[{F
U
(ξℓ+1)}n − {F

U
(ξℓ)}n] , 1 ≤ k ≤ NUS, 0 ≤ ℓ ≤ L. (22)

5) Step-4, finding the sum rate:To calculate the sum rate, we assume that the modulation level for

the transmission to the selected user-k is assumed to be determined aslog(1 + ρckξℓ) so as to prevent

an outage of the link when user-k with a quantization levelJℓ is selected. It is shown in Appendix H

that the sum rate is given by

RSUM = E[log(1 +X
Q

r )] =

NUS∑

k=1

L∑

ℓ=1

log2(1 + ρckξℓ)

NUS

× I2

(
F
U
(ξℓ), FU (ξℓ+1), NUS,

NFB

NRB

)
, (23)

whereI2(x, y, z, r) is given by

I2(x, y, z, r) = {1− r (1− y)}z − {1− r (1− x)}z . (24)

For full feedback as a special case, we have

RSUM = 1
N

US

N
US∑

k=1

L∑

ℓ=0

log(1 + ρckξℓ)
[
{F

W
(ξℓ+1)}NUS − {F

W
(ξℓ)}NUS

]
. (25)

IV. SUM RATE ANALYSIS WITH APPLICATION TO OSTBCAND CDD

Since the diversity technique affects the distribution ofZk,r or Wk,r in Step-1, we focus in this section

on derivingF
Zk

andF
W

for OSTBC and CDD. Step-2 and Step-3 from the TAS analysis can be adopted

with no change. Then, we can obtain the sum rate by carrying out Step-4.

4F
U
(x) , F

Uk,r
(x) for notational simplicity sinceUk,r ’s are i.i.d. in k andr.
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A. Sum rate for the orthogonal space time block codes (OSTBC)scheme

1) Sum rate for non-quantized CQI feedback:For the equal power transmission from each antenna

in OSTBC, effective CQI of user-k at block-r is given by the square of the2-norm of a channel vector

from the transmit antennas normalized by the number of transmit antennas [22], [29],i.e.,

Zk,r = |Hk,r|2 =
1

NT

NT∑

i=1

|Hk,r,i|2. (26)

Since we assume thatHk,r,i follows CN (0, ck), |Hk,r,i|2 follows the Gamma distributionG(1, 1
ck
) [25,

(17.6)]. The sum ofn i.i.d. random variables withG(α, β) follows the Gamma distributionG(nα, β) [31,

2-1-110] and a Gamma distributed random variable withG(α, β) multiplied by a constantc follows the

distribution ofG(α, β
c
).5 Therefore, CQIZk,r in (26) follows the Gamma distribution withG(NT ,

NT
ck
).

Thus, the CDF ofZk,r for Step-1 is given from (2) by

F
Zk
(x) = Γ̃

(
NT ,

NTx

ck

)
. (27)

Since the feedback policy and the scheduling policy in OSTBCare the same as in TAS, we can follow

the same next two steps, specifically Step-2 in Section III-A2 and Step-3 in Section III-A3. Then, we

obtain the conditional CDF ofXr, the SNR of a selected user in block-r, which is given for the general

case in (10) and for two special cases in (9) whereF
Zk
(x) is to be replaced by (27).

We can carry out Step-4 by again exploiting the fact that the conditional CDF in (10)is represented

in terms of a polynomial inF
Zk
(x) in (27) and using the integration identity in (14). The sum rate

E[log(1 +Xr)] of OSTBC for the general case ofNFB can be shown to be given by

RSUM = 1
NUS

NUS∑

k=1

NUS∑

n=1

(
NUS
n

) (NFB
NRB

)n (
1− NFB

NRB

)NUS−n
n(NFB−1)∑

m=0

e2(NRB, NFB, n,m)I1(NT ,
NT
ρck

, nNRB −m).

(28)

From (9) and (14), we have the sum rate for two special cases (i.e., NFB = NRB andNFB = 1) as

RSUM =





1
NUS

∑NUS
k=1 I1(NT ,

NT
ρck

, NUS) : Full FB

1
NUS

∑NUS
k=1

∑NUS
n=1

(
N

US
n

) (
1

NRB

)n (
1− 1

NRB

)NUS−n

I1(NT ,
NT
ρck

, nNRB) : Best-1 FB
. (29)

Since the maximum code rate for complex OSTBC is 1 only forNT = 2 and less than1 otherwise

[32], we note that the exact sum rate can be obtained by multiplying the code rate,i.e., multiplying 3
4

for NT = 3 and4.

5For Y = cX whereX follows G(α, β), sinceF
X
(x) = Γ̃(α, βx) from (2), F

Y
(x) = Pr{cX ≤ x} = Pr{X ≤ x

c
} =

F
X
(x
c
) = Γ̃(α, βx

c
), which means thatY follows G(α, β

c
).
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2) Sum rate for quantized CQI feedback:We consider the same policy for quantization, feedback,

and scheduling as that in Section III-B1. Since normalized CQI is Wk,r = Zk,r

ck
andPr{Wk,r ≤ x} =

Pr{Zk,r ≤ ckx}, the CDF ofWk,r in OSTBC for Step-1 is given from (27) by

F
W
(x) = F

Zk
(ckx) = Γ̃(NT , NTx). (30)

Normalized CQI viewed at the transmitter for user-k at block-r is Uk,r = Yk,r

ρck
. As in Step-2 in Sec-

tion III-B3, the CDF ofUk,r for OSTBC is given by

F
U
(x) = F

Yk
(ρckx)

(a)
=

NFB−1∑

m=0

e1(NRB, NFB,m){Γ̃(NT , NTx)}NRB−m (31)

where (a) follows from (5) and (30), ande1(NRB, NFB,m) is given in (6). For the two special cases,

we haveF
U
(x) = Γ̃(NT , NTx) for full feedback(NFB = NRB), and{Γ̃(NT , NTx)}NRB for best-1 feedback

(NFB = 1). Since the conditional PMF of the SNR for a selected user for Step-3 is the same as (22), the

sum rate of OSTBC has the same form as (23) whereF
U
(x) in (31) is to be substituted.

B. Sum rate for the cyclic delay diversity (CDD)

1) Sum rate for non-quantized CQI feedback:As in OSTBC and TAS, we derive the sum rate for

CDD by first obtaining the CDF ofZk,r for Step-1 and then using the same remaining 3-steps of the

framework in Table I. For equal power transmission from eachantenna, the equivalent channel of CDD

with cyclic delayDi at each transmit antenna is a dot product of a channel vector and complex phases

determined by the cyclic delays [21],i.e.,Hk,r =
1√
NT

∑NT
i=1 Hk,r,ie

j 2π

N
Di . The resulting channel follows

CN (0, ck) sinceHk,r is a linear combination of complex Gaussian random variables [28]. Thus, CQI for

the equivalent channel of user-k at block-r is given by

Zk,r = |Hk,r|2 =
1

NT

∣∣∣
NT∑

i=1

Hk,r,ie
j 2π

N
Di

∣∣∣
2
, (32)

which follows the Gamma distribution withG
(
1, 1

ck

)
[25, (17.6)]. From (2), the CDF ofZk,r for Step-1

is given by

F
Zk
(x) = Γ̃

(
1, x

ck

)
. (33)

We can see thatF
Zk
(x) in (33) for CDD is the same as that in (3) for TAS and in (27) for OSTBC where

NT = 1. Thus, the sum rate of CDD is exactly the same as that in (13) and (18) for TAS and in (28)

and (29) for OSTBC whereNT = 1.

We note in [5], [21] that CDD or opportunistic beamforming isa technique to enhance the frequency

diversity in a given channel by multiplying a gain to the channel randomly but in a controlled manner.
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We also note that the diversity gain increases with the number of the transmit antennas. However, since

blocks are assumed to be already independent in our channel model, CDD does not have a room to

increase frequency diversity even though we increase the number of the transmit antennas. Thus, we

verify that the distribution of CQI of CDD in (33) does not depend onNT .

2) Sum rate for quantized CQI feedback:Since normalized CQI isWk,r =
Zk,r

ck
andPr{Wk,r ≤ x} =

Pr{Zk,r ≤ ckx}, the CDF ofWk,r in CDD for Step-1 is given from (33) by

F
W
(x) = F

Zk
(ckx) = Γ̃(1, x). (34)

Normalized CQI viewed at the transmitter for user-k at block-r is Uk,r = Yk,r

ρck
. Through the same step

as Step-2 in Section III-B3, the CDF ofUk,r for Step-2 is given by

F
U
(x) = F

Yk
(ρckx)

(a)
=

NFB−1∑

m=0

e1(NRB, NFB,m){Γ̃(1, x)}NRB−m (35)

where(a) follows from (5) and (34), ande1(NRB, NFB,m) is given in (6). Since the conditional PMF of

the SNR for a selected user for Step-3 is the same as (22), the sum rate of CDD is given by (23) with

F
U
(x) in (35). We can verify that the sum rate of CDD does not depend on NT since blocks are assumed

to be independent.

V. RELATION BETWEEN PROBABILITY OF NORMAL SCHEDULING AND THE SUM RATE RATIO

In this section, we investigate the problem of minimizing the amount of feedback in the system by

examining how much feedback is required to maintain the sum rate comparable to the sum rate obtained

by a full feedback scheme. LetRFB =
NFB
NRB

denote the feedback ratio,i.e., the ratio of the number of

feedback blocks to the total number of blocks. The design objective is to find the minimum feedback

ratio while the achieved sum rate is above a certain fractionof the sum rate obtained by a full feedback

scheme,i.e.,

Find the minimumRFB, s.t . Rratio
SUM

=
RSUM by partial feedback
RSUM by full feedback

≥ η. (36)

Since we have the expressions for the sum rate for both partial and full feedback schemes, they can be

substituted in the above equation and one can solve forNFB. Here we make two simplifications and obtain

a more tractable expression. We carry this out for the OSTBC diversity scheme.

First we note from (10) that we have

n(NFB−1)∑

m=0

e2(NRB, NFB, n,m) = 1, (37)
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sinceF
X| k∗

r=k,|Sr|=n
(∞) = 1 andF

Zk
(∞) = 1 by the CDF property [28]. Second we note thatI1(x, y, z)

in (15) has almost the same value for largez whenx andy are fixed. This is graphically illustrated in

Fig. 3. We assume thatI1(x, y, z1) ≃ I1(x, y, z2) for largez1 andz2. More specifically, when we assume

that I1(NT ,
NT
ρck

, nNRB −m) ≃ I1(NT ,
NT
ρck

, NUS) in (28) and using (37), the sum rate of OSTBC for partial

feedback in (28) reduces to

RSUM ≃ 1
NUS

NUS∑

k=1

I1(NT ,
NT
ρck

, NUS)

NUS∑

n=1

(
NUS
n

) (NFB
NRB

)n (
1− NFB

NRB

)NUS−n

(a)
= 1

NUS

NUS∑

k=1

I1(NT ,
NT
ρck

, NUS)
(
1− (1− NFB

NRB
)NUS

)
, (38)

where(a) follows from the binomial theorem [28]. From the sum rate obtained by a full feedback scheme

in (29) and the sum rate obtained by partial feedback in (38),we have

Rratio
SUM

=
RSUM by partial feedback
RSUM by full feedback

≃ 1− (1− NFB
NRB

)NUS. (39)

This approximation is well supported by the numerical results in Section VI. We note that the right-hand

side in (39) is exactly the same as the probability that at least one user provides CQI to the transmitter in

a block, i.e., a probability of the complement of a scheduling outage.6 From (36) and (39), the required

feedback ratio is given by

RFB =
NFB
NRB

≥ 1− (1 − η)
1

NUS . (40)

We note here that the required feedback ratio does not dependon the number of antennas and user

distribution in the average SNR but on the number of users. Inthe same way, we compute the required

feedback ratio for TAS making the same assumption aboutI1(x, y, z) and obtain the same result as (40).

It is useful to note that the required feedback ratio in our system with fixed amount of feedback can be

derived from the scheduling outage probability using the approximation above. This has similarities to

the problem of determining the required threshold in a threshold-based feedback system considering a

scheduling outage as in [16].

The above analysis was conducted assuming unquantized CQI.A similar analysis can be carried out

assuming quantized CQI and employing some approximations one can obtain the same result as (39) and

(40). We omit the details.

6Since a scheduling outage in a block happens when no user provides CQI for that block, its probability is(1−
NFB
NRB

)NUS .
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Fig. 3. I1(x, y, z) and its slope. We note that whenx andy are fixed, the rate of increase inI1(x, y, z) is very small whenz

is large.

VI. N UMERICAL RESULTS

In this section, we conduct a numerical study of the analytical results to obtain some insight. To reflect

asymmetrical user distribution in their average SNR, we usethe exponential decay model for the average

channel power of users [29]:

ck = c e−λk, s.t .

NUS∑

k=1

ck = NUS. (41)

We can see thatλ = 0 corresponds toi.i.d. users and that user asymmetry increases withλ.

A. Effect of partial feedback on the sum rate

In Fig. 4, we show the sum rate results computed using the analytical expressions and the simulation

results as a function of the number of users. In the figure, TASwith NT = 2 is used and the average

channel power is identical across users (i.e.,λ = 0) in Fig. 4(a) and different in Fig. 4(b). We can see that

both analytic and simulation results are well matched. We can also see the effect of the feedback ratio

(RFB) on the sum rate. As we expect, the sum rate increases with thefeedback ratio for both choices of

λ. We note that the throughput gap between best-1 feedback (RFB = 0.1) and full feedback (RFB = 1.0)
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(a) λ = 0 (b) λ = 0.3

Fig. 4. Effect of feedback ratio(RFB =
NFB
NRB

) on the sum rate for differentλ in (41). (TAS,NRB = 10, NT = 2, and Tx SNR=

10dB)

is large even when the number of users is 20. When the number ofusers is smaller than 10, we need

RFB ≥ 0.4 to attain a throughput comparable to a full feedback scheme.For λ 6= 0, we also note that

fairness provided by proportional fair scheduling decreases the sum rate when the number of users is

large, because the throughput variation is larger in the larger population and the throughput function

(log2(1 + x)) is concave, which is known as the fairness-capacity trade-off in [29].

In Fig. 5, we show the effect of the number of antennas for bothTAS and OSTBC schemes with

partial feedback. Users are asymmetrically distributed(i .e., λ 6= 0). In general, multiuser diversity

increases with the number of users, as well as the mean and thevariance of the signal quality [9]. Since

selection of antennas in TAS can be regarded as an increase ofthe number of users due to the increase

of candidate channels for the communication, the sum rate ofTAS increases withNT . However, since

OSTBC decreases the variance of the signal quality by the averaging effect shown in (26), the sum rate

of OSTBC decreases withNT . In both feedback ratio ofRFB = 0.1 andRFB = 0.5, we can verify this

effect of the number of antennas on the sum rate for each transmit antenna scheme.

We show in Fig. 6 the sum rate result for partial feedback withquantized CQI. For the quantized

CQI case, we considerL = 1, 3, 7 and15 in Fig. 2, each of which corresponds to1, 2, 3 and 4 bits in
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Fig. 5. Effect of the number of antennas on the sum rate with partial feedback. (TAS and OSTBC,NRB = 10, λ in (41)= 0.3,

and Tx SNR= 10dB.)

quantization(NQB , ⌈log2(L+1)⌉). We show both the analytical and simulation results for the quantized

CQI case. We find that both results are well matched. As we can expect, the sum rate increases as the

number of bits for quantization increases. Since we focus onthe analytic derivation of the sum rate for

partial feedback, we do not optimize the quantization region but use the uniform quantization region,i.e.,

F
W
(ξℓ) =

ℓ
L+1 for F

W
(x) of TAS and OSTBC in Section III-B and Section IV-A2. Finding the optimal

region to maximize the sum rate considering system parameters including diversity type, the number of

antennas and users, and the feedback ratio is left as future work.

In Fig. 7, we show the sum rate for quantized CQI with varying feedback loads. The feedback load is

defined as the number of bits to be sent back from each user,i.e.,LFB = NFB(⌈log2NRB⌉+⌈log2 NT⌉+NQB).

In the figure, we compare two cases for every fixedLFB at 12, 24 and64 where one ofNFB, NT or NQB

is additionally fixed. Specifically, whenNFB is fixed at8 in case ofLFB = 64, we note that the largerNT

is always preferable to the largerNQB. WhenNFB is made variable, for bothLFB = 12 andLFB = 24 we

note that the largerNFB is preferable for the small population and the largerNT or NQB is preferable for

the large population. This suggests thatNFB should be first determined based on the number of users as

in (36) and then based on the value forNT the number of feedback bitsNQB should be determined.
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Fig. 6. Comparison of the sum rate for non-quantized CQI and quantized CQI for the different feedback ratio. (TAS,NRB = 10,

λ in (41)= 0.0, and Tx SNR= 10dB.)

Fig. 7. Comparison of the sum rate for the fixed feedback load whereLFB = NFB(4 + ⌈log2 NT⌉+NQB). (TAS, NRB = 16, λ

in (41)= 0.0, and Tx SNR= 10dB.)
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Fig. 8. RSUM normalized by that of a full feedback scheme vs. feedback ratio. We note that the normalized values are independent

of transmit antenna scheme (TAS or OSTBC) and user distribution (Slopes).

B. The sum rate ratio and required feedback ratio

In Fig. 8, we study theRratio
SUM

, i.e., the sum rate normalized by that of a full feedback scheme as a

function of the feedback ratio. As we expect, the feedback ratio required to achieve a large sum rate

ratio decreases with increasing number of users. We note that the sum rate ratio does not depend on the

transmit antenna scheme (i.e., TAS or OSTBC) and user distribution (i.e.,λ). In Fig. 9, we can verify the

tight relation between the sum rate ratio and the probability of the complement of a scheduling outage

when the number of users is not so small. These two figures support the approximation for the sum rate

ratio in Section V, which states that the sum rate ratio is affected mainly by a scheduling outage which

is caused when no user provides CQI for a block and that the probability of a scheduling outage depends

only on the number of users and the feedback ratio as in (39). In Fig. 9, we also note that the sum

rate ratio in the small population (i.e., NUS = 2) moves toward the approximation when the number of

antennas increases since the approximation forI1(x, y, z) holds better for largerNT especially for TAS.

In Fig. 10, we show the required feedback ratio to achieve a pre-determined sum rate ratio. As the

number of users increases, the required feedback ratio decreases because the number of CQI values from

all users increases and the scheduling outage probability decreases. On the other hand, we see that the
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Fig. 9. RSUM normalized by that of a full feedback scheme and the probability of normal scheduling vs. feedback ratio.

required feedback ratio increases with the threshold for the smaller scheduling outage probability. We

also note that the required feedback ratio is nearly independent of the transmit antenna scheme and

the user distribution. That is, the required feedback ratiois mainly dependent on the number of users.

Consequently, using this relation, we can determine the appropriate feedback ratio in designing a system.

VII. C ONCLUSION

We considered joint scheduling and diversity to enhance thebenefits of multiuser diversity in a multiuser

OFDMA scheduling system. We considered the role of partial feedback and developed a unified framework

to analyze the sum rate of reduced feedback schemes employing three different multi-antenna transmitter

schemes; Transmit antenna selection (TAS), orthogonal space time block codes (OSTBC) and cyclic delay

diversity (CDD). Specifically, for the reduced feedback scheme wherein each user feeds back the best-

NFB CQI values out of a total ofNRB CQI values, both quantized and non-quantized CQI feedback were

addressed. Considering largest normalized CQI schedulingin each block, closed-form expressions were

derived for the sum rate for all the three multi-antenna transmitter schemes. Further, by approximating

the sum rate expression, we derived a simple expression for the minimum required feedback ratio(
NFB
NRB

)

to achieve a sum rate comparable to the sum rate obtained by a full feedback scheme.
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Fig. 10. Required feedback ratio to achieve a pre-determined sum rate compared to that by a full feedback scheme.

APPENDIX A

PROOF OFLEMMA 1

The Zk,r’s are i.i.d. in r and thusYk,r’s in (4) are i.i.d. in r, which leads to the simplification in

notationF
Yk
(x) , F

Yk,r
(x) = Pr{Yk,r ≤ x} andF

Zk
(x) , F

Xk,r
. For additional simplicity in derivation,

we first consider the caseρ = 1 in (4). SinceYk,r is selected among best-NFB random variables, using

Bayes’ rule [28], we have

F
Yk
(x) =

NRB∑

m=NRB−NFB+1

Pr{Yk,r = Zk,(m)}Pr{Yk,r ≤ x|Yk,r = Zk,(m)}.

We note thatPr{Yk,r ≤ x|Yk,r = Zk,(m)} = Pr{Zk,(m) ≤ x} = IF
Zk

(x)(m,NRB −m+ 1), whereIx(·, ·)
denotes an incomplete Beta function [27, 2.1.5], and thatPr{Yk,r = Zk,(m)} = Pr{Rk,r = m} = 1

NFB
.

With a suitable change of variables followed by using a summation form of the incomplete Beta function

[27, 2.1.3], we have

F
Yk
(x) =

1

NFB

NFB∑

m=1

NRB∑

ℓ=NRB−m+1

(
NRB

ℓ

)
{F

Zk
(x)}ℓ{1− F

Zk
(x)}NRB−ℓ. (42)

We note in (42) thatF
Yk
(x) is a polynomial form ofF

Zk
(x). Finding a coefficient for each power of

F
Zk
(x), we can more directly representF

Yk
(x) in terms of a polynomial inF

Zk
(x), a form suitable for
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the subsequent analysis. Thus, our purpose is to find the coefficients for those terms. Then we have

F
Yk
(x)

(a)
=

NFB−1∑

ℓ=0

NFB − ℓ

NFB

(
NRB

ℓ

)
{F

Zk
(x)}NRB−ℓ{1− F

Zk
(x)}ℓ (43)

(b)
=

NFB−1∑

ℓ=0

ℓ∑

r=0

NFB − ℓ

NFB

(
NRB

ℓ

)(
ℓ

r

)
(−1)r{F

Zk
(x)}NRB−ℓ+r (44)

(c)
=

NFB−1∑

m=0

NFB−1∑

ℓ=m

NFB − ℓ

NFB

(
NRB

ℓ

)(
ℓ

m

)
(−1)ℓ−m{F

Zk
(x)}NRB−m, (45)

where(a) follows from switching the order ofm andℓ in (42) and adjustingℓ; (b) follows from applying

the binomial theorem [28] to{1−F
Zk
(x)}ℓ in (43); (c) follows from replacingℓ− r with m in (44) and

switchingm and ℓ. Since the power ofF
Zk
(x) is independent ofℓ in (45), we can represent (45) as (5)

with e1(NRB, NFB,m) given by (6) after considering a constantρ.

APPENDIX B

PROOF OFCOROLLARY 1

WhenNFB = NRB, (6) reduces toe1(NRB, NRB,m) =
∑NRB−1

ℓ=m

(NRB−1
ℓ

)(
ℓ
m

)
(−1)ℓ−m. When we take the

derivativem times with respective tox of the binomial expansion of(1−x)NRB−1 =
∑NRB−1

ℓ=0

(
NRB−1

m

)
(−1)ℓxℓ

and divide both sides bym!, we have

(−1)m
(
NRB−1

m

)
(1− x)NRB−m−1 =

NRB−1∑

ℓ=m

(NRB−1
ℓ

)(
ℓ
m

)
(−1)ℓxℓ−m. (46)

When we plugx = 1 in both sides and divide both sides by(−1)m, we can find thate1(NRB, NRB,m) =
∑NRB−1

ℓ=m

(NRB−1
ℓ

)(
ℓ
m

)
(−1)ℓ−m = 1 for m = NRB − 1, and0 otherwise.

APPENDIX C

DERIVATION OF THE CONDITIONAL CDF OF Xr

Following the notations in Section III-A1, since a selecteduser isk and the number of users who

provided CQI to the transmitter isn, we have the conditional CDF ofXr as

F
X| k∗

r=k,|Sr|=n
(x)

(a)
= Pr{Xr ≤ x | k∗r = k, |Sr| = n} (b)

= Pr{Yk,r ≤ x | k∗r = k, |Sr| = n} (47)

(c)
= Pr

{
Uk,r ≤

x

ρck
| k∗r = k, |Sr| = n

}
(d)
= Pr

{
Ui,r ≤

x

ρck
, ∀i ∈ Sr | |Sr| = n

}

(e)
=

∏

i∈Sr ,|Sr|=n

Pr

{
Ui,r ≤

x

ρck

}
(f)
=

∏

i∈Sr,|Sr|=n

Pr{ρckUk,r ≤ x} (g)
=

∏

i∈Sr ,|Sr|=n

F
Yk
(x) =

{
F
Yk
(x)

}n
,
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where(a) follows from the definition of CDF;(b) from Xr = Yk,r because user-k is selected;(c) from

the definition ofUk,r; (d) from thatUk,r is the maximum among users inSr; (e) from i.i.d. property of

Ui,r in i; (f) from the identical distribution ofUi,r in i; (g) from the definition ofYk,r and its CDF.

APPENDIX D

PROOF OFLEMMA 2

From (5) and (8), we have

F
X| k∗

r=k,|Sr|=n
(x) = {F

Yk
(x)}n = {F

Zk
(x
ρ
)}nNRB






NFB−1∑

m=0

e1(NRB, NFB,m)

{F
Zk
(x
ρ
)}m






n

. (48)

Applying the same technique as in [26, 0.314] and [33, (16)] to a finite-order polynomial, we can express

the above equation in a polynomial form and compute the coefficients for each term. More specifically,

regarding (48) as a polynomial in 1
F
Zk

(
x
ρ
)
, we can calculate coefficients for 1

F
Zk

(
x
ρ
)

in a recursive form as

given by (11), andF
X| k∗

r=k,|Sr|=n
(x) has the form given by (10).

APPENDIX E

DERIVATION OF I1(x, y, z)

Following the approach in [10], we can computeI1(x, y, z) in (15). We note that the final form we

have in (15) is much better than that in [10, (15), (42)] in evaluating large values for the arguments.

The PDF ofZ which follows the Gamma distribution withG(α, β) is given byf
Z
(z) = βα

Γ(α)z
α−1e−βz

from the derivative of CDF in (2). Whenα is a positive integer, the CDF in (2) is represented by direct

integration asF
Z
(z) = 1−e−βz

∑α−1
i=0

(βz)i

i! . Sinced{F
Z
(z)}n = n{F

Z
(z)}n−1f

Z
(z)dz, we have from [34,

(18)] and [10, (40)]

d{F
Z
(z)}n = n

(α−1)!

n−1∑

k=0

(−1)k
(
n−1
k

) k(α−1)∑

i=0

bk,iβ
α+ie−(k+1)βzzα+i−1dz (49)

for bk,i in (16). Then, using the integration identity
∫∞
0 zn−1e−xz ln(1+z)dz = (n−1)!ex

∑n
ℓ=1

Γ(ℓ−n,x)
xℓ

[35, (78)], we have forI1(α, β, n) =
∫∞
0 log(1 + z)d{F

Z
(z)}n as [10, (42)]

n
(α−1)! ln 2

n−1∑

k=0

(−1)k
(
n−1
k

) k(α−1)∑

i=0

bk,iβ
α+ie(k+1)β(α+ i− 1)!

α+i∑

ℓ=1

[
1

(k+1)β

]ℓ
Γ(ℓ− α− i, (k + 1)β). (50)

By adjusting summation index forℓ and replacingα, β, andn with x, y, andz respectively, we can have

(15). Whenα = 1, we follow the same procedure and use the integration identity
∫∞
0 e−xt ln(1+yt)dt

(a)
=

1
x
e

x

y

∫∞
x

y

et

t
dt

(b)
= Γ(0, x

y
) to obtain (17), where(a) follows from [26, 4.337.2, 8.211.1] and(b) follows

from [26, 8.350.2].
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APPENDIX F

PROOF OFi.i.d. PROPERTY FORU
Q

k,r

SinceU
Q

k,r is equivalent to a quantized value ofUk,r by the policy in (19), we have

Pr{UQ

k,r = Jℓ}
(a)
= Pr{ξℓ ≤ Uk,r < ξℓ+1}

(b)
= Pr{ξℓ ≤ Um,n < ξℓ+1}

(c)
= Pr{UQ

m,n = Jℓ} (51)

where(a) and (c) follows from the quantization policy in (19) and(b) follows thatUk,r is identically

distributed. Therefore,U
Q

k,r is identically distributed. Further, we have

Pr
{ N

US⋂

k=1

NRB⋂

r=1

U
Q

k,r = Jℓk,r

}
(a)
= Pr

{ N
US⋂

k=1

NRB⋂

r=1

ξℓk,r
≤ Uk,r < ξℓk,r+1

}

(b)
=

NUS∏

k=1

NRB∏

r=1

Pr{ξℓk,r
≤ Uk,r < ξℓk,r+1}

(c)
=

NUS∏

k=1

NRB∏

r=1

Pr{UQ

k,r = Jℓk,r
} (52)

where(a) and(c) follows from the quantization policy in (19) and(b) follows thatUk,r is independent.

Therefore,U
Q

k,r is independent. From (51) and (52), we find thatU
Q

k,r is i.i.d..

APPENDIX G

DERIVATION OF THE CONDITIONAL PMF

Following the notations in Section III-B, let us suppose that n users provided the quantization index at

block-r. The probability that the quantization index of a selected user isJℓ is the same as the probability

that the maximum ofU
Q

k,r for all users isJℓ. Thus it is given by

Pr{Jℓ is selected| |Sr| = n} = Pr
{
max
k′∈Sr

U
Q

k′,r ≤ Jℓ
}
− Pr

{
max
k′∈Sr

U
Q

k′,r ≤ Jℓ−1

}
(53)

(a)
= Pr

{
max
k′∈Sr

Uk′,r ≤ ξℓ+1

}
− Pr

{
max
k′∈Sr

Uk′,r ≤ ξℓ
} (b)
= {F

U
(ξℓ+1)}n − {F

U
(ξℓ)}n

where (a) follows from the quantization policy in (19) and(b) follows from the order statistics [27,

2.1.1]. Since user selection is based oni.i.d. normalized CQI values, the probability that each user is

selected for a transmission is1
N

US
. Considering that the modulation level is determined asρckξℓ for user-k

when it is selected, the conditional PMF thatX
Q

r = ρckξℓ is given by (22). We note that the sum of this

probability overn andℓ is 1, which verifies the validity as the PMF.
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APPENDIX H

DERIVATION OF (23)

From the conditional PMF in (22), the sum rate for the system with partial feedback of quantized CQI

is given by

RSUM =
1

NRB

NRB∑

r=1

E[log(1 +X
Q

r )]
(a)
= E[log(1 +X

Q

r )] = E
|Sr|

E
X

Q
r

[log(1 +X
Q

r ) | |Sr| = n 6= 0]

(b)
=

NUS∑

k=1

L∑

ℓ=0

log2(1+ρckξℓ)
NUS

NUS∑

n=1

(
NUS
n

) (NFB
NRB

)n (
1− NFB

NRB

)NUS−n

[{F
U
(ξℓ+1)}n − {F

U
(ξℓ)}n] , (54)

where(a) follows from thatX
Q

r is identically distributed inr and(b) follows from the conditional PMF

of X
Q

r in (22) and the PMF of|Sr| in (7). From the binomial theorem [28], we have

NUS∑

n=1

(
NUS
n

) (NFB
NRB

)n (
1− NFB

NRB

)N
US

−n

{F
U
(ξℓ+1)}n =

{
1− NFB

NRB
(1− F

U
(ξℓ+1))

}NUS −
(
1− NFB

NRB

)N
US
. (55)

Thus, (54) reduces to (23) forI2(x, y, z, r) in (23).
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