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Interference Channel

Meisam Razaviyayn Gennady Lyubeznikand Zhi-Quan Lub

Abstract

Consider aK-user flat fading MIMO interference channel where th¢h transmitter (or receiver)
is equipped withM,, (respectivelyNy) antennas. If an exponential (i) number of generic channel
extensions are used either across time or frequ&ayambe and Jafdr|[1] showetht the total achievable
degrees of freedom (DoF) can be maximized via interferetigaraent, resulting in a total DoF that
grows linearly with X' even if M, and N, are bounded. In this work we consider the case where no
channel extension is allowed, and establish a general tondhat must be satisfied by any degrees of
freedom tuple(dy, do, ..., dk ) achievable through linear interference alignment. Forraregtric system
with M, = M, Ny, = N, di = d for all k, this condition implies that the total achievable DoF canno
grow linearly with K, and is in fact no more thak (M + N)/(K + 1). We also show that this bound
is tight when the number of antennas at each transcé&vaivisible by d, the number of data streams

per user.

. INTRODUCTION

arxiv:1104.0992v2 [cs.IT] 2 Sep 2011

Consider a multiuser communication system in which a nunobdransmitters must share common
resources such as frequency, time, or space in order to sémunation to their respective receivers.
The mathematical model for this communication scenaritésveell-knowninterference channeivhich
consists of multiple transmitters simultaneously sendiegsages to their intended receivers while causing

interference to each other.
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A central issue in the study of interfering multiuser syssemhow to mitigate multiuser interference.
In practice, there are several commonly used methods fdindeaith interference. First, we can treat
the interference as noise and just focus on extracting ttsiredk signals. This approach is widely
used in practice because of its simplicity and ease of imgtaation, but is known to be non-capacity
achieving in general. An alternative technique is chanmiglogonalization whereby transmitted signals
are chosen to be nonoverlapping either in time, frequencspace, leading to Time Division Multiple
Access, Frequency Division Multiple Access, or Space DwvisMultiple Access respectively. While
channel orthogonalization effectively eliminates mudéu interference, it can lead to inefficient use of
communication resources and is also generally non-capacitieving. Another interference management
technigue is to decode and remove interference. Specjfiedien interference is strong relative to desired
signals, a user can decode the interference first, thenasbtrfrom the received signal, and finally
decode its own message. Unfortunately, none of the aforgéomexl interference management techniques
can achieve the maximum system throughput in general.

Theoretically, what is the optimal transmit/receive €iggt in a MIMO interference channel? The
answer is related to the characterization of the capadifipneof an interference channel, i.e., determining
the set ofrate tuplesthat can be achieved by the users simultaneously. In spiteterisive research on
this subject over the past three decades, the capacitynregiinterference channels is still unknown
(even for small number of users). The lack of progress toadtarize the capacity region of the MIMO
interference channel has motivated researchers to deaieus approximations of the capacity region.
For example, the maximum total degrees of freedom (DoF)esponds to the first order approximation
of sum-rate capacitin the high SNR regimeSpecifically, in aK-user interference channel, we define

the degrees of freedom region as the following [1]:

D= {(dl,dg,...,d[{) ER_’If ‘ V(wl,wg,...,wK) GR_,I?,

b W

where(C is the capacity region anfy, is the rate of usek. We can further define the total DoF in the

K . K
widg < limsup [sup ————= » wiRy
; SNR—oo |Rec l0g SNR kzzl

system as the following:
n= max Dd1+d2—|—...+dK.

(dy,da,...,dr)€E

Intuitively, the total DoF is the number of independent ddtaams that we can communicate interference-
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free in the channel.

It is well known that for a point-to-point MIMO channel with/ antennas at the transmitter and
N antennas at the receiver, the total Dok is min{ M, N'}. Different approaches such as SVD precoder
or V-BLAST can be used to achieve this DoF bound. For a 2-ud&t®ifading interference channel with
userk equipped withM;, transmit antennas anll;, receive antennas:(= 1, 2), Jafar and Fakhereddin

[9] proved that the maximum total DoF is
17 = min { My + My, N1 + Ny, max{M;, No}, max{ My, N1}}.

This result shows that for the case bf, = M, = N; = N,, the total DoF in the system is the same as
the single user case. In other words, we do not gain more DaRdogasing the number of users from one
to two. Interestingly, ifgenericchannel extensions (drawn from a continuous probabiligyritiution) are
allowed either across time or frequency, Cadambe and JHfahpwed that the total DoF is= K M /2
for a K-user MIMO interference channel, whed is the number of transmit/receive antennas per
user.This result implies that each user can effectively utilizdf lof the total system resources in an
interference-free manner by aligning the interferencellerlaaeiver. The principal assumption enabling
this surprising result is that the channel extensions apomentially long inK and aregeneric(e.g.,
drawn from a continuous probability distribution). If chre extensions are restricted to have a polynomial
length or are nogeneric the total DoF for a MIMO interference channel is still lageinknown even
for the Single-Input-Single-Output (SISO) interferendeainel. For the 3-user special case, reference
[7] provided a characterization of the total achievable @wsFa function of the diversityn the absence
of channel extensions, the computational complexity of axically designing an interference alignment
scheme has been shown to be NP-hard [12] in the number of. users

The main theoretical investigation pertaining to the coirn@ork is [2] by Yetiset al. who studied
the maximum achievable DoF for a MIMO interference channighaut channel extension. In general,
linear interference alignment can be described by a sdiilmiear equationsvhich correspond to the
zero-forcing conditions at each receiver. Forkauser system, there are a total Af(K — 1) such
coupled quadratic matrix equations whose unknowns arer#msrit/receive beamforming matrices to
be designed. Moreover, the achievability of a given tupl®oF corresponds to these quadratic equations

having a solution (in the form of beamforming matrices) waowdividual matrix ranks are given by the

1The idea of interference alignment was introduced In [3]45d the terminology “interference alignment” was first dise

6.
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DoFs. One can easily count the number of “independent unkeband the number of scalar equations
in this quadratic system defining interference alignmeris then tempting to conjecture, as was done in
[2], that the interference alignment is feasible if and oifilhe number of equations is no more than the
number of unknowns in each subsystem of the quadratic emsatiVhen the latter is true, the authors
of [2] called the corresponding systgmmoper. However, except for some special cases involving a small
number of users and antennas, the investigationlof [2] wagllainconclusive.

In this paper, we settle the conjecture [of [2] completely e @irection, and partially in the other. In
particular, we consider the case where no channel exterisialiowed, and use results from the field
theory to establish a general condition that must be satisfjeany DoF tuple achievable through linear
interference alignment. This condition shows that the mpprness property (in the senseldf [2]) indeed
implies the infeasibility of interference alignment. Fhetsymmetric system with/, = M and N, = N
for all k, this condition implies that the total achievable DoF camgrow linearly with the number of
users, and is in fact no more thanh+ N —1. This is in sharp contrast to the case with independent aiann
extensions for which the total DoF can grow linearly with thember of users. For the converse direction,
we show that if all users have the same Dolnd the number of antenndg,, N, are divisible byd
for eachk, then the properness of the quadratic system implies trehiéty of interference alignment
for generic choice of channel coefficients (e.g., drawn from atingous probability distribution)If
in addition, M, = M and N, = N for all £ and M, N are divisible byd, then our results imply that
interference alignment is achievable if and only# + N) > d(K +1). In the simulation section, we use
these established DoF bounds to numerically benchmarkehfermance of several existing algorithms

for interference alignment and sum-rate maximization.

[I. SYSTEM MODEL

Consider a MIMO interference network consisting /8f transmitter - receiver pairs, with transmitter
k sendingd;, independent data streams to receiketet Hy; be anM; x N, matrix that represents the
channel gain matrix from transmittgrto receiverk where M; and N}, denote the number of antennas

at transmitter; and receivet, respectively. The received signal at receikes given by

K
yi = Hix; + n
j=1
wherex; is anM; x 1 random vector that represents the transmitted signal of uaedn;, ~ A(0, 0°I)

is a zero mean additive white Gaussian noise.
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Throughout this paper, we focus dinear transmit and receive strategies that can maximize system
throughput. In this case, transmitteluses a beamforming matrX;, in order to send a signal vectsg
to its intended receivek. On the other side, receivérestimates the transmitted data veaipiby using

a linear bealnforlnillg nlatriiJk, i.e.,
=V.s 8, — IIH
X = Vi Sk, kL= VUL Yk

where the power of the data vectsy € R**! is normalized such thaE[skskH] =1, and§;, is the
estimate ofs;, at thek-th receiver. The matrice¥;, € CM+>*d and U, € CN+*% are the beamforming
matrices at thé-th transmitter and receiver respectively. Without chaereension, the linear interference

alignment conditions can be described by the following Zeroing conditions|[[2], [[12]

UYHV; =0, Vj#k, 2)

rank (U Hp Vi) = dy, YV k. 3)

The first equation guarantees that all the interfering d&yatreceiverk lie in the subspace orthogonal
to Uy, while the second one assures that the signal subdag®, has dimensionl, and is linearly
independent of the interference subspace. Intuitivelythasnumber of user#’ increases, the number
of constraints on the beamformef¥;, V. } increases quadratically i, while the number of design
variables in{Uy, V} only increases linearly. This suggests the above intaréerelignment can not
have a solution unlesk” or d;, is small.

The interference alignment conditioris (2) afd (3) implytteach transmittec can use a linear
transmit/receive strategy to communicatg interference-free independent data streams to recéiver
(per channel use). In this case, it can be checked dpatepresents the DoF achieved by theh
transmitter/receiver pair in the information theoretinseof [1). In other words, the vectat;, ds, ..., d )
in (2) and [3) represents the tuple of DoF achieved by line@rierence alignment. Intuitively, the larger

the values ofly, ds,...dx, the more difficult it is to satisfy the interference alignmeonditions[(2) and
@).
[1l. BOUNDING THE TOTAL DOF ACHIEVABLE VIA LINEAR INTERFERENCEALIGNMENT

Our goal is to study the solvability of the interference afitgent problem[(2)E(3) and derive a general
condition that must be satisfied by any DoF tuple, ds, ..., dx) achievable through linear interference
alignment for generic choice of channel matrices. We wabgbrovide some conditions under which this

upper bound is achievable.

October 22, 2018 DRAFT



Let us denote the polynomial equations[ih (3) by the index set
J2{(kj) | 1<k#j <K}

The following theorem provides an upper bound on the tothlevable DoF when no channel extension

is allowed.

Theorem 1 Consider aK-user flat fading MIMO interference channel where the chamatrices
{Hij}fszl are generic €.g., drawn from a continuous probability distributjolAssume no channel
extension is allowed. Then any tuple of degrees of freemis, ..., dx ) that is achievable through

linear interference alignmen@) and (3) must satisfy the following inequalities

min{ My, Ny} > di, Vk, 4)
maX{MlmN]}de—i—dj? Vk,j,k;’éj, (5)

S My —di)di+ Y (Nj—dj)d; > > did;, YICJ. (6)
k:(k,j)eT ji(k,j)eT (k,j)eT

Condition [6) in Theoreril1l can be used to bound the total Ddftemable in a MIMO interference

channel. The following corollary is immediate.

Corollary 1 Assume the setting of Theordm 1. Then the following uppembdsthold true.

(@) In the case ofl;, = d for all k, interference alignment is impossible unless

K

1
< KE+1) I;(Mk + Ng).

d

(b) In the case of\;, + N, = M + N, interference alignment requires

K 2 K K
<de> +> A< (M4 N)Y dy
k=1 k=1 k=1
which further implies
K
> dp < (M +N).
k=1

Part (b) of Corollary 1l shows that the total achievable Dok MIMO interference channel is bounded
by a constani\/ + N — 1, regardless of how many users are present in the systeme\iisl bound is
an improvement over the single user case which has a maximafnoDmin{ M, N}, it is significantly

weaker than the maximum achievable total DoF for a diagoregjuiency selective (or time varying)
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interference channel. The latter grows linearly with thenber of users in the systeml [1].
The rest of this section is devoted to the proof of Theotém d it converse. Since we will use
several concepts and results from the field thelory [11] agelahic geometry [14], [16], we first provide

a brief review of the necessary algebraic background.

A. Algebraic Preliminaries

Let K, F be two fields such thatC C F. In this case, we say- is an extension ofC, denoted

by F/K. Let us useK|z1, 22,. .., z,] to denote the ring of polynomials with coefficients drawnnfro
K. We sayai,ae,...,a, € F arealgebraically dependentver K if there exists a nonzero polyno-
mial f(z1,22,...,2,) € K[21, 22, ..., 25] Such that

f(OZl,OéQ,...,Oén) = 0. (7)

Otherwise, we say that they asdgebraically independendver K. The largest cardinality of an alge-
braically independent set is called the transcendencesdenfiF over K. An elementa € F is said to
be algebraic ovef if there exists a nonzero polynomidle K[z] such thatf(«) = 0; else, we sayx

is transcendental ove¢.

Example 1.Let £ = C be the field of complex numbers adel = C(x;,z2) be the field of rational

functions in variables:;, x5. Then, the polynomials
_ .2 _ .2 _
g1 = T2, g2 = Ty, g3 = T1T2

are algebraically dependent ovébecause (g1, g2, g3) = 0 identically for all (z1, z2), wheref (21, 22, 23) =
2 4

Zl Z2 - 23.
Example 2. The two complex numbers = /7, b = 37 + 2 are algebraically dependent over the field

of rational numbers because by definifigy1, 22) = 327 — 22 + 2, we havef(a,b) = 0.

Notice that the definition of algebraic independence is imynaays similar to the standard notion
of linear independence from linear algebra. In fact, if thadtion f in (7) is required to be linear, then
algebraic independence reduces to the usual concept @i lindependence. Similar to linear algebra,
we can define a basis for the fieJd using the notion of algebraic independence. In particigaen

any algebraically independent sgtover the field/C, let IC(S) denote the field of rational functions in
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S with coefficients taken from the fieltl. For any field extensiotF//C, it is always possible to find a
setS in F, algebraically independent ovér, such thatF is an algebraic extension &(S). Such a set

S is called a transcendence basisfbver K. All transcendence bases have the same cardinality, equal
to the transcendence degree of the extendigiC. If every element inF is algebraic ovefC, then we

say F/K is an algebraic extension. In this case, the transcendesgree of 7 over K is zero.

Example 3.The two polynomialg;; andgs in Example 1 are algebraically independent oeifogether,

they constitute a transcendental basis@gr, z2) over C.

The following table shows similar concepts between lindgelara and transcendental field extension

(see [11], [16] for more details).

Linear algebra Transcendental field extension

linear independence algebraic independence

A C span(B) A algebraically dependent o

linear basis transcendence basis

dimension transcendence degree

In linear algebra, it is well known that arfy. + 1) vectorsvy, va, ..., v,,41 In @ann-dimensional vector
space must be linearly dependent. In other words, therésexisonzero linear functiofi(z1, 22, ..., zZn+1)
such thatf(vy, va,...,v,4+1) = 0. A similar result holds for algebraic independence. Fomepia, any
(n+1) polynomialsgy, g2,..., gn+1 defined om variables(xy, xo, ..., x,,) must be algebraically dependent.

Consequently, there exists a nonzero polynonfiiah, zo, ..., z,+1) such that

f(gl7g27 '--,gn—i-l) = 07 v ($17$27 7$TL)

Example 1 is an instance of this property with= 2. The following example states this property, to be

used in the proof of Theoref 1, in a more formal setting.

Example 4.Let C(z1, 22, ..., 2,) denote the field of rational functions im variables with coefficients
in C. The set{z, z9, ..., 2z, } is @ maximal algebraically independent setCifx, 29, ..., z,). Hence the

transcendence degree of the field exten§ion, 2o, . . ., z,)/C is n. Furthermore, for anyn polynomials

gl(Zl,Zg,---,Zn), 92(z17z27"'7zn)7 R gm(zlaz27"'7zn)7
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wherem > n, there exists a nonzero polynomiél-) such thatf(g1,92,...,9m) =0, V z1,22,..., 2.

Next we describe a useful local expansion of a multivariadlmomial function. Recall that for any

univariate polynomialf and anyz € C, there holds
f(x) = f(Z) + (x — T)g(z), for all z € C,

where g is some polynomial dependent anand the coefficients of only. Similarly, for an-variate

polynomial f defined on the variables = (x4, x9, ..., z,) and anyx € C", we have
F0) = FR) + D (@ — 2)gi(x) = f(%) + (x —x)"g(x), ¥x€C",

where eachy; is some polynomial dependent @and the coefficients of only. If we replace the scalar

variablez; by a matrix variableX;, then we can write
FX) = FX)+ > Tr ((Xi = X)Gi(X)), VX, 8)
i=1

where eaclG; is a matrix whose entries are polynomials dependent on tiieenfX and the coefficients
of f only. The local expansion(8) will be used in the proof of Tiesn[1.

To prove the converse of Theordmh 1, we will use the conceptgawmiski topology and a Zariski
constructible set. We briefly review these concepts nex [$4] for more details). Considé:™, the n-
dimensional vector space over the field of complex numiief©ne can replac€ by any algebraically
closed field.] The Zariski topology foE™ is defined by specifying its closed sets, and these are taken
simply to be all the algebraic sets @*. That is, the closed sets under Zariski topology are thosbeof
form

S={xeC"| filx) =0, i=1,2,...,m}

where {f;}7, is any set if polynomials with coefficients taken frath For example, the entire space
C™ is Zariski closed (Taken = 1 and f; to be the zero function, i.ef;(z) = 0, V z). All other
Zariski closed sets have zero measure. A nonempty Zariski gpt (the complement of a Zariski closed
set) always has dimensiam. If a property holds over a Zariski open set, we say the ptygpeolds
generically

In topology, a set s locally closed if it is the intersectimfran open set with a closed setcaAnstructible

setis defined as a finite union of locally closed sets. Thus, askadonstructible set is simply a finite
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10

collection of sets, each defined by the feasible set of finitghny polynomial equations and polynomial
inequalities. Clearly, if a Zariski constructible set hasiehsionn, then it must contain a Zariski open

subset.

Let ¢1, ¢o, ..., ¢, be polynomials inxy, zo, . .., x, with coefficients fromC. They define a ma@ :
C™ — C™ as follows: ®(x) = (¢1(x), p2(x), ..., Pn(x)) € C™. Chevalley’s Theorem says that the image

of this map is a constructible set (s€el[16] for more details)

Example 5.Let® : C2 — C? be defined byb(x) = (¢1(x), ¢2(x)) whereg; (z) = x1 andes(x) = z12o.
Let £ be the line{x € C? : x; = 0}. The image of® is the union of two locally closed set&?\L

(which is in fact open) and the poiri®, 0) (which is indeed closed).

Let the image of® be the union of locally closed subsetg;, W, ..., W, whereW, = U;(V; and
V; is closed andy/; is open. Assume the Jacobiandgf, ¢o, .. . , ¢, iS honsingular at some poistc C”.
The Implicit Function Theorem says that the imagebofontains a small open disc aroufidx), hence
the measure of the image is nonzero. This implies that forespiy; = C™ andW, = U;, i.e., the image
of the map®(-) contains a Zariski open sefhus, if a certain property is shown to hold over the image
of a polynomial mapb : C" — C™ whose Jacobian is nonsingular at some point, then this proprist
hold generically. We will use this approach to establishdbeeric feasibility of interference alignment

for certain MIMO interference channels (TheorEn 2).

B. Proof of Theorerll

We now use the transcendental field extension theory to ledtatheorent L.
Proof: The inequality [(#) is obvious due t§1(3). To proVé (5), assuhig < Nj. SinceHy; is
generic,rank(Hy;V;) = d;. Furthermore, due td{3), the beamfornér, must be full rank and hence
dy + d; must be no more than the total dimensidf. Similar argument shows that, + d; < M;

when M; > Ni. Thus,dj, + d; < max{M;, N}}.

For simplicity of notations, we prové](6) for the cage= 7. WhenZ C 7, the proof is the same

except that we need to focus on a subset of equations/vesidkdbw, we prove (6) for the case b= J
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11

by contradiction. Assume the contrary that

K

K K
Z(Mk — dk)dk + Z(NJ — dj)dj < Z dk,’dj> 9)

k=1 j=1 k.j=1,k#j
and the interference alignment conditions[ih (2) did (3)satesfied. The interference alignment condition
(3) implies thatU,, and 'V, must have full column rankBy applying appropriate linear transformations

to the rows ofU; andV;, we can write

I I
Ue=Pp| _ [ Qp V=P | Q Vk, (10)
Uy Vi
where U, and V;, are some matrices of sizgV, — dj) x d; and (M — di) x d;, respectively. The
matricesP}; and P} are square permutation matrices of si¥g x IV}, and M}, x M;, respectively, while
Q}, Qj are some invertible matrices of sizg x dy. DefineI_L-j =P} ‘1HijP;? ~! to be the permuted

version ofHy;. We can partition the matrif; as

-1 52
o H,gj H,gj
kj =
=(3) @)

) Ay

where I_{,(jj) is of sized, x d;. Since the channel matricedl;;}.; are drawn from a continuous
probability distribution, the transformed channel maisi@ﬂ,ilj)}k# remain generic. Rewriting the linear

interference alignment conditiohl(2) in terms ©f, and V,, we obtain

_ kj kj
1ot ] o o || v | =° -
H,/ H,; V;
or equivalently
A + /A + BV, + UV, =0, vj#k (12)

The above system of quadratic equatidirst derived in[2] is equivalent to the interference alignment

condition [2). The number of scalar equations[inl (12) is

K
> did;,

Jk=1j#k

while the total number of scalar variables (i.e., the scefsries of the unknown matric§dJ; }'s and
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12

{Vi}s) is

K K K
> (M, = di)dy, + > (Ny, — di)d = > (M, + Ny, — 2di)dy,.
k=1 k=1 k=1
So if
K K
S (My+ Ny, —2dp)dp < Y dpdy;, (13)
k=1 Jk=1,j#k

then we would have more constraints than unknowns in thef@mence alignment conditiof (fL2), which
we will argue cannot hold.

Let us consider the fieldE defined over the field of complex numbets consisting of all rational
functions in the entries of the matricgdJ;}~_ , and {V;}/ . Note that the entries of the matri-
ces {Uy, Vi } , form a transcendence basis @ over C. Thus, the transcendence degree7ofis
S (My, + Ny — 2dy,)dy,, which is equal to the number of entries in the matri¢€s,, V;, } 1< .

Now, let us consider the matrlcéi(2) H(3)

) | for all k. j,k # j and define the matrify;:

ijm,\‘f)é_(ﬁfﬁ,gum?) + OfHYV ) (14)

for all k, j with k # j. Note thatF; is ad;, x d; matrix, with each entry being a quadratic polynomial
function of the entries in the matricds;, and V. As a result, the entries df; belong to the field
F. Moreover, if [I3) holds, then the number of quadratic polyials given in the matrice§F;; }1; is
strictly larger than the transcendence degreeFobver C. Hence, as we discussed in the algebraic
preliminaries (Sectiol II-A; see alsd [11, Chapter 8])eth quadratic polynomials itF must be
algebraically dependent. This implies that there existooazaro polynomialp which vanishes at the

quadratic polynomials corresponding to the entries of tlarices{Fy;}.-;, i.e.,
p (F12(Ij> V), F13(Ijv V), cee 7FK(K—1)(Ijv v)) = 07

for all {Uy, Vi }£ . Notice that the polynomiap is independent of the channel matric EISJ)}#
J
even though it does depend on the matri{ﬁ(?, ﬁf;.), ﬁg})}k# . When viewed as a polynomial of the
J

matrix variableX := (ﬂ%),f{%), . ,ﬁg)(K_l
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13

using [8):

for all {Uy, Vi }E |, whereQy; is some polynomial matrix of sizé; x di. Combining the above two
identities yields
(1) (1 1
p(AYAY,. A )
=3 T (B - Fiy(0,V)Qy (0, V). (15)
k#j

Notice that this equality holds for all choices 68, V. } . If the interference alignment condition
(I2) holds, then we have

ﬁ](:]) —Fi;(U, V) =0, forallk, jwith k # j,

for some special choices of the matric{a@k,\_/‘k}le. Substituting this condition into the right hand
side of [15), we obtain

(1) (1 (1
p(AEHY,.H ) =0 (16)

Notice that the polynomiap is independent of the channel matric{aﬁglglj.)}k¢j. Under our channel
model, the channel matrice{sﬁgj)}k# are drawn from a continuous probability distribution. Itidavs
that the condition[(16) cannot hold unlesss identically zero, which contradicts the requiremgnt 0.

[

Theoreni 1 settles the conjecture(af [2] in one direction, @lgnthe improperness of polynomial system
(@) and [[3) implies the infeasibility of interference aligant. From the proof of Theorel 1, it can be
seen that the upper bourid (6) holds for any choice of fixed nneieiarmatrlces{H,i2 , 7,(6]),H(4)} k+£j @S
long asthe channel matncefg.ij }k; are generic.

Also, we remark that the proof technique for Theolem 1 candeuo bound the DoF for a single
antenna parallel interference channel (e.g., the OFDM mégnin particular, consider a single input
single output interference channel witi channel extensions, i.e., the channel matrices are dihgoda

of the sizeM x M. Assuming each user transmits one data streéyn=( 1 for all k), we can check
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that the properness of the interference alignment comd@)-(3) is equivalent td< +1 < 2M (seel[2,
Theorem 1]). Using a completely identical proof, we can sltoat the properness conditidti+1 < 2M
is a necessary condition for the feasibility of interferemtignment. This implies that for the single beam
case the total DoF per channel extension is upper bounded tggardless of the number of channel

extensions. This DoF bound has also been proposed recarty].

C. The Converse Direction

In the remainder of this section, we consider the conversthebren(lL. In particular, we show that
the upper bound in Theordnh 1 is tight for a special case wHensers have the same DeFand number
of antennas is divisible by. In this case, we hav& (K — 1) matrix equations in[(12), each giving rise
to d? scalar equations. For any subset of these matrix equatialexéd byZ, with Z C 7, the number
of corresponding scalar equations is equalitt¥|, whereas the number of scalar variables involved in

the equations indexed k¥ is

Yo (My—d)+ ) (Nj-d)|d

k:(k.j)eT ji(k.j)ET

The next result shows that the bound in Theotédm 1 is tightef plolynomial system[(12) defining
interference alignment is proper, i.e., for ea€lC 7, the number of variables involved in each set of
equations indexed h¥ is no less tham?|Z|, the number of scalar equatiorhe proof of this result uses
the Implicit Function Theorem which involves checking tteedbian matrix of the polynomial malp (14)
is nonsingular at some channel realizatiddy; }r.;. Notice that the feasibility of interference alignment
condition [I2) at a given channel realizatidi;}«; is equivalent to{ﬁ,ilj.)}k¢j being contained
in the image of the polynomial majp_(14) which is defined {iglg.),ﬁf;),ﬂg;)}k#. Fix a generic
choice of{}_I,(fj),I_{,(f}), I_{,i‘;)}k¢j for which the Jacobian of the polynomial map](14) is nonsiagrhe
Implicit Function Theorem allows us to establish the existe of a locally invertible map from the
space of channel submatric@EI,(:j)}k# to the space of beamforming matrices, and that the image of
this polynomial map[(14) is locally full-dimensional. Tleéore, for all channel submatrices near the
given channel realizatio@ﬁ](jj)}k#, the interference alignment conditidn [12) can be satidfigdome
beamforming matrices. By Chevalley's Theorem from algiebgeometry [[14] (see also the discussion
at the end of Section III-A), the “local full-dimensiongfitof the image of [[1#) implies that this image,

which is a constructible set, must contain a honempty Zaoglen set. As a result, the whole image
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of polynomial map [(I4) contains all generically generatbdrmel sub—matrice@ﬁ,&?}WT Since the
choice of channel submatricéﬁ,(fj),ﬁ,(g?;),ﬁ,(é)}k# is also generic, this then establishes the feasibility

of interference alignment for all generically generatedrotel matriceHy, } 1,

Theorem 2 Assume that all users have the same DHF= d, wherel < d < min{My, N}, Vk.
Furthermore, suppose that/, and N, are divisible byd for all k. Then interference alignment is
achievable for generic channel coefficients if and only if éach subsef of equations in(12), the
number of variables involved in these equations is no less the number of matrix equations timés

or equivalently,

Zd< > (My—d)+ Y (Nj—d), VIwthZICJ. (17)
k:(k,j)eT ji(k,g)ET

Proof: First of all, the “only if" direction is a direct consequencéTheorenl]l. We now focus on
the “if" direction. Consider the polynomial map that we ggt doncatenating all maps in(14) for all
(k,j) e J, ie.,

F1o(0,V) = — (OFE + YV, + OIAE{EVS),

Fi5(0,V) = — (OFE + B Vs + A V), s
18

7 V) — TH®) (%) v TH (4 Y
FK(K—l)(U7V) - (UKHK(K—I) + HK(K—1)VK—1 + UKHK(K—I)VK—1> ’

which maps the variable§Uy, V1< | to the {Fy ;}1.; space. We will first show that for a specific
set of channel matrices, the rank of the Jacobian of thisnaohjal map isk (K — 1)d?, equal to the
number of equations. Hence, if we restrict the equationsdobeset of variables of sizE (K — 1)d2, the
determinant of the Jacobian matrix of the polynomial niap) ¢iies not vanish identicallifhis step will
establish the existence of a locally invertible map from space of beamforming matrices to the space
of channel matrices. By Chevalley’s Theorem (se€ [14, Glrapt 6.E.]), this image is a constructible
subset under Zariski topology. This, plus the fact that thage is locally full-dimensional, implies that
the interference alignment condition {12) is feasible forgenerically chosen channel matrices. This
then will show the “if” direction of Theorernl2.

To show the nonsingularity of the Jacobian matrix, we neecetoove some redundant variables in
{Uy, V,}i; (this occurs when there are more variables than equatiand)then construct a specific set

of channel matrice:{Hg.),Hl(f;),H,(é)}k# and a solution{ Uy, V;}; ; at which the Jacobian matrix of
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(@8) is nonsingular. Before providing a rigorous descoiptfor such a construction, we first consider a
toy example withK = 3 users wheré/, = 3, N, = 2,d,. = 1, for k = 1,2, 3. For this specific example,
the assumptiori(17) is satisfied and the equations_ih (18peamwritten as

F15(0,V) = - (OFB{) + BV, + OFA{)V,),

Fi5(0,V) = - (OFB{) + BV, + OFA{)

Fou (O, V) = — (OYAY + AYV, + UFANV,

Vi),
Vi).
OFRE) + BE) Vs + OF B V,)
)
UEE) + BV, + OFBEV,),

-
=

F3:(0, V) = ( aa® L maldv, + v,
=

](;)71 ]‘I](;_)Q]T e C2x1,

f{,(f;) = [ES;.)] € C, for k # j. If we set H,(;;.) = 0 for all channels, one can write the Jacobian of

where Vi = [vg, v,|T € C2*, Uy = [u] € C, for k = 1,2,3, andH( ) = [h

[Flg Fi3 Fy Fo3 F3; F32] with respect to the variable{al U2 U3 V1, V1, U2, V2, U3, 1)32] as

A | 0 0 0

0 o - ¥ 0 0

0 0 0 VT 1 G <

0 o =Pt o =P o

0 o -r@?* o —RP? 0
{0 0 0 0o —r!
{0 0 0 0o —nP?

o @' o —R@' 0 0

0 AP 0 R o 0
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the Jacobian of the mappinig {18) with respect to the remginariables becomes

1 0 0 0 0 0]
0 0 0 -1 0 0
0 0 0 0 -1 0
0O 0 -1 0 0 0|
0 0 0 0 0 -1
0 -1 0 0 0 0 |

which is clearly nonsingular since there exists exactly noazero element in each column/row.

Next we argue that the above construction procedure can hergeed to the case wherkl,
and N, are divisible byd, provided that the assumption {17) is satisfied. The coctstm of these
channel/beamforming matrices and the removal of redundandbles are outlined below. First, we set
H,(;;.) =0, for all k # j. Then we choos¢Uy, V,}, ; arbitrarily. It remains to specif;{ﬁ,f;.),ﬁ,%)}k;ﬁ
We should do so to ensure that the corresponding JacobiaixrabfI8) at {Uy, V,}.; is nonsingular.

j .

Since M}, and N;, are divisible byd, we can partition our variables into blocks of size d and rewrite

the mapping[(18) as

(3).1 ¥,
ij le
S —H - H;)? —o1 m®2  a@u] | Vi
Fy(0,V)=— [Of OfL O || 7% |- [Eg a@e . m@v | | vk,
= (3),5% =
L Hl(fj) N L Vj'j .

(19)
wheres, = Me 11, = % 1, and I_Jki,\_fje,ﬁ,g.)’i,ﬁ,f;)’z € €94, Consider a bipartite grapt’
where the vertices are partitioned into two s&tsand ). Each block of variables will correspond to a
node inX, while each matrix equation in_(IL9) will correspond to a ned®. We draw an edge between
a nodex € X and a nodey € )Y if the block of variables corresponding to nodeappears in the
equation corresponding to node When viewed on the bipartite gragh, the assumptior_(17) simply
says that for any given set of nod8sC ), the cardinality of the neighbors &f in X is no smaller than
the cardinality ofS. This condition is precisely what is required to ensure tkistence of a complete
matching inG covering all nodes i) (Hall’s theorem, see [15, Theorem 3.1.11]). Now consideredfi
complete matching irz. Let A C X be the set of vertices that are not matched to a nodg. ifthen,
we can set to zero all the blocks of the variables correspgnidi the vertices i, i.e., we can remove

them from our equations. Now we choose the rest of the chanagices so that the determinant of the
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Jacobian with respect to the remaining variables is nonZerthis end, we seﬁ,f;.)’p = 0 if the node for
fjkp is not matched to the node ) corresponding to the equatidfy,;. Similarly, we setﬁ,%)’q =0if
V. is not matched t& ;. Moreover, we set all the remaining channel sub-matricebea x d identity
matrix. Since this construction is based on a complete nraiclit is not hard to see that the Jacobian
for the whole system is a block permutation matrix, with renazblocks equal to the negativex d
identity matrix. Hence the determinant of the Jacobian im&requal to the product of the determinant
of all nonzero blocks (up to sign), which is clearly nonzemncour caseThis completes the description
of the procedure to remove potential redundant variablesyell as the procedure to construct all the
channel matricesstj),H,g), H,(é.)}k# and the beamforming solutiofiU,, V,}, ;. The Jacobian matrix
of (I8) is nonsingular at this constructed channel reatimeind beamforming solutiofrigure[l illustrates

the construction of grap&y and a complete matching (in solid lines) for the aforemerttoy example.

» Y1y

Fig. 1: The bipartite grapli and a complete matching for the toy example

To complete the proof, we fix a generic choice{m_i,(f ,H,(f; ,H(4 }x=; for which the Jacobian of (18)
is nonsingular. Let: be the total number of remaining scalar variable§@y,, V;} ; after removing the
redundant variables. Notice thais the same as the number of scalar equationsyi.e.d? K (K —1). Let
Ry = Clhy,ha, ..., h,] and Ry = Cluy, ag, . .., Up, U1, - -, Un—m]| De two polynomial rings where;’s

andw;’s are the entries of the matricé®J, } X | and{V}X_, (after removing the redundant variables),
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andhy, ho, ..., h, are the entries of the matricéﬁgj)}k#. Consider{ f;}7_, (the components df;'s

in (18)) as the functions ofi's and v’'s, i.e., f;’s are polynomials inR,. These polynomials define a
mapa, which maps a point = (c1, c2, ..., ¢,) 10 (fi(c), fa(c), ..., fu(c)). According to the Chevalley
Theorem (see [14, Chapter 2, 6.E.]), the image of this maZareski constructible subset of¢. ;, where
At is the corresponding affine space®f. Since the Jacobian of the Sefy, fo,- .., fn} With respect
to the variableay, @, ..., Uy, 01,...,0n—m} iS NONsingular generically for all channel realizations, i
follows from the Implicit Function Theorem that the dimesrsiof the image ot is n. Note that the
image ofa, is a Zariski constructible subset off ; (see Chevalley Theorem [14], Ch. 2, 6.E.) and
it has full dimension. Hence, the image contains a Zariskinopubset ofA¢ ; (see the discussion in
sectionIl[-A). Let/ be that Zariski open subset off ; in the image. Sincé/ is in the image of the
map ay, there exists a solution for interference alignment equiatifor any choice o{ﬁ,glj.)}k¢j in U,
which implies that interference alignment is feasible fengric choice of{ﬁ,glj)}k#. Since the choice
of channel matrice$I_{,(€2j), I_{,i:;),ﬁ,gi)}k¢j is also generic, this completes the proof of the “if” directi

Notice that the conditior_(17) is equivalent to the propsmef the polynomial systerh ({12) defining
interference alignment. For symmetric systems wifph = M, N, = N for all k, this condition simplifies
to M+ N > d(K+1) (seel2, Theorem 1]). Thus, each user can achiedegrees of freedom as long as
M+ N > d(K +1) and thatd divides bothM and N. In a concurrent work, the authors of [8] obtained
a similar result under a different set of assumptions. MgrecHically, they considered the symmetric
case withM = N, = M, d;, = d for all k, and proved that the feasibility of interference alignmient
this case is equivalent &\ > d(K + 1). This result and Theorefd 2 are complementary to each other.
In particular, Theorem]2 is applicable to non-symmetrictesys, but does require an extra condition
about the divisibility of the number of antennas by the numtiedata streams. WheR is odd and
(K + 1)d = 2M, then M must be divisible byd. This case is then covered by both Theollem 2 and
the result in[[8]. However, for the case wheleis even and K + 1)d < 2M, TheoreniR is no longer
applicable, whereas|[8] shows that the interference alegrins achievable.
A few other remarks are in order.
1) Referencel[2] also considered the cadge= 1 and used the Bernshtein’s theorem to numerically
compute the number of solutions, and therefore prove theitffity, for the resulting polynomial
system[(2){(B) when the number of antennas are small. InrasmTheoreri]2 shows the feasibility

of single beam interference alignment for all values\f, N, as long as the system is proper.
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2) As shown in Theorerl 1, the condition] (5) is necessary. kam@le, the systenk = 2, M =
N = 3,d = 2 satisfiesthe inequality [(6). However, the system of equatidds [(3)if3nfeasible for
generic choice of channel coefficients. This further shdved thepropernesgproperty in [2] does
not imply feasibility in general, a fact that was first pouhteut in [2, example 17]

3) Theorem R does not contradict the NP-hardness result2jf {3iven a set of channel matrices,
checking the feasibility of the interference alignmentditions (2)-{3) when);, > 3 and Ny, > 3,
is NP-hard. It is true that, under the setting of Theofém &,ittterference alignment fails only for
a measure zero set of channels. However, for systems nefysagi the conditions of Theorefd 2,
checking the feasibility of interference alignment can laedh Moreover, the results of [12] imply
that, even if a given tuple of DoF is known to be achievableintarference alignment, finding the
actual linear transmit/receive beamformers to achievestill a NP-hard problem when the number
of users is large.

4) The condition[(1l7) implies the conditionl (B)}he number of antennas at each transceiver is divisible
by d. In fact, by choosin@ = {(k, j)}, condition [1T) implies thatl < M}, + N; — 2d and hence
the condition[(b) is satisfied.

5) Theoreni 2 assumes that bath, and N, are divisible byd. This condition can be weakened for a
symmetric system wheré&/, = M, Ny = N, di = d, for all k. In particular, assume that oni/
(not N) is divisible byd and M, N > d. If the properness conditiofKX + 1)d < M + N holds,
then we can construct a reduced MIMO interference channil Wi = M — d(K + 1) receive
antennas for each user, wheéve+ N’ = d(K +1) and M, N’ are divisible byd. By Theoreni 2, the
interference alignment condition for the reduced intenfiee channel is feasible and therefore, so is
the interference alignment condition for the original chelrsince the latter has more antennas. This
shows that ifM is divisible byd and M, N > d, then the interference alignment systém (2)—(3) is
feasible for generic choice of channel coefficients if anty @ (K +1)d < M + N. By symmetry,

the same conclusion holds for the case whi¥rés divisible byd.

IV. SIMULATION RESULTS

In this section, we use the theoretical DoF upper bounds nalbeark an existing algorithm for sum-
rate maximization. We generate MIMO interference chanosisg the standard Rayleigh fading model.
The numerical experiments are averaged over 100 Monte @Qans

We consider a MIMO interference channel where each tratesiinéceiver is equipped withantennas.

For different number of users in the system, we maximize tim-gte using the WMMSE algorithrn [[13]
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at increasingly high SNRs. We estimate the slope of the aatmwersus SNR and use it to approximate
the achievable total DoF. We then compare it with the valug¢hebretical upper bound given by the
conditions in Theorerh]1. The maximum gap of the two curvesnis, dut it is not clear if the gap is

due to the weakness of the WMMSE algorithm or the DoF uppenbtou

5 = = a
X
4.5
£
o
°
[}
o
L 4
k]
1%
1
o
g
8 35
<
e
—— Estimated DoF using WMMSE Algorithm
£ —&— Theoretical Upper Bound )
25 i i i i
1 2 3 4 5 6

Number of Users

Fig. 2: Achievable DoF and theoretical upper bound
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