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On the Degrees of Freedom Achievable

Through Interference Alignment in a MIMO

Interference Channel∗

Meisam Razaviyayn†, Gennady Lyubeznik‡ and Zhi-Quan Luo†

Abstract

Consider aK-user flat fading MIMO interference channel where thek-th transmitter (or receiver)

is equipped withMk (respectivelyNk) antennas. If an exponential (inK) number of generic channel

extensions are used either across time or frequency,Cadambe and Jafar [1] showedthat the total achievable

degrees of freedom (DoF) can be maximized via interference alignment, resulting in a total DoF that

grows linearly withK even if Mk andNk are bounded. In this work we consider the case where no

channel extension is allowed, and establish a general condition that must be satisfied by any degrees of

freedom tuple(d1, d2, ..., dK) achievable through linear interference alignment. For a symmetric system

with Mk = M , Nk = N , dk = d for all k, this condition implies that the total achievable DoF cannot

grow linearly withK, and is in fact no more thanK(M +N)/(K + 1). We also show that this bound

is tight when the number of antennas at each transceiveris divisible byd, the number of data streams

per user.

I. INTRODUCTION

Consider a multiuser communication system in which a numberof transmitters must share common

resources such as frequency, time, or space in order to send information to their respective receivers.

The mathematical model for this communication scenario is the well-knowninterference channel, which

consists of multiple transmitters simultaneously sendingmessages to their intended receivers while causing

interference to each other.
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A central issue in the study of interfering multiuser systems is how to mitigate multiuser interference.

In practice, there are several commonly used methods for dealing with interference. First, we can treat

the interference as noise and just focus on extracting the desired signals. This approach is widely

used in practice because of its simplicity and ease of implementation, but is known to be non-capacity

achieving in general. An alternative technique is channel orthogonalization whereby transmitted signals

are chosen to be nonoverlapping either in time, frequency orspace, leading to Time Division Multiple

Access, Frequency Division Multiple Access, or Space Division Multiple Access respectively. While

channel orthogonalization effectively eliminates multiuser interference, it can lead to inefficient use of

communication resources and is also generally non-capacity achieving. Another interference management

technique is to decode and remove interference. Specifically, when interference is strong relative to desired

signals, a user can decode the interference first, then subtract it from the received signal, and finally

decode its own message. Unfortunately, none of the aforementioned interference management techniques

can achieve the maximum system throughput in general.

Theoretically, what is the optimal transmit/receive strategy in a MIMO interference channel? The

answer is related to the characterization of the capacity region of an interference channel, i.e., determining

the set ofrate tuplesthat can be achieved by the users simultaneously. In spite ofintensive research on

this subject over the past three decades, the capacity region of interference channels is still unknown

(even for small number of users). The lack of progress to characterize the capacity region of the MIMO

interference channel has motivated researchers to derive various approximations of the capacity region.

For example, the maximum total degrees of freedom (DoF) corresponds to the first order approximation

of sum-rate capacityin the high SNR regime. Specifically, in aK-user interference channel, we define

the degrees of freedom region as the following [1]:

D =

{

(d1, d2, . . . , dK) ∈ R
K
+ | ∀(w1, w2, . . . , wK) ∈ R

K
+ ,

K
∑

k=1

wkdk ≤ lim sup
SNR→∞

[

sup
R∈C

1

log SNR

K
∑

k=1

wkRk

]

}

, (1)

whereC is the capacity region andRk is the rate of userk. We can further define the total DoF in the

system as the following:

η = max
(d1,d2,...,dK)∈D

d1 + d2 + . . .+ dK .

Intuitively, the total DoF is the number of independent datastreams that we can communicate interference-
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free in the channel.

It is well known that for a point-to-point MIMO channel withM antennas at the transmitter and

N antennas at the receiver, the total DoF isη = min{M,N}. Different approaches such as SVD precoder

or V-BLAST can be used to achieve this DoF bound. For a 2-user MIMO fading interference channel with

userk equipped withMk transmit antennas andNk receive antennas (k = 1, 2), Jafar and Fakhereddin

[9] proved that the maximum total DoF is

η = min {M1 +M2, N1 +N2,max{M1, N2},max{M2, N1}} .

This result shows that for the case ofM1 = M2 = N1 = N2, the total DoF in the system is the same as

the single user case. In other words, we do not gain more DoF byincreasing the number of users from one

to two. Interestingly, ifgenericchannel extensions (drawn from a continuous probability distribution) are

allowed either across time or frequency, Cadambe and Jafar [1] showed that the total DoF isη = KM/2

for a K-user MIMO interference channel, whereM is the number of transmit/receive antennas per

user.This result implies that each user can effectively utilize half of the total system resources in an

interference-free manner by aligning the interference at all receivers1. The principal assumption enabling

this surprising result is that the channel extensions are exponentially long inK and aregeneric(e.g.,

drawn from a continuous probability distribution). If channel extensions are restricted to have a polynomial

length or are notgeneric, the total DoF for a MIMO interference channel is still largely unknown even

for the Single-Input-Single-Output (SISO) interference channel. For the 3-user special case, reference

[7] provided a characterization of the total achievable DoFas a function of the diversity.In the absence

of channel extensions, the computational complexity of numerically designing an interference alignment

scheme has been shown to be NP-hard [12] in the number of users.

The main theoretical investigation pertaining to the current work is [2] by Yetis et al. who studied

the maximum achievable DoF for a MIMO interference channel without channel extension. In general,

linear interference alignment can be described by a set ofbilinear equationswhich correspond to the

zero-forcing conditions at each receiver. For aK-user system, there are a total ofK(K − 1) such

coupled quadratic matrix equations whose unknowns are the transmit/receive beamforming matrices to

be designed. Moreover, the achievability of a given tuple ofDoF corresponds to these quadratic equations

having a solution (in the form of beamforming matrices) whose individual matrix ranks are given by the

1The idea of interference alignment was introduced in [3]–[5] and the terminology “interference alignment” was first used in
[6].
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DoFs. One can easily count the number of “independent unknowns” and the number of scalar equations

in this quadratic system defining interference alignment. It is then tempting to conjecture, as was done in

[2], that the interference alignment is feasible if and onlyif the number of equations is no more than the

number of unknowns in each subsystem of the quadratic equations. When the latter is true, the authors

of [2] called the corresponding systemproper. However, except for some special cases involving a small

number of users and antennas, the investigation of [2] was largely inconclusive.

In this paper, we settle the conjecture of [2] completely in one direction, and partially in the other. In

particular, we consider the case where no channel extensionis allowed, and use results from the field

theory to establish a general condition that must be satisfied by any DoF tuple achievable through linear

interference alignment. This condition shows that the improperness property (in the sense of [2]) indeed

implies the infeasibility of interference alignment. For the symmetric system withMk = M andNk = N

for all k, this condition implies that the total achievable DoF cannot grow linearly with the number of

users, and is in fact no more thanM+N−1. This is in sharp contrast to the case with independent channel

extensions for which the total DoF can grow linearly with thenumber of users. For the converse direction,

we show that if all users have the same DoFd and the number of antennasMk, Nk are divisible byd

for eachk, then the properness of the quadratic system implies the feasibility of interference alignment

for generic choice of channel coefficients (e.g., drawn from a continuous probability distribution). If

in addition,Mk = M andNk = N for all k andM,N are divisible byd, then our results imply that

interference alignment is achievable if and only if(M+N) ≥ d(K+1). In the simulation section, we use

these established DoF bounds to numerically benchmark the performance of several existing algorithms

for interference alignment and sum-rate maximization.

II. SYSTEM MODEL

Consider a MIMO interference network consisting ofK transmitter - receiver pairs, with transmitter

k sendingdk independent data streams to receiverk. Let Hkj be anMj ×Nk matrix that represents the

channel gain matrix from transmitterj to receiverk whereMj andNk denote the number of antennas

at transmitterj and receiverk, respectively. The received signal at receiverk is given by

yk =

K
∑

j=1

Hkjxj + nk

wherexj is anMj×1 random vector that represents the transmitted signal of user j andnk ∼ N (0, σ2I)

is a zero mean additive white Gaussian noise.
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Throughout this paper, we focus onlinear transmit and receive strategies that can maximize system

throughput. In this case, transmitterk uses a beamforming matrixVk in order to send a signal vectorsk

to its intended receiverk. On the other side, receiverk estimates the transmitted data vectorsk by using

a linear beamforming matrixUk, i.e.,

xk = Vk sk, ŝk = UH
k yk

where the power of the data vectorsk ∈ Rdk×1 is normalized such thatE[sks
H
k ] = I, and ŝk is the

estimate ofsk at thek-th receiver. The matricesVk ∈ CMk×dk andUk ∈ CNk×dk are the beamforming

matrices at thek-th transmitter and receiver respectively. Without channel extension, the linear interference

alignment conditions can be described by the following zero-forcing conditions [2], [12]

UH
k HkjVj = 0, ∀ j 6= k, (2)

rank
(

UH
k HkkVk

)

= dk, ∀ k. (3)

The first equation guarantees that all the interfering signals at receiverk lie in the subspace orthogonal

to Uk, while the second one assures that the signal subspaceHkkVk has dimensiondk and is linearly

independent of the interference subspace. Intuitively, asthe number of usersK increases, the number

of constraints on the beamformers{Uk,Vk} increases quadratically inK, while the number of design

variables in{Uk,Vk} only increases linearly. This suggests the above interference alignment can not

have a solution unlessK or dk is small.

The interference alignment conditions (2) and (3) imply that each transmitterk can use a linear

transmit/receive strategy to communicatedk interference-free independent data streams to receiverk

(per channel use). In this case, it can be checked thatdk represents the DoF achieved by thek-th

transmitter/receiver pair in the information theoretic sense of (1). In other words, the vector(d1, d2, ..., dK )

in (2) and (3) represents the tuple of DoF achieved by linear interference alignment. Intuitively, the larger

the values ofd1, d2,...,dK , the more difficult it is to satisfy the interference alignment conditions (2) and

(3).

III. B OUNDING THE TOTAL DOF ACHIEVABLE VIA L INEAR INTERFERENCEALIGNMENT

Our goal is to study the solvability of the interference alignment problem (2)-(3) and derive a general

condition that must be satisfied by any DoF tuple(d1, d2, ..., dK) achievable through linear interference

alignment for generic choice of channel matrices. We will also provide some conditions under which this

upper bound is achievable.
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Let us denote the polynomial equations in (3) by the index set

J , {(k, j) | 1 ≤ k 6= j ≤ K}.

The following theorem provides an upper bound on the total achievable DoF when no channel extension

is allowed.

Theorem 1 Consider aK-user flat fading MIMO interference channel where the channel matrices

{Hij}Ki,j=1 are generic (e.g., drawn from a continuous probability distribution). Assume no channel

extension is allowed. Then any tuple of degrees of freedom(d1, d2, ..., dK) that is achievable through

linear interference alignment(2) and (3) must satisfy the following inequalities

min{Mk, Nk} ≥ dk, ∀ k, (4)

max{Mk, Nj} ≥ dk + dj , ∀ k, j, k 6= j, (5)
∑

k:(k,j)∈I

(Mk − dk)dk +
∑

j:(k,j)∈I

(Nj − dj)dj ≥
∑

(k,j)∈I

dkdj , ∀ I ⊆ J . (6)

Condition (6) in Theorem 1 can be used to bound the total DoF achievable in a MIMO interference

channel. The following corollary is immediate.

Corollary 1 Assume the setting of Theorem 1. Then the following upper bounds hold true.

(a) In the case ofdk = d for all k, interference alignment is impossible unless

d ≤ 1

K(K + 1)

K
∑

k=1

(Mk +Nk).

(b) In the case ofMk +Nk = M +N , interference alignment requires

(

K
∑

k=1

dk

)2

+

K
∑

k=1

d2k ≤ (M +N)

K
∑

k=1

dk

which further implies
K
∑

k=1

dk < (M +N).

Part (b) of Corollary 1 shows that the total achievable DoF ina MIMO interference channel is bounded

by a constantM +N − 1, regardless of how many users are present in the system. While this bound is

an improvement over the single user case which has a maximum DoF of min{M,N}, it is significantly

weaker than the maximum achievable total DoF for a diagonal frequency selective (or time varying)
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interference channel. The latter grows linearly with the number of users in the system [1].

The rest of this section is devoted to the proof of Theorem 1 and its converse. Since we will use

several concepts and results from the field theory [11] and algebraic geometry [14], [16], we first provide

a brief review of the necessary algebraic background.

A. Algebraic Preliminaries

Let K,F be two fields such thatK ⊆ F . In this case, we sayF is an extension ofK, denoted

by F/K. Let us useK[z1, z2, . . . , zn] to denote the ring of polynomials with coefficients drawn from

K. We sayα1, α2, . . . , αn ∈ F are algebraically dependentover K if there exists a nonzero polyno-

mial f(z1, z2, . . . , zn) ∈ K[z1, z2, . . . , zn] such that

f(α1, α2, . . . , αn) = 0. (7)

Otherwise, we say that they arealgebraically independentover K. The largest cardinality of an alge-

braically independent set is called the transcendence degree ofF overK. An elementα ∈ F is said to

be algebraic overK if there exists a nonzero polynomialf ∈ K[z] such thatf(α) = 0; else, we sayα

is transcendental overK.

Example 1. Let K = C be the field of complex numbers andF = C(x1, x2) be the field of rational

functions in variablesx1, x2. Then, the polynomials

g1 = x21x2, g2 = x22, g3 = x1x2

are algebraically dependent overC becausef(g1, g2, g3) = 0 identically for all(x1, x2), wheref(z1, z2, z3) =

z21z2 − z43 .

Example 2. The two complex numbersa =
√
π, b = 3π + 2 are algebraically dependent over the field

of rational numbers because by definingf(z1, z2) = 3z21 − z2 + 2, we havef(a, b) = 0.

Notice that the definition of algebraic independence is in many ways similar to the standard notion

of linear independence from linear algebra. In fact, if the functionf in (7) is required to be linear, then

algebraic independence reduces to the usual concept of linear independence. Similar to linear algebra,

we can define a basis for the fieldF using the notion of algebraic independence. In particular,given

any algebraically independent setS over the fieldK, let K(S) denote the field of rational functions in

October 22, 2018 DRAFT
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S with coefficients taken from the fieldK. For any field extensionF/K, it is always possible to find a

setS in F , algebraically independent overK, such thatF is an algebraic extension ofK(S). Such a set

S is called a transcendence basis ofF overK. All transcendence bases have the same cardinality, equal

to the transcendence degree of the extensionF/K. If every element inF is algebraic overK, then we

sayF/K is an algebraic extension. In this case, the transcendence degree ofF overK is zero.

Example 3.The two polynomialsg1 andg2 in Example 1 are algebraically independent overC. Together,

they constitute a transcendental basis forC(x1, x2) overC.

The following table shows similar concepts between linear algebra and transcendental field extension

(see [11], [16] for more details).

Linear algebra Transcendental field extension

linear independence algebraic independence

A ⊆ span(B) A algebraically dependent onB

linear basis transcendence basis

dimension transcendence degree

In linear algebra, it is well known that any(n+1) vectorsv1,v2, ...,vn+1 in ann-dimensional vector

space must be linearly dependent. In other words, there exists a nonzero linear functionf(z1, z2, ..., zn+1)

such thatf(v1,v2, ...,vn+1) = 0. A similar result holds for algebraic independence. For example, any

(n+1) polynomialsg1, g2,...,gn+1 defined onn variables(x1, x2, ..., xn) must be algebraically dependent.

Consequently, there exists a nonzero polynomialf(z1, z2, ..., zn+1) such that

f(g1, g2, ..., gn+1) = 0, ∀ (x1, x2, ..., xn).

Example 1 is an instance of this property withn = 2. The following example states this property, to be

used in the proof of Theorem 1, in a more formal setting.

Example 4. Let C(z1, z2, . . . , zn) denote the field of rational functions inn variables with coefficients

in C. The set{z1, z2, . . . , zn} is a maximal algebraically independent set inC(z1, z2, . . . , zn). Hence the

transcendence degree of the field extensionC(z1, z2, . . . , zn)/C is n. Furthermore, for anym polynomials

g1(z1, z2, . . . , zn), g2(z1, z2, . . . , zn), . . . , gm(z1, z2, . . . , zn),

October 22, 2018 DRAFT
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wherem > n, there exists a nonzero polynomialf(·) such thatf(g1, g2, . . . , gm) = 0, ∀ z1, z2, . . . , zn.

Next we describe a useful local expansion of a multivariate polynomial function. Recall that for any

univariate polynomialf and anyx̄ ∈ C, there holds

f(x) = f(x̄) + (x− x̄)g(x), for all x ∈ C,

whereg is some polynomial dependent on̄x and the coefficients off only. Similarly, for an-variate

polynomialf defined on the variablesx = (x1, x2, ..., xn) and anyx̄ ∈ Cn, we have

f(x) = f(x̄) +

n
∑

i=1

(xi − x̄i)gi(x) = f(x̄) + (x− x̄)Tg(x), ∀ x ∈ C
n,

where eachgi is some polynomial dependent onx̄ and the coefficients off only. If we replace the scalar

variablexi by a matrix variableXi, then we can write

f(X) = f(X̄) +

n
∑

i=1

Tr
(

(Xi − X̄i)Gi(X)
)

, ∀ X, (8)

where eachGi is a matrix whose entries are polynomials dependent on the entries ofX̄ and the coefficients

of f only. The local expansion (8) will be used in the proof of Theorem 1.

To prove the converse of Theorem 1, we will use the concepts ofZariski topology and a Zariski

constructible set. We briefly review these concepts next (see [14] for more details). ConsiderCn, then-

dimensional vector space over the field of complex numbersC. [One can replaceC by any algebraically

closed field.] The Zariski topology forCn is defined by specifying its closed sets, and these are taken

simply to be all the algebraic sets inCn. That is, the closed sets under Zariski topology are those ofthe

form

S = {x ∈ C
n | fi(x) = 0, i = 1, 2, ...,m}

where{fi}mi=1 is any set if polynomials with coefficients taken fromC. For example, the entire space

Cn is Zariski closed (Takem = 1 and f1 to be the zero function, i.e.,f1(x) = 0, ∀ x). All other

Zariski closed sets have zero measure. A nonempty Zariski open set (the complement of a Zariski closed

set) always has dimensionn. If a property holds over a Zariski open set, we say the property holds

generically.

In topology, a set is locally closed if it is the intersectionof an open set with a closed set. Aconstructible

set is defined as a finite union of locally closed sets. Thus, a Zariski constructible set is simply a finite

October 22, 2018 DRAFT
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collection of sets, each defined by the feasible set of finitely many polynomial equations and polynomial

inequalities. Clearly, if a Zariski constructible set has dimensionn, then it must contain a Zariski open

subset.

Let φ1, φ2, . . . , φn be polynomials inx1, x2, . . . , xn with coefficients fromC. They define a mapΦ :

Cn 7→ Cn as follows:Φ(x) = (φ1(x), φ2(x), . . . , φn(x)) ∈ Cn. Chevalley’s Theorem says that the image

of this map is a constructible set (see [16] for more details).

Example 5.LetΦ : C2 7→ C2 be defined byΦ(x) = (φ1(x), φ2(x)) whereφ1(x) = x1 andφ2(x) = x1x2.

Let L be the line{x ∈ C2 : x1 = 0}. The image ofΦ is the union of two locally closed sets,C2\L
(which is in fact open) and the point(0, 0) (which is indeed closed).

Let the image ofΦ be the union of locally closed subsetsW1,W2, . . . ,Wp whereWi = Ui

⋂Vi and

Vi is closed andUi is open. Assume the Jacobian ofφ1, φ2, . . . , φn is nonsingular at some pointx ∈ Cn.

The Implicit Function Theorem says that the image ofΦ contains a small open disc aroundΦ(x), hence

the measure of the image is nonzero. This implies that for some i, Vi = Cn andWi = Ui, i.e., the image

of the mapΦ(·) contains a Zariski open set.Thus, if a certain property is shown to hold over the image

of a polynomial mapΦ : Cn 7→ Cn whose Jacobian is nonsingular at some point, then this property must

hold generically. We will use this approach to establish thegeneric feasibility of interference alignment

for certain MIMO interference channels (Theorem 2).

B. Proof of Theorem 1

We now use the transcendental field extension theory to establish Theorem 1.

Proof: The inequality (4) is obvious due to (3). To prove (5), assumeMj ≤ Nk. SinceHkj is

generic,rank(HkjVj) = dj . Furthermore, due to (3), the beamformerUk must be full rank and hence

dk + dj must be no more than the total dimensionNk. Similar argument shows thatdk + dj ≤ Mj

whenMj ≥ Nk. Thus,dk + dj ≤ max{Mj , Nk}.

For simplicity of notations, we prove (6) for the caseI = J . WhenI ⊂ J , the proof is the same

except that we need to focus on a subset of equations/variables. Now, we prove (6) for the case ofI = J

October 22, 2018 DRAFT
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by contradiction. Assume the contrary that

K
∑

k=1

(Mk − dk)dk +

K
∑

j=1

(Nj − dj)dj <

K
∑

k,j=1,k 6=j

dkdj , (9)

and the interference alignment conditions in (2) and (3) aresatisfied. The interference alignment condition

(3) implies thatUk andVk must have full column rank.By applying appropriate linear transformations

to the rows ofUk andVk, we can write

Uk = Pu
k





I

Ūk



Qu
k , Vk = Pv

k





I

V̄k



Qv
k, ∀k, (10)

where Ūk and V̄k are some matrices of size(Nk − dk) × dk and (Mk − dk) × dk respectively. The

matricesPu
k andPv

k are square permutation matrices of sizeNk ×Nk andMk ×Mk respectively, while

Qu
k ,Q

v
k are some invertible matrices of sizedk × dk. DefineH̄ij = Pu −1

i HijP
v −1
j to be the permuted

version ofHkj. We can partition the matrix̄Hkj as

H̄kj =







H̄
(1)
kj H̄

(2)
kj

H̄
(3)
kj H̄

(4)
kj







where H̄
(1)
kj is of size dk × dj . Since the channel matrices{Hkj}k 6=j are drawn from a continuous

probability distribution, the transformed channel matrices{H̄(1)
kj }k 6=j remain generic. Rewriting the linear

interference alignment condition (2) in terms ofŪk andV̄k, we obtain

[

I ŪH
k

]







H̄
(1)
kj H̄

(2)
kj

H̄
(3)
kj H̄

(4)
kj











I

V̄j



 = 0 (11)

or equivalently

H̄
(1)
kj + ŪH

k H̄
(3)
kj + H̄

(2)
kj V̄j + ŪH

k H
(4)
kj V̄j = 0, ∀ j 6= k. (12)

The above system of quadratic equations,first derived in [2], is equivalent to the interference alignment

condition (2). The number of scalar equations in (12) is

K
∑

j,k=1,j 6=k

dkdj ,

while the total number of scalar variables (i.e., the scalarentries of the unknown matrices{Ūk}’s and
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{V̄k}’s) is
K
∑

k=1

(Mk − dk)dk +

K
∑

k=1

(Nk − dk)dk =

K
∑

k=1

(Mk +Nk − 2dk)dk.

So if
K
∑

k=1

(Mk +Nk − 2dk)dk <

K
∑

j,k=1,j 6=k

dkdj , (13)

then we would have more constraints than unknowns in the interference alignment condition (12), which

we will argue cannot hold.

Let us consider the fieldF defined over the field of complex numbersC, consisting of all rational

functions in the entries of the matrices{Ūk}Kk=1 and {V̄k}Kk=1. Note that the entries of the matri-

ces {Ūk, V̄k}Kk=1 form a transcendence basis forF over C. Thus, the transcendence degree ofF is
∑K

k=1(Mk +Nk − 2dk)dk, which is equal to the number of entries in the matrices{Ūk, V̄k}Kk=1.

Now, let us consider the matricesH(2)
kj ,H

(3)
kj ,H

(4)
kj for all k, j, k 6= j and define the matrixFkj:

Fkj(Ū, V̄) , −
(

ŪH
k H̄

(3)
kj + H̄

(2)
kj V̄j + ŪH

k H̄
(4)
kj V̄j

)

, (14)

for all k, j with k 6= j. Note thatFkj is a dk × dj matrix, with each entry being a quadratic polynomial

function of the entries in the matrices̄Uk and V̄k. As a result, the entries ofFkj belong to the field

F . Moreover, if (13) holds, then the number of quadratic polynomials given in the matrices{Fkj}k 6=j is

strictly larger than the transcendence degree ofF over C. Hence, as we discussed in the algebraic

preliminaries (Section III-A; see also [11, Chapter 8]), these quadratic polynomials inF must be

algebraically dependent. This implies that there exists a nonzero polynomialp which vanishes at the

quadratic polynomials corresponding to the entries of the matrices{Fkj}k 6=j, i.e.,

p
(

F12(Ū, V̄),F13(Ū, V̄), . . . ,FK(K−1)(Ū, V̄)
)

= 0,

for all {Ūk, V̄k}Kk=1. Notice that the polynomialp is independent of the channel matrices
{

H̄
(1)
kj

}

k 6=j
,

even though it does depend on the matrices
{

H̄
(2)
kj , H̄

(3)
kj , H̄

(4)
kj

}

k 6=j
. When viewed as a polynomial of the

matrix variableX :=
(

H̄
(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)

, p(·) can be expanded locally at̄X := (F12(Ū, V̄),F13(Ū, V̄), . . . ,FK(K−1)(Ū, V̄))

October 22, 2018 DRAFT



13

using (8):

p
(

H̄
(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)

= p
(

F12(Ū, V̄),F13(Ū, V̄), . . . ,FK(K−1)(Ū, V̄)
)

+
∑

k 6=j

Tr
(

(H̄
(1)
kj − Fkj(Ū, V̄))Qkj(Ū, V̄)

)

,

for all {Ūk, V̄k}Kk=1, whereQkj is some polynomial matrix of sizedj × dk. Combining the above two

identities yields

p
(

H̄
(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)

=
∑

k 6=j

Tr
(

(H̄
(1)
kj − Fkj(Ū, V̄))Qkj(Ū, V̄)

)

. (15)

Notice that this equality holds for all choices of{Ūk, V̄k}Kk=1. If the interference alignment condition

(12) holds, then we have

H̄
(1)
kj − Fkj(Ū, V̄) = 0, for all k, j with k 6= j,

for some special choices of the matrices{Ūk, V̄k}Kk=1. Substituting this condition into the right hand

side of (15), we obtain

p
(

H̄
(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)

= 0. (16)

Notice that the polynomialp is independent of the channel matrices{H̄(1)
kj }k 6=j. Under our channel

model, the channel matrices{H̄(1)
kj }k 6=j are drawn from a continuous probability distribution. It follows

that the condition (16) cannot hold unlessp is identically zero, which contradicts the requirementp 6= 0.

Theorem 1 settles the conjecture of [2] in one direction, namely, the improperness of polynomial system

(2) and (3) implies the infeasibility of interference alignment. From the proof of Theorem 1, it can be

seen that the upper bound (6) holds for any choice of fixed channel matrices{H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k 6=j as

long asthe channel matrices{H̄(1)
kj }k 6=j are generic.

Also, we remark that the proof technique for Theorem 1 can be used to bound the DoF for a single

antenna parallel interference channel (e.g., the OFDM channel). In particular, consider a single input

single output interference channel withM channel extensions, i.e., the channel matrices are diagonal and

of the sizeM × M . Assuming each user transmits one data stream (dk = 1 for all k), we can check
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that the properness of the interference alignment condition (2)-(3) is equivalent toK +1 ≤ 2M (see [2,

Theorem 1]). Using a completely identical proof, we can showthat the properness conditionK+1 ≤ 2M

is a necessary condition for the feasibility of interference alignment. This implies that for the single beam

case the total DoF per channel extension is upper bounded by 2, regardless of the number of channel

extensions. This DoF bound has also been proposed recently in [17].

C. The Converse Direction

In the remainder of this section, we consider the converse ofTheorem 1. In particular, we show that

the upper bound in Theorem 1 is tight for a special case where all users have the same DoFd and number

of antennas is divisible byd. In this case, we haveK(K − 1) matrix equations in (12), each giving rise

to d2 scalar equations. For any subset of these matrix equations indexed byI, with I ⊆ J , the number

of corresponding scalar equations is equal tod2|I|, whereas the number of scalar variables involved in

the equations indexed byI is




∑

k:(k,j)∈I

(Mk − d) +
∑

j:(k,j)∈I

(Nj − d)



 d.

The next result shows that the bound in Theorem 1 is tight if the polynomial system (12) defining

interference alignment is proper, i.e., for eachI ⊆ J , the number of variables involved in each set of

equations indexed byI is no less thand2|I|, the number of scalar equations.The proof of this result uses

the Implicit Function Theorem which involves checking the Jacobian matrix of the polynomial map (14)

is nonsingular at some channel realization{H̄kj}k 6=j. Notice that the feasibility of interference alignment

condition (12) at a given channel realization{H̄kj}k 6=j is equivalent to{H̄(1)
kj }k 6=j being contained

in the image of the polynomial map (14) which is defined by{H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k 6=j. Fix a generic

choice of{H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k 6=j for which the Jacobian of the polynomial map (14) is nonsingular. The

Implicit Function Theorem allows us to establish the existence of a locally invertible map from the

space of channel submatrices{H̄(1)
kj }k 6=j to the space of beamforming matrices, and that the image of

this polynomial map (14) is locally full-dimensional. Therefore, for all channel submatrices near the

given channel realization{H̄(1)
kj }k 6=j, the interference alignment condition (12) can be satisfiedby some

beamforming matrices. By Chevalley’s Theorem from algebraic geometry [14] (see also the discussion

at the end of Section III-A), the “local full-dimensionality” of the image of (14) implies that this image,

which is a constructible set, must contain a nonempty Zariski open set. As a result, the whole image
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of polynomial map (14) contains all generically generated channel sub-matrices{H̄(1)
kj }k 6=j. Since the

choice of channel submatrices{H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k 6=j is also generic, this then establishes the feasibility

of interference alignment for all generically generated channel matrices{H̄kj}k 6=j .

Theorem 2 Assume that all users have the same DoFdk = d, where1 ≤ d ≤ min{Mk, Nk}, ∀k.

Furthermore, suppose thatMk and Nk are divisible byd for all k. Then interference alignment is

achievable for generic channel coefficients if and only if for each subsetI of equations in(12), the

number of variables involved in these equations is no less than the number of matrix equations timesd2,

or equivalently,

|I|d ≤
∑

k:(k,j)∈I

(Mk − d) +
∑

j:(k,j)∈I

(Nj − d), ∀ I with I ⊆ J . (17)

Proof: First of all, the “only if” direction is a direct consequenceof Theorem 1. We now focus on

the “if” direction. Consider the polynomial map that we get by concatenating all maps in (14) for all

(k, j) ∈ J , i.e.,

F12(Ū, V̄) = −
(

ŪH
1 H̄

(3)
12 + H̄

(2)
12 V̄2 + ŪH

1 H̄
(4)
12 V̄2

)

,

F13(Ū, V̄) = −
(

ŪH
1 H̄

(3)
13 + H̄

(2)
13 V̄3 + ŪH

1 H̄
(4)
13 V̄3

)

,

...

FK(K−1)(Ū, V̄) = −
(

ŪH
KH̄

(3)
K(K−1) + H̄

(2)
K(K−1)V̄K−1 + ŪH

KH̄
(4)
K(K−1)V̄K−1

)

,

(18)

which maps the variables{Ūk, V̄k}Kk=1 to the {Fk,j}k 6=j space. We will first show that for a specific

set of channel matrices, the rank of the Jacobian of this polynomial map isK(K − 1)d2, equal to the

number of equations. Hence, if we restrict the equations to asubset of variables of sizeK(K−1)d2, the

determinant of the Jacobian matrix of the polynomial map (18) does not vanish identically.This step will

establish the existence of a locally invertible map from thespace of beamforming matrices to the space

of channel matrices. By Chevalley’s Theorem (see [14, Chapter 2, 6.E.]), this image is a constructible

subset under Zariski topology. This, plus the fact that the image is locally full-dimensional, implies that

the interference alignment condition (12) is feasible for all generically chosen channel matrices. This

then will show the “if” direction of Theorem 2.

To show the nonsingularity of the Jacobian matrix, we need toremove some redundant variables in

{Ūk, V̄j}k,j (this occurs when there are more variables than equations),and then construct a specific set

of channel matrices{H(2)
kj ,H

(3)
kj ,H

(4)
kj }k 6=j and a solution{Ūk, V̄j}k,j at which the Jacobian matrix of
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(18) is nonsingular. Before providing a rigorous description for such a construction, we first consider a

toy example withK = 3 users whereMk = 3, Nk = 2, dk = 1, for k = 1, 2, 3. For this specific example,

the assumption (17) is satisfied and the equations in (18) canbe rewritten as

F12(Ū, V̄) = −
(

ŪH
1 H̄

(3)
12 + H̄

(2)
12 V̄2 + ŪH

1 H̄
(4)
12 V̄2

)

,

F13(Ū, V̄) = −
(

ŪH
1 H̄

(3)
13 + H̄

(2)
13 V̄3 + ŪH

1 H̄
(4)
13 V̄3

)

,

F21(Ū, V̄) = −
(

ŪH
2 H̄

(3)
21 + H̄

(2)
21 V̄1 + ŪH

2 H̄
(4)
21 V̄1

)

,

F23(Ū, V̄) = −
(

ŪH
2 H̄

(3)
23 + H̄

(2)
23 V̄3 + ŪH

2 H̄
(4)
23 V̄3

)

,

F31(Ū, V̄) = −
(

ŪH
3 H̄

(3)
31 + H̄

(2)
31 V̄1 + ŪH

3 H̄
(4)
31 V̄1

)

,

F32(Ū, V̄) = −
(

ŪH
3 H̄

(3)
32 + H̄

(2)
32 V̄2 + ŪH

3 H̄
(4)
32 V̄2

)

,

whereV̄k = [vk1
vk2

]T ∈ C2×1, Ūk = [uk] ∈ C, for k = 1, 2, 3, and H̄(2)
kj = [h̄

(2),1
kj h̄

(2),2
kj ]T ∈ C2×1,

H̄
(3)
kj = [h̄

(3)
kj ] ∈ C, for k 6= j. If we set H̄(4)

kj = 0 for all channels, one can write the Jacobian of

[F12 F13 F21 F23 F31 F32] with respect to the variables[u1 u2 u3 v11
v12

v21
v22

v31
v32

] as















































−h̄
(3)
12 −h̄

(3)
13 0 0 0 0

0 0 −h̄
(3)
21 −h̄

(3)
23 0 0

0 0 0 0 −h̄
(3)
31 −h̄

(3)
32

0 0 −h̄
(2),1
21 0 −h̄

(2),1
31 0

0 0 −h̄
(2),2
21 0 −h̄

(2),2
31 0

−h̄
(2),1
12 0 0 0 0 −h̄

(2),1
32

−h̄
(2),2
12 0 0 0 0 −h̄

(2),2
32

0 −h̄
(2),1
13 0 −h̄

(2),1
23 0 0

0 −h̄
(2),2
13 0 −h̄

(2),2
23 0 0















































.

One can easily observe that by removing the variables{v11
, v21

, v32
} and setting

h̄
(3)
12 = h̄

(3)
23 = h̄

(3)
31 = h̄

(2),1
13 = h̄

(2),2
21 = h̄

(2),2
32 = 1,

h̄
(3)
13 = h̄

(3)
21 = h̄

(3)
32 = h̄

(2),2
12 = h̄

(2),2
31 = h̄

(2),1
23 = 0,
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the Jacobian of the mapping (18) with respect to the remaining variables becomes




























−1 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 −1 0 0 0

0 0 0 0 0 −1

0 −1 0 0 0 0





























,

which is clearly nonsingular since there exists exactly onenonzero element in each column/row.

Next we argue that the above construction procedure can be generalized to the case whereMk

and Nk are divisible byd, provided that the assumption (17) is satisfied. The construction of these

channel/beamforming matrices and the removal of redundantvariables are outlined below. First, we set

H
(4)
kj = 0, for all k 6= j. Then we choose{Ūk, V̄j}k,j arbitrarily. It remains to specify{H̄(3)

kj , H̄
(2)
kj }k 6=j.

We should do so to ensure that the corresponding Jacobian matrix of (18) at{Ūk, V̄j}k,j is nonsingular.

SinceMk andNk are divisible byd, we can partition our variables into blocks of sized× d and rewrite

the mapping (18) as

Fkj(Ū, V̄) = −
[

ŪH
k1

ŪH
k2
. . . ŪH

ksk

]

















H̄
(3),1
kj

H̄
(3),2
kj

...

H̄
(3),sk
kj

















−
[

H̄
(2),1
kj H̄

(2),2
kj . . . H̄

(2),tj
kj

]

















V̄j1

V̄j2

...

V̄jtj

















, ∀ k 6= j,

(19)

where sk = Mk

d
− 1, tj = Nj

d
− 1, and Ūki

, V̄jℓ , H̄
(2),i
kj , H̄

(3),ℓ
kj ∈ Cd×d. Consider a bipartite graphG

where the vertices are partitioned into two setsX andY. Each block of variables will correspond to a

node inX , while each matrix equation in (19) will correspond to a nodein Y. We draw an edge between

a nodex ∈ X and a nodey ∈ Y if the block of variables corresponding to nodex appears in the

equation corresponding to nodey. When viewed on the bipartite graphG, the assumption (17) simply

says that for any given set of nodesS ⊆ Y, the cardinality of the neighbors ofS in X is no smaller than

the cardinality ofS. This condition is precisely what is required to ensure the existence of a complete

matching inG covering all nodes inY (Hall’s theorem, see [15, Theorem 3.1.11]). Now consider a fixed

complete matching inG. Let A ⊆ X be the set of vertices that are not matched to a node inY. Then,

we can set to zero all the blocks of the variables corresponding to the vertices inA, i.e., we can remove

them from our equations. Now we choose the rest of the channelmatrices so that the determinant of the
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Jacobian with respect to the remaining variables is nonzero. To this end, we set̄H(3),p
kj = 0 if the node for

Ūkp
is not matched to the node inY corresponding to the equationFkj. Similarly, we setH̄(2),q

kj = 0 if

V̄jq is not matched toFkj. Moreover, we set all the remaining channel sub-matrices tothed×d identity

matrix. Since this construction is based on a complete matching, it is not hard to see that the Jacobian

for the whole system is a block permutation matrix, with nonzero blocks equal to the negatived × d

identity matrix. Hence the determinant of the Jacobian matrix is equal to the product of the determinant

of all nonzero blocks (up to sign), which is clearly nonzero in our case.This completes the description

of the procedure to remove potential redundant variables, as well as the procedure to construct all the

channel matrices{H(2)
kj ,H

(3)
kj ,H

(4)
kj }k 6=j and the beamforming solution{Ūk, V̄j}k,j. The Jacobian matrix

of (18) is nonsingular at this constructed channel realization and beamforming solution.Figure 1 illustrates

the construction of graphG and a complete matching (in solid lines) for the aforementioned toy example.

Fig. 1: The bipartite graphG and a complete matching for the toy example

To complete the proof, we fix a generic choice of{H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k 6=j for which the Jacobian of (18)

is nonsingular. Letn be the total number of remaining scalar variables in{Ūk, V̄j}k,j after removing the

redundant variables. Notice thatn is the same as the number of scalar equations, i.e.,n = d2K(K−1). Let

R1 = C[h1, h2, . . . , hn] andR2 = C[ū1, ū2, . . . , ūm, v̄1, . . . , v̄n−m] be two polynomial rings wherēui’s

and v̄j ’s are the entries of the matrices{Ūk}Kk=1 and{V̄k}Kk=1 (after removing the redundant variables),
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andh1, h2, . . . , hn are the entries of the matrices{H̄(1)
kj }k 6=j . Consider{fi}ni=1 (the components ofFkj ’s

in (18)) as the functions of̄u’s and v̄’s, i.e., fi’s are polynomials inR2. These polynomials define a

mapaφ which maps a pointc = (c1, c2, . . . , cn) to (f1(c), f2(c), . . . , fn(c)). According to the Chevalley

Theorem (see [14, Chapter 2, 6.E.]), the image of this map is aZariski constructible subset ofAn
C,1, where

An
C,1 is the corresponding affine space ofR1. Since the Jacobian of the set{f1, f2, . . . , fn} with respect

to the variables{ū1, ū2, . . . , ūm, v̄1, . . . , v̄n−m} is nonsingular generically for all channel realizations, it

follows from the Implicit Function Theorem that the dimension of the image ofaφ is n. Note that the

image ofaφ is a Zariski constructible subset ofAn
C,1 (see Chevalley Theorem [14], Ch. 2, 6.E.) and

it has full dimension. Hence, the image contains a Zariski open subset ofAn
C,1 (see the discussion in

section III-A). LetU be that Zariski open subset ofAn
C,1 in the image. SinceU is in the image of the

mapaφ, there exists a solution for interference alignment equations for any choice of{H̄(1)
kj }k 6=j in U ,

which implies that interference alignment is feasible for generic choice of{H̄(1)
kj }k 6=j. Since the choice

of channel matrices{H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k 6=j is also generic, this completes the proof of the “if” direction.

Notice that the condition (17) is equivalent to the properness of the polynomial system (12) defining

interference alignment. For symmetric systems withMk = M , Nk = N for all k, this condition simplifies

to M+N ≥ d(K+1) (see [2, Theorem 1]). Thus, each user can achieved degrees of freedom as long as

M +N ≥ d(K+1) and thatd divides bothM andN . In a concurrent work, the authors of [8] obtained

a similar result under a different set of assumptions. More specifically, they considered the symmetric

case withMk = Nk = M, dk = d for all k, and proved that the feasibility of interference alignmentin

this case is equivalent to2M ≥ d(K + 1). This result and Theorem 2 are complementary to each other.

In particular, Theorem 2 is applicable to non-symmetric systems, but does require an extra condition

about the divisibility of the number of antennas by the number of data streams. WhenK is odd and

(K + 1)d = 2M , thenM must be divisible byd. This case is then covered by both Theorem 2 and

the result in [8]. However, for the case whereK is even and(K + 1)d ≤ 2M , Theorem 2 is no longer

applicable, whereas [8] shows that the interference alignment is achievable.

A few other remarks are in order.

1) Reference [2] also considered the casedk = 1 and used the Bernshtein’s theorem to numerically

compute the number of solutions, and therefore prove the feasibility, for the resulting polynomial

system (2)-(3) when the number of antennas are small. In contrast, Theorem 2 shows the feasibility

of single beam interference alignment for all values ofMk, Nk as long as the system is proper.
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2) As shown in Theorem 1, the condition (5) is necessary. For example, the systemK = 2,M =

N = 3, d = 2 satisfiesthe inequality (6). However, the system of equations (2)-(3) is infeasible for

generic choice of channel coefficients. This further shows that thepropernessproperty in [2] does

not imply feasibility in general, a fact that was first pointed out in [2, example 17].

3) Theorem 2 does not contradict the NP-hardness result of [12]. Given a set of channel matrices,

checking the feasibility of the interference alignment conditions (2)-(3) whenMk ≥ 3 andNk ≥ 3,

is NP-hard. It is true that, under the setting of Theorem 2, the interference alignment fails only for

a measure zero set of channels. However, for systems not satisfying the conditions of Theorem 2,

checking the feasibility of interference alignment can be hard. Moreover, the results of [12] imply

that, even if a given tuple of DoF is known to be achievable viainterference alignment, finding the

actual linear transmit/receive beamformers to achieve it is still a NP-hard problem when the number

of users is large.

4) The condition (17) implies the condition (5)if the number of antennas at each transceiver is divisible

by d. In fact, by choosingI = {(k, j)}, condition (17) implies thatd ≤ Mk +Nj − 2d and hence

the condition (5) is satisfied.

5) Theorem 2 assumes that bothMk andNk are divisible byd. This condition can be weakened for a

symmetric system whereMk = M, Nk = N, dk = d, for all k. In particular, assume that onlyM

(not N ) is divisible by d andM,N ≥ d. If the properness condition(K + 1)d ≤ M + N holds,

then we can construct a reduced MIMO interference channel with N ′ = M − d(K + 1) receive

antennas for each user, whereM+N ′ = d(K+1) andM,N ′ are divisible byd. By Theorem 2, the

interference alignment condition for the reduced interference channel is feasible and therefore, so is

the interference alignment condition for the original channel since the latter has more antennas. This

shows that ifM is divisible byd andM,N ≥ d, then the interference alignment system (2)–(3) is

feasible for generic choice of channel coefficients if and only if (K +1)d ≤ M +N . By symmetry,

the same conclusion holds for the case whereN is divisible byd.

IV. SIMULATION RESULTS

In this section, we use the theoretical DoF upper bounds to benchmark an existing algorithm for sum-

rate maximization. We generate MIMO interference channelsusing the standard Rayleigh fading model.

The numerical experiments are averaged over 100 Monte Carloruns.

We consider a MIMO interference channel where each transmitter/receiver is equipped with3 antennas.

For different number of users in the system, we maximize the sum-rate using the WMMSE algorithm [13]
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at increasingly high SNRs. We estimate the slope of the sum-rate versus SNR and use it to approximate

the achievable total DoF. We then compare it with the value oftheoretical upper bound given by the

conditions in Theorem 1. The maximum gap of the two curves is one, but it is not clear if the gap is

due to the weakness of the WMMSE algorithm or the DoF upper bound.
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Fig. 2: Achievable DoF and theoretical upper bound
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