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Orthogonal Matching Pursuit:
A Brownian Motion Analysis

Alyson K. Fletcher and Sundeep Rangan

Abstract—A well-known analysis of Tropp and Gilbert shows
that orthogonal matching pursuit (OMP) can recover a k-
sparse n-dimensional real vector from m = 4k log(n) noise-
free linear measurements obtained through a random Gaussian
measurement matrix with a probability that approaches one
as n → ∞. This work strengthens this result by showing
that a lower number of measurements,m = 2k log(n − k),
is in fact sufficient for asymptotic recovery. More generally,
when the sparsity level satisfieskmin ≤ k ≤ kmax but is
unknown, m = 2kmax log(n − kmin) measurements is sufficient.
Furthermore, this number of measurements is also sufficientfor
detection of the sparsity pattern (support) of the vector with
measurement errors provided the signal-to-noise ratio (SNR)
scales to infinity. The scalingm = 2k log(n− k) exactly matches
the number of measurements required by the more complex lasso
method for signal recovery with a similar SNR scaling.

Index Terms—compressed sensing, detection, lasso, orthogo-
nal matching pursuit, random matrices, sparse approximation,
sparsity, subset selection

I. I NTRODUCTION

Supposex ∈ R
n is a sparse vector, meaning its number

of nonzero entriesk is smaller thann. The support of x is
the locations of the nonzero entries and is sometimes called
its sparsity pattern. A common sparse estimation problem is
to infer the sparsity pattern ofx from linear measurements of
the form

y = Ax+w, (1)

whereA ∈ R
m×n is a known measurement matrix,y ∈ R

m

represents a vector of measurements andw ∈ R
m is a vector

of measurement errors (noise).
Sparsity pattern detection and related sparse estimation

problems are classical problems in nonlinear signal processing
and arise in a variety of applications including wavelet-based
image processing [1] and statistical model selection in linear
regression [2]. There has also been considerable recent interest
in sparsity pattern detection in the context ofcompressed
sensing, which focuses on large random measurement matrices
A [3]–[5]. It is this scenario with random measurements that
will be analyzed here.

Optimal subset recovery is NP-hard [6] and usually involves
searches over all the

(
n
k

)
possible support sets ofx. Thus, most
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attention has focused on approximate methods. One simple and
popular approximate algorithm is orthogonal matching pursuit
(OMP) [7]–[9]. OMP is a greedy method that identifies the
location of one nonzero entry ofx at a time. A version of
the algorithm will be described in detail below in Section II.
The best known analysis of the detection performance of OMP
for large random matrices is due to Tropp and Gilbert [10],
[11]. Among other results, Tropp and Gilbert show that when
A has i.i.d. Gaussian entries, the measurements are noise-free
(w = 0), and the number of measurements scales as

m ≥ (1 + δ)4k log(n) (2)

for someδ > 0, the OMP method will recover the correct
sparse pattern ofx with a probability that approaches one as
n and k → ∞. The analysis uses a deterministic sufficient
condition for success on the matrixA based on a greedy
selection ratio introduced in [12]. A similar deterministic
condition onA was presented in [13], and a condition using
the restricted isometry property was given in [14].

Numerical experiments reported in [10] suggest that a
smaller number of measurements than (2) may be sufficient for
asymptotic recovery with OMP. Specifically, the experiments
suggest that the constant 4 can be reduced to 2.

Our main result, Theorem 1 below, does a bit better than
proving this conjecture. We show that the scaling in measure-
ments

m ≥ (1 + δ)2k log(n− k) (3)

is sufficient for asymptotic reliable recovery with OMP pro-
vided bothn − k and k → ∞. Theorem 1 goes further by
allowing uncertainty in the sparsity levelk.

We also improve upon the Tropp–Gilbert analysis by ac-
counting for the effect of the noisew. While the Tropp–Gilbert
analysis requires that the measurements are noise-free, we
show that the scaling (3) is also sufficient when there is noise
w, provided the signal-to-noise ratio (SNR) goes to infinity.

The main significance of the new scaling (3) is that it
exactly matches the conditions for sparsity pattern recovery
using the well-known lasso method. The lasso method, which
will be described in detail in Section IV, is based on a
convex relaxation of the optimal detection problem. The
best analysis of sparsity pattern recovery with lasso is due
to Wainwright [15], [16]. He showed in [15] that under a
similar high SNR assumption, the scaling (3) in number of
measurements is both necessary and sufficient for asymptotic
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reliable sparsity pattern detection.1 The lasso method is often
more complex than OMP, but it is widely believed to offset this
disadvantage with superior performance [10]. Our results show
that, at least for sparsity pattern recovery under our asymptotic
assumptions, OMP performs at least as well as lasso.2 Hence,
the additional complexity of lasso for these problems may not
be warranted.

Neither lasso nor OMP is the best known approximate
algorithm for sparsity pattern recovery. For example, where
there is no noise in the measurements, the lasso minimization
(15) can be replaced by

x̂ = argmin
v∈Rn

‖v‖1, s.t. y = Av.

A well-known analysis due to Donoho and Tanner [17] shows
that, for i.i.d. Gaussian measurement matrices, this minimiza-
tion will recover the correct vector with

m ≍ 2k log(n/m) (4)

when k ≪ n. This scaling is fundamentally better than the
scaling (3) achieved by OMP and lasso.

There are also several variants of OMP that have shown
improved performance. The CoSaMP algorithm of Needell
and Tropp [18] and subspace pursuit algorithm of Dai and
Milenkovic [19] achieve a scaling similar to (4). Other variants
of OMP include the stagewise OMP [20] and regularized
OMP [21], [22]. Indeed with the recent interest in compressed
sensing, there is now a wide range of promising algorithms
available. We do not claim that OMP achieves the best
performance in any sense. Rather, we simply intend to show
that both OMP and lasso have similar performance in certain
scenarios.

Our proof of (3) follows along the same lines as Tropp
and Gilbert’s proof of (2), but with two key differences.
First, we account for the effect of the noise by separately
considering its effect in the “true” subspace and its orthogonal
complement. Second and more importantly, we address the
“nasty independence issues” noted by Tropp and Gilbert [10]
by providing a tighter bound on the maximum correlation of
the incorrect vectors. Specifically, in each iteration of the OMP
algorithm, there aren − k possible incorrect vectors that the
algorithm can choose. Since the algorithm runs fork iterations,
there are total ofk(n − k) possible error events. The Tropp
and Gilbert proof bounds the probability of these error events
with a union bound, essentially treating them as statistically
independent. However, here we show that energies on any one
of the incorrect vectors across thek iterations are correlated.
In fact, they are precisely described by samples of a certain
normalized Brownian motion. Exploiting this correlation we
show that the tail bound on error probability grows asn− k,
not k(n− k), independent events.

1Sufficient conditions under weaker conditions on the SNR aremore
subtle [16]: the scaling of SNR withn determines the sequences of regu-
larization parameters for which asymptotic almost sure success is achieved,
and the regularization parameter sequence affects the sufficient number of
measurements.

2Recall that our result is a sufficient condition for success whereas the
matching condition for lasso is both necessary and sufficient.

The outline of the remainder of this paper is as follows.
Section II describes the OMP algorithm. Our main result,
Theorem 1, is stated in Section III. A comparison to lasso is
provided in Section IV, and we suggest some future problems
in Section VII. The proof of the main result is somewhat
long and given in the Section VIII. The main result was first
reported in [23].

II. ORTHOGONAL MATCHING PURSUIT

To describe the algorithm, suppose we wish to determine
the vectorx from a vectory of the form (1). Let

Itrue = { j : xj 6= 0 }, (5)

which is the support of the vectorx. The setItrue will also
be called thesparsity pattern. Let k = |Itrue|, which is the
number of nonzero entries ofx. The OMP algorithm produces
a sequence of estimateŝI(t), t = 0, 1, 2, . . ., of the sparsity
patternItrue, adding one index at a time. In the description
below, letaj denote thejth column ofA.

Algorithm 1 (Orthogonal Matching Pursuit):Given a vec-
tor y ∈ R

m, a measurement matrixA ∈ R
m×n, and threshold

levelµ > 0, compute an estimatêIOMP of the sparsity pattern
of x as follows:

1) Initialize t = 0 and Î(t) = ∅.
2) ComputeP(t), the projection operator onto the orthog-

onal complement of the span of{ai, i ∈ Î(t)}.
3) For eachj, compute

ρ(t, j) =
|a′jP(t)y|2
‖P(t)y‖2 ,

and let

[ρ∗(t), i∗(t)] = max
j=1,...,n

ρ(t, j), (6)

whereρ∗(t) is the value of the maximum andi∗(t) is
an index that achieves the maximum.

4) If ρ∗(t) > µ, set Î(t + 1) = Î(t) ∪ {i∗(t)}. Also,
incrementt = t+ 1 and return to step 2.

5) Otherwise stop. The final estimate of the sparsity pattern
is ÎOMP = Î(t).

Note that sinceP(t) is the projection onto the orthogonal
complement of the span of{aj , j ∈ Î(t)}, for all j ∈ Î(t)
we haveP(t)aj = 0. Hence,ρ(t, j) = 0 for all j ∈ Î(t), and
therefore the algorithm will not select the same vector twice.

The algorithm above only provides an estimate,ÎOMP, of
the sparsity pattern ofItrue. Using ÎOMP, one can estimate
the vectorx in a number of ways. For example, one can take
the least-squares estimate,

x̂ = argmin ‖y −Av‖2 (7)

where the minimization is over all vectorsv suchvj = 0 for
all j 6∈ ÎOMP. The estimatêx is the projection of the noisy
vectory onto the space spanned by the vectorsai with i in
the sparsity pattern estimatêIOMP. This paper only analyzes
the sparsity pattern estimatêIOMP itself, and not the vector
estimatex̂.
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III. A SYMPTOTIC ANALYSIS

We analyze the OMP algorithm in the previous section
under the following assumptions.

Assumption 1:Consider a sequence of sparse recovery
problems, indexed by the vector dimensionn. For eachn,
let x ∈ R

n be a deterministic vector. Also assume:

(a) The sparsity levelk = k(n) (i.e., number of nonzero
entries inx) satisfies

k(n) ∈ [kmin(n), kmax(n)] (8)

for some deterministic sequenceskmin(n) and kmax(n)
with kmin(n) → ∞ asn → ∞ andkmax(n) < n/2 for
all n.

(b) The number of measurementsm = m(n) is a determin-
istic sequence satisfying

m ≥ (1 + δ)2kmax log(n− kmin) (9)

for someδ > 0.
(c) The minimum component powerx2

min satisfies

lim
n→∞

kx2
min = ∞, (10)

where
xmin = min

j∈Itrue
|xj | (11)

is the magnitude of the smallest nonzero entry ofx.
(d) The powers of the vectors‖x‖2 satisfy

lim
n→∞

1

(n− k)ǫ
log
(
1 + ‖x‖2

)
= 0 (12)

for all ǫ > 0.
(e) The vectory is a random vector generated by (1) where

A andw have i.i.d. Gaussian entries with zero mean and
variance1/m.

Assumption 1(a) provides a range on the sparsity levelk.
As we will see below in Section V, bounds on this range are
necessary for proper selection of the threshold levelµ > 0.

Assumption 1(b) is the scaling law on the number of
measurements that we will show is sufficient for asymptotic
reliable recovery. In the special case whenk is known so that
kmax = kmin = k, we obtain the simpler scaling law

m ≥ (1 + δ)2k log(n− k). (13)

We have contrasted this scaling law with the Tropp–Gilbert
scaling law (2) in Section I. We will also compare it to the
scaling law for lasso in Section IV.

Assumption 1(c) is critical and places constraints on the
smallest component magnitude. The importance of the smallest
component magnitude in the detection of the sparsity pattern
was first recognized by Wainwright [15], [16], [24]. Also, as
discussed in [25], the condition requires that signal-to-noise
ratio (SNR) goes to infinity. Specifically, if we define the SNR
as

SNR =
E‖Ax‖2
E‖w‖2 ,

then under Assumption 1(e) it can be easily checked that

SNR = ‖x‖2. (14)

Sincex hask nonzero entries,‖x‖2 ≥ kx2
min, and therefore

condition (10) requires thatSNR → ∞. For this reason,
we will call our analysis of OMP a high-SNR analysis. The
analysis of OMP with SNR that remains bounded above is an
interesting open problem.

Assumption (d) is technical and simply requires that the
SNR does not grow too quickly withn. Note that even if
SNR = O(kα) for any α > 0, Assumption 1(d) will be
satisfied.

Assumption 1(e) states that our analysis concerns large
Gaussian measurement matricesA and Gaussian noisew.

Our main result is as follows.
Theorem 1:Under Assumption 1, there exists a sequence

of threshold levelsµ = µ(n) such that the OMP method in
Algorithm 1 will asymptotically detect the correct sparsity
pattern in that

lim
n→∞

Pr
(
ÎOMP 6= Itrue

)
= 0.

Moreover, the threshold levelsµ can be selected simply as a
function of kmin, kmax, n, m andδ.

Theorem 1 provides our main scaling law for OMP. The
proof is given in Section VIII.

IV. COMPARISON TOLASSOPERFORMANCE

It is useful to compare the scaling law (13) to the number
of measurements required by the widely-used lasso method
described for example in [26]. The lasso method finds an
estimate for the vectorx in (1) by solving the quadratic
program

x̂ = argmin
v∈Rn

‖y−Av‖2 + µ‖v‖1, (15)

whereµ > 0 is an algorithm parameter that trades off the
prediction error with the sparsity of the solution. Lasso is
sometimes referred to as basis pursuit denoising [27]. While
the optimization (15) is convex, the running time of lasso is
significantly longer than OMP unlessA has some particular
structure [10]. However, it is generally believed that lasso has
superior performance.

The best analysis of lasso for sparsity pattern recovery for
large random matrices is due to Wainwright [15], [16]. There,
it is shown that with an i.i.d. Gaussian measurement matrix
and white Gaussian noise, the condition (13) isnecessary
for asymptotic reliable detection of the sparsity pattern.In
addition, under the condition (10) on the minimum com-
ponent magnitude, the scaling (13) is also sufficient. We
thus conclude that OMP requires an identical scaling in the
number of measurements to lasso. Therefore, at least for spar-
sity pattern recovery from measurements with large random
Gaussian measurement matrices and high SNR, there is no
additional performance improvement with the more complex
lasso method over OMP.

V. THRESHOLDSELECTION AND STOPPINGCONDITIONS

In many problems, the sparsity levelk is not knowna priori
and must be detected as part of the estimation process. In OMP,
the sparsity level of the estimate vector is precisely the number
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of iterations conducted before the algorithm terminates. Thus,
reliable sparsity level estimation requires a good stopping
condition.

When the measurements are noise-free and one is concerned
only with exact signal recovery, the optimal stopping condition
is simple: the algorithm should simply stop whenever there is
no more error; that is,ρ∗(t) = 0 in (6). However, with noise,
selecting the correct stopping condition requires some care.
The OMP method as described in Algorithm 1 uses a stopping
condition based on testing ifρ∗(t) > µ for some thresholdµ.

One of the appealing features of Theorem 1 is that it pro-
vides a simple sufficient condition under which this threshold
mechanism will detect the correct sparsity level. Specifically,
Theorem 1 provides a rangek ∈ [kmin, kmax] under which
there exists a threshold such that the OMP algorithm will
terminate in the correct number of iterations. The larger the
number of measurementsm, the wider one can make the range
[kmin, kmax]. The formula for the threshold level is given later
in (22).

In practice, one may deliberately want to stop the OMP
algorithm with fewer iterations than the “true” sparsity level.
As the OMP method proceeds, the detection becomes less
reliable and it is sometimes useful to stop the algorithm
whenever there is a high chance of error. Stopping early may
miss some small entries, but it may result in an overall better
estimate by not introducing too many erroneous entries or
entries with too much noise. However, since our analysis is
only concerned with exact sparsity pattern recovery, we do not
consider this type of stopping condition.

VI. N UMERICAL SIMULATIONS

To verify the above analysis, we simulated the OMP al-
gorithm with fixed signal dimensionn = 100 and different
sparsity levelsk, numbers of measurementsm, and randomly-
generated vectorsx.

In the first experiment,x ∈ R
n was generated withk

randomly placed nonzero values, with all the nonzero entries
having the same magnitude|xj | = C for someC > 0. Follow-
ing Assumption 1(e), the measurement matrixA ∈ R

m×n and
noise vectorw ∈ R

m were generated with i.i.d.N (0, 1/m)
entries. Using (14) and the fact thatx hask nonzero entries
with powerC2, the SNR is given by

SNR = ‖x‖2 = kC2,

so the SNR can be controlled by varyingC.
Fig. 1 plots the probability that the OMP algorithm incor-

rectly detected the sparsity pattern for different values of k
andm. The probability is estimated with 1000 Monte Carlo
simulations per(k,m) pair. For eachk andm, the threshold
level µ was selected as the one with the lowest probability of
error, assuming, of course, that the sameµ is used across all
1000 Monte Carlo runs.

The solid curve in Fig. 1 is the theoretical number of
measurements in (13) from Theorem 1 that guarantees exact
sparsity recovery. The formula is theoretically valid asn → ∞
andSNR → ∞. At finite problem sizes, the probability of error
for m satisfying (13) will be nonzero. However, Fig. 1 shows
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Fig. 1. OMP performance prediction. The colored bars show the probability
of sparsity pattern misdetection based on 1000 Monte Carlo simulations of
the OMP algorithm. The signal dimension is fixed ton = 100 and the error
probability is plotted against the number of measurementsm and sparsity
level k. The solid black curve shows the theoretical number of measurements
m = 2k log(n− k) sufficient for asymptotic reliable detection.

that for the problem size in the simulation, the probabilityof
error for OMP is indeed low for values ofm greater than the
theoretical level. When there is no noise (i.e.SNR = ∞), the
probability of error is between 3 and 5% for most values ofk.
When the SNR is 20 dB, the probability of error is between
15 and 20%. In either case, the formula provides a reasonable
prediction of the threshold in the number of measurements at
which the OMP method succeeds.

Theorem 1 is only asufficient condition. It is possible that
for somex, OMP could require a number of measurements
less than predicted by (13). That is, the number of measure-
ments (13) may not benecessary.

To illustrate such a case, we consider vectors with a nonzero
dynamic range of component magnitudes. Fig. 2 shows the
probability of sparsity pattern detection as a function ofm for
vectorsx with different dynamic ranges. Specifically, thek
nonzero entries ofx were chosen to have powers uniformly
distributed in a range of 0, 10 and 20 dB. In this simulation,
we usedk = 20 and n = 100, so the sufficient condition
predicted by (13) ism ≈ 136. When the dynamic range is
0 dB, all the nonzero entries have equal magnitude, and the
probability of error at the valuem = 136 is approximately 3%.
However, with a dynamic range of 10 dB, the same probability
of error can be achieved withm ≈ 105 measurements, a
value significantly below the sufficient condition in (13). With
a dynamic range of 20 dB, the number of measurements
decreases further tom ≈ 75.

This possible benefit of dynamic range in OMP-like algo-
rithms has been observed in [28], [29] and in sparse Bayesian
learning [30], [31]. A valuable line of future research would
be to see if this benefit can be quantified. That is, it would be
useful to develop a sufficient condition tighter than (13) that
accounts for the dynamic range of the signals.
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VII. C ONCLUSIONS ANDFUTURE WORK

We have provided an improved scaling law on the number
of measurements for asymptotic reliable sparsity pattern de-
tection with OMP. Most importantly, the scaling law exactly
matches the scaling needed by lasso under similar conditions.

However, much about the performance of OMP is still not
fully understood. Most importantly, our analysis is limited to
high SNR. It would be interesting to see if reasonable sufficient
conditions can be derived for finite SNR as well. Also, our
analysis has been restricted to exact sparsity pattern recovery.
However, in many problems, especially with noise, it is not
necessary to detect every element in the sparsity pattern. It
would be useful if partial support recovery results such as
those in [32]–[34] can be obtained for OMP.

VIII. P ROOF OFTHEOREM 1

A. Proof Outline

The main difficulty in analyzing OMP is the statistical
dependencies between iterations in the OMP algorithm. Fol-
lowing along the lines of the Tropp–Gilbert proof in [10], we
avoid these difficulties by considering the following alternate
“genie” algorithm. A similar alternate algorithm is analyzed
in [28] as well.

1) Initialize t = 0 andItrue(t) = ∅.
2) ComputePtrue(t), the projection operator onto the or-

thogonal complement of the span of{ai, i ∈ Itrue(t)}.
3) For all j = 1, . . . , n, compute

ρtrue(t, j) =
|a′jPtrue(t)y|2
‖Ptrue(t)y‖2

, (16)

and let

[ρ∗true(t), i
∗(t)] = max

j∈Itrue
ρtrue(t, j). (17)

4) If t < k, setItrue(t+1) = Itrue(t)∪{i∗(t)}. Increment
t = t+ 1 and return to step 2.

5) Otherwise stop. The final estimate of the sparsity pattern
is Itrue(k).

This “genie” algorithm is identical to the regular OMP
method in Algorithm 1, except that it runs for preciselyk
iterations as opposed to using a thresholdµ for the stop-
ping condition. Also, in the maximization in (17), the genie
algorithm searches over only the correct indicesj ∈ Itrue.
Hence, this genie algorithm can never select an incorrect index
j 6∈ Itrue. Also, as in the regular OMP algorithm, the genie
algorithm will never select the same vector twice for almost
all vectorsy. Therefore, afterk iterations, the genie algorithm
will have selected all thek indices inItrue and terminate with
correct sparsity pattern estimate

Itrue(k) = Itrue

with probability one.
The reason to consider the sequencesPtrue(t) andItrue(t)

instead ofP(t) and Î(t) is that the quantitiesPtrue(t) and
Itrue(t) depend only on the vectory and the columnsaj for
j ∈ Itrue. The vectory also only depends onaj for j ∈
Itrue and the noise vectorw. Hence,Ptrue(t) and Itrue(t)
are statistically independent of all the columnsaj , j 6∈ Itrue.
This property will be essential in bounding the “false alarm”
probability to be defined shortly.

Now, a simple induction argument shows that if

min
t=0,...,k−1

max
j∈Itrue

ρtrue(t, j) > µ, (18a)

max
t=0,...,k

max
j 6∈Itrue

ρtrue(t, j) < µ, (18b)

then the regular OMP algorithm, Algorithm 1, will terminatein
k iterations. Moreover, for allt, the OMP algorithm will output
P(t) = Ptrue(t), Î(t) = Itrue(t), andρ(t, j) = ρtrue(t, j) for
all t and j. This will in turn result in the OMP algorithm
detecting the correct sparsity pattern

ÎOMP = Itrue.

So, we need to show that the two events in (18a) and (18b)
occur with high probability.

To this end, define the following two probabilities:

pMD = Pr

(
max

t=0,...k−1
min

j∈Itrue
ρtrue(t, j) ≤ µ

)
(19)

pFA = Pr

(
max

t=0,...k
max
j 6∈Itrue

ρtrue(t, j) ≥ µ

)
(20)

Both probabilities are implicitly functions ofn. The first term,
pMD, can be interpreted as a “missed detection” probability,
since it corresponds to the event that the maximum correlation
energyρtrue(t, j) on the correct vectorsj ∈ Itrue falls below
the threshold. We call the second termpFA the “false alarm”
probability since it corresponds to the maximum energy on one
of the “incorrect” indicesj 6∈ Itrue exceeding the threshold.

The above arguments show that

Pr
(
ÎOMP 6= Itrue

)
≤ pMD + pFA.
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So we need to show that there exists a sequence of thresholds
µ = µ(n) > 0, such thatpMD → 0 and pFA → 0 as
n → ∞. We will define the threshold level in Section VIII-B.
Sections VIII-C and VIII-D then prove thatpMD → 0 with this
threshold. The difficult part of the proof is to showpFA → 0.
This part is proven in Section VIII-G after some preliminary
results in Sections VIII-E and VIII-F.

B. Threshold Selection

We will first select the threshold sequenceµ(n). Givenδ >
0 in (9), let ǫ > 0 such that

1 + δ

1 + ǫ
≥ 1 + ǫ. (21)

Then, define the threshold level

µ = µ(n) =
2(1 + ǫ)

m
log(n− kmin). (22)

Observe that sincek ≥ kmin, (22) implies that

µ ≥ 2(1 + ǫ)

m
log(n− k). (23)

Also, sincek ≤ kmax, (9), (21) and (22) show that

µ ≤ 1

(1 + ǫ)k
. (24)

C. Decomposition Representation and Related Bounds

To bound the missed detection probability, it is easiest
to analyze the OMP algorithm in two separate subspaces:
the span of the vectors{aj , j ∈ Itrue}, and its orthogonal
complement. This subsection defines some notation for this
orthogonal decomposition and proves some simple bounds.
The actual limit of the missed detection probability will then
be evaluated in the next subsection, Section VIII-D.

Assume without loss of generalityItrue = {1, 2, . . . , k},
so that the vectorx is supported on the firstk elements. Let
Φ be them× k matrix formed by thek correct columns:

Φ = [a1, a2, . . . , ak] .

Also, let xtrue = [x1, x2, . . . , xk]
′ be the vector of thek

nonzero entries so that

Ax = Φxtrue. (25)

Now rewrite the noise vectorw as

w = Φv +w⊥ (26)

where
v = (Φ′Φ)−1Φ′w, w⊥ = w − Φv. (27)

The vectorsΦv andw⊥ are, respectively, the projections of
the noise vectorw onto thek-dimensional range space ofΦ
and its orthogonal complement. Combining (25) with (26), we
can rewrite (1) as

y = Φz+w⊥, (28)

where
z = xtrue + v. (29)

We begin by computing the limit of the norms of the
measurement vectory and the projected noise vectorw⊥.

Lemma 1:The limits

lim
n→∞

‖y‖2
1 + ‖x‖2 = 1,

lim
n→∞

‖w⊥‖2 = 1,

hold almost surely and in probability.
Proof: The vectorw is Gaussian, zero mean and white

with variance1/m per entry. Therefore, its projection,w⊥,
will also be white in the(m−k)-dimensional orthogonal com-
plement of the range ofΦ with variance1/m per dimension.
Therefore, by the strong law of large numbers

lim
n→∞

‖w⊥‖2 = lim
n→∞

m− k

m
= 1,

where the last step follows from the fact that (9) implies that
k/m → 0.

Similarly, it is easily verified that sinceA andw have i.i.d.
Gaussian entries with variance1/m, the vectory is also i.i.d.
Gaussian with per-entry variance(‖x‖2 + 1)/m. Again, the
strong law of large numbers shows that

lim
n→∞

‖y‖2
1 + ‖x‖2 = 1.

We next need to compute the minimum singular value of
Φ.

Lemma 2:Let σmin(Φ) andσmax(Φ) be the minimum and
maximum singular values ofΦ, respectively. Then

lim
n→∞

σmin(Φ) = lim
n→∞

σmax(Φ) = 1

where the limits are in probability.
Proof: Since the matrixΦ hasN (0, 1/m) i.i.d. entries,

the Marčenko–Pastur theorem [35] states that

lim
n→∞

σmin(Φ) = lim
n→∞

1−
√
k/m

lim
n→∞

σmax(Φ) = lim
n→∞

1 +
√
k/m

where the limits are in probability. The result now follows
from (9) which implies thatk/m → 0 asn → ∞.

We can also bound the singular values of submatrices ofΦ.
Given a subsetI ⊆ {1, 2, . . . , k}, let ΦI be the submatrix of
Φ formed by the columnsai for i ∈ I. Also, let PI be the
projection onto the orthogonal complement of the span of the
set{ai, i ∈ I}. We have the following bound.

Lemma 3:Let I and J be any two disjoint subsets of
indices such that

I ∪ J = {1, 2, . . . , k}.

Then,

σmin(Φ
′
JPIΦJ ) ≥ σ2

min(Φ).

Proof: The matrixS = [ΦI ΦJ ] is identical toΦ except
that the columns may be permuted. In particular,σmin(S) =
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σmin(Φ). Therefore,

S′S =

[
Φ′

IΦI Φ′
IΦJ

Φ′
JΦI Φ′

JΦJ

]

≥ σ2
min(S)I

= σ2
min(Φ)I

≥
[

0 0
0 σ2

min(Φ)I

]
.

The Schur complement (see, for example [36]) now shows that

Φ′
JΦJ − σ2

min(Φ)I ≥ Φ′
JΦI(Φ

′
IΦI)

−1Φ′
IΦJ ,

or equivalently,

Φ′
J

(
I − ΦI(Φ

′
IΦI)

−1Φ′
I

)
ΦJ ≥ σ2

min(Φ)I.

The result now follows from the fact that

PI = I − ΦI(Φ
′
IΦI)

−1Φ′
I .

We also need the following tail bound on chi-squared
random variables.

Lemma 4:SupposeXi, i = 1, 2, . . ., is a sequence of real-
valued, scalar Gaussian random variables withXi ∼ N (0, 1).
The variables need not be independent. LetMk be the maxi-
mum

Mk = max
i=1,...,k

|Xi|2.

Then

lim sup
k→∞

Mk

2 log(k)
≤ 1,

where the limit is in probability.
Proof: See for example [28].

This bound permits us to bound the minimum component
of z.

Lemma 5:Let zmin be the minimum component value

zmin = min
j=1,...,k

|zj |. (30)

Then
lim inf
n→∞

zmin

xmin
≥ 1,

where the limit is in probability andxmin is defined in (11).
Proof: Sincew is zero mean and Gaussian, so isv as

defined in (27). Also, the covariance ofv is bounded above
by

E [vv′]
(a)
= (Φ′Φ)−1Φ′ (E [ww′]) Φ′(Φ′Φ)−1

(b)
=

1

m
(Φ′Φ)−1

(c)

≤ 1

m
σ−2
min(Φ),

where (a) follows from the definition ofv in (27); (b) follows
from the assumption thatE[ww′] = (1/m)Im; and (c) is a
basic property of singular values. This implies that for every
i ∈ {1, 2, . . . , k},

E|vi|2 ≤ 1

m
σ−2
min(Φ).

Applying Lemma 4 shows that

lim sup
k→∞

mv2maxσ
2
min(Φ)

2 log(k)
≤ 1, (31)

where
vmax = max

i=1,...,k
|vi|.

Therefore,

lim
n→∞

v2max

x2
min

= lim
n→∞

(
mv2max

2 log(k)

)(
2 log(k)

mx2
min

)

(a)

≤ lim
n→∞

(
mv2maxσ

2
min(Φ)

2 log(k)

)(
2 log(k)

mx2
min

)

(b)

≤ lim
n→∞

2 log(k)

mx2
min

(c)

≤ lim
n→∞

2 log(n− k)

mx2
min

(d)

≤ lim
n→∞

1

(1 + δ)kx2
min

(e)
= 0,

where all the limits are in probability and (a) follows from
Lemma 2; (b) follows from (31); (c) follows from the fact
that k < n/2 and hencek < n− k; (d) follows from (9); and
(e) follows from (10). Now, forj ∈ {1, 2, . . . , k},

|zj | = |xj + vj | ≥ |xj | − |vj |,
and therefore,

zmin ≥ xmin − vmax.

Hence,
zmin

xmin
≥ 1− vmax

xmin
→ 1,

where again the limit is in probability.

D. Probability of Missed Detection

With the bounds in the previous section, we can now show
that the probability of missed detection goes to zero. The proof
is similar to Tropp and Gilbert’s proof in [10] with some
modifications to account for the noise.

For any t ∈ {0, 1, . . . , k}, let J(t) = Itrue ∩ Itrue(t)
c,

which is the set of indicesj ∈ Itrue that arenot yet detected
in iteration t of the genie algorithm in Section VIII-A. Then

Φz = ΦItrue(t)zItrue(t) +ΦJ(t)zJ(t), (32)

where (using the notation of the previous subsection),ΦI

denotes the submatrix ofΦ formed by the columns with
indicesi ∈ I, andzI denotes the corresponding subvector.

Now sincePtrue(t) is the projection onto the orthogonal
complement of the span of{ai, i ∈ Itrue(t)},

Ptrue(t)ΦItrue(t) = 0. (33)

Also, sincew⊥ is orthogonal toai for all i ∈ Itrue and
Itrue(t) ⊆ Itrue,

Ptrue(t)w
⊥ = w⊥. (34)
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Therefore,

Ptrue(t)y
(a)
= Ptrue(t)(Φz+w⊥)
(b)
= Ptrue(t)(ΦJ(t)zJ(t) +w⊥)

(c)
= Ptrue(t)ΦJ(t)zJ(t) +w⊥, (35)

where (a) follows from (28); (b) follows from (32) and (33);
and (c) follows from (34).

Now using (34) and the fact thatw⊥ is orthogonal toai
for all i ∈ Itrue, we have

a′iPtrue(t)w
⊥ = a′iw

⊥ = 0 (36)

for all i ∈ Itrue. Since the columns ofΦJ(t) are formed by
vectorsai with i ∈ Itrue,

Φ′
J(t)Ptrue(t)w

⊥ = 0. (37)

Combining (37) and (35),

‖Ptrue(t)y‖2 = ‖Ptrue(t)ΦJ(t)zJ(t)‖2 + ‖w⊥‖2. (38)

Now for all t, we have that

max
j∈Itrue

ρtrue(t, j)

(a)
=

1

‖Ptrue(t)y‖2
max
j∈Itrue

|a′jPtrue(j)y|2

(b)
=

1

‖Ptrue(t)y‖2
max
j∈J(t)

|a′jPtrue(j)y|2

(c)
=

1

‖Ptrue(t)y‖2
‖Φ′

J(t)Ptrue(j)y‖2∞
(d)

≥ 1

|J(t)|‖Ptrue(t)y‖2
‖Φ′

J(t)Ptrue(j)y‖22

(e)
=

‖Φ′
J(t)Ptrue(j)ΦJ(t)zJ(t)‖22
|J(t)|‖Ptrue(t)y‖2

(f)
=

‖Φ′
J(t)Ptrue(j)ΦJ(t)zJ(t)‖22

|J(t)|
(
‖Ptrue(t)ΦJ(t)zJ(t)‖2 + ‖w⊥‖2

)

(g)

≥
σmin(Φ

′
J(t)Ptrue(j)ΦJ(t))‖zJ(t)‖22

|J(t)|
(
σ2
max(Φ)‖zJ(t)‖2 + ‖w⊥‖2

)

(h)

≥ σ4
min(Φ)‖zJ(t)‖22

|J(t)|
(
σ2
max(Φ)‖zJ(t)‖2 + ‖w⊥‖2

)

(i)

≥ σ4
min(Φ)z

2
min

σ2
max(Φ)kz

2
min + ‖w⊥‖2 , (39)

where (a) follows from the definition ofρtrue(t, j) in (16); (b)
follows from the fact thatPtrue(t)aj = 0 for all j ∈ Itrue(t)
and hence the maximum will occur on the setj ∈ Itrue ∩
Itrue(t)

c = J(t); (c) follows from the fact thatΦJ(t) is the
matrix of the columnsaj with j ∈ J(t); (d) follows the bound
that‖v‖22 ≤ d‖v‖2∞ for anyv ∈ R

d; (e) follows (35) and (37);
(f) follows from (38); (g) follows from the fact thatPtrue(t)
is a projection operator and hence,

σmax(Ptrue(t)ΦJ(t)) ≤ σmax(ΦJ(t)) ≤ σmax(Φ);

(h) follows from Lemma 3; and (i) follows from the bound

‖zJ(t)‖2 ≥ |J(t)|z2min

and |J(t)| ≤ k. Therefore,

lim inf
n→∞

min
t=0,...,k−1

max
j∈Itrue

1

µ
ρtrue(t, j)

(a)

≥ lim inf
n→∞

1

µ

σ4
min(Φ)z

2
min

σ2
max(Φ)kz

2
min + ‖w⊥‖2

(b)

≥ lim inf
n→∞

1

µ

z2min

kz2min + 1
(c)

≥ lim inf
n→∞

1

µ

x2
min

kx2
min + 1

(d)

≥ lim inf
n→∞

1

kµ
(e)

≥ 1 + ǫ, (40)

where (a) follows from (39), (b) follows from Lemmas 1 and 2;
(c) follows from Lemma 5; (d) follows from the assumption
of the theorem thatkx2

min → ∞; and (e) follows from (24).
The definition ofpMD in (19) now shows that

lim
n→∞

pMD = 0.

E. Bounds on Normalized Brownian Motions

Let B(t) be a standard Brownian motion. Define thenor-
malized Brownian motionS(t) as the process

S(t) =
1√
t
B(t), t > 0. (41)

We call the process normalized since

E|S(t)|2 =
1

t
E|B(t)|2 =

t

t
= 1.

We first characterize the autocorrelation of this process.
Lemma 6: If t > s, the normalized Brownian motion has

autocorrelation
E[S(t)S(s)] =

√
s/t.

Proof: Write

S(t) =
1√
t
(B(s) +B(t) −B(s)).

Thus,

E[S(t)S(s)] =
1√
st
E [(B(s) + (B(t)−B(s))B(s)]

(a)
=

1√
st
E
[
B(s)2

]

(b)
=

s√
st

=

√
s

t
,

where (a) follows from the orthogonal increments property of
Brownian motions; and (b) follows from the fact thatB(s) ∼
N (0, s).

We now need the following standard Gaussian tail bound.
Lemma 7:SupposeX is a real-valued, scalar Gaussian

random variable,X ∼ N (0, 1). Then,

Pr
(
X2 > µ

)
≤ 1√

πµ
exp(−µ/2).

Proof: See for example [37].
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We next provide a simple bound on the maximum of sample
paths ofS(t).

Lemma 8:For any0 < a < b, let

Smax(a, b) = sup
t∈[a,b]

|S(t)|.

Then, for anyµ > 0,

Pr
(
S2
max(a, b) > µ

)
≤ 2b

aµ
√
π
exp

(
−aµ

2b

)
.

Proof: SinceS(t) andS(−t) are identically distributed,

Pr
(
S2
max(a, b) > µ

)
≤ 2Pr

(
sup

t∈[a,b]

S(t) >
√
µ

)
. (42)

So, it will suffice to bound the probability of the single-sided
eventsupS(t) >

√
µ. For t ≥ 0, defineBa(t) = B(a+ t) −

B(a). Then,Ba(t) is a standard Brownian motion independent
of B(a). Also,

sup
t∈[a,b]

S(t) >
√
µ

⇒ sup
t∈[a,b]

1√
t
B(t) >

√
µ

⇒ sup
t∈[a,b]

B(t) >
√
aµ

⇒ B(a) + sup
t∈[0,b−a]

Ba(t) >
√
aµ.

Now, the reflection principle (see, for example [38]) statesthat
for any y,

Pr

(
max

t∈[0,b−a]
Ba(t) > y

)
= 2Pr

(√
b− aY > y

)
,

whereY is a unit-variance, zero-mean Gaussian. Also,B(a) ∼
N (0, a), so if we defineX = (1/

√
a)B(a), then X ∼

N (0, 1). SinceB(a) is independent ofBa(t) for all t ≥ 0,
we can write

Pr

(
sup

t∈[a,b]

S(t) >
√
µ

)

≤ 2Pr
(√

aX +
√
b− aY >

√
aµ
)
, (43)

whereX andY are independent zero mean Gaussian random
variables with unit variance. Now

√
aX +

√
b − aY has

variance

E
[
(
√
aX +

√
b− aY )2

]
= a+ b− a = b.

Applying Lemma 7 shows that (43) can be bounded by

Pr

(
sup

t∈[a,b]

S(t) >
√
µ

)
≤ b

aµ
√
π
exp

(
−aµ

2b

)
.

Substituting this bound in (42) proves the lemma.
Our next lemma improves the bound for largeµ.
Lemma 9:There exist constantsC1, C2, andC3 such that

for any 0 < a < b andµ > C3,

Pr
(
S2
max(a, b) > µ

)
≤ (C1 + C2 log (b/a)) e

−µ/2.

Proof: Fix any integern > 0, and defineti = a(b/a)i/n

for i = 0, 1, . . . , n. Observe thattis partition the interval
[a, b] in that

a = t0 < t1 < · · · < tn = b.

Also, letr = b/a. Then,ti+1/ti = (b/a)1/n = r1/n. Applying
Lemma 8 to each interval in the partition,

Pr(S2
max(a, b) > µ)

≤
n−1∑

i=1

Pr
(
S2
max(ti, ti+1) > µ

)

≤ nr1/n

µ
√
π

exp

(
−r−1/nµ

2

)
. (44)

Now, let δ > 0, and forµ > δ, let

n =

⌈
− log(r)

log(1− δ/µ)

⌉
. (45)

Then
r−1/n ≥ 1− δ/µ, (46)

and hence

exp

(
−r−1/nµ

2

)
≤ eδ/2e−µ/2. (47)

Also, (45) implies that

n ≤ 1− log(r)

log(1− δ/µ)
≤ 1 +

µ

δ
log(r), (48)

where we have used the fact thatlog(1− x) < −x for x > 0.
Combining the bounds (46) and (48) yields

nr1/n

µ
≤
(
1 +

µ

δ
log(r)

) 1

µ− δ
. (49)

Now, pick anyδ > 0 and letC3 = 2δ. Then if µ > C3 = 2δ,
(49) implies that

nr1/n

µ2
≤ 1

δ
(1 + 2 log(r)) . (50)

Substituting (47) and (50) into (44) shows that

Pr(Smax(a, b) > µ) ≤ (C1 + C2 log(r)) e
−µ/2,

where

C1 =
eδ/2√
πδ

, C2 =
2eδ/2√
πδ

.

The result now follows from the fact thatr = b/a.

F. Bounds on Sequences of Projections

We can now apply the results in the previous subsection to
bound the norms of sequences of projections. Lety ∈ R

m

be any deterministic vector, and letP(i), i = 0, 1, . . . , k be
a deterministic sequence of orthogonal projection operators
on R

m. Assume that the sequenceP(i) is decreasingin that
P(i)P(j) = P(i) for j > i.

Lemma 10:Let a ∈ R
m be a Gaussian random vector with

unit variance, and define the random variable

M = max
i=0,...,k

|a′P(i)y|2
‖P(i)y‖2 .
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Then there exist constantsC1, C2, andC3 > 0 (all indepen-
dent of the problem parameters) such thatµ > C3 implies

Pr(M > µ) ≤ (C1 + C2 log(r)) e
−µ/2,

wherer = ‖P(1)y‖2/‖P(n)y‖2.
Proof: Define

zi =
y′P(i)a

‖P(i)y‖ ,

so that
M = max

i=0,...,k
|zi|2.

Since eachzi is the inner product of the Gaussian vectora with
a fixed vector, the scalars{zi, i = 0, 1, . . . , k} are jointly
Gaussian. Sincea has mean zero, so do thezis.

To compute the cross-correlations, suppose thatj ≥ i. Then

E [zizj ] =
1

‖P(i)y‖‖P(j)y‖E [y′P(i)aa′P(j)y]

(a)
=

1

‖P(i)y‖‖P(j)y‖y
′P(i)P(j)y

(b)
=

1

‖P(i)y‖‖P(j)y‖y
′P(i)y

=
‖P(i)y‖
‖P(j)y‖ ,

where (a) uses the fact thatE[aa′] = Im; and (b) uses the
descending property thatP(i)P(j) = P(i). Therefore, if we
let ti = ‖P(i)y‖2, we have the cross-correlations

E [zizj ] =
√
ti/tj (51)

for all j ≥ i. Also observe that since the projection operators
are decreasing, so are thetjs. That is, forj ≥ i,

ti = ‖P(i)y‖2 (a)
= ‖P(i)P(j)y‖2

(b)

≤ ‖P(j)y‖2 = tj ,

where again (a) uses the decreasing property; and (b) uses
the fact thatP(i) is a projection operator and norm non-
increasing.

Now let S(t) be the normalized Brownian motion in (41).
Lemma 6 and (51) show that the Gaussian vector

z = (z0, z1, . . . , zk)

has the same covariance as the vector of samples ofS(t),

s = (S(t0), S(t1), . . . , S(tk)).

Since they are also both zero-mean and Gaussian, they have
the same distribution. Hence, for allµ,

Pr(M > µ) = Pr

(
max

i=0,...,k
|zi|2 > µ

)

= Pr

(
max

i=0,...,k
|S(ti)|2 > µ

)

≤ Pr

(
sup

t∈[tk,t0]

|S(t)|2 > µ

)
,

where the last step follows from the fact that thetis are
decreasing and hencetk ≥ ti ≥ t0 for all i ∈ {0, 1, . . . , k}.
The result now follows from Lemma 9.

G. Probability of False Alarm

Recall that all the projection operatorsPtrue(t) and the
vector y are statistically independent of the vectorsaj for
j 6∈ Itrue. Since the entries of the matrixA are i.i.d. Gaussian
with zero mean and variance1/m, the vectormaj is Gaussian
with unit variance. Hence, Lemma 10 shows that there exist
constantsC1, C2, andC3 such that for anyλ > C3,

Pr

(
max

t=0,...,k
m
|ajPtrue(t)y|2
‖Ptrue(t)y‖2

≥ λ

)
≤ Be−λ/2, (52)

wherej 6∈ Itrue and

B = C1 + C2 log

(‖Ptrue(0)y‖2
‖Ptrue(k)y‖2

)
. (53)

Therefore,

pFA
(a)
= Pr

(
max

t=1,...,k
max
j 6∈Itrue

ρtrue(t, j) > µ

)

(b)

≤ (n− k) max
j 6∈Itrue

Pr

(
max

t=1,...,k
ρtrue(t, j) > µ

)

(c)
= (n− k) max

j 6∈Itrue
Pr

(
max

t=1,...,k

|ajPtrue(t)y|2
‖Ptrue(t)y‖2

> µ

)

(d)

≤ (n− k)Be−mµ/2

(e)

≤ (n− k)Be−(1+ǫ) log(n−k)

=
1

(n− k)ǫ
B, (54)

where (a) follows from the definition ofpFA in (20); (b) uses
the union bound and the fact thatIctrue hasn−k elements; (c)
follows from the definition ofρtrue(t, j) in (16); (d) follows
from (52) under the condition thatµm > C3; and (e) follows
from (23). By (9) and the hypothesis of the theorem thatn−
k → ∞,

µm = (1 + δ)2 log(n− k) → ∞ asn → ∞.

Therefore, for sufficiently largen, µm > C3 and (54) holds.
Now, sinceItrue(0) = ∅, Ptrue(0) = I and therefore

Ptrue(0)y = y. (55)

Also, Itrue(k) = Itrue and soPtrue(k) is the projection
onto the orthogonal complement of the range ofΦ. Hence
Ptrue(k)Φ = 0. Combining this fact with (28) and (34) shows

Ptrue(k)y = w⊥. (56)

Therefore,

lim inf
n→∞

pFA

(a)

≤ lim inf
n→∞

1

(n− k)ǫ
B

(b)

≤ lim inf
n→∞

1

(n− k)ǫ

(
C1 + C2 log

( ‖Ptrue(0)y‖2
‖Ptrue(k)y‖2

))

(c)
= lim inf

n→∞

1

(n− k)ǫ

(
C1 + C2 log

( ‖y‖2
‖w⊥‖2

))

(d)
= lim inf

n→∞

1

(n− k)ǫ
(
C1 + C2 log(1 + ‖x‖2)

)

(e)
= 0
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where (a) follows from (54); (b) follows from (53); (c) follows
from (55) and (56); (d) follows from Lemma 1; and (e) follows
from (12). This completes the proof of the theorem.
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