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Widely Linear vs. Conventional Subspace-Based
Estimation of SIMO Flat-Fading Channels:

Mean-Squared Error Analysis
Saeed Abdallah and Ioannis N. Psaromiligkos*

Abstract

We analyze the mean-squared error (MSE) performance of widely linear (WL) and conventional subspace-based
channel estimation for single-input multiple-output (SIMO) flat-fading channels employing binary phase-shift-keying
(BPSK) modulation when the covariance matrix is estimated using a finite number of samples. The conventional
estimator suffers from a phase ambiguity that reduces to a sign ambiguity for the WL estimator. We derive closed-
form expressions for the MSE of the two estimators under four different ambiguity resolution scenarios. The first
scenario is optimal resolution, which minimizes the Euclidean distance between the channel estimate and the actual
channel. The second scenario assumes that a randomly chosen coefficient of the actual channel is known and the
third assumes that the one with the largest magnitude is known. The fourth scenario is the more realistic case
where pilot symbols are used to resolve the ambiguities. Our work demonstrates that there is a strong relationship
between the accuracy of ambiguity resolution and the relative performance of WL and conventional subspace-based
estimators, and shows that the less information available about the actual channel for ambiguity resolution, or the
lower the accuracy of this information, the higher the performance gap in favor of the WL estimator.

Index Terms -Widely Linear, Subspace, SIMO, Channel Estimation.

I. INTRODUCTION

Subspace-based estimation is one of the most popular approaches for blind channel estimation. Originally
proposed in [1], subspace-based methods estimate the unknown channel by exploiting the orthogonality between the
signal and noise subspaces in the covariance matrix of the received signal, offering a convenient tradeoff between
performance and computational complexity [2]. They potentially outperform methods that are based on higher-order
statistics when the number of available received signal samples is limited, since second-order statistics (SOS) can
be estimated more robustly in such conditions [3]. Subspace-based channel estimation has been applied in a wide
variety of communication systems, including single-carrier systems [1], multicarrier (OFDM) systems [4], [5], and
spread spectrum (CDMA) systems [6]–[8].

It has become a well-known fact that widely linear (WL) processing [9], which operates on both the received
signal and its complex conjugate, can improve the performance of SOS-based algorithms when the signal under
consideration is improper. Improper signals, which are characterized by a non-zero pseudo-covariance, result when
communication systems employ real modulation schemes such as amplitude-shift-keying (ASK), binary phase-shift-
keying (BPSK), minimum-shift-keying (MSK) and Gaussian minimum-shift-keying (GMSK). By augmenting the
observation space, WL processing is able to access and exploit the information in the pseudo-covariance of the
signal. This has prompted researchers to propose WL versions of subspace-based channel estimation algorithms in
order to improve channel estimation accuracy in communication systems that employ real signaling. In the context
of DS-CDMA systems, a WL subspace-based channel estimation algorithm was proposed in [10] for the case of
BPSK modulation. In addition to exhibiting superior mean-squared error (MSE) performance, the WL algorithm
was able accommodate almost twice as many users. Similar observations were made in the context of multicarrier
CDMA in [11]. A WL subspace-based algorithm was developed for the estimation of single-input single-output
(SISO) FIR channels with improper input signals in [12], showing superior mean-squared error (MSE) performance
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to the conventional subspace-based method implemented using an oversampling factor of 2. WL subspace-based
channel estimation was also used in the context of interference-contaminated OFDM systems in [13].

Conventional subspace-based channel estimation suffers from an inherent phase ambiguity which can only be
resolved through the use of additional side information. An important advantage of WL estimation is that it reduces
the phase ambiguity into a sign ambiguity [13], [14], which is intuitively easier to resolve. For a meaningful
comparison of WL and conventional channel estimation, both the phase ambiguity and the sign ambiguity have
to be resolved. Unfortunately, there is no agreement in the literature on how to resolve the two ambiguities. In
many works on blind channel estimation, it is assumed that the one of the channel coefficients, typically the first
one, is known [5], [15], [16]. This assumption was used to resolve the ambiguities of the conventional and WL
estimator in [13]. In [12], the channel coefficient with the largest magnitude was assumed known. Other works on
WL subspace-based estimation [10], [14] do not explicitly mention how they resolve the phase and sign ambiguities.

In this work, we consider the problem of blind estimation of single-input multiple-output (SIMO) flat-fading
channels [17], [18]. We assume that BPSK modulation is used, resulting in an improper received signal. Our goal is
to examine whether and under what conditions WL subspace-channel estimation constitutes an appealing alternative
to conventional approaches. We pay special attention to the practical situation where estimation is performed with a
finite number of received samples, and we derive highly accurate closed-form expressions for the MSE performance
of the conventional and WL channel estimation algorithms. Our MSE analysis explicitly takes into account the effects
of phase and sign ambiguity resolution by considering four different approaches to resolving the said ambiguities.
The first approach we consider is optimal phase and sign ambiguity resolution where the applied phase and sign
correction minimizes the Euclidean distance between the channel estimate and the actual channel. For this case, we
also derive a closed-form expression for the probability that the WL estimator outperforms the conventional one,
when the statistics of the channel are taken into account. The second approach assumes that a randomly chosen
channel coefficient is known, and the third approach assumes that the channel coefficient with the largest magnitude
is known. For the latter, we also derive a lower bound on the probability that the WL estimator outperforms the
conventional one. Interestingly, the relative performance of the two estimators is different depending on which of
the above three approaches is adopted. Under optimal correction, the conventional estimator slightly outperforms
the WL estimator. However, the WL estimator is significantly better than the conventional estimator when the first
channel coefficient is assumed known, and slightly better when the channel coefficient with the largest magnitude is
assumed known. All these approaches assume that certain information about the actual channel is perfectly known
at the receiver. In practice, however, pilot symbols have to be used to estimate such information, and the incurred
estimation error will contribute further to the resulting MSE. We therefore consider a fourth approach in which
a limited number of pilot symbols is used to resolve the ambiguities of the two estimators, and we derive the
corresponding MSE expressions. As it turns out, the WL estimator is significantly better, coming very close to
optimal performance even when a single pilot symbol is used. This conforms with the intuition that sign ambiguity
is much easier to correct than phase ambiguity. The four scenarios demonstrate that the less information available
about the actual channel for ambiguity resolution, or the less accurate this information is, the higher the performance
gap becomes in favor of the WL estimator.

Our work is the first to present a thorough analytical study on the relative MSE performance of conventional
and WL subspace-based estimators. To the best of our knowledge, we are the first to observe and analyze the
close relationship between the accuracy of phase and sign ambiguity resolution and the relative performance of
WL and conventional subspace-based estimators and to analyze theoretically the practical scenario when pilots are
used to resolve the phase and sign ambiguities. As such, our work offers new and unique insights into the relative
performance of conventional and WL subspace-based channel estimation algorithms.

The remainder of the paper is organized as follows. In Section II, we introduce our system model and the
conventional subspace-based channel estimation algorithm for the SIMO flat-fading channel model. The WL
subspace-based channel estimation algorithm is developed in Section III. The MSE performance of the conventional
estimator under finite sample size is derived in Section IV for the four scenarios of phase ambiguity resolution. We
derive the MSE performance of the WL estimator for the corresponding four sign ambiguity resolution scenarios
in Section V. In Section VI, we derive the probability that the WL estimator outperforms the conventional under
optimal ambiguity resolution, as well as a lower bound on the probability that the WL estimator outperforms
the conventional one when the channel coefficient with the largest magnitude is known. In Section VII, we use
Monte-Carlo simulations to verify the accuracy of our analytical results and to compare the performance of the



3

Fig. 1. The single user SIMO Communications Model.

two estimators in the four different cases. Finally, we present our conclusions in Section VIII.

II. SYSTEM MODEL AND BACKGROUND

We consider the single user SIMO flat-fading model used in [18]–[20] and illustrated in Fig. 1. In the ith symbol
period, the transmitter sends a binary-phase-shift-keying (BPSK) data symbol b(i) taking the values ±1 with equal
probability. For a J-antenna receiver, the corresponding J × 1 received vector is

r(i) = b(i)g + n(i) = b(i)‖g‖h + n(i), (1)

where g , [g1, . . . , gJ ]T is the unknown vector of fading channel coefficients, h , g/‖g‖ = [h1, . . . , hJ ] is the
normalized (to unit-norm) version of the channel, and n(i) is the complex additive white Gaussian noise (AWGN)
vector with mean zero and covariance E[n(i)n(i)H ] = σ2I . The fading coefficients g1, . . . , gJ are modelled as
independent and identically distributed (i.i.d.) CN (0, γ2)1 and are assumed to remain fixed throughout the estimation
period. The transmit SNR in dB is −10 log(σ2). It is well known that SOS-based algorithms are blind to the channel
magnitude ‖g‖, i.e., they can only estimate the direction and not the norm of g. For this reason, we will focus
on estimating h, and, with a slight abuse of terminology, we will also refer to the elements of vector h as fading
coefficients.

Let R , E{r(i)r(i)H} be the covariance matrix of the received signal, then

R = ggH + σ2I = ‖g‖2hhH + σ2I. (2)

As we can see from (2), the matrix R has two distinct eigenvalues, λ1 = (‖g‖2 +σ2) and λ2 = σ2, the latter having
a multiplicity of J − 1. The normalized channel h is an eigenvector of R corresponding to the largest eigenvalue.
If we let u be a unit-norm eigenvector of R corresponding to λ1, then u has the form u = heφ, where  =

√
−1

and φ ∈ [0, 2π) is an arbitrary angle which represents the ambiguity in the phase of the channel estimate which
is common to all SOS-based estimators. In practice, R is not known beforehand and is commonly replaced by
its sample-average estimate R̂ = 1

N

∑N
i=1 r(i)r(i)H , using a finite sample of N received vectors, r(1), . . . , r(N).

In this case, the channel is estimated by the unit-norm eigenvector corresponding to the largest eigenvalue of R̂.
We denote by û , [û1, . . . ûJ ]T the subspace-based channel estimate prior to phase correction. For a meaningful
study of the performance of the subspace-based estimator, it is essential to resolve the phase ambiguity by applying
an appropriate phase shift to û. The most common convention is to assume that one of the channel coefficients,
typically the first one, is known [5], [15], [16], and rotate the vector û such that the corresponding component has
the same phase. This approach may lead to inaccurate results when the chosen coefficient happens to have a very
small magnitude [21]. An alternative approach which leads to more accurate ambiguity resolution is to assume that
the known channel coefficient is the one with the largest magnitude [12]. In both cases, however, the phase shift is
suboptimal because it uses information from only one channel component. In fact, the optimal phase shift which
minimizes the Euclidean distance between the channel estimate and the actual channel is the phase of their inner

1The notation CN (µ, γ2) is used to refer to the complex Gaussian distribution with mean µ and variance γ2.
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product [21]. In practice, however, none of the information used in these three approaches is readily available at
the receiver, and pilot symbols have to be used to resolve the phase ambiguity. Obviously, the choice of how to
resolve the phase ambiguity will affect the observed mean-squared error (MSE) performance. When training pilots
are used, the error in estimating the desired phase shift will further contribute to the MSE.

In section IV, we will derive accurate closed-from expressions for the MSE error of the conventional subspace-
based estimator under each of the four scenarios.

III. THE WIDELY LINEAR SUBSPACE-BASED ESTIMATOR

Due to the use of real (BPSK) modulation, the received signal is improper, and widely linear processing may be
applied to access the information in the pseudo-covariance of the signal. In this section, we will develop the widely
linear version of the subspace-based channel estimator described in Section II. Widely linear processing operates
on an augmented vector r̃(i) formed by stacking the received vector r(i) and its complex conjugate r(i)∗. The
vector r̃(i) is given by

r̃(i) ,

[
r(i)
r(i)∗

]
= b(i)‖g‖

[
h
h∗

]
+

[
n(i)
n(i)∗

]
= b(i)‖g‖h̃ + ñ(i), (3)

where h̃ =
[
hT hH

]T and ñ(i) =
[
n(i)T n(i)H

]T . The covariance matrix R̃ of r̃(i) is given by

R̃ , E[r̃(i)r̃(i)H ] =

[
R C
C∗ R∗

]
, (4)

where C , E{r(i)r(i)T } is the pseudo-covariance of r(i). It is easy to see that the augmented channel vector h̃
is an eigenvector of R̃ corresponding to the largest eigenvalue, λw = 2‖g‖2 + σ2.

WL channel estimation reduces the inherent phase ambiguity into a sign ambiguity. This fact becomes clear
by reformulating the WL subspace-based estimator into the following equivalent real representation. Let r̄(i) ,
[<{r(i)}T ,={r(i)}T ]T be the real representation of the received vector r(i), and h̄ , [<{h}T ,={h}T ]T =
[h̄1, . . . , h̄2J ]T be the real representation of the channel h. Finally, let

Ψ ,

[
IJ IJ
IJ −IJ

]
. (5)

Then, h̃ = Ψh̄ and r̃(i) = Ψr̄(i), or, equivalently, h̄ = 1
2ΨH h̃ and r̄(i) = 1

2ΨH r̃(i). The covariance matrix of
r̄(i) is R̄ , E{r̄(i)r̄(i)T } = ‖g‖2h̄h̄T + σ2

2 I , and it is related to R̃ by R̄ = 1
4ΨHR̃Ψ. Moreover, there is a

1-1 correspondence between the eigenvalues and eigenvectors of R̃ and those of R̄. Hence, WL subspace-based
channel estimation can be performed in the real domain through the eigendecomposition of R̄. We are left with a
sign ambiguity because both h̄ and −h̄ are unit-norm eigenvectors of R̄ corresponding to its largest eigenvalue.
For the remainder of the paper, we will use the real representation of the WL subspace-based channel estimator.

Since R̄ is not known to the receiver beforehand, it is approximated by its sample-average estimate ˆ̄R =
1
N

∑N
i=1 r̄(i)r̄(i)T . To estimate the channel, we obtain the unit-norm eigenvector ˆ̄u corresponding to the largest

eigenvalue of ˆ̄R. This channel estimate suffers from a sign ambiguity which requires extra information to be
resolved. In [12], the component of largest magnitude in the real representation of the channel was assumed to
be known and used to resolve the ambiguity, while in [13], the real representation of the channel was converted
back into a complex vector and the phase of the first coefficient of the complex channel was assumed known and a
phase shift was applied to match the phase of the two vectors. The approach we follow in our work is to perform
sign-ambiguity correction directly to the real channel estimate. We maintain fairness in the correction of the two
ambiguities (phase in the case of conventional and sign in the case of WL) by assuming that the same information
is available to both estimators. Hence, we will we perform sign ambiguity resolution under the same four scenarios
discussed in Section II. Closed-form expressions for the MSE in all four cases for a finite number of samples will
be derived in Section V.

IV. MSE PERFORMANCE OF THE CONVENTIONAL ESTIMATOR

In this section, we derive closed-form expressions for the mean-squared error performance of the conventional
subspace-based estimation under the four assumptions on phase ambiguity resolution that were briefly discussed
in Section II. It is more convenient to start our analysis with the case of optimal phase correction, as the resulting
MSE expression will be used in the derivation of MSE expressions for the other three cases.
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A. Optimal Phase Correction

Let θo be the optimal phase shift that minimizes the Euclidean distance between the channel estimate and the
true channel. It is straightforward to check that θo is given by

θo = arg min
θ∈(0,2π]

‖eθû− h‖2 = ∠
(
ûHh

)
. (6)

Let ĥo , eθoû = [ĥo,1, . . . , ĥo,J ] be the optimally phase-corrected estimate of the channel, and let δh , ĥo − h
be the corresponding error in the estimation of h under optimal phase correction. We can decompose δho as

δho , qo + αoh, (7)

where qo = [qo,1, . . . , qo,J ]T is the component of δho that is orthogonal to h and αo is a complex scalar. Hence,

‖δho‖2 = ‖qo‖2 + |αo|2. (8)

A closed-form expression for E
{
‖δh2

o‖
}

is given by the following theorem. The proof can be found in Appendix A.

Theorem 1 Under optimal phase correction, |α0|2 � ‖qo‖2 and

E
{
‖δho‖2

}
' E

{
‖qo‖2

}
' 1

N‖g4‖
(σ2‖g‖2 + σ4)(J − 1).

As we shall see shortly, the MSE under optimal phase correction lower bounds the MSE for the other three scenarios.
Since the term αoh has a negligible impact on the estimation error δho, we will assume for the remainder of our
work that αo = 0.

B. Suboptimal Phase Correction

The phase ambiguity can be resolved suboptimally if only one of the channel coefficients is known. Let h`, ` ∈
{1, . . . , J}, be the known channel coefficient. The suboptimally-corrected channel estimate is ĥs , ûeθs , where
θs , ∠ (û∗`h`). The two channel estimates ĥs and ĥo are related by ĥs = ĥoe

(θs−θo), and the estimation error is
given by

δhs , ĥs − h = ĥoe
(θs−θo) − h

= qoe
(θs−θo) + (e(θs−θo) − 1)h.

(9)

The resulting MSE is now

E
{
‖δhs‖2

}
= E

{
‖qo‖2

}
+ E

{
|e(θs−θo) − 1|2

}
= E

{
‖qo‖2

}
+ 2− 2E {cos (θs − θo)} .

(10)

The closed-form expression for E
{
‖qo‖2

}
is available in Theorem 1, so it remains to find a closed-form for

E {cos (θs − θo)}. Since û` = (h` + qo,`)e
−θo , we obtain

θs − θo = ∠ (û∗`h`)− ∠
(
ûHh

)
= ∠

(
q∗o,`h` + |h`|2

)
, (11)

It is shown in Appendix A that

qo '
1

‖g‖2
V V HδRh, (12)

where V is a J × (J − 1) matrix whose columns are the orthonormal eigenvectors of R corresponding to the
eigenvalue σ2, and that

E
{
|qo,`|2

}
' 1

N‖g‖4
(σ2‖g‖2 + σ4)(1− |h`|2). (13)

Using (12), it can be shown that E {qo,`} ' 0 and that qo,` is the sum of N independent and identically distributed
(i.i.d.) random variables. Furthermore, it is also shown in Appendix B that E

{
q2
o,`

}
' 0. Invoking the Central

Limit Theorem, we can approximate qo,` by a (proper) complex Gaussian random variable with the same mean
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and variance. Under this approximation, the term q∗o,`h` + |h`|2 is also a proper complex Gaussian random variable

with mean |h`|2 and variance 1

N‖g‖4 (σ2‖g‖2 + σ4)(|h`|2 − |h`|4), and furthermore, ϑ , ∠
(
q∗o,`h` + |h`|2

)
has

the Ricean phase distribution [22] with the following probability density function

fϑ(ϑ) =
1

2π
e−ρ

(
1 +
√
πρ cos(ϑ)eρ cos2(ϑ) [1 + erf (ρ cos(ϑ))]

)
, (14)

where

ρ =
N‖g‖4|h`|2

(σ2‖g‖2 + σ4)(1− |h`|2)
, (15)

and erf(·) is the error function [23]. Then, E {cos(ϑ)} is given by [24]

E {cos(ϑ)} =

√
πρ

4
e−

ρ

2

[
I0

(ρ
2

)
+ I1

(ρ
2

)]
, (16)

where I0(·) and I1(·) are Modified Bessel Functions of the First Kind of orders zero and one, respectively [23].
Going back to (10), we obtain the closed-form MSE expression

E
{
‖δhs‖2

}
' 1

N‖g4‖
(σ2‖g‖2 + σ4)(J − 1) + 2− 2

√
πρ

4
e−

ρ

2

[
I0

(ρ
2

)
+ I1

(ρ
2

)]
. (17)

This expression can be simplified if we use the following approximation [25]

E {cos(ϑ)} ' e−
1

4ρ = e
− 1

4N‖g‖4 (σ2‖g‖2+σ4)
(

1

|h`|2
−1

)
, (18)

that yields

E
{
‖δhs‖2

}
' 1

N‖g4‖
(σ2‖g‖2 + σ4)(J − 1) + 2− 2e

− 1

4N‖g‖4 (σ2‖g‖2+σ4)
(

1

|h`|2
−1

)
. (19)

C. Largest-magnitude Phase Correction

We can see from eq. (19) that the MSE decreases as the magnitude of the fading coefficient h` increases. For a
fixed channel g, the MSE would be minimized when the fading coefficient with the largest magnitude is known. We
let L be the index of the channel coefficient with the largest magnitude, and denote by ĥa and δha , ĥa − h the
resulting channel estimate when hL is known, and the corresponding estimation error, respectively. The resulting
MSE is thus

E
{
‖δha‖2

}
' 1

N‖g4‖
(σ2‖g‖2 + σ4)(J − 1) + 2− 2e

− 1

4N‖g‖4 (σ2‖g‖2+σ4)
(

1

|hL|2
−1

)
. (20)

We can obtain a simpler closed-form for E
{
‖δha‖2

}
by using the Taylor series expansion of the exponential term

in (20). Since |hL|2 ≥ 1/J , we have that

1

4N‖g‖4
(
σ2‖g‖2 + σ4

)( 1

|hL|2
− 1

)
≤ J − 1

4

(
σ2

N‖g‖2
+

σ4

N‖g‖4

)
. (21)

The RHS of (21) is typically much smaller than 1, so we can accurately approximate E
{
‖δha‖2

}
by using the

first two terms in the Taylor series expansion of the exponential term, resulting in the closed-form

E
{
‖δha‖2

}
' 1

N‖g‖4
(σ2‖g‖2 + σ4)

(
J +

1

2|hL|2
− 3

2

)
. (22)

We will use eq. (22) later on to obtain bounds on the probability that the WL estimator outperforms the conventional
estimator under largest-magnitude phase and sign correction.
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D. Training-based Phase Correction

The previous three conventions for phase correction assume that certain information about the channel is perfectly
known. In practice, however, no such information is available and pilot symbols have to be used to resolve the
phase ambiguity. We will now investigate the resulting MSE if K pilot symbols are used to estimate the optimal
phase shift θo, where the transmitted symbols are set to +1. Let zk, k = 1, . . . ,K, be the received sample vectors
during the training period. Thus

zk = g + nk, (23)

where nk, k = 1, . . . ,K, are the complex AWGN vectors with mean zero and covariance σ2I . To reduce the
variance of the noise, we average the received vectors during the training period, obtaining

zm = g +
1

K

K∑
k=1

nk. (24)

Using zm, we estimate θo by θ̂o = ∠
(
ûHzm

)
, and denote by ε , θ̂o − θo the error in estimating θo. We denote

by ĥt , ûeθ̂o = ĥoe
ε and δht , ĥt − h = qoe

ε + (eε − 1)h the phase-corrected channel estimate, and the
corresponding estimation error respectively. The resulting MSE is given by

E
{
‖δht‖2

}
= E

{
‖qo‖2

}
+ 2− 2E {cos(ε)} . (25)

Moreover, since û = e−θoĥo, we obtain

ûHzm = eθoĥ
H

o

(
g +

1

K

K∑
k=1

nk

)
= eθo

(
‖g‖+

1

K

K∑
k=1

ĥ
H

o nk

)
, (26)

which means that ε = ∠
(
‖g‖+ 1

K

∑K
k=1 ĥ

H

o nk

)
. The quantity ‖g‖ + 1

K

∑K
k=1 ĥ

H

o nk is a (proper) complex
Gaussian random variable with a mean of ‖g‖ and a variance of σ2/K, and the error ε has the Ricean phase

distribution [22] with parameter β =

√
K‖g‖2
σ2 . Hence,

E {cos(ε)} =

√
πβ

4
e−

β

2

[
I0

(
β

2

)
+ I1

(
β

2

)]
' e−

1

4β . (27)

and

E
{
‖δht‖2

}
=

1

N‖g‖4
(σ2‖g‖2 + σ4)(J − 1) + 2

− 2

√
πK‖g‖2

4σ2
e−

K‖g‖2

2σ2

[
I0

(
K‖g‖2

2σ2

)
+ I1

(
K‖g‖2

2σ2

)]
' 1

N‖g‖4
(σ2‖g‖2 + σ4)(J − 1) + 2− 2e

− σ2

4K‖g‖2 .

(28)

As expected, the MSE under training-based phase correction approaches the one under optimal correction as the
number of pilots K increases.

V. MSE PERFORMANCE OF THE WIDELY LINEAR ESTIMATOR

In this section, we will analyze the MSE performance of the WL subspace-based estimator, where the phase
ambiguity is replaced by a sign ambiguity. In resolving the sign ambiguity, we will consider the same four scenarios
that were considered in resolving the phase ambiguity of the conventional subspace-based estimator. Providing the
same information to the WL estimator as was made available to the conventional estimator guarantees a fair
comparison of the performances of the two estimators.
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A. Optimal Sign Correction

Let bo be the optimal sign correction that minimizes the Euclidean distance between the channel estimate and
the true channel. It is straightforward to check that

bo = arg min
b∈{±1}

‖bˆ̄u− h̄‖2 = sgn
(
ˆ̄uT h̄

)
. (29)

We also note that bo = sgn {cos θo}, where θo is the phase shift we used to do optimal phase correction. Denoting
by ˆ̄ho , bo ˆ̄u = [h̄o,1, . . . h̄o,2J ] and δh̄o , ˆ̄ho − h̄ the optimally sign-corrected channel estimate and the resulting
estimation error under optimal sign correction, respectively, the error δh̄o can be decomposed as

δh̄o = q̄o + µoh̄, (30)

where q̄o = [q̄o,1, . . . , q̄o,2J ] is orthogonal to h̄ and µo is a real scalar. Hence, ‖δh̄o‖2 = ‖q̄o‖2 + |µo|2. The
following theorem presents a closed-form expression for the mean-squared error E

{
‖δh̄o‖2

}
.

Theorem 2 Under optimal sign correction, |µo|2 � ‖q̄o‖2, and

E
{
‖δh̄o‖2

}
' E

{
‖q̄o‖2

}
' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
(2J − 1).

The proof of the above theorem is found in Appendix C. Since the term µoh̄ has a negligible impact on the estimation
error δh̄o, we will assume for the remainder of our work that µo = 0. We will compare analytically E

{
‖δh̄o‖2

}
and E

{
‖δho‖2

}
in Section VI by evaluating the probability that E

{
‖δho‖2

}
is greater than E

{
‖δh̄o‖2

}
when the

statistics of the channel g are taken into consideration.

B. Suboptimal Sign Correction

The sign ambiguity can be resolved suboptimally when only one of the complex channel coefficients, h`, is
known. The complex channel coefficient h` can be expressed in terms of the real coefficients h̄` and h̄J+` as
h` = h̄` + h̄J+`. The suboptimal sign correction is given by

bs = sgn{h̄` ˆ̄u` + h̄J+` ˆ̄uJ+`} = sgn{cos θs}, (31)

where θs was used to perform suboptimal phase correction in Section IV. We denote by ˆ̄hs , bs ˆ̄u and δh̄s , ˆ̄hs−h̄
the suboptimally sign-corrected channel estimate, and the resulting error in the estimation of h̄, respectively. To
find the resulting MSE, E

{
‖δh̄s‖2

}
, we first write ˆ̄hs in terms of ˆ̄ho as ˆ̄hs = bsbo

ˆ̄ho. Hence,

E
{
‖δh̄s‖2

}
= E

{
‖bsbo ˆ̄ho − h̄‖2

}
= E

{
‖q̄o‖2

}
+ E

{
(bsbo − 1)2

}
= E

{
‖q̄o‖2

}
+ 4− 4P {bs = bo} .

(32)

Using the fact that ˆ̄ho,` = qo,` + h̄`, and ˆ̄ho,J+` = q̄o,J+` + h̄J+`, we obtain

P {bs = bo} = P
{
q̄o,`h̄` + h̄2

` + q̄o,J+`h̄J+` + h̄2
J+` > 0

}
= P

{
q̃` + |h`|2 > 0

}
,

(33)

where q̃` , q̄o,`h̄`+ q̄o,J+`h̄J+`. The statistics of the random variable q̃` are needed to find a closed-form expression
for P {bs = bo}. It is shown in Appendix C that

q̄o '
1

‖g‖2
V rV

T
r δR̄h̄, (34)

where V r is a 2J × (2J − 1) matrix whose columns are the eigenvectors of R̄ corresponding to the eigenvalue
σ2

2 , and that

E
{
q̄oq̄

T
o

}
' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
V rV

T
r . (35)
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It can be shown (34) that E {q̃`} ' 0 and that q̄o,` is the sum of N i.i.d. random variables. Using (35), it is
straightforward to show that

E
{
q̃2
`

}
' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
(|h`|2 − |h`|4). (36)

Hence, we may invoke the Central Limit Theorem to approximate q̃` by a Gaussian random variable with the same
mean and variance, thus obtaining

P {bs = bo} ' Q

(
−

√
N‖g‖4|h`|2(

σ2

2 ‖g‖2 + σ4

4

)
(1− |h`|2)

)
, (37)

where Q(·) is the Guassian Q-function [23]. Using (37), we finally get the MSE expression

E
{
‖δh̄s‖2

}
' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
(2J − 1) + 4− 4Q

(
−

√
N‖g‖4|h`|2(

σ2

2 ‖g‖2 + σ4

4

)
(1− |h`|2)

)
. (38)

C. Largest-magnitude Sign Correction

It is clear that the MSE expression in (38) decreases as |h`| increases. Thus, for a fixed channel g, the MSE is
lowest when the channel coefficient with the largest magnitude, hL, is employed in sign correction. Denoting by ˆ̄ha
and δh̄a , ˆ̄ha − h̄ the sign-corrected channel estimate and the resulting estimation error under largest-magnitude
sign correction, respectively, the resulting MSE is given by

E
{
‖δh̄a‖2

}
' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
(2J − 1) + 4− 4Q

(
−

√
N‖g‖4|hL|2(

σ2

2 ‖g‖2 + σ4

4

)
(1− |hL|2)

)
. (39)

In this case the probability of sign recovery error becomes very small, and the above MSE expression is well
approximated by the MSE under optimal sign correction in Theorem 2.

D. Training-based Sign Correction

In practice, the information needed to resolve the sign ambiguity has to be estimated using training pilots. We
will derive the probability of making a sign error when we use K pilots to estimate the optimal sign correction bo
and obtain a closed-form expression for the resulting MSE. We will also provide an expression for the unconditional
probability of making a sign recovery error taking the channel statistics into account. All K training symbols are
set to +1.

The real representation of the K received sample vectors during the training period has the form

z̄k = ḡ + n̄k, (40)

where k = 1, . . . ,K, and ḡ , [<{g}T ,={g}T ]T . We average the received vectors to obtain

z̄m = ḡ +
1

K

K∑
k=1

n̄k. (41)

Using z̄m, we estimate bo by b̂o = sgn{ˆ̄uT z̄m} = sgn
{
bo

ˆ̄hTo z̄m

}
. Hence,

b̂o = bosgn

{
ˆ̄hTo ḡ +

1

K

K∑
k=1

bˆ̄hTo n̄k

}

= bosgn

{
‖g‖+

1

K

K∑
k=1

ˆ̄hTo n̄k

}
= bosgn {cos ε} ,

(42)

where ε is the error in estimating θo under training-based phase correction. Denoting by ˆ̄ht , b̂o ˆ̄u and δh̄t , ˆ̄ht−h̄
the channel estimate after sign correction and the corresponding estimation error, respectively, the resulting MSE
is given by

E
{
‖δh̄t‖2

}
= E

{
‖q̄o‖2

}
+ 4− 4P

{
b̂o = bo

}
. (43)
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Moreover, we see from (42) that

P
{
b̂o = bo

}
= P

{
‖g‖+

1

K

K∑
k=1

ˆ̄hTo n̄k > 0

}
. (44)

Furthermore, the quantity ‖g‖ + 1
K

∑K
k=1

ˆ̄hTo n̄k is a real Gaussian random variable with a mean of ‖g‖ and a
variance of σ2

2K , which means that

P
{
b̂o 6= bo

}
= Q

(√
2K‖g‖2
σ2

)
. (45)

Therefore, the MSE in this case is

E
{
‖δh̄t‖2

}
' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
(2J − 1) + 4Q

(√
2K‖g‖2
σ2

)
. (46)

Finally, since the channel coefficients g1, . . . gJ are i.i.d. CN (0, γ2), the unconditional probability of sign recovery
which takes into account the statistics of the channel g can be found using the Moment Generating Function (MGF)
of the Gamma distribution [26] and is given by

Pu

{
b̂o 6= bo

}
=

1

2

[
1−

√
Kγ2

Kγ2 + σ2

J−1∑
l=0

(
2l

l

)(
σ2

4(Kγ2 + σ2)

)]
, (47)

for Kγ2/σ2 > 1.

VI. PERFORMANCE COMPARISON

In this section, we compare theoretically the MSE performance of the two estimators. Our approach is to derive
closed-forms and/or lower bounds on the unconditional probability that the MSE of the conventional estimator is
greater than that of the WL estimator, as a function of channel length, SNR and sample size, taking into account
the statistics of the channel g. We will derive a closed-form expression for this probability for the case of optimal
phase and sign correction, and two lower bounds on this probability for the case of largest-magnitude phase and
sign correction. For the other two cases, suboptimal and training-based correction, such probability expressions are
very difficult to derive.

A. Relative MSE Performance for Optimal Correction

Under optimal phase and sign correction, the MSE expressions for the conventional estimator and the WL
estimator are given in Theorem 1 and Theorem 2, respectively, and the difference in MSE is

∆MSEo , E
{
‖δho‖2

}
− E

{
‖δh̄o‖2

}
=

1

N‖g‖4

(
−σ

2

2
‖g‖2 + σ4

(
J

2
− 3

4

))
.

(48)

We are interested in evaluating P{∆MSEo > 0}, i.e., the probability that the WL estimator outperforms the
conventional one. For J ≥ 2, P {∆MSEo > 0} = P

{
‖g‖2 < σ2

(
J − 3

2

)}
. The norm-squared of the channel,

‖g‖2, is a Central Chi-squared random variable of order 2J , which means that [27]

P {∆MSEo > 0} = G

(
σ2

γ2

(
J − 3

2

)
, J

)
, (49)

where G(x, a) is the regularized version of the Lower Incomplete Gamma Function defined in [23] as G(x, s) =
1

Γ(s)

∫ x
0 t

s−1e−tdt, where Γ(·) is the ordinary Gamma function. For fixed s, G(x, s) is strictly increasing with

respect to x. We will consider the case where γ2

σ2 ≥ 1, which means that the average received SNR at each antenna
is greater than or equal to 0 dB. In this case,

G

(
σ2

γ2

(
J − 3

2

)
, J

)
≤ G

(
J − 3

2
, J

)
. (50)
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Moreover, it can be shown that G
(
J − 3

2 , J
)
< 1

2 , which means that the conventional estimator outperforms the
WL estimator with probability greater than 1

2 . At first glance, this is rather surprising because previous works on
WL subspace-based channel estimation [10], [13] report superior MSE performance for the WL estimator. However,
none of the previous works considers optimal phase and sign correction. While the WL estimator is indeed superior
in the remaining three cases (suboptimal, largest-magnitude, and training-based correction), as we will show later in
this section and in Section VII, the above result means that the superiority of the WL estimator is highly dependent
on the imperfect nature of phase and sign correction. The superior performance of the WL estimator under imperfect
correction makes sense because, intuitively, it is easier to correct the sign which is a binary random variable than
to correct the phase which is a continuous random variable. On the other hand, when correction of both the phase
and sign is optimal, the WL estimator is expected to incur more error because the dimension of its observation
vector is twice that of the conventional estimator. To the best of our knowledge, we are the first to establish the
relationship between the relative performance of conventional and WL subspace-based estimators and the imperfect
nature of phase and sign correction.

B. Relative MSE Performance for Largest-magnitude Correction

Under largest-magnitude phase and sign correction, the MSE expressions for the conventional estimator and the
WL estimator are given in (22) and (39), respectively, and the difference in MSE is

∆MSEa , E
{
‖δha‖2

}
− E

{
‖δh̄a‖2

}
' σ2

N‖g‖2

(
1

2|hL|2
− 1

)
+

σ4

N‖g‖4

(
J

2
+

1

2|hL|2
− 5

4

)
+ 4Q

(
−

√
N‖g‖4|hL|2(

σ2

2 ‖g‖2 + σ4

4

)
(1− |hL|2)

)
− 4.

(51)

It is very difficult to obtain a closed-form expression for P{∆MSEa > 0} using the expression in (51). However,
as we mentioned earlier, the probability of sign recovery error under largest-magnitude sign correction is very small
and, as a result, E

{
‖δh̄a‖2

}
' E

{
‖δh̄o‖2

}
, which implies that

∆MSEa '
σ2

N‖g‖2

(
1

2|hL|2
− 1

)
+

σ4

N‖g‖4

(
J

2
+

1

2|hL|2
− 5

4

)
(52)

Using the above approximation, we obtain bounds on P {∆MSEa > 0} that are presented in the following theorem.

Theorem 3 The probability that the WL estimator outperforms the conventional estimator under largest-magnitude
phase and sign correction can be bounded as follows:
Case I: (J = 2)

1− e−
σ2

2γ2 < P {∆MSEa > 0} < 1− e−
σ2

γ2 .

Case II: (J ≥ 3)

P {∆MSEa > 0} > 1− J
(

1

2

)J−1

e−
σ2

γ2 .

The proof of Theorem 3 is found in Appendix D. We can see from the upper and lower bounds on P {∆MSEa > 0}
for J = 2 that the WL estimator is better at low SNR, while the conventional estimator is better at high SNR.

For J ≥ 3, we can use the fact that e−
σ2

γ2 < 1 to obtain the following lower bound which is looser but does not
depend on SNR:

P {∆MSEa > 0} > 1− J
(

1

2

)J−1

. (53)

Both lower bounds that apply for J ≥ 3 approach 1 as J increases for fixed SNR, and the tighter one approaches
1 as SNR decreases for fixed J . We see from the bound in (53) that, starting with J = 4, P {∆MSEa > 0} > 1

2
regardless of SNR, which means that the WL estimator performs better with higher probability for this range. For
J = 3, however, which estimator is better depends on the SNR, as will be confirmed by our simulation results in
Section VII.
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VII. SIMULATION RESULTS

We use Monte Carlo simulations to verify the accuracy of the analytical expressions we derived in the previous
sections and to compare the MSE performance of the conventional and WL subspace-based estimators under the
four scenarios considered in our work.

We begin with the first three cases: optimal, suboptimal, and largest-magnitude correction. Our MSE results
are obtained for J = 5 and averaged over the same set of 1000 channel realizations independently generated
with γ2 = 1. We show the average MSE performance of the conventional estimator for optimal, suboptimal and
largest-magnitude phase correction, and that of the WL estimator for optimal and suboptimal sign correction. The
MSE performance of the WL estimator under largest-magnitude sign correction will not be shown in our plots
because it is indistinguishable from the performance under optimal sign correction, due to the very low probability
of making a sign recovery error in this case. In Fig. 2, we plot the average MSE vs. SNR, for N = 100, while in
Fig. 3, we plot the average MSE vs. N, for an SNR of 10 dB. Figs. 2 and 3 demonstrate that the derived analytical
MSE expressions are highly accurate. We see that the conventional estimator slightly outperforms the WL estimator
under optimal phase and sign correction. However, the WL estimator is significantly better than the conventional
estimator under suboptimal correction and slightly better under largest-magnitude correction. The performance of
the WL estimator under suboptimal correction approaches the performance under optimal correction for high SNR
and for large sample size, which does not seem to be the case for the conventional estimator.

We now consider the practical case where training pilots are used for phase and sign recovery. Using the same
simulation settings as before, we compare the average MSE performance of the conventional and WL estimator
when pilot symbols are used to recover the phase and the sign. We study two cases, K = 1 and K = 5. The
average MSE performance of both estimators vs. SNR under training is shown in Fig. 4, alongside the performance
under optimal phase and sign correction. As expected, the performance of both estimators improves as the number
of pilots increase from 1 to 5. However, there is a huge performance gap in favor of the WL estimator. The
performance of the WL estimator becomes very close to optimal performance as SNR increases for K = 1, and
becomes indistinguishable from optimal performance for K = 5. The average MSE performance vs. N is shown
in Fig. 5 for an SNR of 10 dB. In this case, for the WL estimator we only plot the MSE for K = 1 because it
completely overlaps with the optimal performance. These results show that, in practice, the WL estimator will have
superior performance because training is much more effective at recovering the sign than recovering the phase. As
before, both plots demonstrate that the derived analytical expressions are highly accurate.

In Fig. 6, we plot the analytical expression for P {∆MSEo > 0} in (49) and its experimental evaluation vs. channel
length for SNR values of 0, 5 and 10 dB. We evaluate P {∆MSEo > 0} experimentally using 107 independently
generated channel realizations (for each value of J) with γ2 = 1. For each channel realization, we use the analytical
expressions for the MSE of the two estimators to determine which estimator is superior, since we have already
established the accuracy of these expressions. We see that under optimal phase and sign correction, the conventional
estimator is more likely to perform better. As SNR increases, the conventional estimator performs better with
overwhelmingly high probability. However, as we showed in Fig. 2 and Fig. 3, the difference between the average
MSE performance of the two estimators is very small.

Finally, in Fig. 7, we plot the experimental evaluation of P {∆MSEa > 0} vs. channel length for SNR values
of 5, 10 and 15 dB along with the two lower bounds presented in Theorem 3. We evaluate P {∆MSEa > 0}
experimentally using 106 independently generated channel realizations with γ2 = 1. As we did for the case of
optimal correction, we use the analytical expressions for the MSE to determine which estimator is superior for each
channel realization. We see from Fig. 7 that, for J = 3, which estimator is more likely to perform better depends
on SNR, with the WL estimator being favored by low SNR and the conventional estimator being favored by high
SNR. For J ≥ 4, however, the WL estimator is more likely to perform better regardless of SNR.

VIII. CONCLUSIONS

In this paper, we presented a thorough theoretical study of the relative MSE performance of conventional and
WL subspace-based channel estimation in the context of SIMO flat-fading channels employing BPSK modulation.
Our study explicitly took into consideration the effect of covariance matrix estimation with a finite number of
received samples and the impact of phase and sign ambiguity resolution. We considered four different scenarios of
phase and sign ambiguity resolution. The first three assumed that certain information about the actual channel is
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perfectly known at the receiver. The first one assumed that the phase of the inner-product between the initial channel
estimate and the actual channel is known, resulting in optimal ambiguity resolution, while the second assumed that
the phase of a randomly chosen channel coefficient is known and the third one assumed that the phase of the
channel coefficient with the largest magnitude is known. We derived accurate closed-form MSE expressions for
each estimator in these cases, in addition to a closed-form expression for the probability that the WL estimator
outperforms the conventional one in the first case and a lower bound on this probability in the third case. The
three scenarios resulted in varying relative performances, with the conventional estimator being on average slightly
better in the first, and the WL estimator being significantly better in the second and slightly better in the last. This
behavior showed that the relative performance of the two estimators is strongly related to the accuracy of phase and
sign ambiguity resolution, and that the less information about the actual channel available for ambiguity resolution,
the larger the performance gap in favor of the WL estimator. We also studied the more realistic scenario where pilot
symbols are used to resolve the two ambiguities. We derived accurate closed-form expressions for the MSE of the
two estimators assuming that the same number of pilots are used. Our simulations showed that in this when pilots
are used there is a significant performance gap in favor of the WL estimator which performs very close to optimal
even with a single pilot. This scenario showed that the WL estimator significantly outperforms the conventional
one when the information about the channel which is available for ambiguity resolution is inaccurate.

APPENDIX A
PROOF OF THEOREM 1

The phase-corrected channel estimate is ĥo = ûe∠(ûHh). Hence, hH ĥo = |hHû| ≥ 0. Since ĥo = h+qo+αoh,
we have that hH ĥo = 1+αo, which implies that αo is real and αo ≥ −1. Using the fact that ĥ

H

o ĥo = 1, we obtain

α2
o + 2αo + ‖qo‖2 = 0. (54)

Since αo ≥ −1, the solution of the above quadratic equation is αo = −1+
√

1− ‖qo‖2. Moreover, since ‖qo‖2 < 1,
we can use the Taylor series expansion

√
1− ‖qo‖2 = 1 − 1

2‖qo‖
2 + O

(
‖qo‖4

)
, to obtain αo = −1

2‖qo‖
2 +

O
(
‖qo‖4

)
, which means that |αo|2 = 1

4‖qo‖
4+O

(
‖qo‖6

)
. Therefore, |αo|2 � ‖qo‖2, δho ' qo and E

{
‖δho‖2

}
'

E
{
‖qo‖2

}
.

To find E
{
‖q2

o‖
}

, we denote by λ̂1 the largest eigenvalue of R̂, and let δλ1 , λ̂1−λ1. Since R̂ĥo = λ̂1ĥo, we
have

(R + δR)(h + qo) = (λ1 + δλ1)(h + qo). (55)

Using the fact that Rh = λ1h, and ignoring the second-order perturbation terms δRqo and δλ1qo in (55) (as
in [28]), we obtain

(R− λ1I)qo ' −δRh + δλ1h. (56)

Furthermore, we have that (R − λ1I) = −‖g‖2V V H , where V is a J × (J − 1) matrix whose columns are the
orthonormal eigenvectors of R corresponding to the eigenvalue σ2 of multiplicity J − 1 (i.e., the noise subspace).
Multiplying the two sides of (56) by V V H , we obtain

qo '
1

‖g‖2
V V HδRh. (57)

From eq. (57), we see that E {qo} ' 0. Let Q , E
{
qoq

H
o

}
, the MSE is E

{
‖qo‖2

}
= tr {Q}, and we can expand

Q as

Q ' 1

‖g‖4
E{V V HδRhhHδRV V H}. (58)

To obtain a closed-form for the above expectation, we must evaluate the term E{δRhhHδR}. Using the approach
followed in [29], it can be shown that

E{δRhhHδR} =
1

N
[σ2‖g‖2 hhH + (σ2‖g‖2 + σ4)I]. (59)

Therefore,
Q ' 1

N‖g‖4
(σ2‖g‖2 + σ4)V V H . (60)
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From the above equation, we see that, for any ` = 1, . . . , J , E {qo,`} = 1
N‖g‖4 (σ2‖g‖2 + σ4)(1 − |h`|2). Finally,

the MSE is given by

E
{
‖qo‖2

}
' tr

{
1

N‖g‖4
(σ2‖g‖2 + σ4)V V H

}
=

1

N‖g‖4
(σ2‖g‖2 + σ4)(J − 1). (61)

APPENDIX B

In this appendix, we show that E{q2
o,`} ' 0 for ` = 1, . . . , J . We first let W , E{qqT } ' E{V V HδRhhT δR∗V ∗V T

l }.
Hence E{q2

o,`} = W (`, `), where W (i, j) is the (i, j)th entry of W . To obtain a closed-form expression for W ,
we need to evaluate E{δRhhT δR∗}. It is easy to see that

E{δRhhT δR∗} =
1

N
(E{r(i)r(i)HhhTr(i)∗r(i)T } −RhTR∗), (62)

where r(i) is the ith received vector sample. Moreover,

E{r(i)r(i)HhhTr(i)∗r(i)T } =‖g‖4hhT + 4σ2‖g‖2hhT + E{n(i)n(i)HhhTn(i)∗n(i)T }. (63)

To find E{n(i)n(i)HhhTn(i)∗n(i)T }, we use the property [30]

vec(AXB) = (BT ⊗A)vec(X), (64)

where the vec(·) operator stacks the column vectors of a matrix below one another and ⊗ denotes the Kronecker
product. Hence, we obtain

E{n(i)n(i)HhhTn(i)∗n(i)T } = unvec[E{n(i)n(i)H ⊗ n(i)n(i)H}vec(hhT )], (65)

where unvec(·) converts a vector into matrix format by ordering the elements of the vector into columns of equal
length. It is straightforward to check that E{n(i)n(i)H ⊗ n(i)n(i)H} = σ4IJ2 + σ4A where A is a J2 × J2

matrix made of J × J subblocks each of dimension J × J , with the (i, j)th sub-block given by sjs
T
i where si is

the J × 1 vector whose ith entry is 1 and all other entries are zero. Thus,

E{n(i)n(i)HhhTn(i)∗n(i)T } = unvec[(σ4IJ2 + σ4A)vec(hhT )] = 2σ4hhT , (66)

where we have used eq. (39) from [29]. Combining (62), (63), and (66), we obtain

E{δRhhT δR∗} =
1

N
(‖g‖4 + 4σ2‖g‖2 + 2σ4)hhT − 1

N
(‖g‖4 + 2σ2‖g‖2 + σ4)hhT

=
1

N
(2σ2‖g‖2 + σ4)hhT .

(67)

Therefore, W ' 1
N (2σ2‖g‖2 + σ4)V V HhhTV ∗V T = 0, since all columns of V are orthogonal to h. Therefore,

E{q2
o,`} = W (`, `) ' 0.

APPENDIX C
PROOF OF THEOREM 2

Following similar steps to those in Appendix A, we can show that |µ0|2 � ‖q̄o‖2 and that

δh̄o ' q̄o '
1

‖g‖2
V rV

T
r δR̄h̄. (68)

where V r is a 2J × (2J − 1) matrix whose columns are the eigenvectors of R̄ corresponding to the eigenvalue σ2

2
of multiplicity 2J − 1 (i.e., the noise subspace). Thus, E {q̄o} ' 0. Let

Q̄ , E
{
q̄oq̄

T
o

}
' 1

‖g‖4
{V rV

T
r E{δR̄h̄h̄

T
δR̄}V rV

T
r }. (69)

By applying the same approach used in [29] for real signals, we can find the following closed form for E{δR̄h̄h̄
T
δR̄}

(the derivation has been omitted for brevity):

E
{
δR̄h̄h̄

T
δR̄
}

=
1

N

((
3

2
σ2‖g‖2 +

σ4

4

)
h̄h̄

T
+

(
σ2

2
‖g‖2 +

σ4

4

)
I

)
. (70)
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Substituting (70) into (69), we obtain

Q̄ ' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
V rV

T
r . (71)

Finally, the MSE is given by

E
{
‖δh̄o‖2

}
' tr{Q̄} ' 1

N‖g‖4

(
σ2

2
‖g‖2 +

σ4

4

)
(2J − 1). (72)

APPENDIX D
PROOF OF THEOREM 3

The difference in MSE for under largest-magnitude correction is

∆MSEa '
σ2

N‖g‖2

(
1

2|hL|2
− 1

)
+

σ4

N‖g‖4

(
J

2
+

1

2|hL|2
− 5

4

)
. (73)

Substituting hL =
gL
‖g‖ , the WL estimator outperforms the linear one when

‖g‖4

2|gL|2
− ‖g‖2 +

σ2‖g‖2

2|gL|2
> σ2

(
5

4
− J

2

)
. (74)

We first consider the case J = 2, and let p be the index of the channel coefficient with the smallest magnitude.
The condition in (74) simplifies to

|gp|4 − |gL|4 + σ2|gp|2 +
σ2

2
|gL|2 > 0. (75)

It is easy to see from (75) that

P (∆MSEa > 0) < 1− P (|gL|2 − |gp|2 ≥ σ2). (76)

Moreover, g1 and g2 are i.i.d., so P (L = 1) = P (L = 2) = 1
2 and

P
(
|gL|2 − |gp|2 ≥ σ2

)
=

1

2
P
(
|g1|2 − |g2|2 ≥ σ2

∣∣L = 1
)

+
1

2
P
(
|g2|2 − |g1|2 ≥ σ2

∣∣L = 2
)

= P
(
|g1|2 − |g2|2 ≥ σ2

∣∣L = 1
)

= 2P
(
|g1|2 − |g2|2 ≥ σ2

)
.

(77)

Since g1 and g2 are i.i.d. CN (0, γ2), we have that [27] P (|g1|2 − |g2|2 ≥ σ2) = 1
2e
−σ2
γ2 , which provides us with

the upper bound
P (∆MSEa > 0) < 1− e−

2σ2

γ2 . (78)

Moreover, it can also be inferred from (75) that

P (∆MSEa > 0) > 1− P
(
|g2
L − |gp|2 ≥

σ2

2

)
, (79)

which allows us to lower-bound P (∆MSEa > 0) by 1− e−
σ2

2γ2 . Therefore,

1− e−
σ2

γ2 < P (∆MSEa > 0) < 1− e−
2σ2

γ2 . (80)

We will now consider the case J ≥ 3. In this case, the RHS of eq. (74) is negative, and a sufficient condition
for the WL estimator to be better is

2|gL|2 − ‖g‖2 ≤ σ2. (81)
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It is convenient to define the random variable D(i) , 2|gi|2 − ‖g‖2, for i = 1, . . . , J . The random variable D(i) is
the difference of two independent central Chi-square random variables of degrees 2 and 2J − 2, respectively, and
P
(
D(i) ≥ x

)
=
(

1
2

)J−1
e
−x
γ2 for any x ≥ 0 [27]. Moreover, for any i = 1, . . . , J ,

P
(
D(i) ≥ σ2

)
= P

(
D(i) ≥ σ2

∣∣L = i
)
P (L = i) + P

(
D(i) ≥ σ2

∣∣L 6= i
)
P (L 6= i)

= P
(
D(i) ≥ σ2

∣∣L = i
)
P (L = i)

=
1

J
P
(
D(i) ≥ σ2

∣∣L = i
)
.

(82)

Thus, P
(
D(i) ≥ σ2

∣∣L = i
)

= JP
(
D(i) ≥ σ2

)
= J

(
1
2

)J−1
e
−σ2

γ2 . Going back to the sufficient condition in (81),
we obtain

P (∆MSEa > 0) > 1− P
(
2|gL|2 − ‖g‖2 ≥ σ2

)
= 1−

J∑
i=1

P
(
2|gi|2 − ‖g‖2 ≥ σ2

∣∣L = i
)
P (L = i)

= 1−
J∑
i=1

P
(
D(i) ≥ σ2

∣∣L = i
)
P (L = i)

= 1− J
(

1

2

)J−1

e
−σ2

γ2 .

(83)
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Fig. 2. The theoretical and experimental average MSE performance of the two estimators for the cases of optimal, suboptimal, and
largest-magnitude phase and sign correction plotted vs. SNR for J = 5 and N = 100.

Fig. 3. The theoretical and experimental average MSE performance of the two estimators for the cases of optimal, suboptimal, and
largest-magnitude phase and sign correction plotted vs. N for J = 5 and an SNR of 10 dB.
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Fig. 4. The theoretical and experimental average MSE performance of the two estimators under training-based phase and sign correction
using K = 1, 5 for the conventional estimator and K = 1 for the WL estimator, plotted together with optimal performance vs. SNR for
J = 5 and N = 100.

Fig. 5. The theoretical and experimental average MSE performance of the two estimators under training-based phase and sign correction
for K = 1, 5, together with optimal performance plotted vs. N for J = 5 and an SNR of 10 dB.
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Fig. 6. Theoretical and experimental evaluation of the probability that the WL estimator outperforms the conventional one under optimal
phase and sign correction plotted vs. J for SNR values of 0, 5 and 10 dB.

Fig. 7. Experimental evaluation of the probability that the WL estimator outperforms the conventional one under largest-magnitude phase
and sign correction together with the lower bound in Theorem 3 and the one in eq. (53) plotted vs. J for SNR values of 5, 10 and 15 dB.
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