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Robust Rate-Adaptive Wireless Communication

Using ACK/NAK-Feedback
C. Emre Koksal and Philip Schniter

Abstract

To combat the detrimental effects of the variability in wireless channels, we consider cross-layer

rate adaptation based on limited feedback. In particular, based on limited feedback in the form of link-

layer acknowledgements (ACK) and negative acknowledgements (NAK), we maximize the physical-layer

transmission rate subject to an upper bound on the expected packet error rate. We take a robust approach

in that we do not assume any particular prior distribution onthe channel state. We first analyze the

fundamental limitations of such systems and derive an upperbound on the achievable rate for signaling

schemes based on uncoded QAM and random Gaussian ensembles.We show that, for channel estimation

based on binary ACK/NAK feedback, it may be preferable to usea separate training sequence at high

error rates, rather than to exploit low-error-rate data packets themselves. We also develop an adaptive

recursive estimator, which is provably asymptotically optimal and asymptotically efficient.

Index Terms— adaptive modulation, rate adaptation, automatic repeat request, cross-layer strategies.

I. INTRODUCTION

Channel variation is a principal feature of wireless communication. On one hand, channel variation

poses a hindrance to reliable communication, in that channel fading can make the received signal-to-noise

ratio (SNR) arbitrarily low at any given time instant, making reliable communication virtually impossible.

On the other hand, channel variation poses an opportunity, in that a channel-state-aware transmitter can

communicate reliably at high rates during channel quality peaks. The key to taming and exploiting channel
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variation therefore lies in the judicious use of transmitter channel state information (CSI). While accurate

receiverCSI is relatively easy to maintain, accuratetransmitterCSI is often difficult to maintain due to

limited feedback resources.

We partition limited feedback schemes (see [1] for an overview) into two classes: those based on

channel-state feedbackand those based onerror-rate feedback. In limited channel-state feedback schemes

(e.g., [2]–[5]), the channel-state estimate computed by the receiver is quantized1 and then fed back to the

transmitter. In limited error-rate feedback schemes (e.g., [6]–[17]), a quantized error-rate estimate is fed

back to the transmitter, from which it can infer CSIrelative tothe previously employed transmission rate.

For example, with Automatic Repeat reQuest (ARQ) [18], a negative acknowledgement (NAK) of packet

reception suggests that the channel quality was below that needed for reliable communication at the

previously employed transmission rate, whereas a positiveacknowledgement (ACK) of packet reception

suggests the opposite.

Although ACK/NAK feedback can be employed for the estimation of transmitter CSI, its primary role

is that of maintaining a desired packet error rate at the linklayer through controlled packet re-transmission

(see, e.g., [18]). In fact, since the packet acknowledgement is a standard provision of most practical link

layers, we reason that—for the purpose of channel-state estimation—it comes atessentially no costto

the physical layer, unlike traditional channel-state feedback schemes, which require the dedication of

reverse-channel bandwidth beyond that required for packetacknowledgements. In this sense, ACK/NAK-

based transmitter-CSI schemes require even less total feedback bandwidth than “one-bit” channel-state

feedback schemes (e.g., [19], [20]), given that systems employing “one-bit” channel-state feedback include

ACK/NAK as well, for the purpose of ARQ.

With the above motivation, we focus on theexclusiveuse of limited error-rate feedback for the

maintenance of transmitter CSI, from which transmission rate and/or power resources are subsequently

adapted. While examples of this strategy can be found in a number of previous works (e.g., [6]–[17]),

there are limitations in how it has been applied. For example, in [6]–[10], the adaptation algorithms

are designed heuristically, based on practical experiences gained for a specific application in a specific

operating environment. In [11]–[17], on the other hand, transmission rates and/or powers are chosen

carefully to maximize a certain performance metric. To achieve this objective, a Bayesian approach is

1 In some cases, the receiver uses its channel estimate to calculate discrete transmitter rate and/or power parameters, and then

feeds back those parameters directly. Since these transmitter parameters can be put in one-to-one correspondence withsome

quantized channel-state estimate, we consider such schemes to be equivalent to channel-state feedback schemes.
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taken, i.e., amodel is assumed for the channel variations and an associated optimization problem is

solved based on this model. Typically, the channel is assumed to vary according to a finite-state Markov

model [11], [12], [14]–[16] or a Gauss-Markov process [17].The shortcoming of a model-based approach

is that, it may not be possible to assign accurate priors overa wide range of channel operating conditions.

Consider, for example, that channel variations span a wide range of time scales, from bits to thousands of

packets. For instance, relative movement of the transmitter-receiver pair may cause variations at relatively

long time scales, since a very large number of packets can be transmitted during the time it takes for the

stations to move far enough to cause significant change in thechannel. On the other hand, co-channel

interference can change significantly from one packet transmission to another. Finally, the multipath

nature of the propagation medium can cause fast and/or slow fading in the channel, depending on the

relative movement of the scatterers.

In this paper, we take a robust Bayesian [21] approach to rate-adaptation from limited error-rate

feedback, where “robust Bayesian” refers to the fact that wetreat the channel state as a random quantity

without assuming any particular prior distribution on it. In particular, we first derive conditions on the

“quality” of CSI needed for a model-independent ACK/NAK-based rate adaptation system to maximize

data rate while keeping the packet error probability below aspecified threshold. Based on these conditions,

we derive fundamental bounds on the rate achievable under a given error probability constraint. Finally,

we design an ACK/NAK-feedback-based non-Bayesian channel-state estimator with provable asymptotic

optimality. Our findings are illustrated through both uncoded QAM and random Gaussian signaling.

We emphasize that the packet-level retransmissions orchestrated by link-layer ARQ would be performed

on top of the ACK/NAK-based rate-control that we study. In fact, since our physical-layer optimization

criterion (i.e., maximization of transmission rate subject to a given target packet error probability) is

by nature decoupled from the functioning of higher layers, we do not explicitly consider ARQ in our

analysis. In other words, from the perspective of our physical layer, the link-layer ARQ mechanism

merely specifies the contents of the packets that are to be transmitted.

The remainder of the paper is organized as follows. In Section II, we detail the system model and

provide a mathematical statement of the problem. In SectionIII, we derive conditions for successful

rate adaptation with imperfect CSI, and in Section IV, we evaluate bounds on the achievable rates with

ACK/NAK feedback. In Section V, we develop an recursive channel estimator based on such feedback,

and in Section VI we conclude.
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Fig. 1. The rate adaptation system.

II. SYSTEM MODEL

A. System Components

Figure 1 depicts our model of the physical-layer adaptive communication system. At each discrete

packet indext, the transmitter transmits a packetXt = [Xt,1, . . . ,Xt,n] containing a fixed number,n, of

symbols{Xt,k}
n
k=1, which are encoded at a rate ofRt bits/symbol, chosen by the rate controller from

the set of possible ratesR. We assume that the transmit power is constant and normalizeall power levels

such that the energy per symbol is E
[
|Xt,k|

2
]
= 1. For this packet, the corresponding channel outputs

are

Yt,k = HtXt,k +Wt,k, k = 1, . . . , n, (1)

for complex-valued channel gainHt and additive white circularly symmetric complex Gaussian noise

Wt,k with two-sided power spectral densityNo. Some common models forHt include Rayleigh-, Rician-

and Nakagami-fading (see e.g., [22]). However, we will not assume any specific statistical model forHt

and we will make only weak assumptions on the distribution ofHt in the sequel.

The quantityγt = |Ht|
2/No can be interpreted as thetth packet’schannel SNR. Since each symbol

has unit energy,γt is also thereceived SNRfor packett. Thus, we will simply refer toγt as the SNR.

Due to lack of power adaptation,γt is an exogenous quantity over which the system has no control. We

assume that, for allt, γt takes on values from some prior distributionp(·) ∈ P, whereP is a set of

distributions with finite mean and variance. However, we make no further assumptions on setP. We do

not even assume knowledge of this set by the transmitter or the receiver.

We assume that the receiver has access to perfect CSI and usesa maximum likelihood decoder to decode

the received packet. Let̂Xt denote the decoded estimate of packetXt based on received packetYt =

[Yt,1, . . . , Yt,n], and the corresponding probability of decoding error beε(γt, Rt) = Pr
(
X̂t 6= Xt | γt, Rt

)
.

Note thatε(·, ·) depends on the packet sizen and the coding/modulation schemes, which are assumed
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to be known at the decoder. For now, we assume only that the coding/modulation schemes are such that

ε(γt, Rt) is a convex, continuous, and increasing function ofRt and a convex, continuous, and decreasing

function of γt. Later, we detail the behavior of our proposed schemes for the specific cases of uncoded

QAM and random Gaussian signaling.

Based on the received packetYt and the decoded packetX̂t, the decoder generates a feedback packet

Ft which is communicated to the transmitter through a reverse channel. Assuming that the receiver is

capable of perfect error detection, we takeFt to be a binary ACK/NAK (i.e.,Ft = 0 for ACK andFt = 1

for NAK), so that

Pr
(
Ft = f | γt, Rt

)
=







ε(γt, Rt), f = 1

1− ε(γt, Rt), f = 0

. (2)

We assume that the reverse channel is error-free but introduces a delay of a single2 packet interval. Thus,

the “information” available to the transmitter when choosing rateRt is It = [F1, F2, . . . , Ft−1, R1, R2, . . . , Rt−1].

We find it convenient to explicitly include the previous rates{Rτ}τ<t in the information vectorIt because

the ACK/NAK feedbackFτ characterizes channel qualityrelative to the transmission rateRτ . Note that

the controller chooses the transmission rate at timet solely based on the information vectorIt, which

is available at the receiver as well. We assume that the receiver is also aware of the controller’s rate

allocation strategy, so that it can compute the current and previous values ofRt.

Finally, we assume in the sequel that the SNR is constant overeach block ofT ≫ 1 packets, and that

it changes independently from block to block, i.e., that thechannel is “block fading.” In the sequel, we

focus (without loss of generality) on the first block, for which t ∈ {1, . . . , T}, and omit thet-dependence

on the SNR, writingγt as “γ.” In addition, we usep(γ|It) to denote the posterior SNR distribution, which

can be associated with the prior distributionp(γ) through the conditional mass functionP (Ft | γ,Rt)

given in (2). Furthermore, we denote the set of possible posterior probability distributions usingP(It).

B. Ideal Rate Selection

We define theideal p-hypothesized controlleras the one that, at timet, based on the hypothesized pos-

terior p(γ|It), jointly optimizes the transmission rates(Rt, . . . , RT ) to maximize the sum-rate
∑T

τ=1 Rτ

subject to a constraint on expected error probability. In doing so, we allow any packet to be declared a

probe packet, which is exempt from the expected-error-probability constraint but contributes nothing to

2It is straightforward to generalize all of our results to a general delay ofd > 1 packet intervals. While the generalization

does not alter the fundamental nature of our results, it requires a more complex notation, which we avoid for clarity.
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sum rate. Probe packets are used exclusively to learn about the SNRγ, in the hope of more efficient

allocation of futuredata packets. In particular, the ideal controller chooses rates according to the following

constrained optimization problem:

max
(Dt,...,DT )∈{0,1}T−t+1, (Rt,...,RT )∈RT−t+1

T∑

τ=t

DτRτ (3)

subject toDτEp [ε(γ,Rτ ) | It] 6 e−α for all τ = t, . . . , T. (4)

Here,Dτ ∈ {0, 1} indicates whether theτ th packet is a data packet (Dτ = 1) or a probe packet (Dτ = 0),

andα > 0 is an application-dependent quality-of-service (QoS) parameter. Note that the expectation Ep [·]

in (4) is taken over the conditional distributionp(γ|It).

With ACK/NAK feedback, recall thatIt = [F1, F2, . . . , Ft−1, R1, R2, . . . , Rt−1]. Thus, the choice ofRt

affects not only the contribution to the sum-rate but also the “quality” of the conditional SNR distribution

p(γ | Iτ ) at timesτ ≥ t+1. As these future SNR estimates get worse, the controller is forced to choose

more conservative (i.e., lower) rates in order to satisfy the expected error-rate constraint. (We justify

this statement in the sequel.) Thus, the selection ofRt has both short-term and long-term consequences,

which may be in conflict. Consequently, the solution to the ideal rate adaptation problem (3,4) under

ACK/NAK feedback is aconstrainedpartially observable Markov decision process (POMDP) [23]. For

practical horizonsT , it is computationally impractical to implement this POMDP, as now described.

Firstly, notice that the state of the channel is continuous.Even if the channel state was discretized (at

the expense of some loss in performance), the required memory to implement the optimal scheme would

grow exponentially with the horizonT . Indeed, this POMDP lies in the space of PSPACE-complete

problems, i.e., it requires both complexity and memory thatgrow exponentially with the horizonT [24].

Next, consider the (genie-aided) case of perfect CSI, i.e.,It = γ for all t. When the channel is known,

there is no need for probe packets, and thus the optimal solution choosesDτ = 1 ∀τ . Furthermore,

since the rate choice does not affect the quality of the SNR estimate, the ideal rate assignment problem

decouples, so that the best choice forRt becomes

Rperf-CSI
t (γ) , arg max

Rt∈R
Rt s.t. ε(γ,Rt) 6 e−α. (5)

Indeed, with perfect CSI, constraint (4) is active for allt = 1, . . . , T , sinceε(γ,Rt) is a convex increasing

function ofRt and the objective function is linear inRt. Notice that, in this case, ideal rate selection is

greedy andRperf-CSI
t (γ) is invariant3 to time t.

3 This invariance holds as long asε(·, ·) is t-invariant, i.e., the coding/modulation scheme does not change with time.
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C. Practical Rate Selection

In practice, we have neither the exact posteriorp(γ|It), nor the perfect CSI. Thus, we consider a

practical (non-ideal) approach, motivated by techniques from the field of adaptive control [25], which

deviates from the ideal approach in two principal ways:

1) the probe packet locations are set at the firstTp packets in eachT -block, and

2) the controller is split into two components: achannel estimator, which produces an SNR estimate

γ̂(ITp+1) based on the probe-packet feedbackITp+1, and arate allocator, which assigns the data

packet rate based on̂γ(ITp+1). (See Fig. 2.)

As before, the rate allocator chooses the data-packet rates(RTp+1, . . . , RT ) in order to maximize sum-rate

under an expected-error-probability constraint. In particular, at each timet ∈ {Tp + 1, . . . , T}, the rate

Rt is chosen via:

max
(Rt,...,RT )∈RT−t+1

T∑

τ=t

Rτ (6)

subject to Ep
[
ε(γ,Rτ ) | γ̂(ITp+1)

]
6 e−α (7)

for all τ = t, . . . , T,

where the expectation in (7) is taken over some posterior distribution p(γ | γ̂(ITp+1)). Let us denote

γ̂Tp+1 , γ̂(ITp+1) and the set of possible posterior distributions withP(γ̂Tp+1), which, in turn, is decided

by the particular choice of the estimatorγ̂(·).

While related, the constraints (4) and (7) have an importantdifference: the information contained by

It in (4) is summarized by thepossibly incompletestatistic γ̂(ITp+1) in (7). Consequently, satisfaction

of (7) does not necessarily guarantee satisfaction of (4) orvice versa.

Due to the fact that the probing period is limited to the firstTp packets,{RTp+1, . . . , RT } does not

affect the quality of future SNR estimates, the rate assignment problem (6)-(7) decouples, and the value

of Rt satisfying (6)-(7) reduces to

R∗
t , arg max

Rt∈R
Rt s.t. Ep

[
ε(γ,Rt) | γ̂(ITp+1)

]
6 e−α. (8)
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Moreover, (8) implies thatR∗
t is invariant to timet. Note that the decoupling that occurs here is reminiscent

of the decoupling that occurred with ideal rate selection (3)-(4) under perfect channel state information,

i.e., (5).

In the next section, we shall see that the choice of estimatorplays a key role in the overall performance

of the practical rate adaptation scheme. Recall that the estimator determinesp(γ | γ̂(ITp+1)), which

determines the expected error probability constraint. Under certain scenarios, we shall see that a solution

to (8) does not exist, i.e., that no rates withinR satisfy the expected error probability constraint. Later,in

Section V, we develop a non-Bayesian estimator in and show that, with that estimator, the setP(γ̂Tp+1)

will contain merely the class of Gaussian distributions, asymptotically asTp → ∞, for any set,P, of

prior distributions with finite mean and variance for the SNR.

III. R ATE ADAPTATION WITH IMPERFECTCSI

Before studying the practical rate allocator (8), we first consider a particular “naive” data-rate allocator,

in order to draw intuition on how estimation errors affect system performance. Given SNR estimateγ̂,

generated from a particular unbiased estimator, the naive allocator assigns the data rate

Rnaive
t (γ̂) , arg max

Rt∈R
Rt s.t. ε(γ̂, Rt) 6 e−α (9)

for all t = Tp + 1, . . . , T . Due to the lack of expectation in the error-probability constraint of (9), the

naive rates may violate the desired expected-error-probability constraint in (8). This follows from the fact

that, when the posterior distributionp(γt|γ̂t) is non-atomic (i.e.,σ2
γ|γ̂ > 0), Jensen’s inequality4 implies

that

Ep [ε(γ,Rt) | γ̂] > ε(γ̂, Rt) ∀Rt. (10)

Therefore, to ensure theexpected-error-probability constraint in (8), the practical allocator must “back-

off” the rate relative toRnaive
t (γ̂). To do so, it choosesR∗

t (γ̂) 6 Rnaive
t (γ̂), where equality occurs if and

only if the estimation errorN , γ − γ̂ is zero-valued (with probability one).

When the estimator is perfect (i.e.,γ̂ = γ), we note that the naive rate coincides with the ideal rate

under perfect CSI (i.e.,Rnaive
t (γ̂) = Rperf-CSI

t (γ)|γ=γ̂ ). In this case,Rnaive
t acts as an upper bound on the

ideal Rt under ACK/NAK feedback, as specified by (3)-(4). Accordingly, we make the following two

definitions.

4 For unbiased̂γ, (10) immediately follows from Jensen’s inequality. For biasedγ̂, (10) still holds but requires some effort

to derive. We skip these details since our focus is on unbiased γ̂.
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Definition 1: Therate penaltyassociated with estimatorγ̂ is the smallestδ (in bits/symbol) that satisfies

Ep

[
ε(γ,Rnaive

t (γ̂)− δ) | γ̂
]
6 e−α. (11)

Definition 2: Thepower penaltyassociated with estimator̂γ is the smallest scale factorµ that satisfies

Ep

[
ε(µγ,Rnaive

t (γ̂)) | γ̂
]
6 e−α. (12)

Next, we analyze two different scenarios for the described rate adaptation system. In the first scenario,

the n symbols in the packet are assumed to be uncoded QAM symbols, while in the second scenario,

the n symbols are a Gaussian random coded ensemble. Within the second scenario, we focus on the

high-SNR and low-SNR cases separately. For both scenarios,we use the analysis presented next, in

Sec. III-A.

A. Gaussian Approximation of the Estimation Error

Under the posterior distributionp(γ|γ̂), let the estimation errorN = γ − γ̂ have the distribution

q(N |γ̂) = p(N + γ̂|γ̂). Let gN |γ̂(r) andΛN |γ̂(r) denote themoment generating functionand thesemi-

invariant log moment generating function[26] of N given γ̂, respectively. We assume that there exists

somermax > 0 such thatΛN |γ̂(r) < ∞ for all |r| < rmax. It is well known [26] thatΛN |γ̂(0) = 0,

Λ′
N |γ̂(0) = Eq [N |γ̂], andΛ′′

N |γ̂(0) = σ2
N |γ̂ . Then, for any|r| < rmax,

Eq [exp(rN) | γ̂] = gN |γ̂(r) = exp
(
ΛN |γ̂(r)

)
(13)

= exp
(

Eq [N | γ̂] r +
1

2
Λ′′
N |γ̂(r

′)r2
)

(14)

for somer′ between0 and r (having the same sign asr), where (14) follows from Taylor’s theorem.

Furthermore, applying Taylor’s theorem to the third-orderexpansion, we get

gN |γ̂(r) = exp
(

Eq [N | γ̂] r + 1
2σ

2
N |γ̂r

2 + 1
6Λ

′′′
N |γ̂(r

′′)r3
)

(15)

for somer′′ between0 andr.

In many cases, the first two terms of the expansion (15) lead toinsightful expressions to illustrate the

impact of the first- and second-order statistics of “channelvariability.” This will be referred to as the

Gaussian approximation, since, whenN |γ̂ is Gaussian, the cumulants of higher order than the variance

vanish.

Further, for an unbiased estimator, Eq [N | γ̂] = 0. In this case, the Gaussian approximation yields the

simple second-order approximation:

ΛN |γ̂(r) ≈
1

2
σ2
N |γ̂r

2. (16)
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Regardless of the posterior distributionp(N |γ̂), the approximation (16) isasymptotically accurate for

the non-Bayesian estimator proposed in Section V, which is asymptotically unbiased and asymptotically

normal, as will be proved.

B. Rate Adaptation with Uncoded QAM

Here, we study the scenario in which then symbols{Xt,k}
n
k=1 of packett are uncoded and selected

from a QAM constellation of sizeMt. Since the constellation size is constant over the packet, the rate

equalsRt = log2Mt bits/symbol. The following is a tight5 approximation [2, p. 289] on thesymbol error

rate associated with minimum-distance decision making [27, p. 280]:

εk(γ,Rt) ≈ 0.2 exp

(

−
3

2

γ

2Rt − 1

)

. (17)

The associated packet error rate is

ε(γ,Rt) = 1− (1− εk(γ,Rt))
n, (18)

sinceεk(γ,Rt) remains constant for allk, asγ andRt remain constant over the packet.

Since we can write

(1− εk(γ,Rt))
n 6 1− nεk(γ,Rt) +

1

2
n(n− 1)ε2k(γ,Rt), (19)

it follows that ε(γ,Rt) >
n
2 εk(γ,Rt) for all (γ,Rt) such thatεk(γ,Rt) <

1
n−1 . Similarly, (18) implies

thatε(γ,Rt) < 1−(1− 1
n−1)

n for the same(γ,Rt). This latter bound is an increasing function ofn, and,

for n ≫ 1, it approximately equals1 − e−1, which is much higher than typical error rates. We assume

thatn is large enough and the possible outcomes of(γ,Rt) are such thatε(γ,Rt) >
n
2 εk(γ,Rt) for all

t with probability close to1. We further elaborate on this next, after we derive a sufficient condition for

the error constraint to be met.

To meet the expected-error-probability constraint (8), itis necessary that

n

2
Ep [εk(γ,Rt) | γ̂]

≈
n

2
Ep

[

0.2 exp

(

−
3

2

γ

2Rt − 1

) ∣
∣
∣
∣
γ̂

]

(20)

=
n

2
Eq

[

0.2 exp

(

−
3

2

γ̂ +N

2Rt − 1

) ∣
∣
∣
∣
γ̂

]

6 e−α. (21)

5The bound holds within approximately 1 dB from the true valuefor a wide range of SNRs [2, p. 289].
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Using the unbiased Gaussian approximation (16), condition(21) can be rewritten as follows, after taking

the natural log of both sides:

−
3

2

γ̂

2Rt − 1
+

σ2
N |γ̂

2

(
3

2

1

2Rt − 1

)2

6 −α− ln 0.1n. (22)

For the existence of a feasible rateRt, the solution set for Inequality (22) must be non-empty, forwhich

it is necessary that
γ̂2

σ2
N |γ̂

> 2(α+ ln 0.1n). (23)

Condition (23) implies that̂γ2/σ2
N |γ̂ , the effective SNR of estimator̂γ, must be at least2(α + ln 0.1n)

to guarantee an expected error rate ofe−α. Using similar steps,6 a sufficient conditionγ̂2/σ2
N |γ̂ >

2(α+ ln 0.2n) can also be derived, illustrating the tightness of (23). We will investigate the difficulty of

achieving this condition in the next section.

Given that (23) is satisfied, one can solve (22) to find the upper boundR∗
t 6 R̄∗

t (γ̂, σ
2
N |γ̂), where

R̄∗
t (γ̂, σ

2
N |γ̂) , log2

(

1 + γ̂ ·
3

2

σ2
N |γ̂

γ̂2

(

1

−

√

1− 2(α + ln 0.1n)
σ2
N |γ̂

γ̂2

)−1


 . (24)

Fig. 3(a) plots the upper bound (24) as a function of the estimator’s effective SNR̂γ2/σ2
N |γ̂ for γ̂ ∈

{13, 20, 25} dB, a desired packet error rate ofe−α = 10−3, and a packet size ofn = 500 symbols. The

naive rate allocation

Rnaive
t (γ̂) = log2

(

1 + γ̂ ·
3

2

1

α+ ln 0.1n

)

(25)

(derived from (21) withN = 0) is also shown on the same plot. The required effective SNRγ̂2/σ2
N |γ̂ ,

as imposed by (23), is21.6 here. Fig. 3(a) shows thatRnaive
t (γ̂) < 2 bits/symbol forγ̂ 6 13 dB. Since2

bits/symbol is the minimum possible rate for uncoded QAM, weconclude that it is impossible to meet

the target packet-error rate of10−3 when γ̂ 6 13 dB, even with perfect CSI.

By definition, the rate penalty is the smallestδ that satisfiesδ = Rnaive
t (γ̂) − R∗

t (γ̂, σ
2
N |γ̂). Thus, an

upper bound onδ is given by

δ̄(γ̂, σ2
N |γ̂) , Rnaive

t (γ̂)− R̄∗
t (γ̂, σ

2
N |γ̂). (26)

6 From (18) and the fact that(1 − ǫt,k)
n > 1 − nǫt,k, we haveε(γ,Rt) 6 nεk(γ,Rt) for all (t, k) with probability

1. Consequently, for satisfaction of (8), it is sufficient that nEp [εk(γ,Rt) | γ̂] 6 e−α. Replicating (21)-(23), we obtain the

sufficiency condition.
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t versus estimator’s effective SNR̂γ2/σ2

N|γ̂ , and (b) power penalty lower

boundµ versus estimator’s effective SNR̂γ2/σ2

N|γ̂ .

From Fig. 3(a), we can see thatδ̄(γ̂, σ2
N |γ̂) depends on the effective SNR̂γ2/σ2

N |γ̂ : it is significant when

the effective SNR is near the minimum value established by (23), but shrinks aŝγ2/σ2
N |γ̂ gets large. In

addition, δ̄(γ̂, σ2
N |γ̂) grows in proportion tôγ.

By definition, the power penalty is the smallestµ that satisfiesR∗
t (γ̂) = Rnaive

t (γ̂/µ). Thus, a lower

boundµ(γ̂, σ2
N |γ̂) on the power penalty can be found by solvingR̄∗

t (γ̂, σ
2
N |γ̂) = Rnaive

t (γ̂/µ) for µ. The

power penalty lower boundµ(γ̂, σ2
N |γ̂) is plotted in Fig. 3(b) as a function of effective SNR̂γ2/σ2

N |γ̂ for

the same expected packet-error rate,10−3, and packet size,n = 500, as in Fig. 3(a). The power penalty

is seen to be as high as3 dB when the effective SNR is near the minimum value established by (23),

but shrinks aŝγ2/σ2
N |γ̂ gets large.

C. Rate Adaptation with Random Gaussian Ensembles

Next, we study the random coding [28], [29] scenario in whichthe codewords are selected from a

Gaussian ensemble. LetRmax be the maximum rate inR. Then the Gaussian ensemble consists of

2nRmax possible packets, where each symbol,Xt,k, of packett is chosen independently from aN (0, 1)

distribution.7 (We use unit variance here because earlier we assumed E
[
|Xt,k|

2
]
= 1.) At time t, say that

7 We use real-valued symbols, instead of complex-valued symbols, for simplicity. Consequently, the data rates will be

represented in units of bits per real-symbol. For fair comparison with uncoded QAM, one should simply double these data

rates.
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transmission rateRt ∈ R is chosen. Then one packet from a size-2nRt subset of the initially generated

set of2nRmax packets is chosen arbitrarily for transmission.

The receiver is assumed to know the subsets of possible packets corresponding to each admissible

rateRt ∈ R. Based on its observation of thetth packet, the receiver finds the most likely packet within

the subset of2nRt possible packets. Note that, unlike the uncoded QAM scenario, where each symbol

is decoded separately, here the entire packet is decoded as aunit. An upper bound for the associated

decoding error probability is (e.g., [28])

ε(γ,Rt) 6 exp

(

nρ

[

Rt ln 2−
1

2
ln

(

1 +
γ

1 + ρ

)])

, (27)

whereρ ∈ [0, 1] is the union bound parameter. One can minimize (27) overρ ∈ [0, 1] to find the tightest

bound, if so desired. To satisfy the expected-error-probability constraint (8), it suffices that there exists

a ρ ∈ [0, 1] for which

Ep

[

exp

(

nρ

[

Rt ln 2−
1

2
ln

(

1 +
γ

1 + ρ

)]) ∣
∣
∣
∣
γ̂

]

6 e−α. (28)

1) Low-SNR Regime:When Pr
(
γ ≪ 1 | γ̂

)
≈ 1, we can write

ln

(

1 +
γ

1 + ρ

)

≈
γ

1 + ρ
=

γ̂ +N

1 + ρ
. (29)

For an unbiased estimator, Eq

[ γ̂+N
1+ρ

∣
∣γ̂
]
= γ̂

1+ρ and varq
( γ̂+N

1+ρ

∣
∣γ̂
)
=

σ2
N|γ̂

(1+ρ)2 . Thus, using the Gaussian

approximation (16), the constraint (28) is satisfied if there exists aρ ∈ [0, 1] for which

α 6 −nρ

(

Rt ln 2−
γ̂

2(1 + ρ)
+

1

8

nρ

(1 + ρ)2
σ2
N |γ̂

)

, (30)

or, equivalently, for which

Rt 6
1

ln 2

(

−
α

nρ
+

γ̂

2(1 + ρ)
−

1

8

nρ

(1 + ρ)2
σ2
N |γ̂

)

. (31)

Thus, if there exists someρ ∈ [0, 1] for which the right side of (31) is positive, then anyRt below it is

feasible. For this to be possible, we need

2α(1 + ρ)2 − γ̂nρ(1 + ρ) +
1

4
(nρ)2σ2

N |γ̂ 6 0
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for someρ ∈ [0, 1], which leads to the following necessary condition8 for the estimator:

γ̂2

σ2
N |γ̂

> 2α. (32)

One can then find an upper bound onRt ∈ R satisfying (28) as follows:

R̄∗
t (γ̂, σ

2
N |γ̂)

= max
ρ∈[0,1]

1

ln 2

(

−
α

nρ
+

γ̂

2(1 + ρ)
−

1

8

nρ

(1 + ρ)2
σ2
N |γ̂

)

. (33)

Likewise, one can deduce from (27) and (29) that the naive rate is

Rnaive
t (γ̂) = max

ρ∈[0,1]

1

ln 2

(

−
α

nρ
+

γ̂

2(1 + ρ)

)

. (34)

The rate upper bound̄R∗
t is plotted in Fig. 4(a) as a function of the estimator’s effective SNRγ̂2/σ2

N |γ̂

for γ̂ ∈ {−3,−8,−12} dB, a desired packet error rate ofe−α = 10−3, and a packet size ofn = 500

symbols. The rateRnaive
t from (34) is also shown on the same plot. Every point on the rate curves was

computed using the optimal value ofρ ∈ [0, 1], found numerically. We note that, with these parameters,

(32) implies that̂γ2/σ2
N |γ̂ must be at least13.8. Figure 4(a) also shows that the rate penaltyδ̄(γ̂, σ2

N |γ̂) =

Rnaive
t (γ̂) − R̄∗

t (γ̂, σ
2
N |γ̂) is significant when̂γ2/σ2

N |γ̂ is near the lower bound established by (32), but

that the rate penalty shrinks asγ̂2/σ2
N |γ̂ increases.

For the same target packet error rate (10−3) and packet size (n = 500), Fig. 4(b) plotsR̄∗
t versusγ̂

for estimator effective SNR̂γ2/σ2
N |γ̂ ∈ {60, 100}. In the same figure,Rnaive

t and the “naive” Shannon

limit (i.e., ergodic capacity)12 log2(1 + γ̂) bits/real-symbol are shown. By comparing the naive Shannon

limit with Rnaive
t , one can observe that, in the low-SNR regime, the power penalty of Gaussian signaling

scheme can be significant, especially at small values ofγ̂. From the same plot, one can observe that the

additional power penalty due to imperfect SNR estimation,µ(γ̂), is quite small: less than0.5 dB when

γ̂2/σ2
N |γ̂ = 100 and less than1 dB whenγ̂2/σ2

N |γ̂ = 60.

2) High-SNR Regime:When Pr
(
γ ≫ 1 | γ̂

)
≈ 1, we can write

ln

(

1 +
γ

1 + ρ

)

≈ ln

(
γ

1 + ρ

)

= ln

(
γ̂ +N

1 + ρ

)

= ln

(
γ̂

1 + ρ

)

+ ln

(

1 +
N

γ̂

)

. (35)

8 Note that condition (32) is not exactly analogous to condition (23). Condition (32) is necessary for a non-empty solution

set to exist for inequality (31), whereas (23) is necessary for the existence of a feasible rate that satisfies the expected-error

bound. In order to derive an analogous necessary condition,one can use a sphere-packing (SP) bound for the Gaussian channel

(see, e.g., [30]). With the SP lower bound, our findings wouldbe qualitatively similar, but the derivation would be extremely

tedious. For this reason, we assume that the upper bound is a good approximation for the actual error rate.
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Thus, for an unbiased estimator, Eq

[
ln γ

1+ρ

∣
∣γ̂
]
≈ ln γ̂

1+ρ and varq
(
ln γ

1+ρ

∣
∣γ̂
)
≈

σ2
N|γ̂

γ̂2 . Similar to the low

SNR scenario, we can use the Gaussian approximation (16) to claim that (28) is satisfied if there exists

a ρ ∈ [0, 1] for which

α > −nρ

(

Rt ln 2−
1

2
ln

(
γ̂

1 + ρ

)

+
1

8

nρ

γ̂2/σ2
N |γ̂

)

, (36)

or, equivalently,

Rt 6
1

ln 2

(

−
α

nρ
+

1

2
ln

(
γ̂

1 + ρ

)

−
1

8

nρ

γ̂2/σ2
N |γ̂

)

. (37)

Hence, if there exists someρ ∈ [0, 1] for which the right side of (37) is positive, then anyRt below it

is feasible. In the high-SNR regime, we haveγ̂ ≫ 1 with high probability, and thus there almost always

exists someρ ∈ [0, 1] for which a feasibleRt > 0 exists. One can deduce from this observation that, a

principal difference between the high-SNR and low-SNR regimes is that, in the high-SNR regime, the

expected error probability constraint is satisfied much more easily, with nearly any SNR estimator. One

can then find an upper bound onRt ∈ R satisfying (28) as follows:

R̄∗
t (γ̂, σ

2
N |γ̂)

= max
ρ∈[0,1]

1

ln 2

(

−
α

nρ
+

1

2
ln

(
γ̂

1 + ρ

)

−
1

8

nρ

γ̂2/σ2
N |γ̂

)

. (38)
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Likewise, one can deduce from (27) and (35) that the naive rate is

Rnaive
t (γ̂) = max

ρ∈[0,1]

1

ln 2

(

−
α

nρ
+

1

2
ln

(
γ̂

1 + ρ

))

. (39)
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Fig. 5. For Gaussian signaling at high SNR, ratesR̄∗
t andRnaive

t versus (a) estimator’s effective SNR̂γ2/σ2

N|γ̂ and (b) estimated

SNR γ̂.

The rate upper bound̄R∗
t (γ̂, σ

2
N |γ̂) is plotted in Fig. 5(a) as a function of the estimator’s effective SNR

γ̂2/σ2
N |γ̂ for γ̂ ∈ {13, 20, 25} dB, a desired packet error rate ofe−α = 10−3, and a packet size ofn = 500

symbols. The rateRnaive
t (γ̂) from (39) is also shown on the same plot. Every point on the rate curves was

computed using the optimal value ofρ ∈ [0, 1], found numerically. We emphasize that the rates plotted

in Fig. 5(a) are expressed in bits perreal-symbol, and thus should be doubled for fair comparison with

the QAM rates presented in Fig. 3(a). For Gaussian signaling, if we compare the high-SNR results in

Figs. 5(a)-5(b) to the low-SNR results in Figs. 4(a)-4(b), we can see that the normalized rate penalty

δ̄/R̄∗
t is much smaller in the high-SNR regime. For instance, atγ̂2/σ2

N |γ̂ = 20, δ̄ is no more than0.5

bits/symbol and̄δ/R̄∗
t is less than 25% for all three values ofγ̂. This decrease in rate penalty is expected,

since, in the high-SNR regime, the rate scales roughly with the log of the SNR.

For the same target packet error rate (10−3) and packet size (n = 500), Fig. 5(b) plotsR̄∗
t (γ̂, σ

2
N |γ̂)

versusγ̂ for estimator effective SNR̂γ2/σ2
N |γ̂ ∈ {60, 100}. In the same figure,Rnaive

t (γ̂) and the naive

Shannon limit12 log2(1+γ̂) are shown. There we observe that, in the high-SNR regime, thepower penalty

for Gaussian signaling is constant witĥγ, and no more than1.5 dB. The additional power penalty due

to imperfect SNR estimation,µ(γ̂, σ2
N |γ̂), is approximately1 dB whenγ̂2/σ2

N |γ̂ = 60 and approximately
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2.5 dB whenγ̂2/σ2
N |γ̂ = 20.

IV. FUNDAMENTAL L IMITATIONS OF ACK/NAK-B ASED RATE ADAPTATION

In the previous section, we studied the performance of the rate adaptation system for a generic unbiased

estimator. We analyzed the feasible rates with particular coding/modulation schemes as a function of the

“quality” of the estimation provided by the estimator, for which the relevant metric was the estimator’s

effective SNRγ̂2/σ2
N |γ̂ . Note that we assumed no knowledge of the prior SNR distribution p(γ).

In this section, we view the SNR of the current block,γ, as an unknown parameter,9 and pose the

estimation ofγ as a non-Bayesian parameter estimation problem. We first investigate the fundamental

limitations of SNR estimators that are based on packet-level ACK/NAK feedback, e.g.,̂γ = γ̂(ITp+1).

Using that analysis, we show that it is difficult to make good SNR estimates while simultaneously keeping

packet-error-rate low. This latter property motivates SNR-estimation via probe packets that come without

error-rate constraints (in contrast to data packets, whichare error-rate constrained) as assumed in Sec. II.

Finally, we discuss optimization of the probing periodTp, and we derive an upper bound on the optimal

sum rateR∗
sum.

A. Fundamental Limitations of ACK/NAK-Based SNR Estimation

Consider the SNR estimator̂γ(ITp+1), based on theTp ACK/NAKs in

ITp+1 = [F1, F2, . . . , FTp , R1, R2, . . . , RTp ],

where Rt denotes the rate andFt denotes the ACK/NAK feedback for packett. In the sequel, we

abbreviateγ̂(ITp+1) by γ̂. Recall thatRt and Ft are connected through the packet error probability

ε(γ,Rt), as specified in (2).

Theorem 1:For true SNRγ and any unbiased estimatorγ̂ based onTp ACK/NAKs, the estimation

error variance,σ2
N |γ̂ , var

(
γ − γ̂|γ̂

)
, is lower bounded by:

σ2
N |γ̂ >





Tp∑

t=1

(ε′(γ,Rt))
2

ε(γ,Rt) [1− ε(γ,Rt)]





−1

, (40)

whereε(γ,Rt) is continuously differentiable inγ andε′(γ,Rt) ,
∂
∂γ ε(γ,Rt).

9We assume thatγ is a random variable, taking on an independent value for eachblock, but that the distribution ofγ is

unknown to the transmitter.
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Proof: Given γ and the ratesR1, . . . , RTp , the feedbackF1, . . . , FTp satisfies

Pr
(
F1 = f1, . . . , FTp = fTp | γ,R1, . . . , RTp

)

=

Tp∏

t=1

Pr
(
Ft = ft | γ,Rt

)
. (41)

Then

V (γ,Rt, ft) ,
∂

∂γ
lnPr

(
Ft = ft | γ,Rt

)

=
∂

∂γ
ln
(
[ε(γ,Rt)]

ft [1− ε(γ,Rt)]
1−ft

)

=
ε′(γ,Rt)

1− ε(γ,Rt)

(
ft

ε(γ,Rt)
− 1

)

. (42)

The Fisher information [31] associated withFt is:

Φ(γ,Rt) = var(V (γ,Rt, ft) | γ,Rt)

=
(ε′(γ,Rt))

2

ε(γ,Rt) [1− ε(γ,Rt)]
, (43)

and the cumulative Fisher information is
∑Tp

t=1 Φ(γ,Rt). Theorem 1 follows since the Cramer-Rao lower

bound (CRLB) for unbiased estimators is the reciprocal of the Fisher information [31].

B. Lower Bounds on the Required Probing PeriodTp

In Sec. III, we derived lower bounds (23) and (32) on the valueof γ̂2/σ2
N |γ̂ (i.e., the estimator’s effective

SNR) required to facilitate the use of data transmission viauncoded QAM signaling and randomly coded

Gaussian signaling, respectively. In this section, we translate those lower bounds (on requiredγ̂2/σ2
N |γ̂)

into lower bounds on required probe-durationTp, recognizing that the quality of SNR estimates (and

thus γ̂2/σ2
N |γ̂) increases withTp. From these bounds, we shall see that the required value ofTp depends

heavily on the probe error rate, and in particular that the required value ofTp grows very large as the probe

error rate decreases. This motivates the optimization of probe error rate, which requires the decoupling

of probe error rate from data error rate (since the latter is usually constrained by the application).

In this section, we assume that both the modulation/coding scheme and the rate is fixed over the probe

interval, i.e., thatRt = Rp for t ∈ {1, . . . , Tp}. In this case, the CRLB (40) reduces to

σ2
N |γ̂ >

1

Tp

ε(γ,Rp) [1− ε(γ,Rp)]

(ε′(γ,Rp))
2 , (44)

which is inversely proportional toTp.
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Recall that, to make uncoded QAM signaling feasible, condition (23) must be satisfied, and to make

random Gaussian signaling feasible in the low-SNR regime, condition (32) must be satisfied. Though

(23) and (32) are expressed in terms of the estimator’s effective SNR, we can rewrite them asσ2
N |γ̂ 6

1
2 γ̂

2/(α+ln 0.1n) andσ2
N |γ̂ 6 1

2 γ̂
2/α, respectively, and apply the CRLB (44) to arrive (see Appendix A)

at the following. For uncoded QAM, we needTp > Tmin
p , where

Tmin
p =

2(α+ ln 0.1n) ε(γ,Rp)

(1− ε(γ,Rp))
[
(1− ε(γ,Rp))−1/n − 1

]2
ln2
(
5
(
1− (1− ε(γ,Rp))1/n

))
(nγ̂/γ)2

, (45)

and for random Gaussian signaling in the low-SNR regime, we needTp > Tmin
p , where

Tmin
p =

8α
(
1− ε(γ,Rp)

)(
1 + ρ∗ + γ

)2

ε(γ,Rp)(nρ∗γ̂)2
(46)

and whereρ∗ is the union bound parameter corresponding to the tightest error bound (27), which itself

depends onγ, Rp, andn.
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Fig. 6. Lower bound on required probing durationTmin

p versus probe packet-error rateε(γ,Rp) for (a) uncoded QAM and

(b) random Gaussian signaling.

Figures 6(a)-(b) plotTmin
p as a function of the probe error rateε(γ,Rp) for uncoded QAM signaling

and random Gaussian signaling, respectively. For the plots, we assumêγ ≈ γ, which eliminates the

dependence ofTmin
p on γ̂ and γ in the QAM case; for the Gaussian case, we showTp for the values

γ̂ ∈ {−3,−7,−10} dB. As in our previous plots, we assumedn = 500 and e−α = 10−3. The key

observation to make from these plots is that the number of probe packets increases quickly asε(γ,Rp)

shrinks. In fact, the plots suggest thatTp is roughly proportional to1/ε(γ,Rp). This inverse relationship
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is somewhat intuitive because, given a probe packet-error rate ofε(γ,Rp), one must wait for1/ε(γ,Rp)

packets (on average) to see a single NAK. Recall, however, that Fig. 6 shows only alower boundTmin
p

on the probe duration required for communication with positive rate; the optimal value ofTp is expected

to be even larger.

The main conclusion to draw from this section is that, to keepthe probing period small, one must

allow relatively high probe error rateε(γ,Rp). For systems which estimate SNR using only ACK/NAK

feedback from data packets, this implies that if the data error rate e−α is small, then the number of

packets required to get a decent SNR estimate will be large. Such systems would only be suitable for

channels that are very slowly fading.

C. An Upper Bound on the Optimal Sum-Rate

Recall that, in our practical rate adaptation system, the data packet rates{Rt}
RT

t=Tp+1 are chosen based

on the SNR estimated using ACK/NAKs from probe packets with rates{Rt}
Tp

t=1. To complete the system

design, we must choose the rates{Rt}
T
t=1 as well as the probe durationTp. In doing so, we aim to

maximize the sum data rateRsum =
∑T

t=Tp+1 Rt while satisfying the expected error-probability constraint

in (8). Intuitively, we know that increasingTp improves the SNR estimate which, in turn, allows a higher

data rate (since less rate “back-off” is needed to satisfy the error constraint). On the other hand, for

a fixed block lengthT , the number of data packets,T − Tp, shrinks asTp increases. Therefore, the

choice ofTp involves a tradeoff between these two objectives. In this section, we discuss the choice of

{Tp, R1, . . . , RT } and derive an upper bound on the sum rateRsum that leverages the rate bounds from

Sec. III and the CRLB from Sec. IV-A.

In Sec. II-C, we recognized that the data-rate assignment problem decouples in such a way that the

optimal data rates{R∗
t }

T
t=Tp+1 become independent of timet. Thus, in the sequel, we focus on choosing

a single data rateRd, whose optimal value will be denoted byR∗
d. The system design problem then

reduces to the following sum-rate maximization:

R∗
sum , max

Tp6T, (R1,...,RTp ,Rd)∈R
Tp+1

(T − Tp)Rd (47)

s.t. Ep
[
ε(γ,Rd) | γ̂(ITp)

]
6 e−α.

As argued in Sec. III, the optimal data rateR∗
d increases monotonically with the quality of the SNR

estimate, i.e., with the inverse of the estimator variance1/σ2
N |γ̂ . Thus, the optimal probe parameters

{Tp, R1, . . . , RTp} are those that minimizeσ2
N |γ̂ . From the CRLB in Theorem 1, we know thatσ2

N |γ̂ >
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σ2
N |γ̂(γ), where

σ2
N |γ̂(γ) , min

(R1,...,RTp)∈R
Tp





Tp∑

t=1

[ε′(γ,Rt)]
2

ε(γ,Rt)[1− ε(γ,Rt)]





−1

(48)

=





Tp∑

t=1

max
Rt∈R

[ε′(γ,Rt)]
2

ε(γ,Rt)[1 − ε(γ,Rt)]





−1

. (49)

Thus, if γ was provided by a genie, and if the SNR estimator was efficient(i.e., CRLB achieving), then

(49) suggests to set the probe rate at

R
genie
p (γ) = arg max

Rt∈R

[ε′(γ,Rt)]
2

ε(γ,Rt)[1− ε(γ,Rt)]
, (50)

which is invariant to both timet and probe durationTp. This yields

σ2
N |γ̂(γ) =

1

Tp

ε(γ,Rgenie
p (γ))[1 − ε(γ,Rgenie

p (γ))]

[ε′(γ,R
genie
p (γ))]2

. (51)

Using the genie-aided probe rateRgenie
p (γ), we can upper bound the optimal sum rate (47) by

R
genie
sum , max

Tp6T, Rd∈R
(T − Tp)Rd (52)

s.t. Ep
[

ε(γ,Rd) | γ̂(R
genie
p (γ), Tp)

]

6 e−α,

where we explicitly denote the dependence of the estimateγ̂ on bothTp andRgenie
p (γ).

Next, recall that we established, in Sec. III, upper bounds on the largest data rate that satisfies an

expected error constraint of the type in (??). In particular, (24) gave an upper bound for uncoded QAM

signaling, and (33) and (38) gave upper bounds for Gaussian signaling in the low-SNR and high-SNR

regimes, respectively. These data-rate upper bounds,R̄∗
d(γ̂, σ

2
N |γ̂), can be applied to (??) to bound the

optimal sum rate asR∗
sum 6 R̄∗

sum, where

R̄∗
sum , max

Tp6T
(T − Tp)R̄

∗
d(γ̂, σ

2
N |γ̂), (53)

and wherêγ andσ2
N |γ̂ are dependent on bothTp andRp(γ). SinceR̄∗

d(γ̂, σ
2
N |γ̂) increases monotonically

in 1/σ2
N |γ̂ , we can upper bound̄R∗

d using the lower bound onσ2
N |γ̂ established in (51). This yields

R̄∗
sum 6 Rmax

sum for

Rmax
sum , max

Tp6T
(T − Tp)R̄

∗
d(γ̂, σ

2
N |γ̂(γ)). (54)

Figures 7(a) and 7(b) plot the normalized sum-rate bound1
TR

max
sum as a function of the estimated

SNR γ̂ for uncoded QAM and Gaussian ensembles, respectively, atT = 5 andT = 50. As before, we

use target error rate10−3 and packet sizen = 500. For the genie-aided probe rateRgenie
p (γ) used to
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Fig. 7. Normalized sum-rate bound1
T
Rmax

sum as a function of SNR̂γ for (a) QAM and (b) Gaussian signaling in the low-SNR

regime.

calculateσ2
N |γ̂(γ), we assumed thatγ ≈ γ̂. The figures also showRnaive

d and the naive Shannon limit

1
2 log2(1+ γ̂), for comparison. Note that the difference between the naiverateRnaive

d and the upper bound

1
T R

max
sum increases significantly asT decreases. This is due to the fact that, asT decreases, it is too

costly to allocate a long probing interval, implying that the quality of SNR estimates decreases, so that

more rate back-off is required. Note also that the difference between the naive rate and the upper bound

increases as the SNR increases. This implies that the lack ofperfect CSI becomes more costly as the

SNR increases.

V. A N ASYMPTOTICALLY OPTIMAL SNR ESTIMATOR

The quality of SNR estimates based on ACK/NAKs from a probe interval is strongly dependent on both

the probe rates{Rt}
Tp

t=1 and the probe intervalTp. For the sum-rate upper bound derived in Sec. IV-C,

the probe rateRgenie
p (γ) in (50) was selected in a genie-aided manner, assuming knowledge of the true

SNR γ. Clearly,γ is not known in practice.

In this section, we develop a practical SNR estimator that, during the probing intervalt ∈ {1, . . . , Tp},

recursivelyupdates the probe rateRt and γ̂t (i.e., the time-t estimate10 of γ) using the latest feedback

pair {Ft−1, Rt−1}. We show that the probe rate adaptation isasymptotically optimal, in thatRt converges

10 We emphasize that̂γt is the time-t estimate of the time-invariant SNRγ, and should not be confused with the time-varying

SNR γt that was briefly used in Sec. II before the time-invariance assumption was introduced.
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to Rgenie
p (γ) for any initial probe rateR1. Moreover, we show that our SNR estimator isasymptotically

efficientandasymptotically normal, i.e., that the corresponding estimation errorNt , γ̂t − γ converges

to a zero-mean Gaussian random variable whose variance is identical to the CRLB achieved with the

genie-aided probe rateRgenie
p (γ). The normality of the error helps to justify the Gaussian approximation

used to derive the rate bounds (45) and (46) for the uncoded QAM and Gaussian cases, respectively.

The SNR Estimator:

1) At time t = 1, choose an arbitrary rateR1 ∈ R and an arbitrary estimatêγ1.

2) At each timet = 2, . . . , Tp, update the estimate as

γ̂t = γ̂t−1 +
Ft−1 − ε(γ̂t−1, Rt−1)

(t− 1)ε′(γ̂t−1, Rt−1)
, (55)

and choose the rateRt as:

Rt = argmax
R∈R

Φ(γ̂t, R), (56)

whereΦ(·, ·) is the Fisher information as defined in (43).

We prove the following for our estimator.

Theorem 2:For both uncoded QAM and Gaussian ensembles, asTp → ∞,

√

Tp
(
γ̂Tp − γ

) d
→ NTp

∼ N
(

0,Φ−1(γ,Rgenie
p (γ))

)

. (57)

Proof: See Appendix B.

Theorem 2 implies that our estimator (55) is asymptoticallyefficient and consistent. Moreover, without

any prior information onγ, rate allocation (56) guarantees the performance achievedwith the genie-aided

probe rateRgenie
p (γ). Next, we simulate the estimator. Instead of thet − 1 on the denominator, we use

(t− 1)β for various values ofβ ∈ (0, 1].
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Fig. 8. Example trajectories of the recursive SNR estimatorwhen uncoded QAM is used.
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In Fig. 8, a single realization of the estimator and the corresponding assigned rate are illustrated for

different values ofγ, over a block ofTp = 500 probe packets of sizen = 500 symbols. The value

of γ and the asymptotic rateRgenie
p (γ) are also shown on the associated graphs. The initial points for

the estimator arêγ1 = 3 dB, R1 = 1 bit/symbol, and the set of possible rates areR = {1, 2, . . . , 10}

in bits/complex-symbol, i.e., the possible constellationsizes are integer powers of2. For β = 0.5, one

can observe that the optimal rate is reached with approximately 20 probe packets for all values of SNR.

Once that point is reached, the estimation error variance decays fairly slowly due to the low decay rate

β = 0.5. With a higherβ, it takes longer to approach the vicinity ofγ, from the initial valueγ̂1, but the

estimation error variance is lower once in steady state. This observation is illustrated in Fig. 8(c), where

β = 1 and the probing block size isTp = 2000 packets. In the realization corresponding toγ = 20

dB, the “steady state” is yet to be reached after 2000 packets. On the other hand, the amplitude of the

fluctuations around the final point decay much faster, as one can observe in the realization corresponding

to γ = 10 dB. Different choices forβ and the associated tradeoffs involved in stochastic approximation

algorithms are studied in [32].
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Fig. 9. Example trajectories of the recursive SNR estimatorwhen Gaussian signaling is used.

We illustrate our estimator response for Gaussian ensembles in Fig. 9. As the set of ratesR, we picked

100 points, equally spaced between 0 and 5 bits/real-symbol. The initial SNR estimate,̂γ1 = 0 dB, was

much smaller than the initial one in the QAM simulations, butthe initial rate,R1 = 0.5 bits/complex-

symbol, was identical to the one in the QAM simulations. Here, we analyze SNR realizationsγ = 3, 10

and 20 dB. With Gaussian ensembles, the convergence speed isslightly lower than that with QAM. While

the convergence is almost immediate forγ = 3 dB, it takes 30-40 packets for 10 dB and 130-140 packets

for γ = 20 dB. This difference is mainly due to the difference in the distances between the initial and

final points. On the other hand, due to the large size of the setof possible rates (unlike QAM, where
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only a few discrete points are possible), there exists someRt ∈ R that is very close to the genie-aided

probe rateRgenie
p (γ). Consequently, the estimation error variance decays much faster onceRt comes near

the vicinity of Rgenie
p (γ). We also illustrate the estimator withβ = 1 in Fig. 9(c) and one can notice the

slow convergence, similar to the QAM simulations.

VI. CONCLUSION

In this paper, we studied rate adaptation based on ACK/NAK feedback. In particular, we studied

methods that maximize data rate subject to a constraint on expected packet-error probability, assuming

that the transmitter has no knowledge of the SNR distribution. Because optimal rate allocation was

identified as a POMDP, which is impractical to implement, we focused on a suboptimal framework

where a channel estimate is calculated based on previous feedback and a rate is chosen based on this

channel estimate. To aid the initial rate allocation, we allowed the use ofTp probe packets at the start of

each data block. First we considered a so-called “naive” rate allocator that maximizes rate subject to a

constraint oninstantaneouspacket-error probability, calculated from a given unbiased estimatêγ of the

true SNRγ. Due to the inevitable error in SNR estimation, we argued that one must either back-off the

naive rate, or correspondingly increase the SNR, to meet thestricterexpectederror probability constraint.

Based on a Gaussian approximation of the estimation errorN = γ − γ̂, we derived conditions on the

“effective estimator SNR”̂γ2/σ2
N |γ̂ that are necessary for the existence of a feasible transmission rate,

as well as an upper bound on the transmission rate when this necessary condition is satisfied. This latter

analysis was carried out for both uncoded QAM signaling and random Gaussian signaling (the latter in

both the low-SNR and high-SNR regimes). Next, we consideredunbiased SNR estimation via ACK/NAK

feedback. First, we lower bounded the error variance of those estimates (for general signaling schemes),

and based on that bound, we lower bounded the necessary probing durationTp and upper bounded the

sum data rate (for both uncoded QAM signaling and random Gaussian signaling). Finally, we proposed

a practical unbiased ACK/NAK-based SNR estimator and showed that (as the probe duration increases)

our estimator is asymptotically efficient and asymptotically normal.

REFERENCES

[1] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in

wireless communication systems,”IEEE J. Select. Areas In Commun., vol. 26, no. 8, pp. 1341–1365, 2008.

[2] A. Goldsmith,Wireless Communications. New York: Cambridge University Press, 2005.

[3] A. Goldsmith and S. Chua, “Variable rate variable power M-QAM for fading channels,”IEEE Trans. Commun., vol. 45,

pp. 1218–1230, Oct. 1997.

November 2, 2018 DRAFT



26

[4] D. L. Goeckel, “Adaptive coding for time-varying channels using outdated fading estimates,”IEEE Trans. Commun.,

vol. 47, pp. 844–855, June 1999.

[5] K. Balachandran, S. R. Kadaba, and S. Nanda, “Channel quality estimation and rate adaptation for cellular mobile radio,”

IEEE J. Select. Areas In Commun., vol. 17, pp. 1244–1256, July 1999.

[6] G. Holland, N. Vaidya, and P. Bahl, “A rate adaptive MAC protocol for multi-hop wireless networks,” inProc. ACM

Internat. Conf. on Mobile Computing and Networking, vol. 5, pp. 3246–3250, 2001.

[7] B. Sadegi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic media access for multirate ad hoc networks,” in

Proc. ACM Internat. Conf. on Mobile Computing and Networking, vol. 5, (Atlanta, GA), pp. 3246–3250, 2001.

[8] J. C. Bicket, “Bit-rate selection in wireless networks,” Master’s thesis, Massachusetts Institute of Technology,Feb 2005.

[9] S. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” inProc. ACM

Internat. Conf. on Mobile Computing and Networking, 2006.

[10] H. Minn, M. Zeng, and V. K. Bhargava, “On ARQ scheme with adaptive error control,”IEEE Trans. Veh. Tech., vol. 50,

pp. 1426–1436, Nov. 2001.

[11] M. Rice and S. B. Wicker, “Adaptive error control for slowly varying channels,”IEEE Trans. Commun., vol. 42, pp. 917–

925, Feb./Mar./Apr. 1994.

[12] Y.-D. Yao, “An effective go-back-N ARQ scheme for variable-error-rate channels,”IEEE Trans. Commun., vol. 43, pp. 20–

23, Jan. 1995.

[13] S. S. Chakraborty, M. Liinabarja, and E. Yli-Juuti, “Anadaptive ARQ scheme with packet combining for time varying

channels,”IEEE Commun. Letters, vol. 3, pp. 52–54, Feb. 1999.

[14] S. Choi and K. G. Shin, “A class of hybrid ARQ schemes for wireless links,”IEEE Trans. Veh. Tech., vol. 50, pp. 777–790,

May 2001.

[15] A. K. Karmokar, D. V. Djonin, and V. K. Bhargava, “POMDP-based coding rate adaptation for Type-I hybrid ARQ systems

over fading channels with memory,”IEEE Trans. Wireless Commun., vol. 5, pp. 3512–3523, Dec. 2006.

[16] D. V. Djonin, A. K. Karmokar, and V. K. Bhargava, “Joint rate and power adaptation for type-I hybrid ARQ systems over

correlated fading channels under different buffer-cost constraints,”IEEE Trans. Veh. Tech., vol. 57, pp. 421–435, Jan. 2008.

[17] R. Aggarwal, P. Schniter, and C. E. Koksal, “Rate adaptation via link-layer feedback for goodput maximization overa

time-varying channel,”IEEE Trans. Wireless Commun., vol. 8, pp. 4276–4285, Aug. 2009.

[18] D. Bertsekas and R. Gallager,Data Networks. Prentice Hall, 2nd ed., 1992.

[19] V. Hassel, D. Gesbert, M. Alouini, and G. E. Oien, “A threshold-based channel state feedback algorithm for modern cellular

systems,”IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2422–2426, 2007.

[20] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Adaptive ofdm techniques with one-bit-per-subcarrier channel-state

feedback,”IEEE Trans. Commun., vol. 54, no. 6, pp. 1993–2003, 2006.

[21] J. O. Berger, ed.,Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag, 1985.

[22] M. K. Simon and M. S. Alouini,Digital Communication over Fading Channels. New York: Wiley, 2000.

[23] G. E. Monahan, “A survey of partially observable Markovdecision processes: Theory, models, and algorithms,”Management

Science, vol. 28, pp. 1–16, Jan. 1982.

[24] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov decision processes,”Mathematics of Operations

Research, vol. 12, no. 3, pp. 441–450, 1987.

[25] P. R. Kumar and P. Varaiya,Stochastic Systems: Estimation, Idnetification and Adaptive Contr ol. Englewood Cliffs, NJ:

Prentice-Hall, 1986.

November 2, 2018 DRAFT



27

[26] R. Gallager,Discrete Stochastic Processes. New York: Springer, 1996.

[27] J. G. Proakis,Digital Communications. New York: McGraw-Hill, 3rd ed., 1995.

[28] R. G. Gallager,Information Theory and Reliable Communication. New York: Wiley, 1968.

[29] A. J. Viterbi and J. Omura,Principles of Digital Communication and Decoding. New York: McGraw-Hill, 1979.

[30] G. Wiechman and I. Sason, “An improved sphere-packing bound for finite-length codes over symmetric memoryless

channels,”IEEE Trans. Inform. Theory, vol. 54, pp. 1962–1990, May 2008.

[31] H. V. Poor,An Introduction to Signal Detection and Estimation. New York: Springer, 2nd ed., 1994.

[32] H. Kushner and G. Yin,Stochastic Approximation Algorithms and Applications. New York: Springer-Verlag, 1997.

[33] M. B. Nevelson and R. Z. Hasminskii,Stochastic Approximation and Recursive Estimation. Providence, RI: American

Mathematical Society, 1972.

APPENDIX A

DERIVATION OF Tmin
p FOR UNCODEDQAM AND GAUSSIAN SIGNALING

In this section, we derive (45) and (46). For brevity, we write ε , εp(γ,Rp) andε′ , ε′p(γ,Rp). Recall

that, from (23) and (44), we have for, uncoded QAM,

Tmin
p =

ε(1− ε)

(ε′)2
2(α+ ln 0.1n)

γ̂2
(58)

where, from (18),

ε′ =
∂

∂γ

(

1−

[

1− 0.2 exp

(

−
1.5γ

2Rp − 1

)

︸ ︷︷ ︸

(1−ε)1/n

]n)

(59)

= n(1− ε)
n−1

n 0.2 exp

(

−
1.5γ

2Rp − 1

)

︸ ︷︷ ︸

1−(1−ε)1/n

(

−
1.5

2Rp − 1

)

(60)

= (1− ε)
(
(1− ε)−1/n − 1

)
(

−
1.5γ

2Rp − 1

)

︸ ︷︷ ︸

ln(5(1−(1−ε)1/n))

n

γ
. (61)

Thus

Tmin
p =

ε

(1− ε)( ε′

1−ε)
2

2(α + ln 0.1n)

γ̂2
(62)

=
ε

(1− ε)
(
(1− ε)−1/n − 1

)2
ln2
(
5
(
1− (1− ε)1/n

))

×
2(α + ln 0.1n)

(nγ̂/γ)2
. (63)

From (32) and (44), we have for, Gaussian signaling in the low-SNR regime,

Tmin
p =

ε(1 − ε)

(ε′)2
2α

γ̂2
(64)
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where, from (27),

ε′ =
∂

∂γ
exp

(

nρ∗
[

Rp ln 2−
1

2
ln

(

1 +
γ

1 + ρ∗

)])

(65)

= ε
−nρ∗

2

1

(1 + γ
1+ρ∗ )

1

1 + ρ∗
= ε

−nρ∗

2(1 + ρ∗ + γ)
. (66)

Thus

Tmin
p =

(1− ε)

ε(ε
′

ε )
2

2α

γ̂2
= 8α

(1 − ε)

ε

(1 + ρ∗ + γ)2

(nρ∗γ̂)2
. (67)

APPENDIX B

PROOF OFTHEOREM 2

We will directly apply Theorem 2.1 [33, p. 223]. The necessary conditions for asymptotic normality

and asymptotic efficiency to hold in our system are:

1) The expectation, E[Ft], of observationFt must exist and must be bounded:

E [Ft] = ε(γ,Rt) exists and is clearly bounded by 1 for allt.

2) The partial derivative
∣
∣
∣
∂E[Ft]
∂γ

∣
∣
∣ must be jointly continuous (inγ andRt) and bounded.

For both QAM (17) and Gaussian (27) signals,|∂E[Ft]
∂γ | = |∂ε(γ,Rt)

∂γ | is continuous and bounded for

γ > 0 andRt > 0.

3) The variance var(Ft) of observationFt must be continuous inγ andRt.

For both QAM and Gaussian signaling, var(Ft) = ε(γ,Rt)(1−ε(γ,Rt)) is continuous and bounded

for γ > 0 andRt > 0.

4) Fisher informationΦ(γ,Rt) must be continuous, positive and for eachγ, it must have a unique

maximum inRt.

For both QAM and Gaussian signaling, the Fisher informationΦ(γ,Rt) as given in (43) is contin-

uous and positive forγ > 0 andRt > 0. Moreover, it has a unique maximumRt = Rgenie
p (γ) for

eachγ > 0, sinceΦ(γ,Rt) is a strictly concave and continuous function ofRt.

5) For someb > 2, E
[
|Ft|

b
]

must be bounded for all possible values ofγ and associated rateRgenie
p (γ).

Since Ft ∈ {0, 1}, we know that E
[
|Ft|

b
]

is bounded for allb > 2 and for all values of

(γ,R
genie
p (γ)).
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Furthermore, the asymptotic efficiency [33, p. 186,224] of the estimator is

Φ(γ,Rt) ·

(
∂
∂γE [Ft]

)2

var(Ft)

∣
∣
∣
∣
∣
∣
∣
Rt=Rgenie

p (γ)

= Φ(γ,Rgenie
p (γ)) ·

(

ε′(γ,Rgenie
p (γ))

)2

ε(γ,R
genie
p (γ))(1 − ε(γ,R

genie
p (γ)))

= 1.

The asymptotic optimality, i.e.,Tpσ
2
NTp |γ̂Tp

→
[

Φ(γ,R
genie
p (γ))

]−1
as Tp → ∞ follows as a

consequence of Theorem 2.1 [33, p. 223].

November 2, 2018 DRAFT


	I Introduction
	II System Model
	II-A System Components
	II-B Ideal Rate Selection
	II-C Practical Rate Selection

	III Rate Adaptation with Imperfect CSI
	III-A Gaussian Approximation of the Estimation Error
	III-B Rate Adaptation with Uncoded QAM
	III-C Rate Adaptation with Random Gaussian Ensembles
	III-C1 Low-SNR Regime
	III-C2 High-SNR Regime


	IV Fundamental Limitations of ACK/NAK-Based Rate Adaptation
	IV-A Fundamental Limitations of ACK/NAK-Based SNR Estimation
	IV-B Lower Bounds on the Required Probing Period Tp
	IV-C An Upper Bound on the Optimal Sum-Rate 

	V An Asymptotically Optimal SNR Estimator
	VI Conclusion
	References
	Appendix A: Derivation of Tpmin for uncoded QAM and Gaussian Signaling
	Appendix B: Proof of Theorem ??

