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Robust Rate-Adaptive Wireless Communication
Using ACK/NAK-Feedback

C. Emre Koksal and Philip Schniter

Abstract

To combat the detrimental effects of the variability in viéss channels, we consider cross-layer
rate adaptation based on limited feedback. In particuesed on limited feedback in the form of link-
layer acknowledgements (ACK) and negative acknowledgé&sr(®AK), we maximize the physical-layer
transmission rate subject to an upper bound on the expeatdaperror rate. We take a robust approach
in that we do not assume any particular prior distributiontbe channel state. We first analyze the
fundamental limitations of such systems and derive an uppend on the achievable rate for signaling
schemes based on uncoded QAM and random Gaussian enséiiblsisow that, for channel estimation
based on binary ACK/NAK feedback, it may be preferable to aseparate training sequence at high
error rates, rather than to exploit low-error-rate datakptsthemselves. We also develop an adaptive

recursive estimator, which is provably asymptoticallyioat and asymptotically efficient.

Index Terms— adaptive modulation, rate adaptation, automatic repptast, cross-layer strategies.

. INTRODUCTION

Channel variation is a principal feature of wireless comivation. On one hand, channel variation
poses a hindrance to reliable communication, in that cHdading can make the received signal-to-noise
ratio (SNR) arbitrarily low at any given time instant, magireliable communication virtually impossible.
On the other hand, channel variation poses an opportunitfjat a channel-state-aware transmitter can

communicate reliably at high rates during channel quakigks. The key to taming and exploiting channel
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variation therefore lies in the judicious use of transmitieannel state information (CSI). While accurate
receiverCSl is relatively easy to maintain, accuratansmitterCSl is often difficult to maintain due to
limited feedback resources.

We partition limited feedback schemes (seé [1] for an oesvyiinto two classes: those based on
channel-state feedbaeind those based arror-rate feedbackin limited channel-state feedback schemes
(e.g., [2]-5]), the channel-state estimate computed byréteiver is quantizgdand then fed back to the
transmitter. In limited error-rate feedback schemes (§64-[17]), a quantized error-rate estimate is fed
back to the transmitter, from which it can infer G8lative tothe previously employed transmission rate.
For example, with Automatic Repeat reQuest (ARQ) [18], aatigg acknowledgement (NAK) of packet
reception suggests that the channel quality was below teatled for reliable communication at the
previously employed transmission rate, whereas a postik@owledgement (ACK) of packet reception
suggests the opposite.

Although ACK/NAK feedback can be employed for the estimatid transmitter CSl, its primary role
is that of maintaining a desired packet error rate at thellgkr through controlled packet re-transmission
(see, e.g.[[18]). In fact, since the packet acknowledgeiisesn standard provision of most practical link
layers, we reason that—for the purpose of channel-staimatgin—it comes atssentially no costo
the physical layer, unlike traditional channel-state fesxk schemes, which require the dedication of
reverse-channel bandwidth beyond that required for paatatowledgements. In this sense, ACK/NAK-
based transmitter-CSI| schemes require even less totabdekdandwidth than “one-bit” channel-state
feedback schemes (e.d., [19],[20]), given that systemdayimg “one-bit” channel-state feedback include
ACK/NAK as well, for the purpose of ARQ.

With the above motivation, we focus on thexclusiveuse of limited error-rate feedback for the
maintenance of transmitter CSI, from which transmisside end/or power resources are subsequently
adapted. While examples of this strategy can be found in abeurof previous works (e.g., [6]=[17]),
there are limitations in how it has been applied. For examiplg6]-[10], the adaptation algorithms
are designed heuristically, based on practical expergega@ed for a specific application in a specific
operating environment. In_[11]=[17], on the other handnsraission rates and/or powers are chosen

carefully to maximize a certain performance metric. To aclithis objective, a Bayesian approach is

1 In some cases, the receiver uses its channel estimate tdateldiscrete transmitter rate and/or power parametadstten
feeds back those parameters directly. Since these traesmpidrameters can be put in one-to-one correspondencesuiitie
qguantized channel-state estimate, we consider such sshenfee equivalent to channel-state feedback schemes.
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taken, i.e., amodelis assumed for the channel variations and an associatechipation problem is
solved based on this model. Typically, the channel is asdumeary according to a finite-state Markov
model [11], [12], [14]-[16] or a Gauss-Markov process|[IIfe shortcoming of a model-based approach
is that, it may not be possible to assign accurate priors @weide range of channel operating conditions.
Consider, for example, that channel variations span a vedge of time scales, from bits to thousands of
packets. For instance, relative movement of the transmrgteiver pair may cause variations at relatively
long time scales, since a very large number of packets carabsniitted during the time it takes for the
stations to move far enough to cause significant change irctthanel. On the other hand, co-channel
interference can change significantly from one packet migson to another. Finally, the multipath
nature of the propagation medium can cause fast and/or sidind in the channel, depending on the
relative movement of the scatterers.

In this paper, we take a robust Bayesian|[21] approach toaddptation from limited error-rate
feedback, where “robust Bayesian” refers to the fact thatreat the channel state as a random quantity
without assuming any particular prior distribution on i particular, we first derive conditions on the
“quality” of CSI needed for a model-independent ACK/NAKdeal rate adaptation system to maximize
data rate while keeping the packet error probability bel@pecified threshold. Based on these conditions,
we derive fundamental bounds on the rate achievable undiea grror probability constraint. Finally,
we design an ACK/NAK-feedback-based non-Bayesian chastagt estimator with provable asymptotic
optimality. Our findings are illustrated through both uneddQAM and random Gaussian signaling.

We emphasize that the packet-level retransmissions drales by link-layer ARQ would be performed
on top of the ACK/NAK-based rate-control that we study. In fact, siraur physical-layer optimization
criterion (i.e., maximization of transmission rate subjax a given target packet error probability) is
by nature decoupled from the functioning of higher layers, do not explicitly consider ARQ in our
analysis. In other words, from the perspective of our plalsiayer, the link-layer ARQ mechanism
merely specifies the contents of the packets that are to hentitted.

The remainder of the paper is organized as follows. In Seffiowe detail the system model and
provide a mathematical statement of the problem. In Sedfiprwe derive conditions for successful
rate adaptation with imperfect CSI, and in Secfion 1V, welea bounds on the achievable rates with
ACK/NAK feedback. In Sectiof V, we develop an recursive afglrestimator based on such feedback,

and in Sectiofi_ M| we conclude.
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Fig. 1. The rate adaptation system.

[I. SYSTEM MODEL
A. System Components

Figure[1 depicts our model of the physical-layer adaptivenmainication system. At each discrete
packet index, the transmitter transmits a packe€t = [X; 1,..., X;,] containing a fixed number,, of
symbols{X, ;}_,, which are encoded at a rate & bits/symbol, chosen by the rate controller from
the set of possible ratg8. We assume that the transmit power is constant and nornallipewer levels
such that the energy per symbol is[|Kt7k|2] = 1. For this packet, the corresponding channel outputs
are

th,k :HtXt,k+Wt,k7 k= 17"'7”7 (1)

for complex-valued channel gaiA; and additive white circularly symmetric complex Gaussiaise
W, . with two-sided power spectral density,. Some common models fa#; include Rayleigh-, Rician-
and Nakagami-fading (see e.d., [22]). However, we will reguame any specific statistical model g
and we will make only weak assumptions on the distributiorffefin the sequel.

The quantityy; = |H;|?/N, can be interpreted as th& packet'schannel SNRSince each symbol
has unit energy;; is also thereceived SNRor packett. Thus, we will simply refer toy; as the SNR.
Due to lack of power adaptation; is an exogenous quantity over which the system has no coitel
assume that, for alt, 14 takes on values from some prior distributipft) € P, whereP is a set of
distributions with finite mean and variance. However, we ena& further assumptions on set We do
not even assume knowledge of this set by the transmittereorebeiver.

We assume that the receiver has access to perfect CSl and osesmum likelihood decoder to decode
the received packet. L&X,; denote the decoded estimate of pacKetbased on received packdt, =
[Yi1,...,Y:,], and the corresponding probability of decoding erroebg, R;) = Pr(Xt # Xt | 1 Rt).

Note thate(-,-) depends on the packet sizeand the coding/modulation schemes, which are assumed
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to be known at the decoder. For now, we assume only that theg/oabdulation schemes are such that
e(y, Ry) Is a convex, continuous, and increasing functiorRpfand a convex, continuous, and decreasing
function of ;. Later, we detail the behavior of our proposed schemes misgecific cases of uncoded
QAM and random Gaussian signaling.

Based on the received packét and the decoded pack®t;, the decoder generates a feedback packet
F; which is communicated to the transmitter through a revelamgel. Assuming that the receiver is
capable of perfect error detection, we taketo be a binary ACK/NAK (i.e..F; = 0 for ACKand F; = 1
for NAK), so that

(e, Be), f=1

1—¢e(vw,R), f=0

We assume that the reverse channel is error-free but intesda delay of a singepacket interval. Thus,

Pl’(Ft = f ‘ ’Yt;Rt) = (2)

the “information” available to the transmitter when chowsiateR, is1, = [Fy, Fb, ..., F;—1,Ri, Ry, ..., Ri_1].
We find it convenient to explicitly include the previous {e?, } ,~; in the information vectol; because

the ACK/NAK feedbackF’; characterizes channel qualitylative tothe transmission rat&.. Note that

the controller chooses the transmission rate at tingelely based on the information vecthy, which

is available at the receiver as well. We assume that theverce also aware of the controller's rate
allocation strategy, so that it can compute the current ardiqus values of?;.

Finally, we assume in the sequel that the SNR is constanteaet block ofl" > 1 packets, and that
it changes independently from block to block, i.e., that ¢hannel is “block fading.” In the sequel, we
focus (without loss of generality) on the first block, for whit € {1,...,7}, and omit thet-dependence
on the SNR, writingy; as “y.” In addition, we usey(v|I;) to denote the posterior SNR distribution, which
can be associated with the prior distributipfy) through the conditional mass functid?(F; | v, R;)

given in [2). Furthermore, we denote the set of possiblegpimstprobability distributions usin@ (I;).

B. ldeal Rate Selection

We define thadeal p-hypothesized controlleas the one that, at time based on the hypothesized pos-
terior p(y|1;), jointly optimizes the transmission ratég;, ..., Ry) to maximize the sum-ratg.._, R,
subject to a constraint on expected error probability. Imgso, we allow any packet to be declared a

probe packetwhich is exempt from the expected-error-probability doaiat but contributes nothing to

2It is straightforward to generalize all of our results to axgel delay ofd > 1 packet intervals. While the generalization

does not alter the fundamental nature of our results, itiregua more complex notation, which we avoid for clarity.
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sum rate. Probe packets are used exclusively to learn abeusNR~, in the hope of more efficient
allocation of futuredata packetsIn particular, the ideal controller chooses rates acogyth the following

constrained optimization problem:

T
D R, 3
Drmetoay P e o 2 Q
subject toD,E, [e(y,R;) | It] < e * forall 7 =t¢,...,T. 4)

Here,D, < {0,1} indicates whether the* packet is a data packeb( = 1) or a probe packetly, = 0),
anda > 0 is an application-dependent quality-of-service (QoSpapaeter. Note that the expectatiop [B
in (4) is taken over the conditional distributigriy|1;).

With ACK/NAK feedback, recall thal, = [Fy, Fb, ..., F;—1, Ri, Ra, ..., Ri—1]. Thus, the choice of;
affects not only the contribution to the sum-rate but also“tjuality” of the conditional SNR distribution
p(v | I;) at timesT > ¢t + 1. As these future SNR estimates get worse, the controllerietl to choose
more conservative (i.e., lower) rates in order to satisfy #&xpected error-rate constraint. (We justify
this statement in the sequel.) Thus, the selectioRohas both short-term and long-term consequences,
which may be in conflict. Consequently, the solution to theaidrate adaptation problerll(B,4) under
ACK/NAK feedback is aconstrainedpartially observable Markov decision process (POMDP) [Er
practical horizonsT, it is computationally impractical to implement this POMDé% now described.
Firstly, notice that the state of the channel is continudtwgen if the channel state was discretized (at
the expense of some loss in performance), the required nyetmdmplement the optimal scheme would
grow exponentially with the horizofi’. Indeed, this POMDP lies in the space of PSPACE-complete
problems, i.e., it requires both complexity and memory tiratv exponentially with the horizo@ [24].

Next, consider the (genie-aided) case of perfect CSl,Ii,e= ~ for all £. When the channel is known,
there is no need for probe packets, and thus the optimalisolehoosesD, = 1 V7. Furthermore,
since the rate choice does not affect the quality of the SNnate, the ideal rate assignment problem

decouples, so that the best choice forbecomes

R?erf"CSI(’y) £ argmax R; S.t. e(y, Ry) <e °. (5)
R.€R
Indeed, with perfect CSl, constraifi (4) is active forta#t 1,..., T, sinces(v, R;) is a convex increasing

function of R; and the objective function is linear iR;. Notice that, in this case, ideal rate selection is

greedy andr*" () is invariarH to time ¢.

% This invariance holds as long a$-, -) is t-invariant, i.e., the coding/modulation scheme does nangk with time.
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Fig. 2. The controller decomposed into two components: amdaestimator and a rate allocator.

C. Practical Rate Selection

In practice, we have neither the exact postep¢y|I;), nor the perfect CSI. Thus, we consider a
practical (non-ideal) approach, motivated by techniquemfthe field of adaptive control [25], which
deviates from the ideal approach in two principal ways:

1) the probe packet locations are set at the fifspackets in eacfi™-block, and

2) the controller is split into two componentschannel estimatgrwhich produces an SNR estimate

4(Ir,+1) based on the probe-packet feedbdgk, , and arate allocator, which assigns the data
packet rate based oIz, ). (See Fig[R.)
As before, the rate allocator chooses the data-packet(Rtgs, . .., Rr) in order to maximize sum-rate
under an expected-error-probability constraint. In paitr, at each time € {T, + 1,...,T}, the rate

R, is chosen via:

T
. 6
R P ;R (6)
subjectto  E[e(v, R;) | 4(Ip41)] < e (7)

forall r=¢,...,T,

where the expectation ifi](7) is taken over some posteridrilalision p(vy | 9(Ir,41)). Let us denote
ATy+1 =S 4(I1,41) and the set of possible posterior distributions v#(Yz,,1), which, in turn, is decided
by the particular choice of the estimatgf:).

While related, the constraints](4) arid (7) have an importi#ference: the information contained by
I, in @) is summarized by theossibly incompletstatisticy(I7,41) in (). Consequently, satisfaction
of (7) does not necessarily guarantee satisfactionlof (4)az versa.

Due to the fact that the probing period is limited to the fifstpackets,{ Rr,,1,..., Rt} does not
affect the quality of future SNR estimates, the rate assegrtrproblem[(B)E(7) decouples, and the value
of R, satisfying [6){(Y) reduces to

Ry £ arg max R, st [e(v, Re) | ATgq1)] < e (8)
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Moreover, [(8) implies thak} is invariant to time.. Note that the decoupling that occurs here is reminiscent
of the decoupling that occurred with ideal rate selectidr(@@ under perfect channel state information,
i.e., (3).

In the next section, we shall see that the choice of estinpd&ys a key role in the overall performance
of the practical rate adaptation scheme. Recall that thenattr determines(y | 4(Ir,4+1)), Which
determines the expected error probability constraint.ddrrtain scenarios, we shall see that a solution
to (8) does not exist, i.e., that no rates withitnsatisfy the expected error probability constraint. Laiter,
Sectiorl ¥, we develop a non-Bayesian estimator in and shaty with that estimator, the s&t(j7, 1)
will contain merely the class of Gaussian distributionsynastotically as7, — oo, for any set,P, of

prior distributions with finite mean and variance for the SNR

[1l. RATE ADAPTATION WITH IMPERFECTCSI

Before studying the practical rate allocatiar (8), we firstsider a particular “naive” data-rate allocator,
in order to draw intuition on how estimation errors affecstgyn performance. Given SNR estimate

generated from a particular unbiased estimator, the ndiveator assigns the data rate
RMVe(5) £ argmax R; s.t. e(3, Ry) < e 9)
R.ER

forallt =T, + 1,...,T. Due to the lack of expectation in the error-probability swaint of [9), the
naive rates may violate the desired expected-error-pilityadonstraint in [8). This follows from the fact
that, when the posterior distributigi(-y;|4;) is non-atomic (i.e.p—?yW > 0), Jensen’s inequalltyimplies
that

Eple(v, Re) [ 4] > e(¥, Re) VR (10)

Therefore, to ensure thexpecteekbrror-probability constraint in{8), the practical algor must “back-
off” the rate relative toR@V¥(%). To do so, it choose®; (%) < R"Ve(4), where equality occurs if and
only if the estimation erroiN £ v — 4 is zero-valued (with probability one).

When the estimator is perfect (i.€;,= 7), we note that the naive rate coincides with the ideal rate
under perfect CSI (i.e.RMve(5) = RP*"CSl1)|,_.). In this caseR@"e acts as an upper bound on the
ideal R; under ACK/NAK feedback, as specified byl (8)-(4). Accordinghe make the following two

definitions.

4 For unbiasedy, {I0) immediately follows from Jensen’s inequality. Foas®gd4, {I0) still holds but requires some effort

to derive. We skip these details since our focus is on unbigse
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Definition 1: Therate penaltyassociated with estimatéris the smallesd (in bits/symbol) that satisfies

Ep [e(v, RI™(3) = 6) | 4] <e™®. (11)

Definition 2: The power penaltyassociated with estimatdris the smallest scale factprthat satisfies

Ep [e(uy, RIFY(9)) | 4] <e ™. (12)

Next, we analyze two different scenarios for the descrilzee adaptation system. In the first scenario,
the n symbols in the packet are assumed to be uncoded QAM symbbli im the second scenario,
the n symbols are a Gaussian random coded ensemble. Within tlemdecenario, we focus on the
high-SNR and low-SNR cases separately. For both scenari@sjse the analysis presented next, in
SecI-A.

A. Gaussian Approximation of the Estimation Error

Under the posterior distributiop(+|7), let the estimation erro’v = v — 4 have the distribution
q(N1%) = p(N +4|%). Let gny5(r) and Ay5(r) denote themoment generating functioand thesemi-
invariant log moment generating functid@g] of N given 4, respectively. We assume that there exists
SOMeryax > 0 such thatA s (r) < oo for all |r| < ryay. It is well known [26] thatA 5 (0) = 0,

Al (0) = E; [N 5], and A%, (0) = 0% Then, for anylr| < rmpax,

E, lexp(rN) | 4] = gnj5(r) = exp (Anp(r)) (13)
R 1
= exp (Eg [N | 4] + 5%, ()r?) (14)
for somer’ between0 andr (having the same sign a9, where [[(1#) follows from Taylor's theorem.
Furthermore, applying Taylor’s theorem to the third-ordgpansion, we get
gnj5(r) = exp (Eq [N | 4]r+ %U]szrz + %A%W(r”)r?’) (15)
for somer” between0 andr.

In many cases, the first two terms of the expandiofh (15) leansightful expressions to illustrate the
impact of the first- and second-order statistics of “charvaglability.” This will be referred to as the
Gaussian approximatigrsince, whenV|4 is Gaussian, the cumulants of higher order than the variance
vanish.

Further, for an unbiased estimatoy, [ | 4] = 0. In this case, the Gaussian approximation yields the
simple second-order approximation:

1 2
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Regardless of the posterior distributipa/V'|%), the approximation[{16) isasymptotically accurate for
the non-Bayesian estimator proposed in Sedfibn V, whiclsysngtotically unbiased and asymptotically

normal, as will be proved.

B. Rate Adaptation with Uncoded QAM

Here, we study the scenario in which thesymbols{X, ;}}_, of packett are uncoded and selected
from a QAM constellation of sizé/;. Since the constellation size is constant over the pachetrdte
equalsR; = log, M, bits/symbol. The following is atlgHtapproxmatlon[[E p. 289] on theymbol error

rate associated with minimum-distance decision making [27,80]2

3
er(, Rt) =~ 0.2exp <_§2R:Y_ 1) ) a7)

The associated packet error rate is
6(77 Rt) =1- (1 - Ek(’Y? Rt))n7 (18)

sincee (v, R;) remains constant for akt, as+ and R; remain constant over the packet.

Since we can write

(1= ekl R))" < 1= neg(y, Re) + 5n(n = Ded (o, o), (19

it follows that (v, R;) > Zex(v, Ry) for all (v, R;) such thatey, (v, Ry) < —L;. Similarly, (I8) implies
thate(y, R;) < 1—(1—-15)" for the same-y, R;). This latter bound is an increasing functionrafand,

for n > 1, it approximately equal$ — e~!, which is much higher than typical error rates. We assume
thatn is large enough and the possible outcome$of;) are such that(y, R;) > Fer(v, R;) for all

t with probability close tol. We further elaborate on this next, after we derive a sufiicemndition for

the error constraint to be met.

To meet the expected-error-probability constraimt (8)s inecessary that

—Ep[ek(%Rt) 4]
~ [02exp< g > &] (20)
; E{om(_g; RAT R P o

*The bound holds within approximately 1 dB from the true valoea wide range of SNR$[2, p. 289].
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Using the unbiased Gaussian approximatfod (16), cond{@d can be rewritten as follows, after taking

the natural log of both sides:

~ 2 2

3 ¥ ONny (31
2 < —a—In0.1n.

<22Rt_1> < —a—1In0.1n (22)

220 — 1 2

For the existence of a feasible rafg, the solution set for Inequality (22) must be non-empty,vitnich

it is necessary that
22
> 2(a+1n0.1n). (23)

TNl
Condition [23) implies thafﬂ/o—]?m, the effective SNR of estimatdr, must be at leas?(a + In 0.1n)
to guarantee an expected error rateeof*. Using similar step§,a sufficient conditionﬁz/af\,w >
2(a+1n0.2n) can also be derived, illustrating the tightness[ofl (23). Vileiavestigate the difficulty of
achieving this condition in the next section.

Given that[(ZB) is satisfied, one can sollzel (22) to find the uppendR; < R;(ﬁ,o—?\m), where

_ 3012V‘A
R:(%U?VW) = log, (1 +5- ) @27 <1

o2\ !
- \/1 —2a+In 0.1n)ﬂ> . (24)

42
Fig. [3(@) plots the upper bounf{24) as a function of the edbns effective SNR&Q/O—]Z\,W for 4 €
{13,20,25} dB, a desired packet error rate ¢f = 1073, and a packet size of = 500 symbols. The

naive rate allocation

e, ~ .3 1
RY™4() = log, (1 + - 2o tn0in 1n> (25)

(derived from [(21) withN = 0) is also shown on the same plot. The required effective SI‘%IRJZVW
as imposed by[(23), i81.6 here. Fig[ 3(a8) shows thd}®%(¥) < 2 bits/symbol fory < 13 dB. Since2
bits/symbol is the minimum possible rate for uncoded QAM, aeaclude that it is impossible to meet
the target packet-error rate o6~ when4 < 13 dB, even with perfect CSI.

By definition, the rate penalty is the smallésthat satisfiesy = RIAVE(4) — R;*(’y,a]?\”,y). Thus, an
upper bound om is given by

(%, 0%5) £ RIVA) — By (3, 0%5)- (26)

® From [I8) and the fact thatl — e; ;)™ > 1 — nerr, we havee(y, R:) < nex(y, Re) for all (¢, k) with probability
1. Consequently, for satisfaction dfl(8), it is sufficient ttheE, [ex (v, R:) | 4] < e~ “. Replicating [(2IL)f(2B), we obtain the

sufficiency condition.
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Fig. 3. For QAM signaling, (a) rate&; and R'*"® versus estimator’s effective SN /afm, and (b) power penalty lower
bound . versus estimator's effective SNIR /o7

From Fig[3(@), we can see th&, UJZVW) depends on the effective SNf@/a?VW: it is significant when
the effective SNR is near the minimum value established BY, [@ut shrinks as?z/afm gets large. In
addition,S(&,ofm) grows in proportion toy.

By definition, the power penalty is the smallgstthat satisfiesk; (§) = R?V¥(%/u). Thus, a lower
boundﬁ(fy,a]zm) on the power penalty can be found by soIviﬁQ(fy,a]zVH) = RMV&(¥ /) for p. The
power penalty lower boungd(, O'JZV‘;Y) is plotted in Fig[3(H) as a function of effective Sl\ﬁﬂ/afm for
the same expected packet-error rat, 3, and packet size; = 500, as in Fig[3(d). The power penalty

is seen to be as high &sdB when the effective SNR is near the minimum value estabdishy [23),
but shrinks as“yz/o—]?m gets large.

C. Rate Adaptation with Random Gaussian Ensembles

Next, we study the random coding [28], [29] scenario in whibb codewords are selected from a
Gaussian ensemble. L&t be the maximum rate irR. Then the Gaussian ensemble consists of
2nftuax possible packets, where each symb®},,., of packett is chosen independently from/&(0, 1)

distributiorH (We use unit variance here because earlier we assunﬁb’dt’la?] = 1.) Attime ¢, say that

" We use real-valued symbols, instead of complex-valued sisntior simplicity. Consequently, the data rates will be

represented in units of bits per real-symbol. For fair congoa with uncoded QAM, one should simply double these data
rates.
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transmission rate?; € R is chosen. Then one packet from a s#é subset of the initially generated
set of 2"f=ax packets is chosen arbitrarily for transmission.

The receiver is assumed to know the subsets of possible {gackeresponding to each admissible
rate R; € R. Based on its observation of th& packet, the receiver finds the most likely packet within
the subset o™ possible packets. Note that, unlike the uncoded QAM scenamere each symbol
is decoded separately, here the entire packet is decodeduas. 3An upper bound for the associated

decoding error probability is (e.gl, [28])

1
e(y, Ry) < exp (np [Rt In2— Eln <1 + %p)]) , (27)

wherep € [0, 1] is the union bound parameter. One can minimizé (27) pver|0, 1] to find the tightest

bound, if so desired. To satisfy the expected-error-pridibalsonstraint [8), it suffices that there exists

E, [exp (np [Rtln2— %m <1+%p>]>

1) Low-SNR RegimeWhen P(7 < 1| &) ~ 1, we can write

ln(l—l—L) ~ ) N (29)
1+p 14+p 1+p

ap € [0,1] for which

ﬂ <o (28)

5] = 15 and vay (22

approximation[(I6), the constraiff {28) is satisfied if hekists g € [0, 1] for which

For an unbiased estimator, E- 4) = gz Thus, using the Gaussian

y L np 2
<— In?2— - ), 30
“ ””(Rt“ 2<1+p>+8<1+p>2%> (30)

or, equivalently, for which
1 « ¥ 1 np 9
<—(—— — = 2 31
Ry ln2< wp T2+ ) 8(1+p)2JN|V> D)
Thus, if there exists some € [0, 1] for which the right side of[(31) is positive, then aiy below it is

feasible. For this to be possible, we need

) 1
2a(1+ p)* = Anp(L + p) + 7 (np) o5 <O
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for somep € [0, 1], which leads to the following necessary condear the estimator:
,3/2
ONP
One can then find an upper bound &p € R satisfying [28) as follows:

R: (’?7 O-]2V|:y)

1 a ol 1 np
- m2 \ o -3 2 ) 33
e o (2 s S i) @)
Likewise, one can deduce from (27) and](29) that the naiwe igat
. R 1 o ’AY
Rnawe — - @ ' 34
e ) pren[%,}i In2 < np + 2(1+ p)> (34)

The rate upper boung; is plotted in Fig[4(3) as a function of the estimator’s elﬁm:SNR&?/a]?VW
for 4 € {-3,-8,—-12} dB, a desired packet error rate ef* = 103, and a packet size of = 500
symbols. The rate?"@"e from (34) is also shown on the same plot. Every point on the catves was
computed using the optimal value pfe [0, 1], found numerically. We note that, with these parameters,
@2) implies thatfy2/aj2m must be at least3.8. Figure[4(d) also shows that the rate penalty, ajsz) =
RMaVe(5) — Rj(‘y,a]zm) is significant Whenﬁz/a?\,W is near the lower bound established byl(32), but
that the rate penalty shrinks a%/o—]?m increases.

For the same target packet error rat® () and packet sizen(= 500), Fig.[4(b) plotsR; versusy
for estimator effective SNR&/Q/UJZVW € {60,100}. In the same figureR¥"e and the “naive” Shannon
limit (i.e., ergodic capacity)} log,(1 + %) bits/real-symbol are shown. By comparing the naive Shannon
limit with RP'@V€, one can observe that, in the low-SNR regime, the power peofilGaussian signaling
scheme can be significant, especially at small values &from the same plot, one can observe that the
additional power penalty due to imperfect SNR estimatjoff), is quite small: less thaf.5 dB when
&2/0—]2% = 100 and less than dB whenﬁz/af\,w = 60.

2) High-SNR RegimeWhen Pfy > 1 | 4) ~ 1, we can write

n(+ 1) () - (F55)
—In <L> +1n <1 + E) . (35)
1+p y

8 Note that condition[{32) is not exactly analogous to condit{23). Condition[{3R) is necessary for a non-empty safutio

set to exist for inequality({31), whereds{23) is necessaryttie existence of a feasible rate that satisfies the expecter
bound. In order to derive an analogous necessary condiit®,can use a sphere-packing (SP) bound for the Gaussianethan
(see, e.qg.,[130]). With the SP lower bound, our findings wdgdqualitatively similar, but the derivation would be extely

tedious. For this reason, we assume that the upper bounddsdhapproximation for the actual error rate.
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. (2) (b)
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Fig. 4. For Gaussian signaling at low SNR, rafésand RV versus (a) estimator’s effective SNﬁ/a?\,W and (b) estimated
SNRA.

Thus, for an unbiased estimator, [

4] ~ In 12 and vay(In 175|4) ~ £ Similar to the low

T
SNR scenario, we can use the Gaussian approximafidn (16ita that [28) is satisfied if there exists

ap € [0,1] for which

1 o 1 np
>-np|Rin2—-In|——)+-—"1—1], 36
« np( ¢ 1 5 n<1+p> 872/012\/:y> (36)

1 a 1 ¥ 1 np
R<— -S4 -m(—2L-)-—=-_" . 37
! ln2< np+2n<1+p> 8@2/012“) 37)

Hence, if there exists somee [0, 1] for which the right side of[(37) is positive, then af below it

or, equivalently,

is feasible. In the high-SNR regime, we haye> 1 with high probability, and thus there almost always
exists somep € [0, 1] for which a feasibleR, > 0 exists. One can deduce from this observation that, a
principal difference between the high-SNR and low-SNR megs is that, in the high-SNR regime, the
expected error probability constraint is satisfied muchereasily, with nearly any SNR estimator. One

can then find an upper bound @t} € R satisfying [28) as follows:

R;fk (/3/7 O-]2V|:y)

1 o 1 o 1 np
= — -+l - . 38
plél[%‘?inn2< np+2“(1+p> 8&%%) (38)
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Likewise, one can deduce from {27) and](35) that the naiwe it
Ve, 1 o 1 o

naive — I e | _ X 39

BHA) prg[%ﬁ]ln2< np+2 n<1—|—p>> (39)

(a) (b)

IN
&)
»
¢,

R y=2dB ] 4
///— | - - g
:73\3'5: 7777777777777777 5-20d8 | §3'5 Bt
{82.5 A 1 7'82.5—
B2 e 5 2
%1.5// Sy5
§ 1t § 1 7772?ia\i/zShannonlimit I
0.5 — R 0.5 — R ati?/o%. =60 |
—— - Rpaive - Rpati?/o% =20
0 40 60 80 100 120 % 14 16 18 20 22 24 26
Vo 4 (dB)

Fig. 5. For Gaussian signaling at high SNR, ra¥sand R}*"® versus (a) estimator’s effective Sl\ﬂ:?/af\,H and (b) estimated
SNR7#.

The rate upper bouné; (¥, UJZVW) is plotted in Fig[5(3) as a function of the estimator’s effecSNR
fy2/a]2m for 4 € {13,20,25} dB, a desired packet error rateof* = 10~3, and a packet size of = 500
symbols. The rat&?}?V¢(¥) from (39) is also shown on the same plot. Every point on the catves was
computed using the optimal value pfe [0, 1], found numerically. We emphasize that the rates plotted
in Fig.[5(a) are expressed in bits pel-symbo] and thus should be doubled for fair comparison with
the QAM rates presented in Fig. 3(a). For Gaussian signalinge compare the high-SNR results in
Figs.[5(@f-5(8) to the low-SNR results in Figs. 4(a)-#(bg wan see that the normalized rate penalty
d/R; is much smaller in the high-SNR regime. For instancej’ar%,, = 20, ¢ is no more thar0.5
bits/symbol and / R} is less than 25% for all three values4fThis decrease in rate penalty is expected,
since, in the high-SNR regime, the rate scales roughly viieghldog of the SNR.

For the same target packet error rat@ (®) and packet sizen( = 500), Fig.[5(b) pIotst(fy,afVH)
versusy for estimator effective SNR/?/JZZ\,W € {60,100}. In the same figureRP@Ve(4) and the naive
Shannon Iimit% log,(1+%) are shown. There we observe that, in the high-SNR regimeydher penalty
for Gaussian signaling is constant with and no more than.5 dB. The additional power penalty due

to imperfect SNR estimationy(¥, O'JZV‘;Y), is approximatelyl dB when&Q/o—]Z\,W = 60 and approximately
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2.5 dB when4?/o%, . = 20.

IV. FUNDAMENTAL LIMITATIONS OF ACK/NAK-B ASED RATE ADAPTATION

In the previous section, we studied the performance of tteeadaptation system for a generic unbiased
estimator. We analyzed the feasible rates with particudairgg/modulation schemes as a function of the
“quality” of the estimation provided by the estimator, fohieh the relevant metric was the estimator’s
effective SNR‘yQ/a]?VW. Note that we assumed no knowledge of the prior SNR distabyi(~y).

In this section, we view the SNR of the current bloek,as an unknown parame&and pose the
estimation ofy as a non-Bayesian parameter estimation problem. We firssiigate the fundamental
limitations of SNR estimators that are based on packet-l@@K/NAK feedback, e.g.;y = 4(Ir,41).
Using that analysis, we show that it is difficult to make godtRSestimates while simultaneously keeping
packet-error-rate low. This latter property motivates S&fimation via probe packets that come without
error-rate constraints (in contrast to data packets, waieherror-rate constrained) as assumed in[Sec. II.
Finally, we discuss optimization of the probing perifgl and we derive an upper bound on the optimal

sum rateRg .

A. Fundamental Limitations of ACK/NAK-Based SNR Estimatio

Consider the SNR estimatér(Ir, 1), based on thd, ACK/NAKs in
Ins1=[F1, P, ...,Pr,Ri,Ra,.... Ry,

where R; denotes the rate anfl; denotes the ACK/NAK feedback for packet In the sequel, we
abbreviatey(Ir, 1) by 4. Recall thatR; and F; are connected through the packet error probability
(v, Rt), as specified in[{2).

Theorem 1:For true SNRy and any unbiased estimatgrbased oriZ, ACK/NAKs, the estimation

error varianceazzm £ var(y — 4/%), is lower bounded by:

-1

To 2
(E/(’Ya Rt))
R Doy ey 0

wheree(v, R;) is continuously differentiable in ande’ (v, R;) £ %5(7, Ry).

®We assume that is a random variable, taking on an independent value for &#mtk, but that the distribution of; is
unknown to the transmitter.
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Proof: Given~ and the rateszy, ..., Ry, the feedback™, ..., Fr, satisfies

Pr(Flzfl7"'7FTp :pr ‘ ’Y?R].J"'?RTp)

Tp
= H Pr(Ft = ft ‘ v, Rt) (41)
t=1
Then

0
V(v,Ri, f1) & aln Pr(Fy = fi | v, Ry)

% In ([e(y, R [L = e(v, ROI)

(R fo
B 1- 6(77Rt) (6(77Rt) 1> . (42)

The Fisher information [31] associated wiffj is:

(I)(77 Rt) = Var(V(77 Rt7 ft) | Vs Rt)

(R’
0 ) [L— ey, )]

and the cumulative Fisher informationE:;Fi1 (v, R;). Theorenil follows since the Cramer-Rao lower

(43)

bound (CRLB) for unbiased estimators is the reciprocal ef Eisher information/[31]. ]

B. Lower Bounds on the Required Probing Perifd

In Sec[Tl, we derived lower bounds (23) ahd](32) on the va»li.@z/o—]?m (i.e., the estimator’s effective
SNR) required to facilitate the use of data transmissioruvieoded QAM signaling and randomly coded
Gaussian signaling, respectively. In this section, wedlate those lower bounds (on requir@ﬂ/a?\,w)
into lower bounds on required probe-duratidp, recognizing that the quality of SNR estimates (and
thus&2/a]2w,y) increases withl,. From these bounds, we shall see that the required vallg dépends
heavily on the probe error rate, and in particular that tlggired value ofl}, grows very large as the probe
error rate decreases. This motivates the optimization albgrerror rate, which requires the decoupling
of probe error rate from data error rate (since the lattersisally constrained by the application).

In this section, we assume that both the modulation/codihgrme and the rate is fixed over the probe

interval, i.e., thatR, = R, for t € {1,...,Tp}. In this case, the CRLBE_(40) reduces to

2 1e(y, Bp)[1 —e(v, Rp)]
INly Z T 2
Tp (E/(’Ya Rp))
which is inversely proportional td@,.

; (44)

November 2, 2018 DRAFT



19

Recall that, to make uncoded QAM signaling feasible, camali{Z3) must be satisfied, and to make
random Gaussian signaling feasible in the low-SNR reginoedition [32) must be satisfied. Though
(23) and [[3R) are expressed in terms of the estimator’s tafleSNR, we can rewrite them aﬁm <
14%/(a+1n0.1n) andafm < 34%/a, respectively, and apply the CRLB{44) to arrive (see Apjped
at the following. For uncoded QAM, we nedg > Tg‘“n, where

Tgmn _ 2(a+1In 012n) e(, Rp) : ’ (45)
(1= (v, Rp))[(1 = (v, Rp)) =™ — 1]7In? (5(1 — (1 — e(v, Rp))/™) ) (0 /7)?
and for random Gaussian signaling in the low-SNR regime, eedfi, > Tgnin, where
8a(1 —e(v,Rp)) (14 p* + 7)2
e(y, Bp)(np*y)?
and wherep* is the union bound parameter corresponding to the tightest bound [(2F7), which itself

Témn — (46)

depends ony, Ry, andn.

(@) (b)

10 ‘ 10
——4=-3dB
——4=-7dB
— 4=-10dB
10° 10°% ]
g g
ialoz— aﬁ.lo2
10" 10"
0 0
10 : 10
10 107 10° 10" 107 10°
(7, Rp) (7, Rp)

Fig. 6. Lower bound on required probing durati@})ﬁnin versus probe packet-error ratéy, Rp) for (a) uncoded QAM and

(b) random Gaussian signaling.

Figures 6(a)-(b) pIotF;flin as a function of the probe error ratéy, R,) for uncoded QAM signaling
and random Gaussian signaling, respectively. For the ,pleésassumey ~ ~, which eliminates the
dependence dT;“i“ on 4 and~ in the QAM case,; for the Gaussian case, we stigwior the values
4 € {-3,-7,—10} dB. As in our previous plots, we assumed= 500 ande~® = 1073. The key
observation to make from these plots is that the number diepmackets increases quickly &gy, Rp)

shrinks. In fact, the plots suggest tH&gt is roughly proportional td /<(vy, Rp). This inverse relationship
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is somewhat intuitive because, given a probe packet-eaterafe(v, R,), one must wait for /e(v, Rp)
packets (on average) to see a single NAK. Recall, howevat,Riy.[6 shows only dower boundT;’”1
on the probe duration required for communication with pesitate; the optimal value df}, is expected
to be even larger.

The main conclusion to draw from this section is that, to k#ep probing period small, one must
allow relatively high probe error ratg(vy, R,). For systems which estimate SNR using only ACK/NAK
feedback from data packets, this implies that if the dataremate e=® is small, then the number of
packets required to get a decent SNR estimate will be largeh Systems would only be suitable for

channels that are very slowly fading.

C. An Upper Bound on the Optimal Sum-Rate

Ry

1=, +1 are chosen based

Recall that, in our practical rate adaptation system, tha dacket rate$R; }
on the SNR estimated using ACK/NAKs from probe packets V\Hnbs{Rt}fil. To complete the system
design, we must choose the ratgg;}7 , as well as the probe duratidfy,. In doing so, we aim to
maximize the sum data rafe;,, = ZtT:T,,H R; while satisfying the expected error-probability consitai
in @). Intuitively, we know that increasing, improves the SNR estimate which, in turn, allows a higher
data rate (since less rate “back-off” is needed to satiséyetror constraint). On the other hand, for
a fixed block lengthl’, the number of data packet$, — T}, shrinks asT}, increases. Therefore, the
choice of 7, involves a tradeoff between these two objectives. In thitiee, we discuss the choice of
{Tp, R1, ..., Rr} and derive an upper bound on the sum rRtg, that leverages the rate bounds from
Sec[I] and the CRLB from SeE. TViA.

In Sec[1I-Q, we recognized that the data-rate assignmesitlggn decouples in such a way that the
optimal data rate$ R; f:TPH become independent of time Thus, in the sequel, we focus on choosing
a single data rate?q, whose optimal value will be denoted by;. The system design problem then

reduces to the following sum-rate maximization:

Rim = max (T — Tp) Ry (47)
To<T, (Ra,...,R1y,Ra)ERTPT!

st E (7. Ra) | 4(I5,)] < e

As argued in Sed_ll, the optimal data rai increases monotonically with the quality of the SNR
estimate, i.e., with the inverse of the estimator variam;&@?\,w. Thus, the optimal probe parameters

Ty, Ry,..., Ry} are those that minimize?, .. From the CRLB in Theorerl 1, we know thaf, . >
p P N lo}
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g?m(fy), where

3 R\
2 N
QN\’?(V) o (R, ,IEIT? ceR™p (z; 1 — E( R )]) (48)
i -1
(37 e LGB
= (tl R.€R 6(’7, Rt)[l — 6(77Rt)]) . (49)

Thus, if v was provided by a genie, and if the SNR estimator was effi¢iemt CRLB achieving), then
(49) suggests to set the probe rate at

. ! R )]2
R3*™®(v) = arg max £ B 50
P 1) = R S Rl — (v, R )
which is invariant to both time and probe duratiod},. This yields
1 ey, RE™ ()L = e(y, BE™ ()]
Q?VVY(/V) - T, , genie 5 : (51)
P (v, By (7))]
Using the genie-aided probe ra$®"*(v), we can upper bound the optimal sum rdtel (47) by
REM L max (T —1Tp)Rq (52)

To<T, Ry€ER
st B =0y, Ra) | 4B (1), Ty)] < e

where we explicitly denote the dependence of the estiraie both7,, and R3*"® ().

Next, recall that we established, in Sécl] Ill, upper boundstte largest data rate that satisfies an
expected error constraint of the type ). In particular, [24) gave an upper bound for uncoded QAM
signaling, and[(33) and_(B8) gave upper bounds for Gaus&igmaling in the low-SNR and high-SNR
regimes, respectively. These data-rate upper bouﬁgi@,aﬁm), can be applied to??) to bound the

optimal sum rate a?,,, < Rim, Where

Rsum = %,ng}j(, (T - TP)RS(’S/’U?W-AY)’ (53)
P

and wherey ando—jz\,W are dependent on bofl}, and Ry (7). SinceR;(ﬁ,o—?m) increases monotonically
in 1/012\,'%, we can upper bound; using the lower bound orer]?vw established in[(31). This yields
RY,m < REax for

Rgim = max (T = Tp) Rg(, ax5(7)): (54)

p<
Figures[7(d) an@ 7(p) plot the normalized sum-rate bogdeflax as a function of the estimated
SNR 4 for uncoded QAM and Gaussian ensembles, respectively,-at5 andT = 50. As before, we

use target error raté0—® and packet sizex = 500. For the genie-aided probe rafed*"®(y) used to
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Fig. 7. Normalized sum-rate bounﬁR;ﬁ;ﬁ‘ as a function of SNRy for (a) QAM and (b) Gaussian signaling in the low-SNR

regime.

calculategﬁvw(fy), we assumed that ~ 4. The figures also shov}iiga“’e and the naive Shannon limit
%logQ(l +4), for comparison. Note that the difference between the maiteRga“’e and the upper bound
%R;‘;ﬁ;‘ increases significantly ag' decreases. This is due to the fact that,7aslecreases, it is too
costly to allocate a long probing interval, implying thaethuality of SNR estimates decreases, so that
more rate back-off is required. Note also that the diffeechetween the naive rate and the upper bound
increases as the SNR increases. This implies that the lagerdéct CSI becomes more costly as the

SNR increases.

V. AN ASYMPTOTICALLY OPTIMAL SNR ESTIMATOR

The quality of SNR estimates based on ACK/NAKs from a proleriral is strongly dependent on both
the probe rates{Rt}tTLl and the probe intervély,. For the sum-rate upper bound derived in $ec.JV-C,
the probe rate?3""(v) in (50) was selected in a genie-aided manner, assuming kedgelof the true
SNR ~. Clearly, v is not known in practice.

In this section, we develop a practical SNR estimator thating the probing interval € {1,...,Tp},
recursivelyupdates the probe rate, and+; (i.e., the timet estimat@ of ) using the latest feedback

pair { F;_1, R;—1}. We show that the probe rate adaptatioasymptotically optimalin that R, converges

10 We emphasize thaj; is the timet estimate of the time-invariant SNR and should not be confused with the time-varying

SNR ~; that was briefly used in Selc] Il before the time-invariancuagption was introduced.
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to R3™(~) for any initial probe rateR;. Moreover, we show that our SNR estimatoraisymptotically
efficientand asymptotically normali.e., that the corresponding estimation erfgr= 4, — v converges
to a zero-mean Gaussian random variable whose variancernsiddl to the CRLB achieved with the
genie-aided probe ratg3°"® (). The normality of the error helps to justify the Gaussianragimation
used to derive the rate bounds](45) and (46) for the uncodell @Ad Gaussian cases, respectively.
The SNR Estimator:
1) Attimet =1, choose an arbitrary rat8; € R and an arbitrary estimatg .
2) At each timet = 2,...,T,, update the estimate as

Froy —e(H—1, Re—1)
(t = e’ (-1, Re—1)’

A= A1+ (55)
and choose the rat®; as:

R; = argmax ® (%, R), (56)
ReR

where®(-,-) is the Fisher information as defined [n_{43).
We prove the following for our estimator.

Theorem 2:For both uncoded QAM and Gaussian ensemblegas oo,

. d _ i
VT (i, =) % Np, ~ N (0,877, RE™ (1)) ) . (57)
Proof: See AppendixB. [
Theoren 2 implies that our estimatbr [55) is asymptoticefficient and consistent. Moreover, without
any prior information ony, rate allocation[(36) guarantees the performance achisitadhe genie-aided

probe rateR3°™*(y). Next, we simulate the estimator. Instead of the 1 on the denominator, we use

(t — 1) for various values ofs € (0, 1].

6 25 25
5 y=20 dB ~ y=20 dB ~
@ 20 @ 20
= T o y=20 dB
8 4 yelo dB y=15 dB /’/——_
£ 815 815 y=15 dB
25 ¢ :
3 b y=10 dB b y=10 dB
< V=10 dB 210 W £10
§2 o o
4
£ s £ s
1 1%} 1%}
0 0 0

0 100 200 300 400 500 0 100 200 300 400 500 0 500 1000 1500 2000
time (nacket) time (packets) time (packets)
(&) R: vs.t (b) 4% vs.t for 5 =0.5 (€)A¢ vs.tforg=1

Fig. 8. Example trajectories of the recursive SNR estimatoen uncoded QAM is used.
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In Fig.[8, a single realization of the estimator and the @pomading assigned rate are illustrated for
different values ofy, over a block of7,, = 500 probe packets of size = 500 symbols. The value
of v and the asymptotic rat&3*"°(+) are also shown on the associated graphs. The initial paimts f
the estimator aré; = 3 dB, Ry = 1 bit/symbol, and the set of possible rates &e= {1,2,...,10}
in bits/complex-symbol, i.e., the possible constellatsores are integer powers @f For 5 = 0.5, one
can observe that the optimal rate is reached with approrin@0 probe packets for all values of SNR.
Once that point is reached, the estimation error variancaydefairly slowly due to the low decay rate
B = 0.5. With a highers, it takes longer to approach the vicinity of from the initial valuey;, but the
estimation error variance is lower once in steady states ©hservation is illustrated in Fif. 8[c), where
B = 1 and the probing block size i%, = 2000 packets. In the realization correspondingito= 20
dB, the “steady state” is yet to be reached after 2000 packeighe other hand, the amplitude of the
fluctuations around the final point decay much faster, as aneobserve in the realization corresponding
to v = 10 dB. Different choices fo and the associated tradeoffs involved in stochastic ajpation

algorithms are studied i [32].
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Fig. 9. Example trajectories of the recursive SNR estimatoen Gaussian signaling is used.

We illustrate our estimator response for Gaussian ensanmbleig.[9. As the set of rate®, we picked
100 points, equally spaced between 0 and 5 bits/real-synilbel initial SNR estimatej; = 0 dB, was
much smaller than the initial one in the QAM simulations, the initial rate,R; = 0.5 bits/complex-
symbol, was identical to the one in the QAM simulations. Heve analyze SNR realizations= 3, 10
and 20 dB. With Gaussian ensembles, the convergence spgleghity lower than that with QAM. While
the convergence is almost immediate 4o 3 dB, it takes 30-40 packets for 10 dB and 130-140 packets
for v = 20 dB. This difference is mainly due to the difference in thetalices between the initial and

final points. On the other hand, due to the large size of theokpbssible rates (unlike QAM, where
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only a few discrete points are possible), there exists s&ne R that is very close to the genie-aided
probe rateR3°"(v). Consequently, the estimation error variance decays masthrfonceR, comes near
the vicinity of R3°"®(~). We also illustrate the estimator with= 1 in Fig.[9(c} and one can notice the

slow convergence, similar to the QAM simulations.

VI. CONCLUSION

In this paper, we studied rate adaptation based on ACK/NA&dback. In particular, we studied
methods that maximize data rate subject to a constraint peated packet-error probability, assuming
that the transmitter has no knowledge of the SNR distrilbutiBecause optimal rate allocation was
identified as a POMDP, which is impractical to implement, weeused on a suboptimal framework
where a channel estimate is calculated based on previodbdek and a rate is chosen based on this
channel estimate. To aid the initial rate allocation, wevaétd the use of, probe packets at the start of
each data block. First we considered a so-called “naived’ adibcator that maximizes rate subject to a
constraint oninstantaneougpacket-error probability, calculated from a given unbthsstimatey of the
true SNR~. Due to the inevitable error in SNR estimation, we argued ¢imee must either back-off the
naive rate, or correspondingly increase the SNR, to meetttiwterexpectecerror probability constraint.
Based on a Gaussian approximation of the estimation é¥res v — 4, we derived conditions on the
“effective estimator SNR’4? /O'JZV‘,Y that are necessary for the existence of a feasible tranemisste,
as well as an upper bound on the transmission rate when théssary condition is satisfied. This latter
analysis was carried out for both uncoded QAM signaling artiom Gaussian signaling (the latter in
both the low-SNR and high-SNR regimes). Next, we considardiased SNR estimation via ACK/NAK
feedback. First, we lower bounded the error variance ofetestimates (for general signaling schemes),
and based on that bound, we lower bounded the necessamngrdbration?,, and upper bounded the
sum data rate (for both uncoded QAM signaling and random Sansignaling). Finally, we proposed
a practical unbiased ACK/NAK-based SNR estimator and skiaivat (as the probe duration increases)

our estimator is asymptotically efficient and asymptoticabrmal.
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APPENDIX A

DERIVATION OF 7)™ FOR UNCODEDQAM AND GAUSSIAN SIGNALING

In this section, we deriv& (45) anid {46). For brevity, we @iit= e, (v, Rp) ande’ £ &,(v, Rp). Recall
that, from [28) and[(44), we have for, uncoded QAM,

e(1—-¢)2(a+1n0.1n)

where, from [IB),
0 1.5y "
/ [ — [e— [e— _—
€ _87<1 [1 0.2exp< 2Rp_1>] ) (59)
(1—)/m
B aot 1.5y 1.5
=n(l—¢) » 0.2exp <_2Rp_1> <_2Rp_1> (60)
1—(1—e)1/n
_ 1.5y n
—(1— o)y Un el A
=(1-¢)((1-¢) 1) < 2Rp_1> S (61)
In(5(1—(1—€)1/"))
Thus
- £ 2(a+1n0.1n)
Tmln — - — 62
S C= ©2
. 9
(=) (L =)=/ = 1) I (5. (1= (1 = £)/7))
2(a+1n0.1n)
i 63
R )
From [32) and[(44), we have for, Gaussian signaling in the 3&WR regime,
min E(1—¢)2a
Tp — 7(5/)2 ? (64)
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where, from [[217),

Thus

0 . 1 vy
E/:aexp <np [Rpln2—§ln<1+1+p*>}> (65)

—np* 1 1 —np*
T2 (Ut )1 2t ) (66)

W (=92 (1=9) (140" +7)?
min _ i — =38 - 67
p 5(%)2 42 @ c (np*4)2 (67)
APPENDIX B

PROOF OFTHEOREM[Z

We will directly apply Theorem 2.1 [33, p. 223]. The necegsasnditions for asymptotic normality

and asymptotic efficiency to hold in our system are:

1)

2)

3)

4)

5)

The expectation, &3], of observationF; must exist and must be bounded:
E[F;] = (v, R:) exists and is clearly bounded by 1 for all

. | =1
The partial derlvatlv#T
For both QAM [1¥) and Gaussiah (27) signa%'g,yﬂ] = ]%jft)] is continuous and bounded for

~v>0andR; > 0.

must be jointly continuous (iy and R;) and bounded.

The variance vaF;) of observationF; must be continuous i and R;.

For both QAM and Gaussian signaling, V&i) = (v, R;)(1—¢(y, R:)) is continuous and bounded
fory>0andR; > 0.

Fisher information®(~, R;) must be continuous, positive and for eaghit must have a unique
maximum inR;.

For both QAM and Gaussian signaling, the Fisher informafign, R;) as given in[(4B) is contin-
uous and positive fory > 0 and R, > 0. Moreover, it has a unique maximuf, = R3°"*(v) for
eachy > 0, since®(v, R;) is a strictly concave and continuous function i®f.

For some > 2, E [|F;|*] must be bounded for all possible values,aind associated rafe)*™ (7).

Since F; € {0,1}, we know that E|F;|’] is bounded for allb > 2 and for all values of

(7, RE™ (7).
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Furthermore, the asymptotic efficiency [33, p. 186,224]h& estimator is

2
R Caali)
Re=RF" ()
(<0 BE™()”
(7, RE™(1)(1 — (7, RF™(7)))

, ~1
The asymptotic optimality, i.e.Tpo—]?VT — [(I)(%Rgeme(v))} asT, — oo follows as a
P

97p

consequence of Theorem 2[1][33, p. 223].
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