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Abstract

Nonparametric methods are widely applicable to statistical inference problems, since they rely on

a few modeling assumptions. In this context, the fresh look advocated here permeates benefits from

variable selection and compressive sampling, to robustifynonparametric regression against outliers – that

is, data markedly deviating from the postulated models. A variational counterpart to least-trimmed squares

regression is shown closely related to anℓ0-(pseudo)norm-regularized estimator, that encouragessparsity

in a vector explicitly modeling the outliers. This connection suggests efficient solvers based on convex

relaxation, which lead naturally to a variational M-type estimator equivalent to the least-absolute shrinkage

and selection operator (Lasso). Outliers are identified by judiciously tuning regularization parameters,

which amounts to controlling the sparsity of the outlier vector along the wholerobustificationpath of

Lasso solutions. Reduced bias and enhanced generalizationcapability are attractive features of an improved

estimator obtained after replacing theℓ0-(pseudo)norm with a nonconvex surrogate. The novel robust

spline-based smoother is adopted to cleanseload curvedata, a key task aiding operational decisions in

the envisioned smart grid system. Computer simulations andtests on real load curve data corroborate the

effectiveness of the novel sparsity-controlling robust estimators.
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I. INTRODUCTION

Consider the classical problem of function estimation, in which an input vectorx := [x1, . . . , xp]
′ ∈ R

p

is given, and the goal is to predict the real-valued scalar responsey = f(x). Functionf is unknown,

to be estimated from a training data setT := {yi,xi}Ni=1. When f is assumed to be a member of a

finitely-parameterized family of functions, standard (non-)linear regression techniques can be adopted. If

on the other hand, one is only willing to assume thatf belongs to a (possibly infinite dimensional) space

of “smooth” functionsH, then anonparametricapproach is in order, and this will be the focus of this

work.

Without further constraints beyondf ∈ H, functional estimation from finite data is an ill-posed problem.

To bypass this challenge, the problem is typically solved byminimizing appropriately regularized criteria,

allowing one to control model complexity; see, e.g., [12], [34]. It is then further assumed thatH has the

structure of a reproducing kernel Hilbert space (RKHS), with corresponding positive definite reproducing

kernel functionK(·, ·) : Rp×R
p → R, and norm denoted by‖·‖H. Under the formalism ofregularization

networks, one seekŝf as the solution to the variational problem

min
f∈H

[

N
∑

i=1

V (yi − f(x)) + µ‖f‖2H

]

(1)

whereV (·) is a convex loss function, andµ ≥ 0 controls complexity by weighting the effect of the

smoothness functional‖f‖2H. Interestingly, the Representer Theorem asserts that the unique solution of

(1) is finitely parametrized and has the form̂f(x) =
∑N

i=1 βiK(x,xi), where{βi}Ni=1 can be obtained

from T ; see e.g., [29], [38]. Further details on RKHS, and in particular on the evaluation of‖f‖H,

can be found in e.g., [38, Ch. 1]. A fundamental relationshipbetween model complexity control and

generalization capability, i.e., the predictive ability of f̂ beyond the training set, was formalized in [37].

The generalization error performance of approaches that minimize the sum of squared model residuals

[that isV (u) = u2 in (1)] regularized by a term of the form‖f‖2H, is degraded in the presence of outliers.

This is because the least-squares (LS) part of the cost is notrobust, and can result in severe overfitting

of the (contaminanted) training data [21]. Recent efforts have considered replacing the squared loss with

a robust counterpart such as Huber’s function, or its variants, but lack a data-driven means of selecting

the proper threshold that determines which datum is considered an outlier [43]; see also [27]. Other

approaches have instead relied on the so-termedǫ-insensitive loss function, originally proposed to solve

function approximation problems using support vector machines (SVMs) [37]. These family of estimators

often referred to as support vector regression (SVR), have been shown to enjoy robustness properties; see

e.g., [26], [28], [32] and references therein. In [8], improved performance in the presence of outliers is
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achieved by refining the SVR solution through a subsequent robust learning phase.

The starting point here is a variational least-trimmed squares (VLTS) estimator, suitable for robust

function approximation inH (Section II). It is established that VLTS is closely relatedto an (NP-hard)

ℓ0-(pseudo)norm-regularized estimator, adopted to fit a regression model that explicitly incorporates an

unknownsparsevector of outliers [17]. As in compressive sampling (CS) [35], efficient (approximate)

solvers are obtained in Section III by replacing the outliervector’s ℓ0-norm with its closest convex

approximant, theℓ1-norm. This leads naturally to a variational M-type estimator of f , also shown equivalent

to a least-absolute shrinkage and selection operator (Lasso) [33] on the vector of outliers (Section III-A).

A tunable parameter in Lassocontrols the sparsityof the estimated vector, and the number of outliers as

a byproduct. Hence, effective methods to select this parameter are of paramount importance.

The link betweenℓ1-norm regularization and robustness was also exploited forparameter (but not

function) estimation in [17] and [22]; see also [40] for related ideas in the context of face recognition, and

error correction codes [4]. In [17] however, the selection of Lasso’s tuning parameter is only justified

for Gaussian training data; whereas a fixed value motivated by CS error bounds is adopted in the

Bayesian formulation of [22]. Here instead, a more general and systematic approach is pursued in Section

III-B, building on contemporary algorithms that can efficiently compute allrobustifactionpaths of Lasso

solutions, i.e., for all values of the tuning parameter [11], [16], [41]. In this sense, the method here

capitalizes on butis not limited tosparse settings, since one can examine all possible sparsity levels

along the robustification path. An estimator with reduced bias and improved generalization capability is

obtained in Section IV, after replacing theℓ0-norm with a nonconvex surrogate, instead of theℓ1-norm

that introduces bias [33], [44]. Simulated tests demonstrate the effectiveness of the novel approaches

in robustifying thin-plate smoothing splines [10] (Section V-A), and in estimating the sinc function

(Section V-B) – a paradigm typically adopted to assess performance of robust function approximation

approaches [8], [43].

The motivating application behind the robust nonparametric methods of this paper isload curve cleans-

ing [6] – a critical task in power systems engineering and management. Load curve data (also known as

load profiles) refers to the electric energy consumption periodically recorded by meters at specific points

across the power grid, e.g., end user-points and substations. Accurate load profiles are critical assets

aiding operational decisions in the envisioned smart grid system [20]; see also [1], [2], [6]. However, in

the process of acquiring and transmitting such massive volumes of information to a central processing

unit, data is often noisy, corrupted, or lost altogether. This could be due to several reasons including meter

misscalibration or outright failure, as well as communication errors due to noise, network congestion, and
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connectivity outages; see Fig. 1 for an example. In addition, data significantly deviating from nominal

load models (outliers) are not uncommon, and could be attributed to unscheduled maintenance leading to

shutdown of heavy industrial loads, weather constraints, holidays, strikes, and major sporting events, just

to name a few.

In this context, it is critical to effectively reject outliers, and replace the contaminated data with ‘healthy’

load predictions, i.e., to cleanse the load data. While mostutilities carry out this task manually based

on their own personnel’s know-how, a first scalable and principled approach to load profile cleansing

which is based on statistical learning methods was recentlyproposed in [6]; which also includes an

extensive literature review on the related problem of outlier identification in time-series. After estimating

the regression functionf via either B-spline or Kernel smoothing, pointwise confidence intervals are

constructed based on̂f . A datum is deemed as an outlier whenever it falls outside itsassociated confidence

interval. To control the degree of smoothing effected by theestimator, [6] requires the user to label the

outliers present in a training subset of data, and in this sense the approach therein is not fully automatic.

Here instead, a novel alternative to load curve cleansing isdeveloped after specializing the robust estimators

of Sections III and IV, to the case of cubic smoothing splines(Section V-C). The smoothness-and outlier

sparsity-controlling parameters are selected according to the guidelines in Section III-B; hence, no input

is required from the data analyst. The proposed spline-based method is tested on real load curve data from

a government building.

Concluding remarks are given in Section VI, while some technical details are deferred to the Appendix.

Notation:Bold uppercase letters will denote matrices, whereas bold lowercase letters will stand for column

vectors. Operators(·)′, tr(·) andE[·] will denote transposition, matrix trace and expectation, respectively;

| · | will be used for the cardinality of a set and the magnitude of ascalar. Theℓq norm of vectorx ∈ R
p

is ‖x‖q := (
∑p

i=1 |xi|q)
1/q for q ≥ 1; and‖M‖F :=

√

tr (MM′) is the matrix Frobenious norm. Positive

definite matrices will be denoted byM ≻ 0. The p × p identity matrix will be represented byIp, while

0p will denote thep× 1 vector of all zeros, and0p×q := 0p0
′
q.

II. ROBUST ESTIMATION PROBLEM

The training data comprisesN noisy samples off taken at the input points{xi}Ni=1 (also known as

knots in the splines parlance), and in the present context they can be possibly contaminated with outliers.

Building on the parametric least-trimmed squares (LTS) approach [31], the desired robust estimatef̂ can

be obtained as the solution of the following variational (V)LTS minimization problem

min
f∈H

[

s
∑

i=1

r2[i](f) + µ‖f‖2H

]

(2)
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wherer2[i](f) is the i-th order statistic among the squared residualsr21(f), . . . , r
2
N (f), andri(f) := yi −

f(xi). In words, given a feasiblef ∈ H, to evaluate the sum of the cost in (2) one: i) computes allN

squared residuals{r2i (f)}Ni=1, ii) orders them to form the nondecreasing sequencer2[1](f) ≤ . . . ≤ r2[N ](f);

and iii) sums up the smallests terms. As in the parametric LTS [31], the so-termed trimmingconstants

(also known as coverage) determines the breakdown point of the VLTS estimator, since the largestN − s

residuals do not participate in (2). Ideally, one would liketo makeN −s equal to the (typically unknown)

number of outliersNo in the training data. For most pragmatic scenaria whereNo is unknown, the LTS

estimator is an attractive option due to its high breakdown point and desirable theoretical properties,

namely
√
N -consistency and asymptotic normality [31].

The tuning parameterµ ≥ 0 in (2) controls the tradeoff between fidelity to the (trimmed) data, and the

degree of “smoothness” measured by‖f‖2H. In particular,‖f‖2H can be interpreted as a generalized ridge

regularization term penalizing more those functions with large coefficients in a basis expansion involving

the eigenfunctions of the kernelK.

Given that the sum in (2) is a nonconvex functional, a nontrivial issue pertains to the existence of the

proposed VLTS estimator, i.e., whether or not (2) attains a minimum in H. Fortunately, a (conceptually)

simple solution procedure suffices to show that a minimizer does indeed exist. Consider specifically a

given subsample ofs training data points, say{yi,xi}si=1, and solve

min
f∈H

[

s
∑

i=1

r2i (f) + µ‖f‖2H

]

.

A unique minimizer of the formf̂ (j)(x) =
∑s

i=1 β
(j)
i K(x,xi) is guaranteed to exist, wherej is used here

to denote the chosen subsample, and the coefficients{β(j)
i }si=1 can be obtained by solving a particular

linear system of equations [38, p. 11]. This procedure can berepeated for each subsample (there are

J :=
(

N
s

)

of these), to obtain a collection{f̂ (j)(x)}Jj=1 of candidate solutions of (2). The winner(s)

f̂ := f̂ (j∗) yielding the minimum cost, is the desired VLTS estimator. A remark is now in order.

Remark 1 (VLTS complexity): Even though conceptually simple, the solution procedure just described

guarantees existence of (at least) one solution, but entails a combinatorial search over allJ subsamples

which is intractable for moderate to large sample sizesN . In the context of linear regression, algorithms

to obtain approximate LTS solutions are available; see e.g., [30].

A. Robust function approximation viaℓ0-norm regularization

Instead of discarding large residuals, the alternative approach proposed here explicitly accounts for

outliers in the regression model. To this end, consider the scalar variables{oi}Ni=1 one per training datum,
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taking the valueoi = 0 whenever datumi adheres to the postulated nominal model, andoi 6= 0 otherwise.

A regression model naturally accounting for the presence ofoutliers is

yi = f(xi) + oi + εi, i = 1, . . . , N (3)

where{εi}Ni=1 are zero-mean independent and identically distributed (i.i.d.) random variables modeling

the observation errors. A similar model was advocated underdifferent assumptions in [17] and [22], in

the context of robust parametric regression; see also [4] and [40]. For an outlier-free datumi, (3) reduces

to yi = f(xi) + εi; hence,εi will be often referred to as the nominal noise. Note that in (3), both

f ∈ H as well as theN × 1 vectoro := [o1, . . . , oN ]′ are unknown; thus, (3) is underdetermined. On

the other hand, as outliers are expected to often comprise a small fraction of the training sample say, not

exceeding 20% – vectoro is typically sparse, i.e., most of its entries are zero; see also Remark 3. Sparsity

compensates for underdeterminacy and provides valuable side-information when it comes to efficiently

estimatingo, identifying outliers as a byproduct, and consequently performing robust estimation of the

unknown functionf .

A natural criterion for controlling outlier sparsity is to seek the desired estimatêf as the solution of

min
f∈H
o∈RN

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H

]

, s.t. ‖o‖0 ≤ τ (4)

where τ is a preselected threshold, and‖o‖0 denotes theℓ0-norm of o, which equals the number of

nonzero entries of its vector argument. Sparsity is directly controlled by the selection of the tuning

parameterτ ≥ 0. If the number of outliersNo were known a priori, thenτ should be selected equal

to No. Unfortunately, analogously to relatedℓ0-norm constrained formulations in compressive sampling

and sparse signal representations, problem (4) is NP-hard.In addition, (4) can be recast to an equivalent

(unconstrained) Lagrangian form; see e.g., [3]

min
f∈H
o∈RN

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ0‖o‖0

]

(5)

where the tuning Lagrange multiplierλ0 ≥ 0 plays a role similar toτ in (4), and theℓ0-norm sparsity

encouraging penalty is added to the cost.

To further motivate model (3) and the proposed criterion (5)for robust nonparametric regression, it is

worth checking the structure of the minimizers{f̂ , ô} of the cost in (5). Consider for the sake of argument

that λ0 is given, and its value is such that‖ô‖0 = ν, for some0 ≤ ν ≤ N . The goal is to characterize

f̂ , as well as the positions and values of the nonzero entries ofô. Note that because‖ô‖0 = ν, the last
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term in (5) is constant, hence inconsequential to the minimization. Upon defininĝri := yi − f̂(xi), it is

not hard to see that the entries ofô satisfy

ôi =







0, |r̂i| ≤
√
λ0

r̂i, |r̂i| >
√
λ0

, i = 1, . . . , N (6)

at the optimum. This is intuitive, since for thoseôi 6= 0 the best thing to do in terms of minimizing the

overall cost is to set̂oi = r̂i, and thus null the corresponding squared-residual terms in(5). In conclusion,

for the chosen value ofλ0 it holds thatν squared residuals effectively do not contribute to the costin (5).

To determine the support of̂o and f̂ , one alternative is to exhaustively test all
(

N
ν

)

admissible support

combinations. For each one of these combinations (indexed by j), let Sj ⊂ {1, . . . , N} be the index set

describing the support of̂o(j), i.e., ô(j)i 6= 0 if and only if i ∈ Sj; and |Sj| = ν. By virtue of (6), the

corresponding candidatêf (j) minimizes

min
f∈H





∑

i∈Sj

r2i (f) + µ‖f‖2H





while f̂ is the one among all{f̂ (j)} that yields the least cost. The previous discussion, in conjunction

with the one preceding Remark 1 completes the argument required to establish the following result.

Proposition 1: If {f̂ , ô} minimizes(5) with λ0 chosen such that‖ô‖0 = N − s, then f̂ also solves the

VLTS problem(2).

The importance of Proposition 1 is threefold. First, it formally justifies model (3) and its estimator (5)

for robust function approximation, in light of the well documented merits of LTS regression [30]. Second,

it further solidifies the connection between sparse linear regression and robust estimation. Third, theℓ0-

norm regularized formulation in (5) lends itself naturallyto efficient solvers based on convex relaxation,

the subject dealt with next.

III. SPARSITY CONTROLLING OUTLIER REJECTION

To overcome the complexity hurdle in solving the robust regression problem in (5), one can resort to

a suitable relaxation of the objective function. The goal isto formulate an optimization problem which

is tractable, and whose solution yields a satisfactory approximation to the minimizer of the original hard

problem. To this end, it is useful to recall that theℓ1-norm ‖x‖1 of vector x is the closest convex

approximation of‖x‖0. This property also utilized in the context of compressive sampling [35], provides

the motivation to relax the NP-hard problem (5) to

min
f∈H
o∈RN

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ1‖o‖1

]

. (7)
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Being a convex optimization problem, (7) can be solved efficiently. The nondifferentiableℓ1-norm reg-

ularization term controls sparsity on the estimator ofo, a property that has been recently exploited in

diverse problems in engineering, statistics and machine learning. A noteworthy representative is the least-

absolute shrinkage and selection operator (Lasso) [33], a popular tool in statistics for joint estimation and

continuous variable selection in linear regression problems. In its Lagrangian form, Lasso is also known

as basis pursuit denoising in the signal processing literature, a term coined by [7] in the context of finding

the best sparse signal expansion using an overcomplete basis.

It is pertinent to ponder on whether problem (7) has built-inability to provide robust estimateŝf in

the presence of outliers. The answer is in the affirmative, since a straightforward argument (details are

deferred to the Appendix) shows that (7) is equivalent to a variational M-type estimator found by

min
f∈H

[

N
∑

i=1

ρ(yi − f(xi)) + µ‖f‖2H

]

(8)

whereρ : R → R is a scaled version of Huber’s convex loss function [21]

ρ(u) :=







u2, |u| ≤ λ1/2

λ1|u| − λ2
1/4, |u| > λ1/2

. (9)

Remark 2 (Regularized regression and robustness):Existing works on linear regression have pointed

out the equivalence betweenℓ1-norm regularized regression and M-type estimators, underspecific assump-

tions on the distribution of the outliers (ǫ-contamination) [17], [23]. However, they have not recognized

the link with LTS through the convex relaxation of (5), and the connection asserted by Proposition 1.

Here, the treatment goes beyond linear regression by considering nonparametric functional approximation

in RKHS. Linear regression is subsumed as a special case, when the linear kernelK(x,y) := x′y is

adopted. In addition, no assumption is imposed on the outlier vector.

It is interesting to compare theℓ0- and ℓ1-norm formulations [cf. (5) and (7), respectively] in terms

of their equivalent purely variational counterparts in (2)and (8), that entail robust loss functions. While

the VLTS estimator completely discards large residuals,ρ still retains them, but downweighs their effect

through a linear penalty. Moreover, while (8) is convex, (2)is not and this has a direct impact on the

complexity to obtain either estimator. Regarding the trimming constants in (2), it controls the number

of residuals retained and hence the breakdown point of VLTS.Considering instead the thresholdλ1/2 in

Huber’s functionρ, when the outliers’ distribution is known a-priori, its value is available in closed form

so that the robust estimator is optimal in a well-defined sense [21]. Convergence in probability of M-type

cubic smoothing splines estimators – a special problem subsumed by (8) – was studied in [9].
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A. Solving the convex relaxation

Because (7) is jointly convex inf ando, an alternating minimization (AM) algorithm can be adopted

to solve (7), for fixed values ofµ andλ1. Selection of these parameters is a critical issue that willbe

discussed in Section III-B. AM solvers are iterative procedures that fix one of the variables to its most up

to date value, and minimize the resulting cost with respect to the other one. Then the roles are reversed to

complete one cycle, and the overall two-step minimization procedure is repeated for a prescribed number

of iterations, or, until a convergence criterion is met. Letting k = 0, 1, . . . denote iterations, consider that

o := o(k−1) is fixed in (7). The update forf (k) at thek-th iteration is given by

f (k) := argmin
f∈H

[

N
∑

i=1

(

(yi − o
(k−1)
i )− f(xi)

)2
+ µ‖f‖2H

]

(10)

which corresponds to a standard regularization problem forfunctional approximation inH [12], but with

outlier-compensateddata
{

yi − o
(k−1)
i ,xi

}N

i=1
. It is well known that the minimizer of the variational prob-

lem (10) is finitely parameterized, and given by the kernel expansionf (k)(x) =
∑N

i=1 β
(k)
i K(x,xi) [38].

The vectorβ := [β1, . . . , βN ]′ is found by solving the linear system of equations

[K+ µIN ]β(k) = y − o(k−1) (11)

wherey := [y1, . . . , yN ]′, and theN ×N matrix K ≻ 0 has entries[K]ij := K(xi,xj).

In a nutshell, updatingf (k) is equivalent to updating vectorβ(k) as per (11), where only the independent

vector variabley − o(k−1) changes across iterations. Because the system matrix is positive definite, the

per iteration systems of linear equations (11) can be efficiently solved after computing once, the Cholesky

factorization ofK+ µIN .

For fixedf := f (k) in (7), the outlier vector updateo(k) at iterationk is obtained as

o(k) := arg min
o∈RN

[

N
∑

i=1

(

r
(k)
i − oi

)2
+ λ1‖o‖1

]

(12)

wherer(k)i := yi −
∑N

j=1 β
(k)
j K(xi,xj). Problem (12) can be recognized as an instance of Lasso for the

so-termed orthonormal case, in particular for an identity regression matrix. The solution of such Lasso

problems is readily obtained via soft-thresholding [15], in the form of

o
(k)
i := S

(

r
(k)
i , λ1/2

)

, i = 1, . . . , N (13)

whereS(z, γ) := sign(z)(|z| − γ)+ is the soft-thresholding operator, and(·)+ := max(0, ·) denotes the

projection onto the nonnegative reals. The coordinatewiseupdates in (13) are in par with the sparsifying

property of theℓ1 norm, since for “small” residuals, i.e.,r(k)i ≤ λ1/2, it follows that o(k)i = 0, and the
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Algorithm 1 : AM solver

Initialize o(−1) = 0, and run till convergence

for k = 0, 1,. . . do

Updateβ(k) solving [K+ µIN ]β(k) = y − o(k−1).

Updateo(k) via o
(k)
i = S

(

yi −
∑N

j=1 β
(k)
j K(xi,xj), λ1/2

)

, i = 1, . . . , N .

end for

return f(x) =
∑N

i=1 β
(∞)
i K(x,xi)

i-th training datum is deemed outlier free. Updates (11) and (13) comprise the iterative AM solver of the

ℓ1-norm regularized problem (7), which is tabulated as Algorithm 1. Convexity ensures convergence to

the global optimum solution regardless of the initial condition; see e.g., [3].

Algorithm 1 is also conceptually interesting, since it explicitly reveals the intertwining between the

outlier identification process, and the estimation of the regression function with the appropriate outlier-

compensated data. An additional point is worth mentioning after inspection of (13) in the limit ask → ∞.

From the definition of the soft-thresholding operatorS, for those “large” residualŝri := limk→∞ r
(k)
i

exceedingλ1/2 in magnitude,̂oi = r̂i−λ1/2 when r̂i > 0, andôi = r̂i+λ1/2 otherwise. In other words,

larger residuals that the method identifies as corresponding to outlier-contaminated data are shrunk, but

not completely discarded. By plugginĝo back into (7), these “large” residuals cancel out in the squared

error term, but still contribute linearly through theℓ1-norm regularizer. This is exactly what one would

expect, in light of the equivalence established with the variationalM -type estimator in (8).

Next, it is established that an alternative to solving a sequence of linear systems and scalar Lasso

problems, is to solve a single instance of the Lasso with specific response vector and (non-orthonormal)

regression matrix.

Proposition 2: ConsiderôLasso defined as

ôLasso := arg min
o∈RN

‖Xµy −Xµo‖22 + λ1‖o‖1 (14)

where

Xµ :=





IN −K (K+ µIN )−1

(µK)1/2 (K+ µIN )−1



 . (15)

Then the minimizers{f̂ , ô} of (7) are fully determined given̂oLasso, asô := ôLassoandf̂(x) =
∑N

i=1 β̂iK(x,xi),

with β̂ = (K+ µIN)−1 (y − ôLasso).

Proof: For notational convenience introduce theN × 1 vectorsf := [f(x1), . . . , f(xN )]′ and f̂ :=
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[f̂(x1), . . . , f̂(xN )]′, wheref̂ ∈ H is the minimizer of (7). Next, consider rewriting (7) as

min
o∈RN

[

min
f∈H

‖(y − o)− f‖22 + µ‖f‖2H
]

+ λ1‖o‖1. (16)

The quantity inside the square brackets is a function ofo, and can be written explicitly after carrying out

the minimization with respect tof ∈ H. From the results in [38], it follows that the vector of optimum

predicted values at the points{xi}Ni=1 is given byf̂ = Kβ̂ = K (K+ µIN )−1 (y−o); see also the discus-

sion after (10). Similarly, one finds that‖f̂‖2H = β̂′Kβ̂ = (y−o)′ (K+ µIN )−1
K (K+ µIN )−1 (y−o).

Having minimized (16) with respect tof , the quantity inside the square brackets is(Γµ := (K+ µIN )−1)

min
f∈H

[

‖(y − o)− f‖22 + µ‖f‖2H
]

=
∥

∥

∥
(y − o)− f̂

∥

∥

∥

2

2
+ µ‖f̂‖2H

= ‖(y − o)−KΓµ(y − o)‖22 + µ(y − o)′ΓµKΓµ(y − o)

= ‖(IN −KΓµ)y − (IN −KΓµ)o‖22 + µ(y − o)′ΓµKΓµ(y − o). (17)

After expanding the quadratic form in the right-hand side of(17), and eliminating the term that does not

depend ono, problem (16) becomes

min
o∈RN

[

‖(IN −KΓµ)y − (IN −KΓµ)o‖22 − 2µy′ΓµKΓµo+ µo′ΓµKΓµo+ λ1‖o‖1
]

.

Completing the square one arrives at

min
o∈RN







∥

∥

∥

∥

∥

∥





IN −KΓµ

(µK)1/2Γµ



y−





IN −KΓµ

(µK)1/2Γµ



o

∥

∥

∥

∥

∥

∥

2

2

+ λ1‖o‖1







which completes the proof.

The result in Proposition 2 opens the possibility for effective methods to selectλ1. These methods to

be described in detail in the ensuing section, capitalize onrecent algorithmic advances on Lasso solvers,

which allow one to efficiently computêoLasso for all values of the tuning parameterλ1. This is crucial for

obtaining satisfactory robust estimatesf̂ , sincecontrolling the sparsityin o by tuningλ1 is tantamount

to controlling the number of outliers in model (3).

B. Selection of the tuning parameters: robustification paths

As argued before, the tuning parametersµ andλ1 in (7) control the degree of smoothness inf̂ and the

number of outliers (nonzero entries in̂oLasso), respectively. From a statistical learning theory standpoint, µ

andλ1 control the amount of regularization and model complexity,thus capturing the so-termed effective

degrees of freedom [19]. Complex models tend to have worse generalization capability, even though

the prediction error over the training setT may be small (overfitting). In the contexts of regularization
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networks [12] and Lasso estimation for regression [33], corresponding tuning parameters are typically

selected via model selection techniques such as cross-validation, or, by minimizing the prediction error

over an independent test set, if available [19]. However, these simple methods are severely challenged in

the presence of multiple outliers. For example, theswampingeffect refers to a very large value of the

residualri corresponding to a left out clean datum{yi,xi}, because of an unsatisfactory model estimation

based on all data excepti; data which contain outliers.

The idea here offers an alternative method to overcome the aforementioned challenges, and the possibility

to efficiently computêoLasso for all values ofλ1, givenµ. A brief overview of the state-of-the-art in Lasso

solvers is given first. Several methods for selectingµ and λ1 are then described, which differ on the

assumptions of what is known regarding the outlier model (3).

Lasso amounts to solving a quadratic programming (QP) problem [33]; hence, an iterative procedure is

required to determinêoLasso in (14) for a given value ofλ1. While standard QP solvers can be certainly

invoked to this end, an increasing amount of effort has been put recently toward developing fast algorithms

that capitalize on the unique properties of Lasso. The LARS algorithm [11] is an efficient scheme for

computing the entire path of solutions (corresponding to all values of λ1), sometimes referred to as

regularization paths. LARS capitalizes on piecewise linearity of the Lasso path of solutions, while incurring

the complexity of a single LS fit, i.e., whenλ1 = 0. Coordinate descent algorithms have been shown

competitive, even outperforming LARS whenp is large, as demonstrated in [16]; see also [15], [42], and

the references therein. Coordinate descent solvers capitalize on the fact that Lasso can afford a very simple

solution in the scalar case, which is given in closed form in terms of a soft-thresholding operation [cf.

(13)]. Further computational savings are attained throughthe use ofwarm starts[15], when computing

the Lasso path of solutions over a grid of decreasing values of λ1. An efficient solver capitalizing on

variable separability has been proposed in [41].

Consider then a grid ofGµ values ofµ in the interval[µmin, µmax], evenly spaced in a logarithmic

scale. Likewise, for eachµ consider a similar type of grid consisting ofGλ values ofλ1, whereλmax :=

2mini |y′X′
µxµ,i| is the minimumλ1 value such that̂oLasso 6= 0N [16], andXµ := [xµ,1 . . .xµ,N ] in (14).

Typically, λmin = ǫλmax with ǫ = 10−4, say. Note that each of theGµ values ofµ gives rise to a different

λ grid, sinceλmax depends onµ throughXµ. Given the previously surveyed algorithmic alternatives to

tackle the Lasso, it is safe to assume that (14) can be efficiently solved over the (nonuniform)Gµ ×Gλ

grid of values of the tuning parameters. This way, for each value of µ one obtainsGλ samples of the

Lasso path of solutions, which in the present context can be referred to asrobustification path. As λ1

decreases, more variablesôLasso,i enter the model signifying that more of the training data aredeemed to
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contain outliers. An example of the robustification path is given in Fig. 3.

Based on the robustification paths and the prior knowledge available on the outlier model (3), several

alternatives are given next to select the “best” pair{µ, λ1} in the gridGµ ×Gλ.

Number of outliers is known:WhenNo is known, by direct inspection of the robustification paths one can

determine the range of values forλ1, for which ôLasso has exactlyNo nonzero entries. Specializing to the

interval of interest, and after discarding outliers which are now fixed and known,K-fold cross-validation

methods can be applied to determineλ1.

Variance of the nominal noise is known:Supposing that the varianceσ2
ε of the i.i.d. nominal noise variables

εi in (3) is known, one can proceed as follows. Using the solution f̂ obtained for each pair{µi, λj} on

the grid, form theGµ ×Gλ sample variance matrix̄Σ with ij-th entry

[Σ̄]ij :=
∑

u|ôLasso,u=0

r̂2u/N̂o =
∑

u|ôLasso,u=0

(yu − f̂(xu))
2/N̂o (18)

whereN̂o stands for the number of nonzero entries inôLasso. Although not made explicit, the right-hand

side of (18) depends on{µi, λj} through the estimatêf , ôLasso and N̂o. The entries[Σ̄]ij correspond to

a sample estimate ofσ2
ε , without considering those training data{yi,xi} that the method determined to

be contaminated with outliers, i.e., those indicesi for which ôLasso,i 6= 0. The “winner” tuning parameters

{µ∗, λ∗
1} := {µi∗ , λj∗} are such that

[i∗, j∗] := argmin
i,j

|[Σ̄]ij − σ2
ε | (19)

which is an absolute variance deviation (AVD) criterion.

Variance of the nominal noise is unknown:If σ2
ε is unknown, one can still compute a robust estimate of

the variancêσ2
ε , and repeat the previous procedure (with known nominal noise variance) after replacing

σ2
ε with σ̂2

ε in (19). One option is based on the median absolute deviation(MAD) estimator, namely

σ̂ε := 1.4826 × mediani (|r̂i − medianj (r̂j) |) (20)

where the residualŝri = yi − f̂(xi) are formed based on a nonrobust estimate off , obtained e.g., after

solving (7) withλ1 = 0 and using a small subset of the training datasetT . The factor1.4826 provides an

approximately unbiased estimate of the standard deviationwhen the nominal noise is Gaussian. Typically,

σ̂ε in (20) is used as an estimate for the scale of the errors in general M-type robust estimators; see

e.g., [9] and [27].

Remark 3 (How sparse is sparse):Even though the very nature of outliers dictates thatNo is typically

a small fraction ofN – and thuso in (3) is sparse – the method here capitalizes on, butis not limited

to sparse settings. For instance, choosingλ1 ∈ [λmin ≈ 0, λmax] along the robustification paths allows
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one to continuously control the sparsity level, and potentially select the right value ofλ1 for any given

No ∈ {1, . . . , N}. Admittedly, if No is large relative toN , then even if it is possible to identify and

discard the outliers, the estimatêf may not be accurate due to the lack of outlier-free data.

IV. REFINEMENT VIA NONCONVEX REGULARIZATION

Instead of substituting‖o‖0 in (5) by its closest convex approximation, namely‖o‖1, letting the surrogate

function to be non-convex can yield tighter approximations. For example, theℓ0-norm of a vectorx ∈ R
n

was surrogated in [5] by the logarithm of the geometric mean of its elements, or by
∑n

i=1 log |xi|. In

rank minimization problems, apart from the nuclear norm relaxation, minimizing the logarithm of the

determinant of the unknown matrix has been proposed as an alternative surrogate [14]. Adopting related

ideas in the present nonparametric context, consider approximating (5) by

min
f∈H
o∈RN

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ0

N
∑

i=1

log(|oi|+ δ)

]

(21)

whereδ is a sufficiently small positive offset introduced to avoid numerical instability.

Since the surrogate term in (21) is concave, the overall problem is nonconvex. Still, local methods based

on iterative linearization oflog(|oi|+ δ), around the current iterateo(k)i , can be adopted to minimize (21).

From the concavity of the logarithm, its local linear approximation serves as a global overestimator. Stan-

dard majorization-minimization algorithms motivate minimizing the global linear overestimator instead.

This leads to the following iteration fork = 0, 1, . . . (see e.g., [25] for further details)

[f (k),o(k)] := arg min
f∈H
o∈RN

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ0

N
∑

i=1

w
(k)
i |oi|

]

(22)

w
(k)
i :=

(

|o(k−1)
i |+ δ

)−1
, i = 1, . . . , N. (23)

It is possible to eliminate the optimization variablef ∈ H from (22), by direct application of the result

in Proposition 2. The equivalent update foro at iterationk is then given by

o(k) := arg min
o∈RN

[

‖Xµy−Xµo‖22 + λ0

N
∑

i=1

w
(k)
i |oi|

]

(24)

which amounts to an iteratively reweighted version of (14).If the value of|o(k−1)
i | is small, then in the next

iteration the corresponding regularization termλ0w
(k)
i |oi| has a large weight, thus promoting shrinkage

of that coordinate to zero. On the other hand when|o(k−1)
i | is significant, the cost in the next iteration

downweighs the regularization, and places more importanceto the LS component of the fit. For smallδ,
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analysis of the limiting pointo∗ of (24) reveals that

λ0w
∗
i |o∗i | ≈







λ0, |o∗i | 6= 0

0, |o∗i | = 0

and hence,λ0
∑N

i=1 w
∗
i |o∗i | ≈ λ0‖o∗‖0.

A good initialization for the iteration in (24) and (23) iŝoLasso, which corresponds to the solution of

(14) [and (7)] forλ0 = λ∗
1 andµ = µ∗. This is equivalent to a single iteration of (24) with all weights

equal to unity. The numerical tests in Section V will indicate that even a single iteration of (24) suffices

to obtain improved estimateŝf , in comparison to those obtained from (14). The following remark sheds

further light towards understanding why this should be expected.

Remark 4 (Refinement through bias reduction): Uniformly weightedℓ1-norm regularized estimators

such as (7) are biased [44], due to the shrinkage effected on the estimated coefficients. It will be argued

next that the improvements due to (24) can be leveraged to bias reduction. Several workarounds have been

proposed to correct the bias in sparse regression, that could as well be applied here. A first possibility is

to retain only the support of (14) and re-estimate the amplitudes via, e.g., the unbiased LS estimator [11].

An alternative approach to reducing bias is through nonconvex regularization using e.g., the smoothly

clipped absolute deviation (SCAD) scheme [13]. The SCAD penalty could replace the sum of logarithms

in (21), still leading to a nonconvex problem. To retain the efficiency of convex optimization solvers while

simultaneously limiting the bias, suitablyweightedℓ1-norm regularizers have been proposed instead [44].

The constant weights in [44] play a role similar to those in (23); hence, bias reduction is expected.

V. NUMERICAL EXPERIMENTS

A. Robust thin-plate smoothing splines

To validate the proposed approach to robust nonparametric regression, a simulated test is carried out

here in the context of thin-plate smoothing spline approximation [10], [39]. Specializing (7) to this setup,

the robust thin-plate splines estimator can be formulated as

min
f∈S
o∈RN

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ

∫

R2

‖∇2f‖2F dx+ λ1‖o‖1
]

(25)

where||∇2f ||F denotes the Frobenius norm of the Hessian off : R2 → R. The penalty functional

J [f ] :=

∫

R2

‖∇2f‖2Fdx =

∫

R2

[

(

∂2f

∂x21

)2

+ 2

(

∂2f

∂x1∂x2

)2

+

(

∂2f

∂x22

)2
]

dx (26)

extends toR2 the one-dimensional roughness regularization used in smoothing spline models. Forµ = 0,

the (non-unique) estimate in (25) corresponds to arough function interpolating the outlier compensated
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data; while asµ → ∞ the estimate is linear (cf.∇2f̂(x) ≡ 02×2). The optimization is overS, the space

of Sobolev functions, for whichJ [f ] is well defined [10, p. 85]. Reproducing kernel Hilbert spaces such

asS, with inner-products (and norms) involving derivatives are studied in detail in [38].

Different from the cases considered so far, the smoothing penalty in (26) is only a seminorm, since

first-order polynomials vanish underJ [·]. Omitting details than can be found in [38, p. 30], under fairly

general conditions a unique minimizer of (25) exists. The solution admits the finitely parametrized form

f̂(x) =
∑N

i=1 βiK(x,xi) + α′
1x + α0, where in this caseK(x,y) := ‖x − y‖2 log ‖x − y‖ is a radial

basis function. In simple terms, the solution as a kernel expansion is augmented with a member of the

null space ofJ [·]. The unknown parameters{β,α1, α0} are obtained in closed form, as solutions to a

constrained, regularized LS problem; see [38, p. 33]. As a result, Proposition 2 still holds with minor

modifications on the structure ofXµ.

Remark 5 (Bayesian framework): Adopting a Bayesian perspective, one could modelf(x) in (3) as

a sample function of a zero mean Gaussian stationary process, with covariance functionK(x,y) =

‖x − y‖2 log ‖x − y‖ [24]. Consider as well that{f(x), {oi, εi}Ni=1} are mutually independent, while

εi ∼ N (0, µ∗/2) and oi ∼ L(0, µ∗/λ∗
1) in (3) are i.i.d. Gaussian and Laplace distributed, respectively.

From the results in [24] and a straightforward calculation,it follows that settingλ1 = λ∗
1 andµ = µ∗ in

(25) yields estimateŝf (and ô) which are optimal in a maximum a posteriori sense. This provides yet

another means of selecting the parametersµ andλ1, further expanding the options presented in Section

III-B.

The simulation setup is as follows. Noisy samples of the truefunction fo : R2 → R comprise the

training setT . Functionfo is generated as a Gaussian mixture with two components, withrespective

mean vectors and covariance matrices given by

µ1 =





0.2295

0.4996



 , Σ1 =





2.2431 0.4577

0.4577 1.0037



 , µ2 =





2.4566

2.9461



 , Σ2 =





2.9069 0.5236

0.5236 1.7299



 .

Functionfo(x) is depicted in Fig. 4 (a). The training data set comprisesN = 200 examples, with inputs

{xi}Ni=1 drawn from a uniform distribution in the square[0, 3]× [0, 3]. Several values ranging from5% to

25% of the data are generated contaminated with outliers. Without loss of generality, the corrupted data

correspond to the firstNo training samples withNo = {10, 20, 30, 40, 50}, for which the response values

{yi}No

i=1 are independently drawn from a uniform distribution over[−4, 4]. Outlier-free data are generated

according to the modelyi = fo(xi) + εi, where the independent additive noise termsεi ∼ N (0, 10−3)

are Gaussian distributed, fori = No + 1, . . . , 200. For the case whereNo = 20, the data used in the

experiment is shown in Fig. 2. Superimposed to the true function fo are180 black points corresponding
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TABLE I

RESULTS FOR THE THIN-PLATE SPLINES SIMULATED TEST

No λ∗
1 µ∗ ērr for (7) ērr for (21) Err T for (7) Err T for (21)

10 3.87 × 10−2 2.90 × 10−3 1.00× 10−4 1.03 × 10−4 2.37× 10−5 2.27× 10−5

20 3.83 × 10−2 1.55 × 10−2 1.00× 10−4 9.16 × 10−5 4.27× 10−5 2.39× 10−5

30 2.28 × 10−2 6.67 × 10−2 1.22× 10−4 1.18 × 10−4 2.89× 10−5 1.93× 10−5

40 2.79 × 10−2 6.10 × 10−3 1.01× 10−4 1.14 × 10−4 1.57× 10−5 1.32× 10−5

50 2.49 × 10−2 5.42 × 10−2 1.01× 10−4 9.9 × 10−5 1.19× 10−5 1.05× 10−5

to data drawn from the nominal model, as well as20 red outlier points.

For this experiment, the nominal noise varianceσ2
ε = 10−3 is assumed known. A nonuniform grid

of µ and λ1 values is constructed, as described in Section III-B. The relevant parameters areGµ =

Gλ = 200, µmin = 10−9 andµmax = 1. For each value ofµ, the λ1 grid spans the interval defined by

λmax := 2mini |y′X′
µxµ,i| and λmin = ǫλmax, whereǫ = 10−4. Each of theGµ robustification paths

corresponding to the solution of (14) is obtained using the SpaRSA toolbox in [41], exploiting warm

starts for faster convergence. Fig. 3 depicts an example with No = 20 andµ∗ = 1.55 × 10−2. With the

robustification paths at hand, it is possible to form the sample variance matrixΣ̄ [cf. (18)], and select the

optimum tuning parameters{µ∗, λ∗
1} based on the criterion (19). Finally, the robust estimates are refined

by running a single iteration of (24) as described in SectionIV. The valueδ = 10−5 was utilized, and

several experiments indicated that the results are quite insensitive to the selection of this parameter.

The same experiment was conducted for a variable number of outliers No, and the results are listed

in Table I. In all cases, a100% outlier identification success rate was obtained, for the chosen value of

the tuning parameters. This even happened at the first stage of the method, i.e.,̂oLasso in (14) had the

correct support in all cases. It has been observed in some other setups that (14) may select a larger support

than [1, No], but after running a few iterations of (24) the true support was typically identified. To assess

quality of the estimated function̂f , two figures of merit were considered. First, thetraining error ērr was

evaluated as

ērr=
1

N −No

N
∑

i=No

(

yi − f̂(xi)
)2

i.e., the average loss over the training sampleT after excluding outliers. Second, to assess the generalization
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capability of f̂ , an approximation to thegeneralization errorErrT was computed as

ErrT = E

[

(

y − f̂(x)
)2

|T
]

≈ 1

Ñ

Ñ
∑

i=1

(

ỹi − f̂(x̃i)
)2

(27)

where{ỹi, x̃i}Ñi=1 is an independent test set generated from the modelỹi = fo(x̃i) + εi. For the results

in Table I, Ñ = 961 was adopted corresponding to a uniform rectangular grid of31 × 31 points x̃i in

[0, 3] × [0, 3]. Inspection of Table I reveals that the training errorsērr are comparable for the function

estimates obtained after solving (7) or its nonconvex refinement (21). Interestingly, when it comes to the

more pragmatic generalization error ErrT , the refined estimator (21) has an edge for all values ofNo.

As expected, the bias reduction effected by the iterativelyreweighting procedure of Section IV improves

considerably the generalization capability of the method;see also Remark 4.

A pictorial summary of the results is given in Fig 4, forNo = 20 outliers. Fig 4 (a) depicts the true

Gaussian mixturefo(x), whereas Fig. 4 (b) shows the nonrobust thin-plate splines estimate obtained after

solving

min
f∈S

[

N
∑

i=1

(yi − f(xi))
2 + µ

∫

R2

‖∇2f‖2Fdx
]

. (28)

Even though the thin-plate penalty enforces some degree of smoothness, the estimate is severely disrupted

by the presence of outliers [cf. the difference on thez-axis ranges]. On the other hand, Figs. 4 (c) and

(d), respectively, show the robust estimatef̂ with λ∗
1 = 3.83 × 10−2, and its bias reducing refinement.

The improvement is apparent, corroborating the effectiveness of the proposed approach.

B. Sinc function estimation

The univariate function sinc(x) := sin(πx)/(πx) is commonly adopted to evaluate the performance

of nonparametric regression methods [8], [43]. Given noisytraining examples with a small fraction of

outliers, approximating sinc(x) over the interval[−5, 5] is considered in the present simulated test. The

sparsity-controlling robust nonparametric regression methods of this paper are compared with the SVR [37]

and robust SVR in [8], for the case of theǫ-insensitve loss function with valuesǫ = 0.1 andǫ = 0.01. In

order to implement (R)SVR, routines from a publicly available SVM Matlab toolbox were utilized [18].

Results for the nonrobust regularization network approachin (1) (with V (u) = u2) are reported as well,

to assess the performance degradation incurred when compared to the aforementioned robust alternatives.

Because the fraction of outliers (No/N ) in the training data is assumed known to the method of [8], the

same will be assumed towards selecting the tuning parameters λ1 andµ in (7), as described in Section

III-B. The {µ, λ1}-grid parameters selected for the experiment in Section V-Awere used here as well,
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TABLE II

GENERALIZATION ERROR(ERRT ) RESULTS FOR THE SINC FUNCTION ESTIMATION EXPERIMENT

Method σ2

ε = 1× 10−4 σ2

ε = 1× 10−3 σ2

ε = 1× 10−2

Nonrobust [(1) with V (u) = u2] 5.67× 10−2 8.28× 10−2 1.13 × 10−1

SVR with ǫ = 0.1 5.00× 10−3 6.42× 10−4 6.15 × 10−3

RSVR with ǫ = 0.1 1.10× 10−3 5.10× 10−4 4.47 × 10−3

SVR with ǫ = 0.01 8.24× 10−5 4.79× 10−4 5.60 × 10−3

RSVR with ǫ = 0.01 7.75× 10−5 3.90× 10−4 3.32 × 10−3

Sparsity-controlling in (7) 1.47× 10−4 6.56× 10−4 4.60 × 10−3

Refinement in (21) 7.46× 10−5 3.59× 10−4 3.21 × 10−3

except forµmin = 10−5. SpaceH is chosen to be the RKHS induced by the positive definite Gaussian

kernel functionK(u, v) = exp
[

−(u− v)2/(2η2)
]

, with parameterη = 0.1 for all cases.

The training set comprisesN = 50 examples, with scalar inputs{xi}Ni=1 drawn from a uniform

distribution over[−5, 5]. Uniformly distributed outliers{yi}No

i=1 ∼ U [−5, 5] are artificially added inT ,

with No = 3 resulting in6% contamination. Nominal data inT adheres to the modelyi = sinc(xi) + εi

for i = No+1, . . . , N , where the independent additive noise termsεi are zero-mean Gaussian distributed.

Three different values are considered for the nominal noisevariance, namelyσ2
ε = 1×10−l for l = 2, 3, 4.

For the case whereσ2
ε = 1×10−4, the data used in the experiment are shown in Fig. 5 (a). Superimposed

to the true function sinc(x) (shown in blue) are47 black points corresponding to the noisy data obeying

the nominal model, as well as3 outliers depicted as red points.

The results are summarized in Table II, which lists the generalization errors ErrT attained by the

different methods tested, and for varyingσ2
ε . The independent test set{ỹi, x̃i}Ñi=1 used to evaluate (27)

was generated from the modelỹi = sinc(x̃i) + εi, where thex̃i define aÑ = 101-element uniform

grid over [−5, 5]. A first (expected) observation is that all robust alternatives markedly outperform the

nonrobust regularization network approach in (1), by an order of magnitude or even more, regardless of

the value ofσ2
ε . As reported in [8], RSVR uniformly outperforms SVR. For thecaseǫ = 0.01, RSVR

also uniformly outperforms the sparsity-controlling method in (7). Interestingly, after refining the estimate

obtained via (7) through a couple iterations of (24) (cf. Section IV), the lowest generalization errors are

obtained, uniformly across all simulated values of the nominal noise variance. Results for the RSVR with

ǫ = 0.01 come sufficiently close, and are equally satisfactory for all practical purposes; see also Fig. 5
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for a pictorial summary of the results whenσ2
ε = 1× 10−4.

While specific error values or method rankings are arguably anecdotal, two conclusions stand out: (i)

model (3) and its sparsity-controlling estimators (7) and (21) are effective approaches to nonparametric

regression in the presence of outliers; and (ii) when initialized with ôLasso the refined estimator (21) can

considerably improve the performance of (7), at the price ofa modest increase in computational complexity.

While (7) endowed with the sparsity-controlling mechanisms of Section III-B tends to overestimate the

“true” support ofo, numerical results have consistently shown that the refinement in Section IV is more

effective when it comes to support recovery.

C. Load curve data cleansing

In this section, the robust nonparametric methods described so far are applied to the problem of load

curve cleansing outlined in Section I. Given load dataT := {yi, ti}Ni=1 corresponding to a building’s

power consumption measurementsyi, acquired at time instantsti, i = 1, . . . , N , the proposed approach

to load curve cleansing minimizes

min
f∈S
o∈RN

[

N
∑

i=1

(yi − f(ti)− oi)
2 + µ

∫

R

f ′′(t)dt+ λ1‖o‖1
]

(29)

where f ′′(t) denotes the second-order derivative off : R → R. This way, the solutionf̂ provides a

cleansed estimate of the load profile, and the support ofô indicates the instants where significant load

deviations, or, meter failures occurred. Estimator (29) specializes (7) to the so-termedcubic smoothing

splines; see e.g., [19], [38]. It is also subsumed as a special case ofthe robust thin-plate splines estimator

(25), when the target functionf has domain inR [cf. how the smoothing penalty (26) simplifies to the

one in (29) in the one-dimensional case].

In light of the aforementioned connection, it should not be surprising thatf̂ admits a unique, finite-

dimensional minimizer, which corresponds to anatural splinewith knots at{ti}Ni=1; see e.g., [19, p.

151]. Specifically, it follows that̂f(t) =
∑N

i=1 θ̂ibi(t), where{bi(t)}Ni=1 is the basis set of natural spline

functions, and the vector of expansion coefficientsθ̂ := [θ̂1, . . . , θ̂N ]′ is given by

θ̂ =
(

B′B+ µΨ
)−1

B′(y − ô)

where matrixB ∈ R
N×N has ij-th entry [B]ij = bj(ti); while Ψ ∈ R

N×N has ij-th entry [Ψ]ij =
∫

b′′i (t)b
′′
j (t)dt. Spline coefficients can be computed more efficiently if the basis of B-splines is adopted

instead; details can be found in [19, p. 189] and [36].

Without considering the outlier variables in (29), a B-spline estimator for load curve cleansing was put

forth in [6]. An alternative Nadaraya-Watson estimator from the Kernel smoothing family was considered
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as well. In any case, outliers are identified during a post-processing stage, after the load curve has been

estimated nonrobustly. Supposing for instance that the approach in [6] correctly identifies outliers most of

the time, it still does not yield a cleansed estimatef̂ . This should be contrasted with the estimator (29),

which accounts for the outlier compensated data to yield a cleansed estimate at once. Moreover, to select

the “optimum” smoothing parameterµ, the approach of [6] requires the user to manually label the outliers

present in a training subset of data, during a pre-processing stage. This subjective component makes it

challenging to reproduce the results of [6], and for this reason comparisons with the aforementioned

scheme are not included in the sequel.

Next, estimator (29) is tested on real load curve data provided by the NorthWrite Energy Group. The

dataset consists of power consumption measurements (in kWh) for a government building, collected every

fifteen minutes during a period of more than five years, ranging from July 2005 to October 2010. Data is

downsampled by a factor of four, to yield one measurement perhour. For the present experiment, only a

subset of the whole data is utilized for concreteness, whereN = 501 was chosen corresponding to a501

hour period. A snapshot of this training load curve data inT , spanning a particular three-week period

is shown in Fig. 6 (a). Weekday activity patterns can be clearly discerned from those corresponding to

weekends, as expected for most government buildings; but different, e.g., for the load profile of a grocery

store. Fig. 6 (b) shows the nonrobust smoothing spline fit to the training data inT (also shown for

comparison purposes), obtained after solving

min
f∈S

[

N
∑

i=1

(yi − f(ti))
2 + µ

∫

R

f ′′(t)dt

]

(30)

using Matlab’s built-in spline toolbox. Parameterµ was chosen based on leave-one-out cross-validation,

and it is apparent that no cleansing of the load profile takes place. Indeed, the resulting fitted function

follows very closely the training data, even during the abnormal energy peaks observed on the so-termed

“building operational transition shoulder periods.”

Because with real load curve data the nominal noise varianceσ2
ε in (3) is unknown, selection of the

tuning parameters{µ, λ1} in (29) requires a robust estimate of the varianceσ̂2
ε such as the MAD [cf.

Section III-B]. Similar to [6], it is assumed that the nominal errors are zero mean Gaussian distributed, so

that (20) can be applied yielding the valueσ̂2
ε = 0.6964. To form the residuals in (20), (30) is solved first

using a small subset ofT that comprises126 measurements. A nonuniform grid ofµ andλ1 values is

constructed, as described in Section III-B. Relevant parameters areGµ = 100, Gλ = 200, µmin = 10−3,

µmax = 10, and ǫ = 10−4. The robustification paths (one perµ value in the grid) were obtained using

the SpaRSA toolbox in [41], with the sample variance matrixΣ̄ formed as in (18). The optimum tuning
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parametersµ∗ = 1.637 and λ∗
1 = 3.6841 are finally determined based on the criterion (19), where the

unknownσ2
ε is replaced withσ̂2

ε . Finally, the cleansed load curve is refined by running four iterations

of (24) as described in Section IV, with a value ofδ = 10−5. Results are depicted in Fig. 7, where the

cleansed load curves are superimposed to the training data in T . Red circles indicate those data points

deemed as outliers, information that is readily obtained from the support of̂o. By inspection of Fig. 7,

it is apparent that the proposed sparsity-controlling estimator has the desired cleansing capability. The

cleansed load curves closely follow the training data, but are smooth enough to avoid overfitting the

abnormal energy peaks on the “shoulders.” Indeed, these peaks are in most cases identified as outliers. As

seen from Fig. 7 (a), the solution of (29) tends to overestimate the support ofo, since one could argue that

some of the red circles in Fig. 7 (a) do not correspond to outliers. Again, the nonconvex regularization in

Section IV prunes the outlier support obtained via (29), resulting in a more accurate result and reducing

the number of outliers identified from77 to 41.

VI. CONCLUDING SUMMARY

Outlier-robust nonparametric regression methods were developed in this paper for function approxima-

tion in RKHS. Building on a neat link between the seemingly unrelated fields of robust statistics and

sparse regression, the novel estimators were found rooted at the crossroads of outlier-resilient estimation,

the Lasso, and convex optimization. Estimators as fundamental as LS for linear regression, regularization

networks, and (thin-plate) smoothing splines, can be robustified under the proposed framework.

Training samples from the (unknown) target function were assumed generated from a regression model,

which explicitly incorporates an unknown sparse vector of outliers. To fit such a model, the proposed

variational estimator minimizes a tradeoff between fidelity to the training data, the degree of “smoothness”

of the regression function, and the sparsity level of the vector of outliers. While model complexity control

effected through a smoothing penalty has quite well understood ramifications in terms of generalization

capability, the major innovative claim here is thatsparsity controlis tantamount to robustness control.

This is indeed the case since a tunable parameter in a Lasso reformulation of the variational estimator,

controls the degree of sparsity in the estimated vector of model outliers. Selection of tuning parameters

could be at first thought as a mundane task. However, arguing on the importance of such task in the

context of robust nonparametric regression, as well as devising principled methods to effectively carry out

smoothness and sparsity control, are at the heart of this paper’s novelty. Sparsity control can be carried

out at affordable complexity, by capitalizing on state-of-the-art algorithms that can efficiently compute the

whole path of Lasso solutions. In this sense, the method herecapitalizes on but is not limited to sparse
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settings where few outliers are present, since one can efficiently examine the gamut of sparsity levels

along the robustification path. Computer simulations have shown that the novel methods of this paper

outperform existing alternatives including SVR, and one ifits robust variants.

As an application domain relevant to robust nonparametric regression, the problem of load curve

cleansing for power systems engineering was also considered along with a solution proposed based on

robust cubic spline smoothing. Numerical tests on real loadcurve data demonstrated that the smoothness

and sparsity controlling methods of this paper are effective in cleansing load profiles, without user

intervention to aid the learning process.
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APPENDIX

Towards establishing the equivalence between problems (7)and (8), consider the pair{f̂ , ô} that solves

(7). Assume that̂f is given, and the goal is to determineô. Upon defining the residualŝri := yi − f̂(xi)

and because‖o‖1 =
∑N

i=1 |oi|, the entries of̂o are separately given by

ôi := argmin
oi∈R

[

(r̂i − oi)
2 + λ1|oi|

]

, i = 1, . . . , N, (31)

where the termµ‖f̂‖2H in (7) has been omitted, since it is inconsequential for the minimization with

respect too. For eachi = 1, . . . , N , because (31) is nondifferentiable at the origin one shouldconsider

three cases: i) if̂oi = 0, it follows that the minimum cost in (31) iŝr2i ; ii) if ôi > 0, the first-order

condition for optimality giveŝoi = r̂i − λ1/2 providedr̂i > λ1/2, and the minimum cost isλ1r̂i − λ2
1/4;

otherwise, iii) if ôi < 0, it follows that ôi = r̂i + λ1/2 provided r̂i < −λ1/2, and the minimum cost is

−λ1r̂i − λ2
1/4. In other words,

ôi =



















r̂i − λ1/2, r̂i > λ1/2

0, |r̂i| ≤ λ1/2

r̂i + λ1/2, r̂i < −λ1/2

, i = 1, . . . , N. (32)

Upon plugging (32) into (31), the minimum cost in (31) after minimizing with respect tooi is ρ(r̂i) [cf.

(9) and the argument preceding (32)]. All in all, the conclusion is that f̂ is the minimizer of (8) – in

addition to being the solution of (7) by definition – completing the proof. �
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Fig. 1. Example of load curve data with outliers.

Fig. 2. True Gaussian mixture functionfo(x), and its180 noisy samples taken over[0, 3] × [0, 3] shown as black dots. The

red dots indicate theNo = 20 outliers in the training data setT . The green points indicate the predicted responsesŷi at the

sampling pointsxi, from the estimatêf obtained after solving (25). Note how all green points are close to the surfacefo.
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Fig. 4. Robust estimation of a Gaussian mixture using thin-plate splines. The data is corrupted withNo = 20 outliers. (a) True

function fo(x); (b) nonrobust predicted function obtained after solving (28); (c) predicted function after solving (25) with the

optimum tuning parameters; (d) refined predicted function using the nonconvex regularization in (21).
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Fig. 5. Robust estimation of the sinc function. The data is corrupted withNo = 3 outliers, and the nominal noise variance is

σ2

ε = 1 × 10−4. (a) Noisy training data and outliers; (b) predicted valuesobtained after solving (1) withV (u) = u2; (c) SVR

predictions forǫ = 0.1; (d) RSVR predictions forǫ = 0.1; (e) SVR predictions forǫ = 0.01; (f) RSVR predictions forǫ = 0.01;

(g) predicted values obtained after solving (7); (h) refinedpredictions using the nonconvex regularization in (21).
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Fig. 6. Load curve data cleansing. (a) Noisy training data and outliers; (b) fitted load profile obtained after solving (30).
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Fig. 7. Load curve data cleansing. (a) Cleansed load profile obtained after solving (29); (b) refined load profile obtainedafter

using the nonconvex regularization in (21).
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