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| | Abstract

Nonparametric methods are widely applicable to statisiitizrence problems, since they rely on

a few modeling assumptions. In this context, the fresh lodkoaated here permeates benefits from
variable selection and compressive sampling, to robustifyparametric regression against outliers — that
is, data markedly deviating from the postulated models. Aati@nal counterpart to least-trimmed squares
regression is shown closely related to @r(pseudo)norm-regularized estimator, that encouragessity

in a vector explicitty modeling the outliers. This connectisuggests efficient solvers based on convex
relaxation, which lead naturally to a variational M-typéimsitor equivalent to the least-absolute shrinkage
and selection operator (Lasso). Outliers are identified Udicjously tuning regularization parameters,
which amounts to controlling the sparsity of the outlier teecalong the wholeaobustificationpath of
Lasso solutions. Reduced bias and enhanced generalizapaility are attractive features of an improved
estimator obtained after replacing tlig-(pseudo)norm with a nonconvex surrogate. The novel robust
spline-based smoother is adopted to clednse curvedata, a key task aiding operational decisions in
the envisioned smart grid system. Computer simulationstestd on real load curve data corroborate the

effectiveness of the novel sparsity-controlling robugineators.
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I. INTRODUCTION

Consider the classical problem of function estimation, lialu an input vectok := [z1,...,z,]' € R?
is given, and the goal is to predict the real-valued scalaporsey = f(x). Function f is unknown,
to be estimated from a training data sEt:= {y;,x;}}*.,. When f is assumed to be a member of a
finitely-parameterized family of functions, standard (Jbnear regression techniques can be adopted. If
on the other hand, one is only willing to assume tfidielongs to a (possibly infinite dimensional) space
of “smooth” functions?, then anonparametricapproach is in order, and this will be the focus of this
work.

Without further constraints beyonfde #, functional estimation from finite data is an ill-posed gesh.
To bypass this challenge, the problem is typically solvedriyimizing appropriately regularized criteria,
allowing one to control model complexity; see, e.g.,|[1B}]} It is then further assumed that has the
structure of a reproducing kernel Hilbert space (RKHS)hvaibrresponding positive definite reproducing
kernel functionK (-, -) : RP x R? — R, and norm denoted by- ||. Under the formalism ofegularization
networks one seeks as the solution to the variational problem

N
min [ V(y: — f(x)) + pl f13 (1)
i=1

fer

where V(-) is a convex loss function, and > 0 controls complexity by weighting the effect of the
smoothness functionajlf”%{. Interestingly, the Representer Theorem asserts thatriltgi@l solution of
(@) is finitely parametrized and has the forfix) = 2V 8K (x,x;), where {3;}Y, can be obtained
from T; see e.g., [[29],[[38]. Further details on RKHS, and in patéc on the evaluation off f||3,
can be found in e.g.[ [38, Ch. 1]. A fundamental relationsbgiween model complexity control and
generalization capability, i.e., the predictive ability / beyond the training set, was formalized in[37].

The generalization error performance of approaches thaitmize the sum of squared model residuals
[that is V (u) = u? in (@)] regularized by a term of the forifif|3,, is degraded in the presence of outliers.
This is because the least-squares (LS) part of the cost isobast, and can result in severe overfitting
of the (contaminanted) training data [21]. Recent effodasehconsidered replacing the squared loss with
a robust counterpart such as Huber’s function, or its vésjaout lack a data-driven means of selecting
the proper threshold that determines which datum is cormidan outlier [[48]; see alsd_[27]. Other
approaches have instead relied on the so-tere@edensitive loss function, originally proposed to solve
function approximation problems using support vector nreesh (SVMs) [37]. These family of estimators
often referred to as support vector regression (SVR), haem Ishown to enjoy robustness properties; see

e.g., [26], [28], [32] and references therein. In [8], imped performance in the presence of outliers is
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achieved by refining the SVR solution through a subsequdntstdearning phase.

The starting point here is a variational least-trimmed segsigVLTS) estimator, suitable for robust
function approximation ir{ (Section1l). It is established that VLTS is closely relatedan (NP-hard)
{p-(pseudo)norm-regularized estimator, adopted to fit aession model that explicitly incorporates an
unknown sparsevector of outliers[[1l7]. As in compressive sampling (CS)][3&ficient (approximate)
solvers are obtained in Sectignllll by replacing the outlexctor’s /y-norm with its closest convex
approximant, thé;-norm. This leads naturally to a variational M-type estionaif f, also shown equivalent
to a least-absolute shrinkage and selection operator ¢).438] on the vector of outliers (Sectign1Il}A).
A tunable parameter in Lassmntrolsthe sparsityof the estimated vector, and the number of outliers as
a byproduct. Hence, effective methods to select this paemaee of paramount importance.

The link between/;-norm regularization and robustness was also exploitedpfyameter (but not
function) estimation in[[17] and [22]; see also [40] for rteld ideas in the context of face recognition, and
error correction codes [4]. In_[17] however, the selectidnLasso’s tuning parameter is only justified
for Gaussian training data; whereas a fixed value motivatedCB error bounds is adopted in the
Bayesian formulation of [22]. Here instead, a more genardlsystematic approach is pursued in Section
[M=B] building on contemporary algorithms that can effitily compute allrobustifactionpaths of Lasso
solutions, i.e., for all values of the tuning parameter| [J1E], [41]. In this sense, the method here
capitalizes on buis not limited tosparse settings, since one can examine all possible spéaséls
along the robustification path. An estimator with reduceskland improved generalization capability is
obtained in Sectiof’1V, after replacing thg-norm with a nonconvex surrogate, instead of thenorm
that introduces biad [33]/ [44]. Simulated tests demotestthe effectiveness of the novel approaches
in robustifying thin-plate smoothing splines [10] (Seati®-A), and in estimating the sinc function
(Section[V-B) — a paradigm typically adopted to assess pmdace of robust function approximation
approaches [8]][43].

The motivating application behind the robust nonparametethods of this paper Iead curve cleans-
ing [6] — a critical task in power systems engineering and mamage. Load curve data (also known as
load profiles) refers to the electric energy consumptiornopéally recorded by meters at specific points
across the power grid, e.g., end user-points and substatiecurate load profiles are critical assets
aiding operational decisions in the envisioned smart gystesn [20]; see alsd [1]/[2][[6]. However, in
the process of acquiring and transmitting such massivenvetuof information to a central processing
unit, data is often noisy, corrupted, or lost altogetheisTdould be due to several reasons including meter

misscalibration or outright failure, as well as commurimaterrors due to noise, network congestion, and
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connectivity outages; see Figl 1 for an example. In additaata significantly deviating from nominal
load models (outliers) are not uncommon, and could be at&tto unscheduled maintenance leading to
shutdown of heavy industrial loads, weather constrairdfidays, strikes, and major sporting events, just
to name a few.

In this context, it is critical to effectively reject outtig and replace the contaminated data with ‘healthy’
load predictions, i.e., to cleanse the load data. While rotifities carry out this task manually based
on their own personnel's know-how, a first scalable and fplad approach to load profile cleansing
which is based on statistical learning methods was recemihposed in[[6]; which also includes an
extensive literature review on the related problem of eutlilentification in time-series. After estimating
the regression functiorf via either B-spline or Kernel smoothing, pointwise conficenntervals are
constructed based oh A datum is deemed as an outlier whenever it falls outsidas®ciated confidence
interval. To control the degree of smoothing effected by ék@mator, [[6] requires the user to label the
outliers present in a training subset of data, and in thisedne approach therein is not fully automatic.
Here instead, a novel alternative to load curve cleansidgigloped after specializing the robust estimators
of Sectiong Tl and1V, to the case of cubic smoothing splif@sction’V-C). The smoothness-and outlier
sparsity-controlling parameters are selected accordirthe guidelines in Sectidn 1[iB; hence, no input
is required from the data analyst. The proposed splineebamthod is tested on real load curve data from
a government building.

Concluding remarks are given in Sectlon VI, while some técdirdetails are deferred to the Appendix.
Notation: Bold uppercase letters will denote matrices, whereas loolerdcase letters will stand for column
vectors. Operator§)’, tr(-) and E[-] will denote transposition, matrix trace and expectatiespectively;
| - | will be used for the cardinality of a set and the magnitude etalar. The/, norm of vectorx € R?
is x|l := 020, \xi]q)l/q for ¢ > 1; and ||M||p := /tr (MM’) is the matrix Frobenious norm. Positive
definite matrices will be denoted Byl > 0. The p x p identity matrix will be represented bl,, while

0, will denote thep x 1 vector of all zeros, an@,, := 0,0y,

I[I. ROBUST ESTIMATION PROBLEM

The training data comprise§ noisy samples off taken at the input point$x;}¥ , (also known as
knots in the splines parlance), and in the present conteyt¢hn be possibly contaminated with outliers.
Building on the parametric least-trimmed squares (LTS)aagh [31], the desired robust estimgtean

be obtained as the solution of the following variational (W minimization problem

min [Z ri(f) + quH%] (2)
=1

feH
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Wherer[zl.](f) is thei-th order statistic among the squared residud(y), ..., r% (f), andr;(f) == y; —
f(x;). In words, given a feasibl¢ € H, to evaluate the sum of the cost [d (2) one: i) computes\all
squared residuale?(f)}¥,, ii) orders them to form the nondecreasing sequelﬁ?@f) <...< rfN](f);
and iii) sums up the smallestterms. As in the parametric LTS [B1], the so-termed trimmaogstants
(also known as coverage) determines the breakdown poiteo¥/LTS estimator, since the largeSt— s
residuals do not participate il(2). Ideally, one would ltkemake N — s equal to the (typically unknown)
number of outliersV, in the training data. For most pragmatic scenaria wh€sds unknown, the LTS
estimator is an attractive option due to its high breakdowintpand desirable theoretical properties,
namely+/N-consistency and asymptotic normalify [31].

The tuning parameter > 0 in (2) controls the tradeoff between fidelity to the (trimmekta, and the
degree of “smoothness” measured|pff|?,. In particular,| f||3, can be interpreted as a generalized ridge
regularization term penalizing more those functions wétlgé coefficients in a basis expansion involving
the eigenfunctions of the kerndf.

Given that the sum i {2) is a nonconvex functional, a noiatilssue pertains to the existence of the
proposed VLTS estimator, i.e., whether or fdt (2) attainsicimum in . Fortunately, a (conceptually)
simple solution procedure suffices to show that a minimizeesdindeed exist. Consider specifically a

given subsample of training data points, sayy;, x;};_;, and solve
S
: 2 2
- + .
min [;7“ (f) quHH]

A unique minimizer of the forny ) (x) = Sy ﬁi(j)K(x, x;) is guaranteed to exist, whejds used here

to denote the chosen subsample, and the coeﬁici{ﬁ‘fﬁ%}le can be obtained by solving a particular
linear system of equations [38, p. 11]. This procedure camepeated for each subsample (there are
J = (V) of these), to obtain a coIIection{lf(j)(x)}j:1 of candidate solutions of}2). The winner(s)
f:= fU" yielding the minimum cost, is the desired VLTS estimator.efnark is now in order.

Remark 1 (VLTS complexity): Even though conceptually simple, the solution proceduse giescribed
guarantees existence of (at least) one solution, but sraadlombinatorial search over all subsamples
which is intractable for moderate to large sample siXedn the context of linear regression, algorithms

to obtain approximate LTS solutions are available; see [3@].

A. Robust function approximation vig-norm regularization

Instead of discarding large residuals, the alternativeragah proposed here explicitly accounts for

outliers in the regression model. To this end, consider tiadas variablego;}? , one per training datum,
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taking the valuey; = 0 whenever datum adheres to the postulated nominal model, ang 0 otherwise.

A regression model naturally accounting for the presenceutifers is
yi = f(xi) + 0; + &5, i=1,...,N 3)

where {¢;}Y, are zero-mean independent and identically distributéd.ji.random variables modeling
the observation errors. A similar model was advocated uddfsrent assumptions in [17] and [22], in
the context of robust parametric regression; see also [d]4@]. For an outlier-free datum) (3) reduces
to y; = f(x;) + &;; hence,s; will be often referred to as the nominal noise. Note that[i) (®th

f € H as well as thelV x 1 vectoro := [oy,...,0yn]" are unknown; thus[3) is underdetermined. On
the other hand, as outliers are expected to often compriseadl Baction of the training sample say, not
exceeding 20% — vectar is typically sparsei.e., most of its entries are zero; see also Rerhhark 3. $parsi
compensates for underdeterminacy and provides valuatieirgiormation when it comes to efficiently
estimatingo, identifying outliers as a byproduct, and consequentlyquering robust estimation of the
unknown functionf.

A natural criterion for controlling outlier sparsity is tesk the desired estimafeas the solution of

N

min > (i — fxi) —0)? +plfll3| . stllollo < 4
ocRN i=1

where 7 is a preselected threshold, afid||y denotes the/y-norm of o, which equals the number of
nonzero entries of its vector argument. Sparsity is diyectintrolled by the selection of the tuning
parameterr > 0. If the number of outliersV, were known a priori, them should be selected equal
to N,. Unfortunately, analogously to relatég-norm constrained formulations in compressive sampling
and sparse signal representations, probleém (4) is NP-ha@tdition, [4) can be recast to an equivalent

(unconstrained) Lagrangian form; see elg., [3]

N

min | 3" (i~ £(xi) — ) + £ 1B+ Holloll 5)
0€RN =1

where the tuning Lagrange multipliex, > 0 plays a role similar tor in (), and thely-norm sparsity
encouraging penalty is added to the cost.

To further motivate mode[{3) and the proposed criter[dnf¢®)robust nonparametric regression, it is
worth checking the structure of the minimize{rﬁ, o} of the cost in[(b). Consider for the sake of argument
that )\ is given, and its value is such th@b||, = v, for some0 < v < N. The goal is to characterize

f, as well as the positions and values of the nonzero entri¢s biote that becausgo||, = v, the last
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term in [B) is constant, hence inconsequential to the miraton. Upon defining; := 1; — f(x,-), it is

not hard to see that the entries @fatisfy

0, 7 < VA
6 = 7 *  i=1,...,N (6)
T, |7 > VAo

at the optimum. This is intuitive, since for thoég+# 0 the best thing to do in terms of minimizing the
overall cost is to sed; = #;, and thus null the corresponding squared-residual ternfg)irin conclusion,
for the chosen value of; it holds thatv squared residuals effectively do not contribute to the ooéF).

To determine the support @ and f, one alternative is to exhaustively test é{,ﬁ) admissible support
combinations. For each one of these combinations (indeyed),det S;  {1,..., N} be the index set
describing the support @), i.e., 62@ # 0 if and only if « € S;; and|S;| = v. By virtue of (8), the
corresponding candidat&’) minimizes

min | Y r2(f) + pll fl%

H
fer | ies,

while f is the one among al{f(j)} that yields the least cost. The previous discussion, inwutjon

with the one preceding Remadrk 1 completes the argumentrezhjto establish the following result.

Proposition 1: If {f,6} minimizes() with o chosen such thafté|ly = N — s, then f also solves the
VLTS problen(@).

The importance of Propositidd 1 is threefold. First, it fadiy justifies model[(B) and its estimatdd (5)
for robust function approximation, in light of the well danented merits of LTS regressidn [30]. Second,
it further solidifies the connection between sparse linegrassion and robust estimation. Third, the
norm regularized formulation i k5) lends itself naturatity efficient solvers based on convex relaxation,

the subject dealt with next.

I1l. SPARSITY CONTROLLING OUTLIER REJECTION

To overcome the complexity hurdle in solving the robust esgion problem in{5), one can resort to
a suitable relaxation of the objective function. The goaloiformulate an optimization problem which
is tractable, and whose solution yields a satisfactory @ppration to the minimizer of the original hard
problem. To this end, it is useful to recall that tkig-norm ||x||; of vector x is the closest convex
approximation ofj|x||o. This property also utilized in the context of compressiampling [35], provides

the motivation to relax the NP-hard problem (5) to
N

min | > (v = ) = 0)” + ull fll3 + Aol | - )
oeRrN Li=1
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Being a convex optimization probleni] (7) can be solved effity. The nondifferentiablé,-norm reg-
ularization term controls sparsity on the estimatoropfa property that has been recently exploited in
diverse problems in engineering, statistics and machiamileg. A noteworthy representative is the least-
absolute shrinkage and selection operator (La$s0) [33ppalpr tool in statistics for joint estimation and
continuous variable selection in linear regression proileln its Lagrangian form, Lasso is also known
as basis pursuit denoising in the signal processing litezat term coined by [7] in the context of finding
the best sparse signal expansion using an overcomplete basi

It is pertinent to ponder on whether problel (7) has builahility to provide robust estimateg in
the presence of outliers. The answer is in the affirmativecesia straightforward argument (details are

deferred to the Appendix) shows th&t (7) is equivalent to ratianal M-type estimator found by

N
min | Y p(yi — £(x:)) + pll 113, (8)
fen | =

wherep : R — R is a scaled version of Huber’s convex loss function [21]

u?, lul < A1/2
plu) = . )

Ap|u| — A2/4, lul > A1 /2
Remark 2 (Regularized regression and robustness)Existing works on linear regression have pointed
out the equivalence betweénnorm regularized regression and M-type estimators, usgplecific assump-
tions on the distribution of the outliers-€ontamination)[[17],[[23]. However, they have not recagi
the link with LTS through the convex relaxation &fl (5), ane tbonnection asserted by Propositidn 1.
Here, the treatment goes beyond linear regression by canirsidnonparametric functional approximation
in RKHS. Linear regression is subsumed as a special casa) tieelinear kernelK (x,y) := x'y is
adopted. In addition, no assumption is imposed on the outéetor.

It is interesting to compare th&- and ¢;-norm formulations [cf.[(b) and[7), respectively] in terms
of their equivalent purely variational counterparts[ih é2d [8), that entail robust loss functions. While
the VLTS estimator completely discards large residualstill retains them, but downweighs their effect
through a linear penalty. Moreover, whilgl (8) is convéX, i@)not and this has a direct impact on the
complexity to obtain either estimator. Regarding the trimgnconstants in (@), it controls the number
of residuals retained and hence the breakdown point of VId@hsidering instead the threshold/2 in
Huber’s functionp, when the outliers’ distribution is known a-priori, its ual is available in closed form
so that the robust estimator is optimal in a well-defined ed@#]. Convergence in probability of M-type

cubic smoothing splines estimators — a special problemwsnéd by [(8) — was studied inl[9].
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A. Solving the convex relaxation

Because[(7) is jointly convex iif ando, an alternating minimization (AM) algorithm can be adopted
to solve [T), for fixed values ofi and \;. Selection of these parameters is a critical issue that lveill
discussed in Sectidn 1[iB. AM solvers are iterative prases that fix one of the variables to its most up
to date value, and minimize the resulting cost with respethé¢ other one. Then the roles are reversed to
complete one cycle, and the overall two-step minimizaticocpdure is repeated for a prescribed number
of iterations, or, until a convergence criterion is met.tingf £ = 0, 1, ... denote iterations, consider that

o := o*~1) is fixed in [7). The update fof*) at thek-th iteration is given by

feH

N _ 2
) = arg min [Z (s = o) = 1(x)) + m\fu%] (10)
which corresponds to a standard regularization problenfuiectional approximation ir{ [12], but with

outlier-compensatedata{yi _ oY

7

lem (T0) is finitely parameterized, and given by the kerngiamsionf ) (x) = Zf\il B§k)K(x, x;) [38].

N
,xi} . It is well known that the minimizer of the variational prob-
=1

The vector3 := [31,..., ] is found by solving the linear system of equations
K+ puIy] % =y — ot~ (11)

wherey := [y1,...,yn]’, and theN x N matrix K > 0 has entrie§K];; := K (x;,x;).

In a nutshell, updating *) is equivalent to updating vect@*) as per[(IIL), where only the independent
vector variabley — o*~1) changes across iterations. Because the system matrix itiveatefinite, the
per iteration systems of linear equatiohs](11) can be efiiljiesolved after computing once, the Cholesky
factorization ofK + uly.

For fixed f := f*) in (7), the outlier vector update!*) at iterationk is obtained as

N 2
o®) .= arg min [Z (Tz‘(k) - 0z’> + )\1||0H1] (12)

OCERN |4
1=

wherergk) =y — Z;V:l ﬁ](-k)K(xi,xj). Problem [(IR) can be recognized as an instance of Lassodor th
so-termed orthonormal case, in particular for an identgression matrix. The solution of such Lasso

problems is readily obtained via soft-thresholdingl [18]the form of
o= s (r§k>,A1/2) i=1,....N (13)

whereS(z,v) := sign(z)(|z| — v)+ is the soft-thresholding operator, afd.. := max(0,-) denotes the
projection onto the nonnegative reals. The coordinatewstates in[(1I3) are in par with the sparsifying

property of the/; norm, since for “small” residuals, i.eri(k) < A1/2, it follows thatol(k) = 0, and the
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Algorithm 1 : AM solver
Initialize o~ = 0, and run till convergence

for k=0,1,...do

Update3) solving [K + uIy] 3% =y — o1,

Updateo®) via o* = S (1/1 - Z;V:l ﬂlgk)K(Xi,xj),)\l/z) , i=1,...,N.
end for
return  f(x) = YN, B K (x, x;)

i-th training datum is deemed outlier free. Updates (11) &) ¢omprise the iterative AM solver of the
¢1-norm regularized probleni](7), which is tabulated as Algni[1. Convexity ensures convergence to
the global optimum solution regardless of the initial cdiodi; see e.g.[]3].

Algorithm [ is also conceptually interesting, since it esilly reveals the intertwining between the
outlier identification process, and the estimation of thgression function with the appropriate outlier-
compensated data. An additional point is worth mentioniiter anspection of[(113) in the limit a8 — oc.
From the definition of the soft-thresholding operayr for those “large” residuals; := limy_,o rgk)
exceeding\; /2 in magnitudep; = 7; — \; /2 whenr; > 0, ando; = #; + A1 /2 otherwise. In other words,
larger residuals that the method identifies as correspgnmiroutlier-contaminated data are shrunk, but
not completely discarded. By pluggirgback into [T), these “large” residuals cancel out in the segia
error term, but still contribute linearly through tig-norm regularizer. This is exactly what one would
expect, in light of the equivalence established with theatmmal M/-type estimator in[(8).

Next, it is established that an alternative to solving a sega of linear systems and scalar Lasso
problems, is to solve a single instance of the Lasso withipeesponse vector and (non-orthonormal)

regression matrix.

Proposition 2: Considero, asso defined as
Olasso:= arg JIEII%RIJIV X,y — XMO”% + Allo]l1 (14)

where
Iy — K (K4 ply)
X, o= | " 12( “N)l . (15)
(K)"? (K + ply)”
Then the minimizer§f, 6} of (@) are fully determined givedi_asso 856 := dpassoand f(x) = SN | B, K (x,x;),
with B =(K+ ,uIN)_l (¥ — OLasso-
Proof: For notational convenience introduce thex 1 vectorsf := [f(x1),..., f(xn)] andf :=
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[f(x1),...,f(xn)], wheref € H is the minimizer of [¥). Next, consider rewritingl (7) as
in |mi —o)—f|3 21+ : 16
Join, | min 1y = o) = £ll5 4+ pll fll5 | + Alloly (16)

The quantity inside the square brackets is a function,adnd can be written explicitly after carrying out
the minimization with respect tg € H. From the results in [38], it follows that the vector of optim
predicted values at the poinfs; }¥, is given byf = K3 =K (K + MIN)_1 (y —o); see also the discus-
sion after [ID). Similarly, one finds thif||3, = KB = (y —o)' (K + puIy) ' K (K + uly) "' (y —o).
Having minimized[(1B) with respect t, the quantity inside the square bracketélls := (K + uIN)_l)

min [y — o) — £13 + ulf1%] = v — ) ~ £ + ullF I
fen 2 2

=||(y —0) = KIL'u(y — 0)||3 + u(y — 0) T, KI,(y — o)
= ||(Iy — KT,y — (In — KT,)o|3 + pu(y — o) T, KT, (y — o). (17)

After expanding the quadratic form in the right-hand side{lof), and eliminating the term that does not

depend oro, problem [16) becomes
min [||(Ly = KT,)y — (Ly — KT,)olf} — 21y'T, KT 0 + u0'T,KT,0 + i o]

Completing the square one arrives at
2

min y — o[ + Aol
ock (uK)'/?T, (uK)'/?T),
which completes the proof. [ |

The result in Proposition] 2 opens the possibility for effecmethods to select;. These methods to
be described in detail in the ensuing section, capitalizeesent algorithmic advances on Lasso solvers,
which allow one to efficiently computé, ,sso for all values of the tuning parametag. This is crucial for
obtaining satisfactory robust estimatgssincecontrolling the sparsityin o by tuning )\; is tantamount

to controlling the number of outliers in modél (3).

B. Selection of the tuning parameters: robustification path

As argued before, the tuning parameterand \; in (7)) control the degree of smoothnessfirand the
number of outliers (nonzero entriesdassy, respectively. From a statistical learning theory staaip /.
and \; control the amount of regularization and model complexitys capturing the so-termed effective
degrees of freedoni_[19]. Complex models tend to have worsergkzation capability, even though

the prediction error over the training sét may be small (overfitting). In the contexts of regularizatio
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networks [12] and Lasso estimation for regression [33]responding tuning parameters are typically
selected via model selection techniques such as crostatial, or, by minimizing the prediction error
over an independent test set, if availalilel [19]. Howevearséhsimple methods are severely challenged in
the presence of multiple outliers. For example, fveampingeffect refers to a very large value of the
residualr; corresponding to a left out clean datym, x;}, because of an unsatisfactory model estimation
based on all data excefitdata which contain outliers.

The idea here offers an alternative method to overcome tremaentioned challenges, and the possibility
to efficiently computed ss0for all values of\q, givenp. A brief overview of the state-of-the-art in Lasso
solvers is given first. Several methods for selectingnd \; are then described, which differ on the
assumptions of what is known regarding the outlier model (3)

Lasso amounts to solving a quadratic programming (QP) prokiB3]; hence, an iterative procedure is
required to determinéasso in (I4) for a given value of\;. While standard QP solvers can be certainly
invoked to this end, an increasing amount of effort has begmgzently toward developing fast algorithms
that capitalize on the unique properties of Lasso. The LAR®rahm [11] is an efficient scheme for
computing the entire path of solutions (corresponding fovalues of \;), sometimes referred to as
regularization paths. LARS capitalizes on piecewise litgaf the Lasso path of solutions, while incurring
the complexity of a single LS fit, i.e., whek; = 0. Coordinate descent algorithms have been shown
competitive, even outperforming LARS whenis large, as demonstrated In [16]; see alsd [15]] [42], and
the references therein. Coordinate descent solvers tapitm the fact that Lasso can afford a very simple
solution in the scalar case, which is given in closed formeinmis of a soft-thresholding operation [cf.
(@3)]. Further computational savings are attained throthghuse ofwarm starts[15], when computing
the Lasso path of solutions over a grid of decreasing valiies; 0An efficient solver capitalizing on
variable separability has been proposed in [41].

Consider then a grid of7, values of in the interval[pmin, tmax), €venly spaced in a logarithmic
scale. Likewise, for each consider a similar type of grid consisting 6f, values of\;, where\,.x :=
2 min; \y’X;le-\ is the minimum\; value such thaé asso# On [16], andX,, := [x,1 ... %, ~] in (14).
Typically, Amin = €Amax With € = 107, say. Note that each of th&, values ofy gives rise to a different
A grid, sinceAn.x depends onu throughX,,. Given the previously surveyed algorithmic alternatives t
tackle the Lasso, it is safe to assume thai (14) can be effigisolved over the (nonuniform, x G
grid of values of the tuning parameters. This way, for eadne/af ;, one obtaingz, samples of the
Lasso path of solutions, which in the present context canelfierred to agobustification path As \;

decreases, more variablégssq; enter the model signifying that more of the training data@gemed to
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contain outliers. An example of the robustification pathiigeg in Fig.[3.

Based on the robustification paths and the prior knowledgéable on the outlier model3), several
alternatives are given next to select the “best” dair\;} in the gridG, x G,.
Number of outliers is knownWhen N, is known, by direct inspection of the robustification patihe @an
determine the range of values fay, for which 6 5550 has exactlyN, nonzero entries. Specializing to the
interval of interest, and after discarding outliers which aow fixed and knowni-fold cross-validation
methods can be applied to determikge
Variance of the nominal noise is knowBupposing that the variane€ of the i.i.d. nominal noise variables
e; in @) is known, one can proceed as follows. Using the safuficobtained for each paifui, Aj} on

the grid, form theG,, x G, sample variance matri¥ with ij-th entry

Bly= D m/No= D (yu—fxu)*/N, (18)
|6Lassou =0 |dLassau=0
where N, stands for the number of nonzero entrie®iRsso Although not made explicit, the right-hand
side of [I8) depends ofy;, A;} through the estimaté, OLassoand N,. The entrie§X];; correspond to
a sample estimate of?, without considering those training dafg;, x;} that the method determined to
be contaminated with outliers, i.e., those indi¢der which o assoi # 0. The “winner” tuning parameters

{w*, A7} .= {w=, Aj-} are such that

[i*,j*] := arg min [[X];; — o2 (19)

)

which is an absolute variance deviation (AVD) criterion.
Variance of the nominal noise is unknowh:s2 is unknown, one can still compute a robust estimate of
the variances?2, and repeat the previous procedure (with known nominaleneéiance) after replacing

o2 with 62 in (I9). One option is based on the median absolute devighithD) estimator, namely

6- = 1.4826 x median (|#; — median (7;) |) (20)

where the residualg; = y; — f(x;) are formed based on a nonrobust estimatg ,obbtained e.g., after
solving (1) withA\; = 0 and using a small subset of the training datgseThe factor1.4826 provides an
approximately unbiased estimate of the standard deviatleen the nominal noise is Gaussian. Typically,
6. in ([20) is used as an estimate for the scale of the errors iergeM-type robust estimators; see
e.g., [9] and[[27].

Remark 3 (How sparse is sparse)Even though the very nature of outliers dictates tNatis typically

a small fraction of N — and thuso in @) is sparse — the method here capitalizes on,ibutot limited

to sparse settings. For instance, chooslge [A\nin = 0, Amax] along the robustification paths allows
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one to continuously control the sparsity level, and pogdigtiselect the right value ok; for any given
N, € {1,...,N}. Admittedly, if N, is large relative toN, then even if it is possible to identify and

discard the outliers, the estimafemay not be accurate due to the lack of outlier-free data.

IV. REFINEMENT VIA NONCONVEX REGULARIZATION

Instead of substitutingo||, in (B) by its closest convex approximation, namgdy|; , letting the surrogate
function to be non-convex can yield tighter approximatidasr example, thé,-norm of a vectox € R”
was surrogated i [5] by the logarithm of the geometric mefitsoelements, or by " , log |z;|. In
rank minimization problems, apart from the nuclear nornaxation, minimizing the logarithm of the
determinant of the unknown matrix has been proposed as emaitiive surrogateé [14]. Adopting related

ideas in the present nonparametric context, consider appating [3) by

N N
min | > (v — £0xi) = 00) + ull fIR + o D log(loi] +9) (21)

where/ is a sufficiently small positive offset introduced to avoidnmerical instability.

Since the surrogate term in{21) is concave, the overalllprolis nonconvex. Still, local methods based
on iterative linearization ofog(|o;| + ¢), around the current iteraték), can be adopted to minimize_(21).
From the concavity of the logarithm, its local linear appnoation serves as a global overestimator. Stan-
dard majorization-minimization algorithms motivate nmizing the global linear overestimator instead.

This leads to the following iteration fot = 0, 1,. .. (see e.g.,[[25] for further details)

N N
7. 0] = arg min | 37(s — (i) —00)” +ul 3+ Do Zw§’f’|oz-|] (22)
0ERN i=1 i=1
-1
w® = (,ng—m +5> . i=1,...,N. (23)

It is possible to eliminate the optimization variabfec # from (22), by direct application of the result
in Propositior[ 2. The equivalent update forat iterationk is then given by

N

o) i arg min [uxuy ~Xuof3 + 20 ) w§k>|oi|] (24)

=1
which amounts to an iteratively reweighted versiorof (1#the value 0f|oz(-k_1)| is small, then in the next
iteration the corresponding regularization teﬁmugk)\oi] has a large weight, thus promoting shrinkage
of that coordinate to zero. On the other hand Wméﬁ_l)] is significant, the cost in the next iteration

downweighs the regularization, and places more importamd¢ee LS component of the fit. For small
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analysis of the limiting poinb* of (24) reveals that

Aos of| #0
0, |of|=0

Aow; |oj] ~

and hence)o S | wi|of| = Aollo*|o-

A good initialization for the iteration in[(24) an@(23) & asso Which corresponds to the solution of
(I4) [and [T)] for\g = A} andp = p*. This is equivalent to a single iteration ¢f {24) with all ghkts
equal to unity. The numerical tests in Sectioh V will indiedbhat even a single iteration df (24) suffices
to obtain improved estimate§ in comparison to those obtained from1(14). The followingnaek sheds
further light towards understanding why this should be eigpe
Remark 4 (Refinement through bias reduction): Uniformly weighted¢;-norm regularized estimators
such as[{[7) are biased [44], due to the shrinkage effectetimedtimated coefficients. It will be argued
next that the improvements due [0](24) can be leveraged sorééhction. Several workarounds have been
proposed to correct the bias in sparse regression, thad @sulvell be applied here. A first possibility is
to retain only the support of (14) and re-estimate the anonbdis via, e.g., the unbiased LS estimator [11].
An alternative approach to reducing bias is through noneemegularization using e.g., the smoothly
clipped absolute deviation (SCAD) scherhel[13]. The SCADaftgrcould replace the sum of logarithms
in 21)), still leading to a nonconvex problem. To retain tiffecency of convex optimization solvers while
simultaneously limiting the bias, suitablyeighted/;-norm regularizers have been proposed instead [44].

The constant weights in _[44] play a role similar to thoseliB)(2hence, bias reduction is expected.

V. NUMERICAL EXPERIMENTS
A. Robust thin-plate smoothing splines

To validate the proposed approach to robust nonparameigiession, a simulated test is carried out
here in the context of thin-plate smoothing spline appration [10], [39]. Specializing{7) to this setup,
the robust thin-plate splines estimator can be formulated a

N
min [Z(yz — f(xi) —0i)* + M/ V2 fl|Fdx + /\1||0H1] (25)
R2

fes |4
ocrV Li=1

where||V2f||r denotes the Frobenius norm of the Hessiarf ofR? — R. The penalty functional

._ 2 P12 ge 92r\° 9f 1\’ 2f\?
e o L) () G oo

extends taR? the one-dimensional roughness regularization used in #nmgpspline models. For = 0,

the (non-unique) estimate i (25) corresponds t@wgh function interpolating the outlier compensated
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data; while agu — co the estimate is linear (Cﬂzf(x) = 0542). The optimization is oves&, the space
of Sobolev functions, for whicl/[f] is well defined[[10, p. 85]. Reproducing kernel Hilbert sgasach
as S, with inner-products (and norms) involving derivatives atudied in detail in [38].

Different from the cases considered so far, the smoothinwlpein (28) is only a seminorm, since
first-order polynomials vanish unddi-]. Omitting details than can be found in_[38, p. 30], underlyair
general conditions a unique minimizer 6f{25) exists. Thieittan admits the finitely parametrized form
fx) = 3N BiK(x,%;) + o/ x + ag, where in this caséi(x,y) = ||x — y|?log||x — y| is a radial
basis function. In simple terms, the solution as a kernebhegn is augmented with a member of the
null space ofJ[]. The unknown parametefs3, a1, ap} are obtained in closed form, as solutions to a
constrained, regularized LS problem; skel [38, p. 33]. AssaltePropositiof 2 still holds with minor
modifications on the structure of,,.

Remark 5 (Bayesian framework): Adopting a Bayesian perspective, one could moflet) in 3) as

a sample function of a zero mean Gaussian stationary prowgts covariance functionk (x,y) =

[x — y|?log ||x — y|| [24]. Consider as well thaff(x), {0;,;}~ ,} are mutually independent, while
gi ~ N(0,u*/2) ando; ~ L(0,p*/A3) in @) are i.i.d. Gaussian and Laplace distributed, respelgt
From the results in_[24] and a straightforward calculatioripllows that settingh\; = A} andp = p* in
([25) yields estimateg (and6) which are optimal in a maximum a posteriori sense. This jolew yet
another means of selecting the parameteind \;, further expanding the options presented in Section
[-B]

The simulation setup is as follows. Noisy samples of the fumtion f, : R> — R comprise the
training set7. Function f, is generated as a Gaussian mixture with two components, re#pective

mean vectors and covariance matrices given by

0.2295 2.2431 0.4577 2.4566 2.9069 0.5236
, M = ;o M2 = , Mg =

0.4996 0.4577 1.0037 2.9461 0.5236 1.7299
Function f,(x) is depicted in Figl}4 (a). The training data set comprides- 200 examples, with inputs
{x;}¥, drawn from a uniform distribution in the squali® 3] x [0, 3]. Several values ranging frofi¥; to
25% of the data are generated contaminated with outliers. Withkass of generality, the corrupted data
correspond to the firsV, training samples withv, = {10, 20, 30, 40,50}, for which the response values
{yi 5\2’1 are independently drawn from a uniform distribution oyed, 4]. Outlier-free data are generated
according to the mode); = f,(x;) + ¢;, where the independent additive noise terns- A(0,1073)
are Gaussian distributed, far= N, + 1,...,200. For the case wher&/, = 20, the data used in the

experiment is shown in Fidl 2. Superimposed to the true fancf, are 180 black points corresponding
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TABLE |

RESULTS FOR THE THINPLATE SPLINES SIMULATED TEST

N, AT w err for (@) | efr for @) | Err+ for (@) | Err + for 21)

10 | 3.87x1072 | 290 x 1073 | 1.00 x 107* | 1.03 x 107* | 2.37x107° | 2.27x107°

20 | 3.83x 1072 | 1.55 x 1072 | 1.00 x 107* | 9.16 x 107° | 4.27 x 107° | 2.39 x 10~°

30 | 228 x 1072 | 6.67x 1072 | 1.22x107* | 1.18 x 107* | 2.89 x 107° | 1.93 x 10~°

40 | 279 x 1072 | 610 x 1072 | 1.01x107* | 1.14x107* | 1.57x107° | 1.32x107°

50 | 249 x 1072 | 542 x 1072 | 1.01 x107* | 9.9x107° | 1.19x 107° | 1.05 x 10~°

to data drawn from the nominal model, as well2isred outlier points.

For this experiment, the nominal noise variange= 102 is assumed known. A nonuniform grid
of 1 and \; values is constructed, as described in Seciion 1lll-B. THevemt parameters ar€, =
Gy = 200, pimin = 1072 and umax = 1. For each value of:, the \; grid spans the interval defined by
Amax = 2min; |y'XLXW| and \pin = €A\max, Wheree = 10~%. Each of theG,, robustification paths
corresponding to the solution df (14) is obtained using tpaRSSA toolbox in[[41], exploiting warm
starts for faster convergence. Fig. 3 depicts an example Wjt= 20 and z* = 1.55 x 10~2. With the
robustification paths at hand, it is possible to form the danagriance matrix® [cf. (I8)], and select the
optimum tuning parameterg:*, \;} based on the criteriof (1L9). Finally, the robust estimatesrefined
by running a single iteration of (24) as described in SedidnThe values = 10~° was utilized, and
several experiments indicated that the results are gustengitive to the selection of this parameter.

The same experiment was conducted for a variable number tbérsuN,, and the results are listed
in Table[. In all cases, a00% outlier identification success rate was obtained, for theseh value of
the tuning parameters. This even happened at the first sfatiee anethod, i.e.p|ass0 in (14) had the
correct support in all cases. It has been observed in sonee s¢tups thaf (14) may select a larger support
than[1, N,], but after running a few iterations df (24) the true suppaaswypically identified. To assess
quality of the estimated functiofi, two figures of merit were considered. First, thaining error efr was

evaluated as
R NERY
o=y 2 (= 7tx)
=N,
i.e., the average loss over the training samplafter excluding outliers. Second, to assess the geneahiza
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capability of f, an approximation to thgeneralization errorErr;- was computed as

T] ~ % f} (5 - f(sci))Q (27)

Errr =E [(y - f(X)>2 |
where{gi,ii}ﬁvzl is an independent test set generated from the mgdel f,(x;) + ;. For the results
in Tablel, N = 961 was adopted corresponding to a uniform rectangular gridlok 31 pointsx; in
[0,3] x [0,3]. Inspection of Tabléll reveals that the training errers are comparable for the function
estimates obtained after solvirlg (7) or its nonconvex refieet [21). Interestingly, when it comes to the
more pragmatic generalization error fyrthe refined estimatof (1) has an edge for all valuesvVgf
As expected, the bias reduction effected by the iterativelyeighting procedure of Sectign]IV improves
considerably the generalization capability of the methsmk also Remaik 4.

A pictorial summary of the results is given in Hig 4, fof, = 20 outliers. Figl4 (a) depicts the true
Gaussian mixturg,(x), whereas Fid.]4 (b) shows the nonrobust thin-plate splisémate obtained after

solving

N
min [Z@i — F)? +u / 2 ||v2f||%dx] . (28)

fes |4
=1
Even though the thin-plate penalty enforces some degremobthness, the estimate is severely disrupted
by the presence of outliers [cf. the difference on thaxis ranges]. On the other hand, Figk. 4 (c) and
(d), respectively, show the robust estimatavith A\f = 3.83 x 1072, and its bias reducing refinement.

The improvement is apparent, corroborating the effectégsrof the proposed approach.

B. Sinc function estimation

The univariate function sirfe) := sin(wz)/(7x) is commonly adopted to evaluate the performance
of nonparametric regression methods [8],1[43]. Given ndisyning examples with a small fraction of
outliers, approximating sirie) over the interval—5, 5] is considered in the present simulated test. The
sparsity-controlling robust nonparametric regressiothmas of this paper are compared with the SVR [37]
and robust SVR in([8], for the case of thensensitve loss function with values= 0.1 ande = 0.01. In
order to implement (R)SVR, routines from a publicly avai@B8VM Matlab toolbox were utilized [18].
Results for the nonrobust regularization network apprdac) (with V (u) = u?) are reported as well,
to assess the performance degradation incurred when cethfrathe aforementioned robust alternatives.
Because the fraction of outlieréV(,/N) in the training data is assumed known to the method bf [&, th
same will be assumed towards selecting the tuning parasngfeand p in (7), as described in Section

[M=B] The {u, \1}-grid parameters selected for the experiment in Sedfion Weke used here as well,
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TABLE Il

GENERALIZATION ERROR(ERR7T) RESULTS FOR THE SINC FUNCTION ESTIMATION EXPERIMENT

Method 02=1x10*|02=1x10"2% | 62=1x10"2
Nonrobust [{@) with V(u) =«?] | 5.67 x 1072 8.28 x 1072 1.13 x 1071
SVR with ¢ = 0.1 5.00 x 1073 6.42 x 107* 6.15 x 1072
RSVR with ¢ = 0.1 1.10 x 1072 5.10 x 107* 447 x 1073
SVR with ¢ = 0.01 8.24 x 107° 4.79 x 107* 5.60 x 1072
RSVR with € = 0.01 7.75 x 107° 3.90 x 107* 3.32 x 1073
Sparsity-controlling in (@) 1.47 x 107* 6.56 x 107* 4.60 x 1073
Refinement in (1) 7.46 x 107° 3.59 x 1074 3.21 x 1073

except forpu,i, = 1075, SpaceH is chosen to be the RKHS induced by the positive definite Ganiss
kernel functionK (u, v) = exp[—(u — v)?/(2n*)], with parameter; = 0.1 for all cases.

The training set comprise®’ = 50 examples, with scalar inputér;}~, drawn from a uniform
distribution over[—5,5]. Uniformly distributed outliers{y;}Xe, ~ U[-5,5] are artificially added i,
with NV, = 3 resulting in6% contamination. Nominal data ifi adheres to the model = sinqx;) + ¢;
fori = N,+1,...,N, where the independent additive noise teanare zero-mean Gaussian distributed.
Three different values are considered for the nominal nesiance, namely? = 1 x 10~ for | = 2,3, 4.

For the case where? = 1 x 10~%, the data used in the experiment are shown in[Hig. 5 (a). 8upesed
to the true function sin@) (shown in blue) arel7 black points corresponding to the noisy data obeying
the nominal model, as well esoutliers depicted as red points.

The results are summarized in Taljlé 1l, which lists the galimation errors Err attained by the
different methods tested, and for varying. The independent test segi,:ﬁi}le used to evaluatd (27)
was generated from the modg] = sindz;) + ¢;, where thez; define aN = 101-element uniform
grid over [—5,5]. A first (expected) observation is that all robust altesrestimarkedly outperform the
nonrobust regularization network approachlih (1), by areoaf magnitude or even more, regardless of
the value ofe2. As reported in[[8], RSVR uniformly outperforms SVR. For tbasee = 0.01, RSVR
also uniformly outperforms the sparsity-controlling nedhin (7). Interestingly, after refining the estimate
obtained vial[{l7) through a couple iterations [of](24) (cf. tRedlV), the lowest generalization errors are
obtained, uniformly across all simulated values of the m@hnoise variance. Results for the RSVR with

e = 0.01 come sufficiently close, and are equally satisfactory fopedctical purposes; see also Hg. 5
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for a pictorial summary of the results whetd = 1 x 10~%.

While specific error values or method rankings are arguabgcdotal, two conclusions stand out: (i)
model [3) and its sparsity-controlling estimatdrs (7) aBd)(are effective approaches to nonparametric
regression in the presence of outliers; and (ii) when iliga with o asso the refined estimatof (21) can
considerably improve the performanceldf (7), at the prica wiodest increase in computational complexity.
While (@) endowed with the sparsity-controlling mecharssoi Sectior 1lI-B tends to overestimate the
“true” support ofo, numerical results have consistently shown that the refemenm Sectio IV is more

effective when it comes to support recovery.

C. Load curve data cleansing

In this section, the robust nonparametric methods destioefar are applied to the problem of load
curve cleansing outlined in Secti¢h I. Given load da@ta= {y;,t;})\, corresponding to a building’s
power consumption measuremempts acquired at time instants, ¢ = 1,..., N, the proposed approach

to load curve cleansing minimizes

N
rf:% ;(yz — f(t:) —0;)* + u/Rf”(t)dt + A1||0H1] (29)

where f”(t) denotes the second-order derivative fof R — R. This way, the solutionf provides a
cleansed estimate of the load profile, and the suppo#d ofdicates the instants where significant load
deviations, or, meter failures occurred. Estimatar (2%csgizes [(¥) to the so-termezlibic smoothing
splines see e.g., [19]/[138]. It is also subsumed as a special caeabbust thin-plate splines estimator
(25), when the target functiofi has domain inR [cf. how the smoothing penalty (26) simplifies to the
one in [29) in the one-dimensional case].

In light of the aforementioned connection, it should not bepsising thatf admits a unique, finite-
dimensional minimizer, which corresponds tonatural splinewith knots at{t;}¥,; see e.g.,[T19, p.
151]. Specifically, it follows thatf (¢) = Zf\il 0:bs(t), where{b;(t)}~, is the basis set of natural spline
functions, and the vector of expansion coefficiefits= [0, ..., 0y] is given by

0= (BB+u¥®) By -0)
where matrixB € RV*N hasij-th entry [B];; = b;(t;); while ¥ € RV*Y hasij-th entry [¥];; =
fb;/(t)b;f(t)dt. Spline coefficients can be computed more efficiently if tlsi® of B-splines is adopted
instead; details can be found in[19, p. 189] aind [36].

Without considering the outlier variables [0 {29), a B-spliestimator for load curve cleansing was put

forth in [6]. An alternative Nadaraya-Watson estimatomirthe Kernel smoothing family was considered
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as well. In any case, outliers are identified during a post@ssing stage, after the load curve has been
estimated nonrobustly. Supposing for instance that theoagh in [6] correctly identifies outliers most of
the time, it still does not yield a cleansed estiméteThis should be contrasted with the estimafod (29),
which accounts for the outlier compensated data to yieldeanded estimate at once. Moreover, to select
the “optimum” smoothing parametgr, the approach of [6] requires the user to manually label thbens
present in a training subset of data, during a pre-procgsstisge. This subjective component makes it
challenging to reproduce the results of [6], and for thissogacomparisons with the aforementioned
scheme are not included in the sequel.

Next, estimator[(29) is tested on real load curve data pealidy the NorthWrite Energy Group. The
dataset consists of power consumption measurements (ir) kb government building, collected every
fifteen minutes during a period of more than five years, rap@iom July 2005 to October 2010. Data is
downsampled by a factor of four, to yield one measurementpar. For the present experiment, only a
subset of the whole data is utilized for concreteness, where 501 was chosen corresponding toal
hour period. A snapshot of this training load curve daté/inspanning a particular three-week period
is shown in Fig[b (a). Weekday activity patterns can be tfediscerned from those corresponding to
weekends, as expected for most government buildings; fetelit, e.g., for the load profile of a grocery
store. Fig.[6 (b) shows the nonrobust smoothing spline fith® training data in7 (also shown for
comparison purposes), obtained after solving

N
S (i — F(t))? +p /R f”(t)dt] (30)

I}lelg L:1
using Matlab’s built-in spline toolbox. Parameterwas chosen based on leave-one-out cross-validation,
and it is apparent that no cleansing of the load profile takasep Indeed, the resulting fitted function
follows very closely the training data, even during the abmed energy peaks observed on the so-termed
“building operational transition shoulder periods.”

Because with real load curve data the nominal noise varia@cie (3) is unknown, selection of the
tuning parametergy, A\, } in (29) requires a robust estimate of the variangesuch as the MAD |[cf.
Sectiof1MI-B]. Similar to [6], it is assumed that the nonliearors are zero mean Gaussian distributed, so
that [20) can be applied yielding the valég = 0.6964. To form the residuals if{20),(B0) is solved first
using a small subset of that comprised 26 measurements. A nonuniform grid pfand \; values is
constructed, as described in Section 1lI-B. Relevant patars areG, = 100, G = 200, pimin = 1073,
pmax = 10, ande = 10~%. The robustification paths (one pgrvalue in the grid) were obtained using

the SpaRSA toolbox in[41], with the sample variance makiformed as in[(I8). The optimum tuning
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parameterg,* = 1.637 and \; = 3.6841 are finally determined based on the criterign] (19), where the
unknowno? is replaced withs2. Finally, the cleansed load curve is refined by running fderations

of 4) as described in SectignllV, with a value df= 10~°. Results are depicted in Figl 7, where the
cleansed load curves are superimposed to the training dafa Red circles indicate those data points
deemed as outliers, information that is readily obtainednfthe support ob. By inspection of Fig[17,

it is apparent that the proposed sparsity-controllingnessttor has the desired cleansing capability. The
cleansed load curves closely follow the training data, ket @mooth enough to avoid overfitting the
abnormal energy peaks on the “shoulders.” Indeed, thedes@ea in most cases identified as outliers. As
seen from Figl]7 (a), the solution ¢f {29) tends to overedgrtize support 06, since one could argue that
some of the red circles in Figl 7 (a) do not correspond to enstliAgain, the nonconvex regularization in
SectiorIV prunes the outlier support obtained Vial (29)ultésy in a more accurate result and reducing

the number of outliers identified from7 to 41.

VI. CONCLUDING SUMMARY

Outlier-robust nonparametric regression methods wereldped in this paper for function approxima-
tion in RKHS. Building on a neat link between the seeminglyelated fields of robust statistics and
sparse regression, the novel estimators were found rootie @rossroads of outlier-resilient estimation,
the Lasso, and convex optimization. Estimators as fundéhas LS for linear regression, regularization
networks, and (thin-plate) smoothing splines, can be tifirc under the proposed framework.

Training samples from the (unknown) target function werguased generated from a regression model,
which explicitly incorporates an unknown sparse vector ofliers. To fit such a model, the proposed
variational estimator minimizes a tradeoff between figdlit the training data, the degree of “smoothness”
of the regression function, and the sparsity level of theareaf outliers. While model complexity control
effected through a smoothing penalty has quite well undedstamifications in terms of generalization
capability, the major innovative claim here is thedarsity controlis tantamount to robustness control.
This is indeed the case since a tunable parameter in a Laksmgation of the variational estimator,
controls the degree of sparsity in the estimated vector adehoutliers. Selection of tuning parameters
could be at first thought as a mundane task. However, arguinth® importance of such task in the
context of robust nonparametric regression, as well assateyprincipled methods to effectively carry out
smoothness and sparsity control, are at the heart of thierjsapovelty. Sparsity control can be carried
out at affordable complexity, by capitalizing on statettoé-art algorithms that can efficiently compute the

whole path of Lasso solutions. In this sense, the method ¢egptalizes on but is not limited to sparse
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settings where few outliers are present, since one canaegffigiexamine the gamut of sparsity levels
along the robustification path. Computer simulations havens that the novel methods of this paper
outperform existing alternatives including SVR, and onésfrobust variants.

As an application domain relevant to robust nonparameggrassion, the problem of load curve
cleansing for power systems engineering was also considdomg with a solution proposed based on
robust cubic spline smoothing. Numerical tests on real lmade data demonstrated that the smoothness
and sparsity controlling methods of this paper are effeciiv cleansing load profiles, without user

intervention to aid the learning process.
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APPENDIX

Towards establishing the equivalence between problehman@)8), consider the pa{rf, 6} that solves
(@). Assume thaff is given, and the goal is to determibe Upon defining the residuals := y; — f(xi)

and becauséo|; = YV | |o;|, the entries ob are separately given by

Ao . Y 4 L
0; : argglel%[(n 0;))* + Mloj|], i=1,...,N, (31)

where the termquH%{ in (7) has been omitted, since it is inconsequential for theimization with
respect too. For eachi = 1,..., N, because[(31) is nondifferentiable at the origin one shaoolusider
three cases: i) ib; = 0, it follows that the minimum cost in(31) i8?; ii) if 6; > 0, the first-order
condition for optimality gives; = #; — A1 /2 provided#; > \;/2, and the minimum cost i&;7; — A2 /4;
otherwise, iii) if o; < 0, it follows thato; = #; + \1/2 provided; < —)\;/2, and the minimum cost is
—\17 — A3/4. In other words,

i — A1/2, 7 > A /2

0; = 0, |7 < A/2 , i=1,...,N. (32)

i+ M/2, < —=X\/2
Upon plugging [(3R) into[(31), the minimum cost In{31) afteinimizing with respect ta; is p(7;) [cf.
@) and the argument precedifg¥32)]. All in all, the coniusis that f is the minimizer of [B) — in
addition to being the solution of](7) by definition — comphetithe proof. |
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Fig. 1. Example of load curve data with outliers.
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Fig. 5. Robust estimation of the sinc function. The data isuged with N, = 3 outliers, and the nominal noise variance is
o2 =1 x 107", (a) Noisy training data and outliers; (b) predicted valoesained after solving11) with’ (v) = v?; (c) SVR
predictions fore = 0.1; (d) RSVR predictions foe = 0.1; (e) SVR predictions foe = 0.01; (f) RSVR predictions fok = 0.01;

(9) predicted values obtained after solvig (7); (h) refipeedictions using the nonconvex regularization[inl (21).
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Load curve data cleansing. (a) Cleansed load proffitaimed after solving (29); (b) refined load profile obtairedter
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