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Abstract—The performance of multiuser systems is both diffi-
cult to measure fairly and to optimize. Most resource allocation
problems are non-convex and NP-hard, even under simplifying
assumptions such as perfect channel knowledge, homogeneous
channel properties among users, and simple power constraints.
We establish a general optimization framework that system-
atically solves these problems to global optimality. The pro-
posed branch-reduce-and-bound (BRB) algorithm handles general
multicell downlink systems with single-antenna users, multi-
antenna transmitters, arbitrary quadratic power constraints,
and robustness to channel uncertainty. A robust fairness-profile
optimization (RFO) problem is solved at each iteration, which
is a quasi-convex problem and a novel generalization of max-
min fairness. The BRB algorithm is computationally costly, but
it shows better convergence than the previously proposed outer
polyblock approximation algorithm. Our framework is suitable
for computing benchmarks in general multicell systems with or
without channel uncertainty. We illustrate this by deriving and
evaluating a zero-forcing solution to the general problem.

Index Terms—Branch-reduce-and-bound, dynamic coopera-
tion clusters, fairness-profile, Network MIMO, optimal resource
allocation, performance region, worst-case robustness.

I. INTRODUCTION

RESOURCE allocation is generally very difficult in mul-
tiantenna systems. First of all, it is non-obvious how to

measure multiuser system performance. In information theory,
the sum capacity provides the highest reliable data throughput
[1], regardless of the computational complexity and delay
resilience required for implementation. Signal processing mea-
sures such as the mean squared error (MSE) are, on the
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other hand, only vaguely connected to the user-experienced
service quality [2]. Secondly, multiuser systems are limited
by interference, requiring considerations between optimizing
total performance and guaranteeing individual user service.
Cellular users are often highly heterogeneous, both in average
channel gain and delay sensitivity [3], making it tricky to
even define fairness among users. Thirdly, simplifying assump-
tions on channel state information (CSI), power constraints,
synchronization, and performance measures are required to
achieve tractable mathematical problems.

A key to efficient performance optimization is to formu-
late it as a convex problem, making the global solution
achievable through efficient algorithms [4]. Convex formula-
tions for downlink transmission were developed in [5] and
gradually extended in [6]–[8] to general power constraints
and multicell conditions. Efficient algorithms, based on fixed
point iterations, were developed in [9], [10]. The convexity
was achieved by assuming perfect CSI and pre-defined user
performance constraints, thus ignoring how to select these
optimally. The extension to maximizing the worst performance
among all users is achieved by solving a series of these
convex problems [7]–[10]. The requirement of perfect CSI can
also be relaxed using robust optimization techniques [11]. By
assuming ellipsoidal uncertainty regions, convex formulation
to the aforementioned problems can be achieved under worst-
case robustness [12]–[16]. In particular, [14]–[16] discuss such
robustness in a few special multicell scenarios. Robustness
can also be defined probabilistically (i.e., with outage prob-
abilities), but (conservative) bounds and approximations are
required to achieve convex formulations in these cases [17]–
[19].

Based on the references above, the multicell resource al-
location can be solved in polynomial time either under fixed
user performance constraints or if the goal is to maximize the
worst (i.e., max-min) performance among users. Under general
system performance measures, the global solution cannot
be achieved efficiently; [20] shows that sum performance,
proportional fairness, and harmonic mean optimizations are all
NP-hard problems. However, such problems can still be solved
with global convergence and optimality using the framework
of monotonic optimization, developed in [21], [22]. The outer
polyblock approximation is an algorithm in this framework
[21], and applications to single-cell [23], [24] and multi-cell
transmission [25]–[27] with perfect CSI have appeared in
literature. Unfortunately, the polyblock algorithm requires a
very large number of iterations to achieve accurate results,
thus limiting usage to systems with no more than a handful
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of users [22].

In this paper, we propose a robust monotonic optimization
framework for general multicell scenarios with imperfect CSI.
The framework can be applied for any system performance
measure that increases monotonically in the performance of
each user, which of course is satisfied by all reasonable mea-
sures. Convergence to the global optimum is achieved through
a branch-reduce-and-bound (BRB) algorithm that builds upon
previous work in [22], and we show far better convergence
than the polyblock algorithm in [24]–[27]. Each iteration of
the BRB algorithm solves a quasi-convex subproblem. It is
called a robust fairness-profile optimization, meaning that each
user has a constraint on the lowest acceptable performance
level and attains a predefined percentage of all performance
above these levels. We show how to formulate this problem
efficiently under worst-case robustness, extending results in
[28], [29] for perfect CSI. Observe that the BRB algorithm
solves a high-complexity (NP-hard) problem and is therefore
mainly useful as a benchmark in system level evaluations of
suboptimal low-complexity algorithms, although good lower
bounds on the optimal solution is achieved in a few iterations.

The structure and contributions of the paper are:

• The general multicell system model of [6], [30] with
dynamic cooperation clusters is introduced in Section II.
User performance is measured by arbitrary monotonic
functions of the worst-case MSE and system performance
is an arbitrary monotonic function of each user’s perfor-
mance. The concept of a robust performance region is
defined and important properties are proved.

• In Section III, robust fairness-profile optimization (RFO)
is introduced as a novel extension to standard max-
min performance optimization problems. This problem
is shown to be quasi-convex under worst-case robustness
and a simple solution algorithm is given.

• In Section IV, a novel framework for solving general
robust monotonic optimization problems is proposed.
Convergence to the global optimum of this NP-hard prob-
lem is achieved by a branch-reduce-and-bound (BRB)
algorithm over the robust performance region.

• To find initial performance bounds and illustrate the
benchmarking capability of the BRB algorithm, Section
V derives an approximation of the general optimization
problem. By adding interference constraints and pretend-
ing to have perfect CSI, a convex formulation is achieved.

• The proposed framework is evaluated numerically in Sec-
tion VI. The robust performance region is illustrated and
the strategy of Section V compared with the global op-
timum. The computational complexity of RFO is shown
to be manageable and the BRB algorithm shows better
convergence than the polyblock algorithm in [26], [27].

We have previously applied this framework to the different
problem of robust coordinated beamforming with perfect in-
tracell CSI and uncertain intercell CSI; see [31]. The previous
paper maximized functions of the signal-to-interference-and-
noise ratios (SINRs), instead of functions of the MSEs.

A. Notation

Boldface (lower case) is used for column vectors, x, and
(upper case) for matrices, X. Let XT , XH , and X∗ denote
the transpose, the conjugate transpose, and the conjugate of
X, respectively. For Hermitian square matrices X,Y, X � Y
and X � Y means that X−Y is positive definite and semi-
definite, respectively. IM ,0M ∈ RM×M denote identity and
zero matrices, respectively. The Li-norm of x is ‖x‖i. 1M ∈
RM×1 is a vector with ones. The set of non-negative real
n-dimensional vectors is denoted Rn+. Element-wise (strict)
inequality for vectors x,y is denoted x ≤ y (x < y).

II. SYSTEM MODEL & PERFORMANCE MEASURES

We consider a multiple-input-single-output (MISO) system
with Kt transmitting base stations and Kr receiving users. The
jth base station is denoted BSj and has Nj antennas. The total
number of transmit antennas is N =

∑Kt
j=1Nj . The kth user

is denoted MSk, has a single (effective) antenna1, and is a
simple receiver:

Definition 1. A simple receiver decodes its designated signal
• As consisting of a scalar-coded data symbol sk multiplied

with a transmit beamforming vector vk ∈ CN×1;
• While treating co-user interference as noise (i.e., without

trying to decode and subtract interfering signals).

Under these conditions, the transmission should obviously
satisfy the first property. The use of transmit beamforming is
actually optimal under single-user detection (i.e., the second
property) if perfect CSI is available [6], [32], [33], while
[34] provides conditions on its optimality under channel un-
certainty. From an information theoretic perspective, transmit
beamforming and simple receivers are suboptimal [35] but
these assumptions are of practical importance to achieve low-
complexity receivers and power efficiency.

In a general multicell scenario, some users are served in
a coordinated manner by multiple transmitters. In addition,
some transmitters and receivers are very far apart, making it
impractical to estimate and separate the interference on these
channels from the noise. To capture these properties, we apply
the dynamic coordination framework of [6], [30]:

Definition 2. Dynamic cooperation clusters means that BSj
• Has channel estimates to receivers in Cj ⊆ {1,...,Kr},

while the interference generated to receivers k̄ 6∈ Cj is
treated as part of the background noise;

• Serves the receivers in Dj ⊆ Cj with data.

This coordination framework is characterized by the sets
Cj ,Dj , and the mnemonic rule is that Dj describes data from
transmitter j while Cj describes coordination from transmitter
j. To reduce backhaul signaling of data, the cardinality of Dj
is typically smaller than that of Cj . These sets are illustrated in
Fig. 1 and are selected based on long-term channel gains (see
[6] for details). To enable coordinated transmissions, perfect
phase coherence and synchronous interference is assumed
between transmitters that serve users jointly (see [36]).

1This model also applies to simple multi-antenna receivers that fix a receive
beamformer (e.g., antenna selection) prior to transmission optimization.
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Fig. 1. Schematic intersection between three cells. BSj serves users in the
inner circle (Dj ), while it coordinates interference to users in the outer circle
(Cj ). Ideally, negligible interference is caused to users outside both circles.

The narrowband, flat-fading channel from BSj to MSk is
hjk ∈ CNj×1. The combined channel from all transmitters is
denoted hk = [hT1k . . .h

T
Ktk

]T ∈ CN×1. The received signal
at MSk is modeled as

yk = hHk Ck

Kr∑

k̄=1

Dk̄vk̄sk̄ + nk (1)

where the scalar-coded data symbol sk for MSk is assumed
to be zero-mean and have unit-variance (without loss of
generality). The block-diagonal matrix Dk ∈ CN×N selects
the transmit antennas that send sk and is defined as

[Dk]diagonal block j =

{
INj , if k ∈ Dj ,
0Nj , if k 6∈ Dj .

(2)

Observe that Dkvk is the effective beamforming vector, but
we will optimize over vk for notational convenience; any
(reasonable) solution to the optimization problems herein will
satisfy vk = Dkvk.

Similarly, Ck ∈ CN×N selects signals from transmitters
that have channel estimates to MSk (i.e., those with non-
negligible channels). This block-diagonal matrix is defined as

[Ck]diagonal block j =

{
INj , if k ∈ Cj ,
0Nj , if k 6∈ Cj .

(3)

The noise and remaining (weak) interference are given by the
circular-symmetric complex Gaussian term nk ∈ CN (0, σ2

k).
The transmission (i.e., selection of beamforming vectors) is

limited by L quadratic power constraints
Kr∑

k=1

vHk Qlvk ≤ ql l = 1, . . . , L, (4)

where Ql ∈ CN×N are Hermitian positive semi-definite
matrices for all l. To make sure that the power is constrained in
all spatial dimensions, these matrices satisfy

∑L
l=1 Ql � 0N .

A. Channel State Information and Robustness

In practice, transmitters have uncertain CSI. The uncertainty
originates from a variety of sources, including channel estima-
tion, feedback quantization, hardware deficiencies, and delays

in CSI acquisition on fading channels. It is common to assume
an additive error model [11]–[19] with

hk = ĥk + εk ∀k (5)

where ĥk = [ĥT1k . . . ĥ
T
Ktk

]T ∈ CN×1 is the uncertain CSI
of the combined channel vector hk and εk ∈ CN×1 is
the combined error vector. This model can, for instance, be
motivated by viewing channel estimation as the main source
of uncertainty [37].2 Observe that both the channel estimate
and the error should be set to zero for all hjk with k 6∈ Cj .

The stochastic distribution for εk is unbounded3, thus com-
munication cannot be robust towards any error. This is usually
handled by only considering a subset of error vectors, the
uncertainty set, that has high probability [11]–[19]. If this set
is included in the resource allocation (i.e., optimization with
acceptable outage probability), approximations are required to
achieve tractable problem formulations [17]–[19]. Herein, we
consider a fixed uncertainty set and maximize the worst-case
performance over this set [14]–[16]. This approach is conve-
nient as it can provide convex problem formulations, but is
often accused of giving conservative performance results [38].
However, this is the result of using ill-structured uncertainty
sets and can be avoided by proper selection of these sets.4

For analytical convenience and motivated by channel es-
timation5 [14]–[16], we concentrate on (compact) ellipsoidal
channel uncertainty sets

Uk(ĥk,Bk) =
{
hk : hk = ĥk + Bkε̃k, ‖ε̃k‖2 ≤ 1

}
(6)

where Bk ∈ CN×N defines the shape of the ellipsoid. Since
many uncertainty sources are independent between transmit-
ters (e.g., estimation and quantization are done separately),
Bk is typically block-diagonal in multicell systems. However,
the analysis herein is not limited to such Bk. Other types of
compact uncertainty sets (including separate sets for each hjk
and probabilistic robustness) are discussed in Section III-C.

While U1, . . . ,UKr represent the CSI at the transmitter side,
each MSk is assumed to only have a local estimate of hk.
Thus, the receivers are unaware of co-user interference and
precoding vectors, and are therefore assumed to be optimized
by the transmitters and told how to process their received
signals. Observe that the performance can be improved by,
for example, estimating the optimal equalizers at each receiver

2Under training-based MMSE channel estimation [37], the error takes the
form of (5). The stochastic error vector is εk ∈ CN (0,Ek) under Rayleigh
fading. If the channel from each base station to user k is estimated separately,
then the estimation error covariance matrix Ek becomes block-diagonal.

3This holds for Rayleigh fading channels, while practical estimation errors
of course are bounded but can be very large.

4In the probabilistic approach, the guaranteed performance is maximized
under a given outage probability. Using an optimal precoding solution, one
can create a set U of all error vectors that gives exactly the optimal guaranteed
performance (or better). If U is used as the uncertainty set in the worst-case
approach, it will provide the same optimal precoding solution.

5Continuing the estimation example in a previous footnote, recall that εk ∈
CN (0,Ek). Thus, εk belongs with probability ρ to the ellipsoidal set {εk :
2εHk E−1

k εk ≤ χ2
ρ(2N)}, where χ2

ρ(n) is the ρ-percentile of the χ2(n)-
distribution. If we limit the robustness to this set, the channel uncertainty

is given by (6) using Bk =

√
χ2
ρ(2N)

2
E

1/2
k . To enforce higher or lower

robustness to errors on channels from some base stations, one can use different
weights on the diagonal blocks of Bk .
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based on the effective channels with precoding, but this
requires additional training overhead that might be unavailable.

B. Examples: Two Simple Multicell Scenarios

The purpose of the above system model is to jointly describe
and analyze a variety of multicell scenarios. Typical examples
are ideal network MIMO6 [39] (where all transmitters serve all
users) and MISO interference channels [33], [40] (with only
one unique user per transmitter):

1) Ideal Network MIMO: All transmitters serve and coor-
dinate interference to all users, meaning that Dk = Ck = IN
for all k. If a total power constraint is used, then L = 1 and
Q1 = IN . If per-antenna constraint are used, then L = N and
Ql is only non-zero at the lth diagonal element. If perfect CSI
is available, then Bk = 0N and thus Uk = {ĥk} for all k.

2) Two-user MISO Interference Channel: Let BSk serve
MSk and coordinate interference to the other receiver. Then,
D1 =

[ IN1
0

0 0

]
and D2 =

[
0 0

0 IN2

]
, while C1 = C2 = IN .

If each transmitter has its own total power constraint, then
L = 2 and Ql = Dl for l = 1, 2. If each transmitter estimates
its channel independently, then a block-diagonal matrix Bk =[

Bk1 0

0 Bk2

]
is used to define the uncertainty sets Uk. If channel

estimation is the main source of uncertainty, then Bkj is a
scaled version of the estimation error variance for hjk [37].
The scaling decides the amount of error that the system is
robust to.

C. User Performance

The user performance is based on the MSE. MSk uses an
equalizing coefficient rk to achieve an estimate ŝk = rkyk
of the transmitted data signal sk. Thus, the MSE in the data
estimation at MSk is MSEk = E{|ŝk − sk|2} and becomes

MSEk = ‖rkhHk Ck[D1v1 . . . DKrvKr ]− eTk ‖22 + |rk|2σ2
k

= |rkhHk CkDkvk − 1|2︸ ︷︷ ︸
signal distortion

+
∑

k̄ 6=k
|rkhHk CkDk̄vk̄|2

︸ ︷︷ ︸
co-user interference

+ |rk|2σ2
k︸ ︷︷ ︸

noise

(7)

where ek denotes the kth column of IKr . For MSE optimiza-
tion, it suffices to consider real-valued rk ≥ 0 as any complex
phase can be included in the beamforming vector vk without
affecting the MSE in (7). A block diagram of the system model
is shown in Fig. 2.

Since the MSE describes the average squared distance
between sk and its estimate ŝk, it should be small. The range
of reasonable7 MSE values is

0 < MSEk ≤ E{|sk|2} = 1 (8)

where the lower bound assumes negligible noise and interfer-
ence, while the upper bound is the original signal variance.

Herein, the performance of MSk is measured by a con-
tinuous function gk(MSEk) of the MSE. Our convention is

6Ideal multiuser coordination is commonly called network multiple-input
multiple-output (MIMO), even in the case of single-antenna users.

7We can always disregard the received signal by setting rk = 0 and achieve
MSEk = 1, thus MSEk > 1 is always suboptimal.

Uncertain Channels

sKr hH
Kr

= ĥH
Kr

+ εHKr

nKr

ŝKr

s1 D1v1
C1

hH
1 = ĥH

1 + εH1

n1

ŝ1

DKr
vKr

CKr

Linear Precoding Equalizers

rKr

r1

Fig. 2. Block diagram of the downlink multicell system. Linear precoding is
applied to each data stream and Dk decides which antennas that can transmit
to user k. The channel uncertainty is modeled by additive errors εk , while
Ck removes negligible channels that are included in the additive noise nk .
User k applies the equalizing coefficient rk to estimate its data signal.

that good performance means large positive values, thus gk(·)
is a strictly decreasing8 function. From (8), the function is
bounded as

0 = gk(1) ≤ gk(MSEk) < gk(0) (9)

where we assumed gk(1) = 0 for notational convenience.
Performance measures that can be expressed in this way are,
for instance, bit error rate (BER), data rate, SINR, and the
MSE itself. If the equalizing coefficients rk are based on
perfect CSI, there are simple expressions for these utilities
[41]. CSI uncertainty makes it hard to derive closed-form
expressions, but a simple relationship is given in [14, Lemma
1].

The user performance is limited by the power constraints in
(4), but also by co-user interference. The MSE in (7) improves
if the interference is decreased, but this will degrade the MSEs
for other users. Under worst-case robustness, this relationship
is characterized by the robust performance region:
Definition 3. The robust performance region R ⊂ RKr+ is

R =
{(
g1(M̃SE1), . . . , gKr (M̃SEKr )

)
:

(v1, . . . ,vKr ) ∈ V, rk ≥ 0 ∀k
} (10)

where the worst-case MSE is denoted

M̃SEk = min

(
max
hk∈Uk

MSEk, 1
)

(11)

and V is the set of feasible transmit strategies:

V =

{
(v1, . . . ,vKr ) :

∑

k

vHk Qlvk ≤ ql ∀l
}
. (12)

This region describes the performance that can be guaran-
teed to be simultaneously achieved by the users. The shape of
the Kr-dimensional region depends strongly on the effective
channels, uncertainty sets, power constraints, and dynamic
cooperation clusters. In general, it is a non-convex set, but
it can be characterized as normal [21]:
Definition 4. A set T ⊂ Rn+ is called normal if for any point
x ∈ T , all x′ ∈ Rn+ with x′ ≤ x also satisfy x′ ∈ T .
Lemma 1. The robust performance region R with compact
uncertainty sets U1, . . . ,UKr is a compact and normal set.

Proof: The proof is given in Appendix B.
This means that for any point x ∈ R, all points that give

weaker performance than x are also in R. This simplifies the

8A function g : R+ → R is strictly decreasing if for any x, x′ ∈ R+ such
that x > x′ it follows that g(x) < g(x′).
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search for points in R that yield good performance; they all
lie on the upper boundary ∂+R and this boundary is easy to
identify since there are no holes in R.
Definition 5. A point y is called an upper boundary point of
a compact normal set T , if y ∈ T while {y′ ∈ Rn+ : y′ >
y}∩T = ∅. The set of all upper boundary points is called the
upper boundary of T and is denoted ∂+T .

To determine which point on ∂+R that is preferable, we
need a system performance perspective.

D. System Performance

While the achievable user performance is represented by the
multi-dimensional robust performance region R, the system
performance is given by a function f : R → R that takes a
point in R as input and produces a scalar value. For a given
point g = (g1, . . . , gKr ) ∈ R, typical examples are
• Sum performance: f(g) =

∑
k gk;

• Proportional fairness: f(g) =
∏
k g

1/Kr
k ;

• Harmonic mean: f(g) = Kr(
∑
k g
−1
k )−1;

• Max-min fairness: f(g) = mink gk.
Weights can be included in these examples to compensate for
heterogeneous channel conditions, delay constraints, etc.

Herein, we assume that the system performance function
f(g1(M̃SE1), . . . , gKr (M̃SEKr )) is Lipschitz continuous and
strictly increasing9. This is satisfied by the aforementioned
examples, and by all reasonable system performance measures.
When combined with a performance region R that is compact
and normal, we have the following important result.
Lemma 2. If f(·) is a strictly increasing function and R is a
compact and normal set, the global optimum (if it exists) to

maximize
g∈R

f(g) (13)

is attained on ∂+R. In addition, for any g̃ ∈ ∂+R there exists
a strictly increasing f(·) with g̃ as global optimum.

Proof: The first statement is proved in [21, Proposition
7]. The second statement is proved using the strictly increasing
function f(g) = mink gk/g̃k with g̃ = (g̃1, . . . , g̃Kr ) ∈ ∂+R.
Obviously, maxg∈R f(g) ≥ f(g̃) = 1 and assume for the
purpose of contradiction that it exists g∗ ∈ R that achieves
strict inequality. This means that g∗ > g̃ and thus g̃ cannot be
an upper boundary point since {y′ ∈ Rn+ : y′ > g̃} ∩ R 6= ∅
(see Definition 5). This contradiction yields maxg∈R f(g) =
f(g̃) and thus g̃ is the (non-unique) global optimum.

Based on this lemma, we only need to search the upper
boundary of R to solve any system performance optimization
problem. However, this is not as simple as it seems; [42]
showed that sum performance maximization is NP-hard for
any number of transmit antennas, while [20] showed NP-
hardness for the harmonic mean and proportional fairness
for Nj > 1. A main characteristic of NP-hard problems
is that there are no known algorithms that solve them in
polynomial time, and it is widely believed that there exist no
such algorithms.

9A function f : Rn+ → R is strictly increasing if for any x,x′,x′′ ∈ Rn+
such that x ≥ x′ and x > x′′, it follows f(x) ≥ f(x′) and f(x) > f(x′′).

From [20], [42] it is fair to say that system performance
optimization is generally NP-hard. However, there is a useful
problem that can be solved efficiently (i.e., in polynomial
time), namely the max-min fairness optimization (defined
above) [20]. It belongs to a larger category of problems, robust
fairness-profile optimization, that we analyze in Section III
under channel uncertainty. It is also an essential subproblem
of the BRB algorithm in Section IV that solves the monotonic
optimization problem for any f(·), although the NP-hardness
makes the convergence unsuitable for real-time applications.

III. ROBUST FAIRNESS-PROFILE OPTIMIZATION

In this section, we consider a particular f(·) for which (13)
can be solved efficiently and which is used as subproblem of
the general BRB algorithm in the next section. The considered
robust system performance optimization problem is

maximize
(v1,...,vKr )∈V

(r1,...,rKr )∈RKr+

min
k

gk(M̃SEk)− ak
αk

,

subject to gk(M̃SEk) ≥ ak ∀k.

(14)

This problem can be seen as a generalization of classic robust
max-min optimization (see e.g., [14]) where two fairness
constraints have been added:

1) Each user has a lowest acceptable level gk(M̃SEk) ≥ ak;
2) The total performance above this level is divided such

that each user gets a predefined portion αk ≥ 0.
The first constraint is represented by a = [a1, . . . , aKr ]

T ≥ 0.
The second constraint is called a fairness-profile10 and is
symbolized by a vector α = [α1, . . . αKr ]

T that satisfies∑Kr
k=1 αk = 1 (without loss of generality).
We call (14) a robust fairness-profile optimization (RFO)

and observe that this problem has a simple geometrical inter-
pretation; we start in a ∈ R and follow a ray in the direction
of α until a point on the upper boundary ∂+R is found.11

In general search regions, the ray might leave the region and
come back again which makes the search very complicated.
Fortunately, R is a compact and normal set and thus the
ray intersects the upper boundary in a unique point. This is
illustrated in Fig. 3, where (a) and (c) are normal sets while
(b) is non-normal and thus some rays from within the set cross
the upper boundary multiple times.

If we can find an upper bound f upper
RFO on the optimal value

of (14), we know geometrically that the optimum lies on the
line-segment between a and a + αf upper

RFO ; see the illustration
in Fig. 3. Hoping to simplify the RFO problem, we can thus
rewrite (14) as a bisection over this line-segment.

Lemma 3. For compact uncertainty sets U1, . . . ,UKr , fixed
a,α and a given upper bound f upper

RFO on the optimum of (14),

10The terminology rate-profile has been used for similar problems in prior
work [29], [43], [44], but herein we extend these works by having arbitrary
performance measures, uncertain CSI, and general multicell scenarios.

11This geometrical approach finds an optimal solution to (14) where
(gk(M̃SEk)−ak)/αk is the same for all MSk . In certain special cases (e.g.,
when the upper boundary is flat in some dimension), there also exist solutions
where a few users get higher performance than this worst-user level. This
discussed in [45].
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(a)

(b)

(c) Line-segment for robust 
fairness-profile optimization 

g1(M̃SE1)

g2(M̃SE2)

a+αfupper
RFO∂+RUpper boundaries

a

α

Fig. 3. Examples of robust performance regions with different shapes. (a)
Region is normal but non-convex. (b) Region is neither normal nor convex. (c)
Region is both normal and convex. Simple bisection along a fairness-profile
is not guaranteed to find the upper boundary of non-normal regions.

the problem can be solved by bisection over the range F =
[0, f upper

RFO ]. For a given f candidate
RFO ∈ F , the feasibility problem

find v1, . . . ,vKr , r1 ≥ 0, . . . , rKr ≥ 0

subject to M̃SEk ≤ γk ∀k,∑

k

vHk Qlvk ≤ ql ∀l
(15)

is solved for γk = g−1
k (ak+αkf

candidate
RFO ). If the problem is

feasible, all f̃ ∈ F with f̃ < f candidate
RFO are removed. Otherwise,

all f̃ ∈ F with f̃ ≥ f candidate
RFO are removed. The initial

feasibility of (14) is checked by solving (15) for f candidate
RFO = 0.

Proof: From Lemma 1, R is a compact and normal set.
For such sets, a ray from a point within the region (in a positive
direction) meets ∂+R in a unique point (see [21, Proposition
6]). This point is the optimum to (14), since the optimum must
be on ∂+R (as proved in Lemma 2). As the ray only meets
the upper boundary once, it can be divided into two parts: one
part is inside ofR and one part is outside. The intersection can
be found (to any accuracy) by a line search (e.g., bisection)
that iteratively checks if a point a+αf candidate

RFO is inside R by
solving (15).

Obviously, the RFO problem in (14) is infeasible if a is
outside ofR, which can be checked as described in the lemma.
A successful bisection also requires an initial selection of
f upper

RFO in Lemma 3 such that a+αf upper
RFO is outside R. If not

given in advance, f upper
RFO can be achieved in different ways:

• f upper
RFO = Kr supk(gk(0) − ak). Cannot be used if

supk gk(0) =∞.
• f upper

RFO =
∑
k gk(σ2

k/(κk‖DH
k ĥk‖22 +σ2

k))−ak, where κk
is a bound on the transmit power and is calculated as the
smallest positive eigenvalue of DH

k QlDk

qltr(Dk) among all l.

• f upper
RFO =

∑
k gk(M̃SEsu,k) − ak, where M̃SEsu,k is the

optimal robust MSE if MSk is the only active user.
The first one is the simplest and ignores the power constraints,
while the second one ignores co-user interference and uncer-

tainty and assumes that the highest power available in some
spatial direction can be used in any direction. The third one
takes the MSEs achieved in a single-user system and requires
that these problems are solved (which is simple under some
power constraints), but achieves the tightest value on f upper

RFO .

A. Convexity of Feasibility Subproblems

Solving the RFO problem using bisection, as suggested in
Lemma 3, is appealing as the range is halved in each iteration;
thus, the number of iterations scales only logarithmical with
the desired accuracy δ of the solution, also known as linear
convergence. In other words, the computational complexity
is typically not limited by the number of iterations but by
the complexity of the feasibility problem (15) solved in each
iteration. Next, we will see that (15) can be solved efficiently.

If the transmitters have perfect CSI (i.e., Uk = {ĥk}),
the feasibility problem in (15) is convex [14] and can be
efficiently solved (e.g., using general-purpose implementations
of interior-point methods [4]); see Appendix A for further
details. Under worst-case robustness to CSI uncertainty, the
feasibility problem in (15) seems difficult to solve since there
are infinitely many MSE constraints (one for each hk ∈ Uk).
Fortunately, the following theorem provides a reformulation
into finitely many convex constraints, based upon well-known
results from robust optimization [11].

Theorem 1. For the compact uncertainty sets in (6), the
feasibility problem in (15) is equivalent to the convex problem

find v1, . . . ,vKr , r̃1 ≥ 0, . . . , r̃Kr ≥ 0,

λ1 ≥ 0, . . . , λKr ≥ 0

subject to Ak � 0N+Kr+2 ∀k,∑

k

vHk Qlvk ≤ ql ∀l
(16)

where Ṽ = [D1v1 . . . DKrvKr ] and

Ak =



√
γkr̃k−λk ĥHk CkṼ−r̃keTk σk 0

ṼHCH
k ĥk−r̃kek

√
γkr̃kIKr 0 −ṼHCH

k Bk

σk 0
√
γkr̃k 0

0 −BH
k CkṼ 0 λkIN


.

(17)

Proof: The proof is given in Appendix B.
This theorem only has one (linear) semi-definite constraint

per user and has replaced the uncertainty set Uk by a variable
λk that indirectly represents the worst channel; if we can find
λk ≥ 0 that satisfies the constraint, then the original MSE
constraints are satisfied for all hk ∈ Uk.

Single-cell counterparts to Theorem 1 have recently been
derived in [12]–[14], while the multicell generalization is
novel. Special cases of the fairness-profile optimization prob-
lem have also been considered before; if gk(MSEk) =
MSE−1

k − 1 and a = 0, the problem is equivalent to the
minimization of the (weighted) worst MSE among all users
[7], [9], [13], [14]. This special case can be posed as a
generalized eigenvalue problem [7], [14], [46], which can
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improve the computational complexity. For general user utility
functions gk(·), such simplification is not possible.

The bisection algorithm for (14) is summarized in Table I.

TABLE I
ALGORITHM 1: ROBUST FAIRNESS-PROFILE OPTIMIZATION

1: input starting-point a and fairness-profile α
2: input accuracy δ, f lower

RFO = 0, and fupper
RFO (see suggestions)

3: while fupper
RFO − f

lower
RFO > δ

4: set f candidate
RFO = (f lower

RFO + f
upper
RFO )/2

5: set γk = g−1
k (ak+αkf

candidate
RFO ) ∀k

6: if problem (15) is feasible for these γk: set f lower
RFO = f candidate

RFO
7: else: set fupper

RFO = f candidate
RFO end

8: end
9: return [f lower

RFO , f
upper
RFO ] and last feasible solution to (15) from step

6

B. Complexity of Feasibility Subproblems

The previous section showed that the feasibility problem
(15) can be expressed as a convex problem under both perfect
CSI and worst-case robustness. Thus, it can be solved with a
computational complexity that is polynomial in the number of
antennas N , users Kr, and power constraints L [47, Chapter
6]. The exact complexity depends both on current systems
conditions and the choice of solver algorithm (e.g., interior-
point methods [4]), but we illustrate the complexity in Section
VI.

Having CSI uncertainty will naturally increase the com-
putational complexity, because Theorem 1 handles the in-
finitely many MSE constraints by introducing extra variables
λk and because the resulting MSE constraints have larger
dimension than under perfect CSI. In addition, the problem
size under perfect CSI (and thereby the complexity) can be
reduced by plugging in the optimal equalizing coefficients
and rewriting the corresponding MSE expressions as second-
order cone constraints [7], [8]; see Appendix A. Fixed point
algorithms can provide fast solutions under perfect CSI with
total power constraints [10], but need to be combined with
outer optimization procedures under general power constraints
[8]. CSI uncertainty will, on the other hand, reduce the size
of the performance region R, thus fewer feasibility problems
need to be solved to attain a given accuracy δ.

Finally, note that Lemma 3 solves dlog2(f upper
RFO /δ)e feasi-

bility problems to achieve the prescribed accuracy δ on the
solution to the RFO problem. This number is bounded by a
constant, therefore the RFO problem also have polynomial
complexity in the number of antennas N , users Kr, and power
constraints L. This complexity is quite affordable, making the
RFO problem a reasonable candidate for resource allocation
in practical systems. To put it differently, the system designer
basically has the choice between solving a RFO problem
optimally or solving some other NP-hard resource allocation
problem (13) suboptimally.

C. Extensions to the System Model

The RFO approach is easily extended to any robustness
scenario where the following properties are satisfied:
• The performance region is compact and normal;
• The feasibility problem in (15) can be solved efficiently.

The first property is usually satisfied; observe that Lemma 1
proved it for any compact uncertainty sets (not only ellipsoidal
sets). However, it is often difficult to solve the feasibility
problem efficiently under general uncertainty sets. Tractability
can be achieved through conservative approximations that give
lower bounds on performance, see [13], [14] for examples
with rectangular sets and intersections between ellipsoidal
sets. If the worst-case robustness is replaced with probabilistic
robustness constraints, conservative approximations of each
user’s performance are required to achieve tractable problem
formulations [17]–[19]. The probabilistic approach enables
user performance functions based on the outage probability
and outage data rate. Other possible extensions to the system
model is Tomlinson-Harashima precoding (see [14]), soft-
shaping constraints (see [48]), and multi-carrier systems (see
[6]).

IV. ROBUST MONOTONIC OPTIMIZATION

In this section, we aim at solving the robust monotonic
optimization problem in (13) for any system performance
function. Recall from Lemma 2 that the optimum lies on
the upper boundary. Hence, we can in principle look for an
approximate solution in a large set of boundary points of R
achieved by solving the RFO problem in Section III for a very
fine grid of fairness-profiles α. However, this naive approach
has huge computational complexity, which calls for a more
systematic approach that concentrates on the boundary in good
directions.

Next, we propose a branch-reduce-and-bound (BRB) algo-
rithm for solving (13) systematically and with global conver-
gence. It can be seen as an adaptation of the generic BRB
algorithm in [22] to general multicell transmission.

The algorithm maintains a set N with non-overlapping
hyperrectangles that surely covers the parts of the robust
performance region R where the optimal solutions lie (the
solution might be non-unique). Iteratively, we split certain
hyperrectangles and try to improve a lower bound fmin and
an upper bound fmax on the optimal value of (13). To aid this
process, a local upper bound β(M) is also stored for each
M ∈ N . The algorithm proceeds until fmax − fmin < ε, for
a predefined solution accuracy ε.

In what follows, hyperrectangles are called boxes:

Definition 6. For given a,b ∈ RKr+ with a ≤ b, the set of all
x such that a ≤ x ≤ b is called a box and is denoted [a,b].

Initially, N = {M0} for a boxM0 = [0,b0] ⊂ RKr+ where
b0 is based on some suitable upper bound that guarantees
R ⊆ M0 (see suggestions in Section III). The initial lower
and upper bounds can be taken as fmin = f(0) = 0 and
fmax = f(b0), but some low-complexity resource allocation
strategy can be used to obtain a better lower bound.

Each iteration of the BRB algorithm consists of three steps.
1) Branching: Divide a box from N into two new boxes.
2) Reduction: Remove parts of these new boxes that cannot

contain optimal solutions.
3) Bounding: Search for a feasible solution in one of the

new boxes and use it to improve fmin, fmax, and β(·).
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Selected box Branching Reduction Bounding

Mmax

M̃1

M̃2

amax

bmax

ã1

b̃1 ã′2

b̃′
2

ã2

b̃2

ã′1

b̃′
1

∂+R

Upper Candidates

Lower
Bound

α

m2

m1

Fig. 4. An iteration of the BRB algorithm: A box is selected and branched
into two new boxes. These are reduced based on the current bounds on the
optimal value. Finally, line search between the lower and upper corners of
the outmost box is applied to improve the bounds.

These steps are illustrated in Fig. 4 and the details are
explained in the next subsections. The final algorithm is given
in Section IV-D. For notational convenience, the kth element
of any vector x is denoted xk.

A. Branching

Each iteration begins with selecting a box Mmax =
[amax,bmax] that contains the current upper bound fmax:

Mmax = arg max
M∈N

β(M). (18)

The intention is to improve the upper bound by partitioning
Mmax into two new boxes M̃1,M̃2. New boxes of equal size
are achieved by bisecting Mmax along its longest side (see
Fig. 4). The index of this side is dim = argmaxk(bmax,k −
amax,k) and the new boxes are

M̃1 = [amax,bmax − sedim],

M̃2 = [amax + sedim,bmax],
(19)

where s = (bmax,dim− amax,dim)/2 and ek is the kth column
of IKr . The (local) upper bounds over these new boxes are
also based on Mmax:

β(M̃1) = min(β(Mmax), f(bmax − sedim)),

β(M̃2) = β(Mmax).
(20)

Finally, the set Mmax is replaced with M̃1 and M̃2 in N .

B. Reduction

In this step, the new boxes M̃l = [ãl, b̃l], for l = 1, 2,
are reduced by cutting off parts that cannot achieve function
values between the lower bound fmin and (local) upper bound
β(M̃l). If β(M̃l) < fmin, the whole box is removed from N .
Otherwise, it is replaced by a (potentially) smaller box [ã′l, b̃

′
l]

based on the following lemma.

Lemma 4. If fmin ≤ β(M̃l), all points g ∈ [ãl, b̃l] satisfying
fmin ≤ f(g) ≤ β(M̃l) are also contained in [ã′l, b̃

′
l] ⊆

[ãl, b̃l], where

ã′l = b̃l −
Kr∑

k=1

νk(b̃l,k − ãl,k)ek (21)

b̃′l = ã′l +

Kr∑

k=1

µk(b̃l,k − ã′l,k)ek (22)

with νk and µk (for k = 1, . . . ,Kr) calculated as

νk=max
{
ν : 0≤ν≤1, f(b̃l − ν(b̃l,k − ãl,k)ek) ≥ fmin

}

µk=max
{
µ : 0≤µ≤1, f(ã′l + µ(b̃l,k − ã′l,k)ek) ≤ β(M̃l)

}
.

(23)

Proof: The proof is given in Appendix B.
The reduction procedure in Lemma 4 is illustrated in Fig. 4

and observe that it needs to be implemented sequentially; first,
the lower point ãl is updated using (21) and then it is used to
update the upper point b̃l using (22).

Each reduction requires calculation of the parameters νk, µk
in (23), generally solved by standard line search procedures.
However, closed form expressions can be attained in many
cases. For example, weighted sum performance with f(g) =∑
k wkgk (with weights wk > 0) gives

νk = min

(∑Kr
k̄=1 wk̄ b̃l,k − fmin

wk(b̃l,k − ãl,k)
, 1

)
,

µk = min

(
β(M̃l)−

∑Kr
k̄=1 wk̄ã

′
l,k

wk(b̃l,k − ã′l,k)
, 1

) (24)

where the min-operator makes sure that νk, µk ≤ 1.

C. Bounding

Each iteration ends with a bounding step where we search
for feasible solutions in M̃2 = [ã′2, b̃

′
2], which is the new box

with the largest (local) upper bound (i.e., β(M̃2) ≥ β(M̃1)).
These solutions are used to improve fmin, fmax, and β(M̃2).

First, the feasibility of the lower corner ã′2 is checked
by solving (15) with γk = g−1

k (ã′2,k) ∀k. If this problem
is infeasible, then M̃2 contains no feasible solutions and is
removed from N . If the problem is feasible, the following
lemma is used to find lower and upper bounds on the feasible
performance in M̃2 by solving a single robust fairness-profile
optimization problem (see Section III):

Lemma 5. Consider a box M = [a,b] ⊂ RKr+ such that
M∩R 6= ∅. If R is compact and normal, the highest feasible
performance in M can be bounded as [f̄min, f̄max] for

f̄min = f(a + αfmin
RFO )

f̄max = max
k

f(b− (bk − nk)ek)
(25)

where n = [n1, . . . , nKr ]
T = a+αfmax

RFO , α = (b− a)/‖b−
a‖1, and ek denotes the kth column of IKr . The variables
fmin

RFO , f
max
RFO are the interval endpoints achieved by Algorithm

1 with starting-point a, fairness-profile α, f upper
RFO = ‖b− a‖1,

and some given line-search accuracy δ.

Proof: The proof is given in Appendix B.
The lemma is illustrated in Fig. 4, where a line-search is

performed between the lower and upper corner of the box. The
best feasible point on this line provides a local lower bound
f̄min on the feasible performance. Since the region is normal,
the outer points mk = b̃′2 − (b̃′2,k − nk)ek are candidates for
giving a new upper bound on the feasible performance in the
box. Observe that if the size of the box ‖b̃′2− ã′2‖1 is smaller
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than the accuracy δ, then no line-search is performed. This will
not affect the convergence, as proved in the next subsection.

The local lower bound f̄min from Lemma 5 replaces the
global lower bound fmin if f̄min ≥ fmin. Similarly, we set
β(M̃2) = f̄max if f̄max < β(M̃2). Finally, we update fmax

with the largest upper bound maxM∈N β(M) among the
remaining boxes. The stopping criterion fmax − fmin < ε is
checked before a new iteration is started.

D. Final Algorithm

The BRB algorithm that solves the general robust monotonic
optimization problem in (13) is summarized in Table II.

TABLE II
ALGORITHM 2: BRANCH-REDUCE-AND-BOUND

1: input M0 =[0, gmax1Kr ], accuracy ε, line-search accuracy δ
2: set fmin, fmax based on the available prior knowledge
3: set N = {M0} and β(M0) = fmax

4: while fmax − fmin > ε
5: set Mmax = argmaxM∈N β(M)
6: for l = 1, 2:
7: create new box M̃l using (19) and set β(M̃l) using (20)
8: if fmin ≤ β(M̃l): reduce M̃l using Lemma 4
9: else: set M̃l = ∅ end

10: end
11: Check feasibility of ã′2 by solving (15) for γk = g−1

k (ã′2,k)
12: if feasible:
13: Calculate bounds f̄min, f̄max in M̃2 using Lemma 5
14: set fmin = max(fmin, f̄min)

15: set β(M̃2) = min(β(M̃2), f̄max)

16: else: set M̃2 = ∅ end
17: set N = (N \Mmax) ∪ {M̃1,M̃2}
18: set fmax = maxM∈N β(M)
19: end
20: return [fmin, fmax] and a feasible solution that achieved fmin

The BRB algorithm converges to the global optimum fopt
in the sense that an ε-approximate interval fopt ∈ [fmin, fmax],
with fmax − fmin ≤ ε, is achieved in finitely many iterations
for any ε > 0. The line-search accuracy δ is used in the
bounding step to improve convergence speed, but there are
no constraints on it to achieve convergence.
Theorem 2. For any given accuracy ε > 0, the BRB algorithm
finds an interval [fmin, fmax] for the optimal value of (13) that
satisfies fmax−fmin ≤ ε, in a finite number of iterations. The
line-search accuracy δ > 0 can be selected arbitrarily.

Proof: The convergence of the algorithm in Table II can
be studied as a standard branch-and-bound algorithm, treating
the reduction step (which does not remove the solution) as part
of the bounding step. In the appendix of [49], two sufficient
conditions are given for achieving an ε-approximate solution
in a finite number of iterations: 1) The bounding step truly
calculates lower and upper bounds on the optimal value; 2)
The difference fmax − fmin converges (uniformly) to zero.
The first condition was proved in Lemma 5, while the second
condition follows from the exhaustiveness of bisection and the
Lipschitz continuity of f (i.e., ‖b−a‖ ≤ constant1 means that
f(b)−f(a) ≤ constant2). Finally, observe that bounding the
performance in a box using only the lower and upper corners
satisfies these conditions; thus, any δ > 0 can be used.

Although the algorithm converges, the worst-case conver-
gence speed is exponential in the number of users Kr because

the problem is NP-hard.12 On the other hand, N and L are not
affecting the convergence scaling of the BRB algorithm. The
main computational complexity lies in the feasibility problem
(15), which is solved individually in Step 11 and as part
of Lemma 5 (a RFO problem) in Step 13. Under channel
uncertainty, a convex formulation was given in Theorem 1.
The dimension of the feasibility problem can be reduced under
perfect CSI and other special conditions (see Appendix A
and Section III), but as the BRB algorithm solves a long
sequence of convex subproblems the total complexity makes
it unsuitable for real-time applications. However, we show
numerically in Section VI that the proposed algorithm has
far better convergence behavior than the outer polyblock
approximation in [24]–[27].

Remark 1. The BRB algorithm in Table II is formulated to
be applicable to any robust monotonic optimization problem.
If only a certain type of user and system performance func-
tions is of interest, this knowledge can be used to improve
convergence. In particular, the bounding step should exploit
any additional structure added to the problem. Instead of
searching for feasible solutions on a straight line through the
box (as the RFO does), the search can take place along any
continuously elementwise-increasing curve between the lower
and upper corner. In addition, the feasibility problems can be
simplified under perfect CSI and certain power constraints, as
discussed in Section III-A. The special case of weighted sum
rate optimization and perfect CSI was recently considered in
[50] and [51]. Under a total power constraint, [50] formulated
the search in a box as an approximate convex problem,
which greatly improves the bounding step. With single-antenna
transmitters, [51] showed that the feasibility problems can be
solved by simply checking the spectral radius of a matrix.
Finally, note that all the system model extensions discussed in
Section III-C are possible for the BRB algorithm.

V. LOW-COMPLEXITY SUBOPTIMAL STRATEGIES

In general multicell systems, it is easy to derive feasible
suboptimal transmission strategies, but very difficult to evalu-
ate their performance. The BRB algorithm in Section IV is
suitable for computing benchmarks for such strategies. To
evaluate the performance using some beamforming vectors
(v1, . . . ,vKr ) and equalizing coefficients (r1, . . . , rKr ), we
need to know the robust MSE γk that each MSk achieves
(i.e., maxhk∈Uk MSEk ≤ γk). With notation γ̃k =

√
γk, the

robust MSE γk is easily obtained by solving

minimize
γ̃k≥0,λk≥0

γ̃k

subject to Ak � 0N+Kr+2

(26)

which is a convex problem in γ̃k and λk. The matrix Ak is
given in (17) using r̃k = r−1

k and γ̃k =
√
γk. Next, we derive

a low-complexity strategy based on interference constraints.

12Observe that the RFO problem avoids the exponential complexity by
searching along one-dimensional curves in the Kr-dimensional user space,
while the BRB algorithm considers all dimensions.
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A. Zero-Forcing and Interference-Constrained Beamforming

A common way of simplifying transmission optimization is
to constrain the co-user interference and to pretend that the
channel estimates ĥk are the actual channels. This approach
is powerful both from a computational perspective and in
terms of performance in the high SNR regime [52], but
requires sufficiently many degrees of freedom (e.g., |Cj | ≤
Nj for all BSj). By pretending that the channel estimates
are perfect, the ”optimal” equalizing coefficient for MSk is
rk = (vHk DH

k CH
k ĥk)/(

∑
k̄ |ĥHk CkDk̄vk̄|2 + σ2

k) and the
”resulting” performance is MSEk = (

∑
k̄ 6=k |hHk CkDk̄vk̄|2 +

σ2
k)/(

∑
k̄ |hHk CkDk̄vk̄|2 + σ2

k).
We consider gk(MSEk) = 1/MSEk − 1 to achieve the

following tractable problem formulation:

maximize
v1,...,vKr
η1,...,ηKr

f(η1, . . . , ηKr ),

subject to
|ĥHk CkDkvk|2

σ2
k + zk

≥ ηk ∀k,
∑

k̄ 6=k
|ĥHk CkDk̄vk̄|2 ≤ zk ∀k,

∑

k

vHk Qlvk ≤ ql ∀l.

(27)

The variables ηk were introduced to clarify that this problem
can be solved optimally if f(·) is concave. If zk = 0 ∀k,
(27) gives the zero-forcing beamforming solution. Observe that
zk defines the maximal total interference that may be caused
to MSk, thus zk > 0 can be called interference-constrained
beamforming. It could be suitable to select zk > 0 under CSI
uncertainty since the actual interference cannot nulled anyway.
The following lemma shows that (27) can be solved as a
convex optimization problem for any zk ≥ 0 ∀k.
Lemma 6. The semi-definite relaxation of (27) is

maximize
V1�0,...,VKr�0

η1,...,ηKr

f(η1, . . . , ηKr ), (28)

subject to
tr{DH

k CH
k ĥkĥ

H
k CkDkVk}

σ2
k + zk

≥ ηk ∀k,
∑

k̄ 6=k
tr{DH

k̄ CH
k ĥkĥ

H
k CkDk̄Vk̄} ≤ zk ∀k,

∑

k

tr{QlVk} ≤ ql ∀l.

This problem is convex if f(·) is a (strictly increasing) concave
function. It always has rank-one solutions V∗k = v∗k(v∗k)H ,
where v∗k solves the original problem in (27).

Proof: The methodology in [6] and [53] can be used to
show the existence of rank-one solutions. If an optimization
procedure still delivers a high-rank solution V∗k, one can find
v∗k by maximizing <{ĥHk CkDkvk} under the interference
constraints |ĥH

k̄
Ck̄Dkvk|2 ≤ tr{DH

k CH
k̄
ĥk̄ĥ

H
k̄
Ck̄DkV

∗
k}

∀k̄ 6= k and power constraints vHk Qlvk ≤ tr{QlV
∗
k} ∀l.

Based on Lemma 6, we can solve the zero-forcing problem
for all concave system performance functions, for example,
sum performance, proportional fairness, and max-min fairness.
This can be viewed as an extension of the work in [53]

to multicell systems with arbitrary power constraints. Zero-
forcing and interference-constrained beamforming are subop-
timal, but their simplicity make them good low-complexity
strategies and (27) actually provides the optimal solution under
perfect CSI if we happen to select the interference constraints
optimally (see [54] for a systematic method to search over
{zk}). The performance under uncertain CSI is evaluated
in Section VI. Observe that zero-forcing and interference-
constrained beamforming can be used to achieve an initial
lower bound for the BRB algorithm and thereby speed up the
convergence.

VI. NUMERICAL EXAMPLES

In this section, the robust monotonic optimization frame-
work is evaluated numerically, using the YALMIP toolbox of
[55] and the numerical convex optimization solver SDPT3
from [4]. First, the concept of robust performance regions
and system performance functions are illustrated. Then, the
performance of the zero-forcing approximation strategy in
Section V is compared with the optimal solution, calculated
using the proposed BRB algorithm. Finally, the computational
complexity of solving the RFO problem is exemplified and
the convergence of the BRB algorithm is compared with the
outer polyblock approximation algorithm.

While this section concentrates of illustrating different
aspects of the proposed robust optimization framework, it
is worth noting that our BRB algorithm was applied for
performance benchmarking in realistic multicell systems with
20 users in [6].

A. Robust Performance Regions

To illustrate the shape of the robust performance regions,
we consider a simple network MIMO scenario with Kr = 2
users. The total number of transmit antennas is N = 3, all
channels are Rayleigh fading and spatially uncorrelated, and
we use per-antenna constraints with ql = 10 (i.e., 10 dB).
The average SNR E{‖hk‖22}/σ2

k is N for user 1 and N/4 for
user 2, creating an asymmetry that will highlight properties of
different system performance functions. Spherical uncertainty
sets Uk(ĥk,Bk) are assumed with Bk =

√
ξIN in (6), where

the parameter
√
ξ is the radius of the sphere. If one standard

deviation of the channel estimation error is used as uncertainty
set [37], then ξ equals the estimation error variance.

Fig. 5 shows the robust performance regions for a random
channel realization and different ξ. In Fig. 5(a), the inverse
MSE is the user performance measure (i.e., gk(MSEk) =
MSE−1

k −1 to make gk(1) = 0), but the figure axes show MSEs
to enhance viewing. The guaranteed data rate gk(MSEk) =
log2(MSE−1

k ) is the user performance measure in Fig. 5(b).
In both figures, the optimal system performance points are
shown for the four measures exemplified in Section II-D: sum
performance, proportional fairness, harmonic mean, and max-
min fairness.

Robustness towards channel uncertainty clearly decreases
the size of the performance regions, without affecting the
general shape (in this scenario). The optimal points of the four
system performance measures are all on the upper boundaries
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Fig. 5. Robust performance regions with different squared radius ξ of
the channel uncertainty sets. The user performance measure is either (a) the
inverse MSE or (b) the guaranteed data rate. The optimal points with different
system performance functions are shown.

(confirming Lemma 2), but at quite different places. By
introducing user weights in the system measures, the optimal
points can be moved around on the upper boundary; in fact,
the upper boundaries in Fig. 5 were generated by solving max-
min fairness optimization problems for a large set of weights
(i.e., Algorithm 1 with different fairness-profiles).

B. Evaluation of Zero-Forcing Beamforming

Next, we evaluate the performance and robustness of the
zero-forcing and interference-constrained beamforming ap-
proaches in Section V (with maximal acceptable interference
zk = 0 and zk > 0, respectively). The optimal solution,
derived by the BRB algorithm, is used for benchmarking. We
consider a scenario where Kt = 2 base stations (with Nj = 3
antennas each) jointly serve Kr = 6 users. The channels hjk
are modeled as uncorrelated Rayleigh fading. The users are
located such that E{‖hjk‖22}/σ2

k is Nj for half the users and
Nj/2 for the others, and vice versa for the other base station.
Per-base station constraints are considered with the power ql
as a parameter that will be varied. Proportional fairness of
the user MSEs is used as system performance measure, thus
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Fig. 6. Robust MSE with proportional fairness optimization (i.e., geometric
mean). Zero-forcing and interference-constrained beamforming is compared
with the optimal solution for different squared radius ξ of the channel
uncertainty sets.

the geometric mean MSE is minimized.13 This is achieved by
having gk(MSEk) = MSE−1

k −1 and f(g) =
∏
k(gk+1)1/Kr .

Fig. 6 shows the performance as a function of ql (the
power per transmitter) and with spherical uncertainty sets with
Bk =

√
ξIN . For small values on ξ (i.e., low uncertainty), the

zero-forcing approach provides close-to-optimal performance
in the high SNR regime. At low SNR and for larger values on
ξ, zero-forcing is clearly suboptimal. Interference-constrained
beamforming with zk = (Kr − 1)tr{BkB

H
k } = (Kr − 1)Nξ

achieves better performance in these regimes, but the differ-
ence decreases with SNR which indicates that zk should be
adapted to the SNR. In summary, zero-forcing is good at high
SNR and robust to small channel uncertainties. By allowing
interference zk > 0, interference-constrained beamforming
achieves better performance at low SNR and larger uncertain-
ties.

C. Computational Complexity of RFO

Next, the computational complexity of the robust fairness-
profile optimization problem is evaluated. We consider the
same multicell scenario as in the previous subsection, but we
fix the transmit power per base station at 10 dB and vary
the number of users Kr ∈ {4, 8, 12, 16, 20} and number of
transmit antennas N1 = N2 ∈ {4, 8, 12}. Recall that the
RFO problem is solved by iterating the feasibility problem
in (15) until a given line-search accuracy is achieved (10-
15 iterations usually give a good accuracy, but it depends
on the user performance functions). Therefore, Fig. 7 shows
the average computational time for solving this subproblem.
The simulation was performed at a standard PC running
Linux/Ubuntu with an Intel Core2Duo Q8400 with 2.66 GHz
using all four cores.

Fig. 7 shows how the computational time increases with
both the number of users and total number of antennas. It is
clear that the complexity under channel uncertainty (ξ = 0.1)
is several times higher and has a steeper slope than under
perfect CSI. This was expected from the discussion in Section
III-A, since the convex representation of the MSE constraints

13Under perfect CSI, minimizing the geometric mean MSE is identical
to maximizing the sum rate. This equivalence does not hold under channel
uncertainty, but a lower bound on the sum rate is maximized [14].
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has larger dimensions under uncertain CSI. Comparing all the
scenarios, it is clear that the computational time spans from a
fraction of a second to a fraction of a minute; thus, the RFO
problem can be solved quite efficiently (even at a standard PC
with a general-purpose numerical solver) and is applicable for
future real-time applications.

D. Convergence Evaluation of BRB Algorithm

In this subsection, the convergence of the proposed BRB
algorithm is compared with the outer polyblock approxima-
tion algorithm in [26], [27] and with a simple brute force
approach14. As these algorithms are rather different, it is
not meaningful to compare the number of iterations. Instead,
we consider the performance as a function of the number
of feasibility evaluations of the type in (15). This convex
subproblem is the main source of complexity in all the three
approaches.

We first compare the BRB algorithm with brute force and
consider the same multicell scenario as in the previous subsec-
tion. Fig. 8 shows the average number of feasibility evaluations
(to achieve a relative error of 0.1) as a function of Kr. We
let the number of antennas scale with the number of users as
Nj = Kr/2 (we also have δ = 1). Fig. 8 reveals that the BRB
algorithm, despite the unavoidable exponential complexity in
Kr, is much more efficient than a brute force approach.
We also observe that channel uncertainty slightly reduces the
number of evaluations, basically since the performance region
becomes smaller.

Finally, we compare the BRB algorithm with the outer
polyblock approximation algorithm of [26], [27] and consider
a similar scenario as in these papers. Thus, we have Kt = 2
transmitters with N1 = N2 = 3 antennas and perfect CSI.
Each transmitter serves two unique users (i.e., Kr = 4),
while coordinating interference to all users. The average SNR
E{‖hjk‖22}/σ2

k is Nj if user k ∈ Dj and Nj/2 if k 6∈ Dj . Each
transmitter has its own total power constraint with qj = 10
(i.e., 10 dB for single-user transmission) and the sum rate is
chosen as performance measure.

Fig. 9 shows the average relative deviations15 (over 250
channel realizations) of the lower and upper bounds on the sum
rate as a function of the number of feasibility evaluations. The
BRB algorithm is used with a line-search accuracy δ of either
0.1 or 1, while δ = 0.1 was used for the polyblock algorithm.
Both algorithms quickly find feasible solutions within a few
percent from the optimal value, but many evaluations are
required to achieve a tight upper bound. However, the proposed
BRB algorithm shows much faster convergence in both the
lower and the upper bound; after 5000 feasibility evaluations,
the polyblock algorithm has still not reached the accuracy
that the BRB algorithm achieved with 1000 evaluations. This
is consistent with observations in [22], where the difference
is also claimed to increase with the number of users. Thus,

14With brute force we mean dividing the initial box of the BRB algorithm
into (very many) subboxes such that the difference between the lower and
upper corner is less than ε in each box. We solve one feasibility problem per
box to find the optimum.

15If fopt is the optimal solution, the relative deviations of the lower and
upper bound are (fmin − fopt)/fopt and (fmax − fopt)/fopt, respectively.
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∑
j Nj are considered.

in terms of achieving an ε-approximation on the optimal
performance, the proposed BRB algorithm shows much faster
convergence. For the BRB algorithm, δ = 1 gives faster
convergence than δ = 0.1, indicating that having many
iterations with loose bounds sometimes is more efficient than
having few iterations with tight bounds.

VII. CONCLUSIONS

This paper presented an optimization framework for re-
source allocation in multicell MISO downlink systems with
general power constraints and robustness towards channel
uncertainty. For any system performance measure that in-
creases monotonically in each user’s performance, the pro-
posed branch-reduce-and-bound (BRB) algorithm solves the
resource allocation to global optimality. In each iteration, a
line-search is performed in the robust performance region—
a quasi-convex fairness-profile optimization problem that can
be solved efficiently. Since most multiuser resource allocation
problems are non-convex and NP-hard, the BRB algorithm
is mainly suitable for computing benchmarks due to high
computational complexity. The benchmarking capability was
illustrated numerically by comparing it with a simple zero-
forcing approximation. In addition, the BRB algorithm was
shown to provide far better convergence than the previously
known outer polyblock approximation algorithm.

APPENDIX A
IMPROVEMENTS UNDER PERFECT CSI

Both the robust fairness-profile optimization problem in
Section III and the monotonic optimization framework in
Section IV can be directly applied to the case of perfect CSI
(i.e., Uk = {ĥk}). However, the computational complexity
can be reduced by observing that optimal equalizing coef-
ficients can be achieved by differentiation of MSEk in (7):
roptimal
k = (vHk DH

k CH
k hk)/(

∑
k̄ |hHk CkDk̄vk̄|2 + σ2

k). If this
value is plugged into (7), we achieve

MSEk =

∑
k̄ 6=k |hHk CkDk̄vk̄|2 + σ2

k∑
k̄ |hHk CkDk̄vk̄|2 + σ2

k

. (29)
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Based on this MSE expression, the feasibility problem in (15)
of Lemma 3 can be replaced by

find v1, . . . ,vKr

subject to
∑

k

vHk Qlvk ≤ ql ∀l,
√

γk
1− γk

hHk CkDkvk ≥
√∑

k̄

|hHk CkDk̄vk̄|2 + σ2
k ∀k.

(30)

This new feasibility problem is also convex, because the
MSE constraints have been turned into second-order cone
constraints (see [5], [7], [8] for details on this approach).
However, (30) has fewer optimization variables which means
lower computational complexity. Thus, (30) should always be
used instead of (15) under perfect CSI.

APPENDIX B

Proof of Lemma 1: To prove that the set is normal, take
x = (x1, . . . , xKr ) ∈ R and assume that {r∗k}Krk=1 and
{v∗k}Krk=1 is a feasible solution that attains this point. We want
to show that any x′ = (x′1, . . . , x

′
Kr

) ∈ RKr+ with x′ ≤ x also
belongs to R. To this end, we fix the beamforming vectors
at {v∗k}Krk=1 and search for equalizing coefficients {rx′,k}Krk=1

that gives M̃SEk = γ′k for all k, where γ′k = g−1
k (x′k).

For a given channel realization hk, denote the MSE in (7)

as MSEk(rk,hk). Observe that MSEk(rk,hk) is a second-
order polynomial in rk that has a unique minimum and then
approaches infinity continuously as rk → ∞. Thus, we can
solve the second-order equation MSEk(rk,hk) = γ′k to derive
the largest root

r′k(hk) =
ak +

√
a2
k − (1− γ′k)bk
bk

(31)

where ak = <(hHk CkDkvk) and bk =
‖hHk Ck[D1v1 . . . DKrvKr ]‖22 + σ2

k. This solution will
be real-valued, because it is real-valued for x′ = x and
increases with γ′k. Since we consider the largest root,
MSEk(rk,hk) > γ′k for all rk > r′k(hk). By selecting

rx′,k = min
hk∈Uk

r′k(hk) ∀k (32)

we can make sure that gk(M̃SEk) = x′k and thus that x′ ∈ R.
Next, we prove that R is a compact set. First, observe that

the set of feasible beamforming vectors, V , in (12) is compact.
Next, observe that it is sufficient to search for equalizing
coefficients rk in the compact set Ek = [0, 1/σk], since greater
values make the noise part of the MSE in (7) larger than one
(and thus, MSEk ≥ 1). The MSEs are continuous functions of
the beamforming vectors and equalizing coefficients, and the
performance functions gk(M̃SEk) are continuous by definition.
Therefore, gk(min(maxhk∈Uk MSEk, 1)) is continuous for any
compact set Uk. Finally, we invoke [56, Theorem 4.14], which
says that the continuous mapping of a compact set is also a
compact set. Since R is the image of a continuous mapping
from V and Ek, the robust performance region is compact.

Proof of Theorem 1: The proof is based on the following
well-known result in robust worst-case optimization theory:

Lemma 7. Given A,P,Q, with A = AH , the expression

A � PHZQ + QHZHP ∀Z : ‖Z‖2 ≤ % (33)

holds if and only if

∃λ ∈ R+ s.t.
[
A− λQHQ −%PH
−%P λI

]
� 0. (34)

Proof: The proof is given in [57, Proposition 2].
Lemma 7 can be used to reformulate each MSE constraint

max
hk∈Uk

MSEk ≤ γk (35)

in (15) as a semi-definite constraint. First, we replace hk with
ĥk + Bkε̃k in the MSE expression of (7). Next, we apply
Schur complement lemma [58, Theorem 1.12] to rewrite (35)
as



√
γkr
−1
k ĥHk CkṼ−r−1

k eTk σk
ṼHCH

k ĥk−r−1
k ek

√
γkr
−1
k IKr 0

σk 0
√
γkr
−1
k




+


 0 ε̃Hk BH

k CkṼ 0
ṼHCH

k Bkε̃k 0Kr 0
0 0 0


 � 0 ∀ε̃k : ‖ε̃‖2 ≤ 1.

(36)

Finally, we apply Lemma 7 with A being the first matrix in
(36), P = [0 BH

k CkṼ 0], Q = [−1 0 0], Z = ε̃k, and
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% = 1. The obtained reformulation of (36) is the constraint in
(16). By optimizing over r̃k = r−1

k instead of rk, we observe
that this constraint is linear in v1, . . . ,vKr , r̃k. Thus, the
reformulated problem is convex. Further details are available
in similar proofs (under different system assumptions) in for
instance [11]–[14].

Proof of Lemma 4: First, consider the reduction of the box
from [ãl, b̃l] to [ã′l, b̃l] (i.e., from below). If the boxes are
identical, no solutions are lost and we are finished. Otherwise,
ãl ≤ ã′l with strict inequality in at least one element. For
elements with strict inequality we have νk < 1, while νk = 1
holds for all other elements. There exist g ∈ [ãl, b̃l] such that
g 6∈ [ã′l, b̃l]. For any such g there is a dimension k such that
gk < ã′l,k and νk < 1. Thus, g ≤ b̃l−ν̃(b̃l,k−ãl,k)ek for some
ν̃ with νk < ν̃ ≤ 1. For the system performance function, we
have

f(g) ≤ f(b̃l − ν̃(b̃l,k − ãl,k)ek)

< f(b̃l − νk(b̃l,k − ãl,k)ek) = fmin.
(37)

The strict inequality follows since νk is selected to be the
largest value that gives equality in the set defined in (23).
From (37) it is clear that any g removed in the reduction (from
below) will have a function value strictly below fmin. The
reduction from above is proved analogously. Finally, observe
that [ã′l, b̃

′
l] ⊆ [ãl, b̃l] since each element in ã′l and b̃′l are

calculated as convex combinations of ãl and b̃l.
Proof of Lemma 5: The line-search procedure in Algorithm

1 finds the best feasible solution (with accuracy δ) on the line
segment between a and b. Thus, a + αfmin

RFO is feasible and
can be used for a lower bound on the performance. Similarly,
n is either on the upper boundary or infeasible. Since R is
normal, there are no feasible points x ∈M with x > n. The
corner points where all element but one are larger than in n
are b− (bk −nk)ek for k = 1, . . . ,Kr. These can be used to
calculate an upper bound on the performance.
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Sweden, in 1983. He received the M.S. degree in En-
gineering Mathematics from Lund University, Lund,
Sweden, in 2007. He received the Ph.D. degree in
Telecommunications from the Signal Processing Lab
at KTH Royal Institute of Technology, Stockholm,
Sweden. He is currently working as a Post-Doc in
the same lab.

His research interests include wireless multi-
antenna communications, resource allocation, feed-
back design, estimation theory, stochastic signal

processing, and mathematical optimization. For his work on optimization of
multicell MIMO communications, he received a Best Paper Award at the 2009
International Conference on Wireless Communications & Signal Processing
(WCSP’09) and a Best Student Paper Award at the 2011 IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP’11).

Gan Zheng (S’05-M’09) received the BEng and
MEng degrees from Tianjin University, China, in
2002 and 2004, respectively, both in Electronic and
Information Engineering, and the Ph.D. degree in
Electrical and Electronic Engineering from The Uni-
versity of Hong Kong, Hong Kong, in 2008.

He then worked as a Research Associate at Uni-
versity College London (UCL), London, UK. Since
September 2010, he has been working as a Research
Associate at the Interdisciplinary Centre for Security,
Reliability and Trust (SnT), University of Luxem-

bourg, Luxembourg. His research interests are in the general area of signal pro-
cessing for wireless communications, with particular emphasis on multiuser
multiple-input multiple-output (MIMO) system, cognitive and cooperative
system, physical layer security and multibeam satellite communications.

Dr. Zheng received the award for Researcher Exchange Programme from
British Council to visit KTH Royal Institute of Technology in Sweden
hosted by Professor Björn Ottersten, during September-November 2009. He
received a Best Paper Award at the 2009 International Conference on Wireless
Communications & Signal Processing (WCSP’09) held in Nanjing, China.

Mats Bengtsson (M’00-SM’06) received the M.S.
degree in computer science from Linköping Univer-
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