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Sampled Signal Reconstruction With Causality
Constraints—Part II: Theory

Gjerrit Meinsma and Leonid Mirkin, Member, IEEE

Abstract—This paper provides the theoretic foundation for the
design of optimal reconstructors (also known as interpolators/
holds) with a prescribed degree of causality. A compact frequency-
domain solution is derived that mimics known interpolation tech-
niques for ordinary transfer functions. In parallel, an extensive
state space solution is documented. It complements the frequency-
domain solution in that it constructively proves the various claims,
and it also makes the solution concrete. The state space solution re-
quires the solution of one Riccati and one Lyapunov matrix equa-
tion.

Index Terms—Causality constraints, consistent reconstruction,
hybrid model matching, lifting, optimization.

I. INTRODUCTION

W E study the problem of reconstructing an analog signal
from its sampled measurements with a prescribed de-

gree of causality. In the first part [1], the problem was cast as a
hybrid model matching of the form depicted in Fig. 1. Here,
analog shift-invariant, but not necessarily stable, signal genera-
tors and , the covariance of the measurement noise ,
and the ideal sampler are given and the reconstructor, con-
sisting of a pure discrete part and an D/A converter , is
to be designed. The given components, those in the gray box,
driven by a normalized white input , shape properties and de-
pendences of the analog signal to be reconstructed and the
discrete measurement signal . The reconstructor generates the
analog reconstruction of according to

(1)

where is an interpolation kernel or hold function to be
found and is the sampling period. The causality constraint that
we impose is that

whenever (2)

for a given called the smoothing lag. The design is then
formulated as the problem of stabilizing the error system and
minimizing its norm under constraint (2).
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Fig. 1. The problem setup.

While the first part focuses on the solution of the problem,
its interpretations and applications, in this paper we develop the
theory behind the solution. This theory hinges on three main
themes.
1) Lifting, as a framework within which all components of
the hybrid system in Fig. 1 can be addressed in a unified
manner.

2) Coprime factorization, as a systematic way of resolving
stabilization constraints. This is an established tool in feed-
back control theory, especially if the system to be con-
trolled is unstable [2]. In signal processing applications,
feedback and the problem of stabilization is less of an issue
and this may be the reason that coprime factorization is not
widely used. One of our aims in this paper is to demonstrate
the usefulness of this tool.

3) State-space representation, as an efficient computational
tool. This topic hardly needs an introduction. However,
there is a peculiar twist which has to do with the fact that
our systems are a mixture of analog and discrete elements.
What we need in the solution to our design problem are
state representations of transfer functions. This shows up
naturally in lifting because Fourier transformation is per-
formed only with respect to discrete time (multiples of the
sampling period) and so the Fourier transform still depends
on intersample time.

Although ourmain goal is to provide a proof for the solution pre-
sented in [1], the results of this part are of independent interest
and can be used in other sampling and reconstruction applica-
tions.
The paper is organized as follows. In Section II, we summa-

rize lifting and systems norms in the lifted domain and then re-
formulate the reconstruction problem in the lifted frequency do-
main. To gain a preliminary insight into the proposed solution
procedure, we solve a simple hold design problem for an inte-
grator in Section III, and then in Section IV, we formulate and
prove the general frequency domain solution of the problem. In
Section V, we use this solution to address the consistency of the
optimal reconstruction. In Section VI, which is rather technical,
we set up a state-space equivalent of the frequency domain so-
lution. Concluding remarks are provided in Section VII.
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Fig. 2. Lifting analog signals (with ).

Notation

We follow the notation conventions of the first part [1], so
below we outline only the most frequently used nonstandard
definitions. Analog systems that are linear and invariant with
respect to any time shift are said to be linear continuous time
invariant (LCTI) systems. Systems that are linear and invariant
with respect to integer multiples of the sampling period are
said to be linear discrete time invariant (LDTI). The space

is denoted by .

II. REFORMULATION IN THE LIFTED DOMAIN

In this section, we show how our (hybrid and LDTI) recon-
struction problem can be converted to a pure discrete shift-in-
variant model-matching problem in the lifted domain. To this
end, we review some material from [3], to which the reader is
referred for further details and proofs.

A. Lifting and the Setup in the Lifted Domain

To deal with analog and discrete signals in a unified way, we
represent all analog signals as discrete signals while preserving
their analog, intersample, behavior. This process is called lifting
[4], and it is reminiscent of the polyphase decomposition [5].
Fig. 2 explains the idea on real-valued signals. For an arbitrary

, its lifting is defined as

which is a sequence of functions. The lifted -transform of is
defined as

for all for which the series converges. With replaced
by for we obtain the lifted Fourier transform

. Normally, we suppress the intersample time and
simply write , and .
By lifting all analog signals in Fig. 1 we convert this hybrid

system to a pure discrete one depicted in Fig. 3 without loosing
the intersample information. The lifted signal generators and
are merely the original analog generators and viewed

as the mappings between the lifted versions of and and .
Likewise, the lifted ideal sampler connects the lifting of
with its sampled version (according to , as a
matter of fact) and the lifted D/A converter transforms to
the lifting of .
Remark 2.1: The accents above the lifted systems serve a pur-

pose in that they keep track of the dimensionality of the domain
and range of the mapping. The breve accent, like , indicates
that this system maps a sequence of functions (of intersample
time) to another sequence of functions. The acute accent, like

Fig. 3. The problem setup in the lifted domain.

Fig. 4. The compact problem setup in the lifted frequency domain.

on the lifted sampler, indicates that this system maps a sequence
of functions to a sequence of numbers, and the grave accent, like
on a hold, indicates that it maps a sequence of numbers to that

of functions.
Because all blocks of our lifted setup are discrete systems,

we no longer need to distinguish between them according to the
kind of signals with which they operate. The only distinction
making sense in the problem statement stage is that between
given and to be designed parts. Moreover, as all blocks in Fig. 3
are now shift invariant [3], we may treat them in the -domain.
These observations lead us to the equivalent setup in Fig. 4,
where the transfer function of the signal generator is

(3)

where and are the transfer functions of and
, respectively, and is the transfer function of

the lifted reconstructor .
The term transfer functionmay be somewhat confusing when

applied to the blocks in Fig. 4 because these “functions” are
operators over . Specifically, let

for some impulse responses and and the reconstructor act
according to (1). Then, at almost every :
• is an integral operator , for which the relation

reads

(4a)

• is an integral operator , for which the
relation reads

(4b)

• is a multiplication operator , for which the
relation reads

(4c)

Still, the calculus of these “transfer operators” is very similar
to that of ordinary transfer functions, so we proceed with this
terminology.
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B. Stability and Causality in the Lifted Frequency Domain

The problem formulation in [1, Sec. II] requires the stability
of both the error system and the reconstructor . By sta-
bility in both these cases, we understand the boundedness of the
corresponding operators:

and

where stands for either or signal norm. These
requirements translate to the lifted frequency domain as the re-
quirements that the frequency responses and are
bounded at almost all .
In addition, we require that the reconstructor is -causal in

the sense (2). Combined with stability, the causality requirement
has an elegant lifted frequency domain characterization. To this
end, define the Hardy space as the set of transfer functions

, which are analytic in and satisfy

where stands for the operator maximal singular value,
which equals the induced norm of . Furthermore,
let be the space of operators such that .
Then, [3, Theorem 6.2] for every ,

is stable and -causal

It is worth emphasizing that when causality constraints are im-
posed, we have to analyze lifted transfer functions in the whole
exterior of the unit disk. This is in contrast to the noncausal case
studied in [6], where only the behavior on the unit circle mat-
ters.

C. Performance in the Lifted Frequency Domain

As discussed in [1, Sec. II-C], we consider the familiar mean
square performance measure. In the lifted frequency domain we
minimize the -norm of the error system, which is

where is the Hilbert–Schmidt norm [7], which is an op-
erator version of the Frobenius (trace) matrix norm. The space
of all transfer functions that are well defined on the unit circle
and have finite -norm is denoted , or simply when
the context is clear. We use this notation not only for operators

, but also for operators and so on. In all cases,
is a Hilbert space with an inner product, of which we only

need to know that it exists and that it has the trace-like property:

(5)

where is the conjugate transfer function.
The treatment of optimization problems with stability re-

quirements might be hampered by the fact that stability and per-
formance are expressed in terms of different spaces, relations
between which are not always clear. In our case the analysis is
greatly simplified by the fact [3, Prop. 5.3] that

(6)

whenever they are considered over finite-rank operators. This,
in particular, is always true for the space of reconstructors.

D. Problem Formulation

We are now in the position to reformulate from [1] in
the lifted frequency domain. Consider the reconstruction setup
in Fig. 4. Then, we have

Given a causal as in (3) and , find
stabilizing the error system andminimizing

over all reconstructors .

The shift invariance of all blocks in Fig. 4 facilitates the
use of frequency-domain methods. In particular, we adapt the
approach of [8]. This adaptation is not straightforward as the
extension of many standard methods, well known for transfer
functions over finite-dimensional input and output spaces, to
lifted transfer function is quite nontrivial. Moreover, some of
these methods are not well exposed in the signal processing lit-
erature. For these reasons, we start with a simple particular case
of , which motivates the main steps of the theory to be de-
veloped later on.

III. A MOTIVATING EXAMPLE

Tomotivate the various steps of the general solution, we solve
in this section the reconstruction problem for the case that the
discrete noise is absent and the signal generators

are integrators,

In this case, the error system reduces to

where

The integrator, with its pole at the origin, enforces that any ad-
missible reconstructor will have to cancel the pole at the
origin, meaning, as we shall soon see, that the hold recovers
constant signals error free. In systems theory this is a common
technique to endow admissible controllers (holds in this case)
with desirable frequency-dependent properties.
Let us derive the lifted transfer functions and .

The lifting of the impulse response of , is

Thus, by (4a), is defined by the relation

(7)
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The output of the sampler equals and, hence,
follows directly by substituting in

(7),

This equals the second integral of (7). The can thus be
rewritten as

where is defined by the first term in the right-hand side of (7),
which is the integrator with reset at every , and
is (the lifted transfer function of) the standard zero-order hold,
whose interpolation kernel has -trans-
form for all and all .
As both and are static lifted systems (their transfer

functions are constant in ), they are stable. Instabilities in the
estimation channel are thus of the same form as in the mea-
surement channel . This, in particular, implies that the error
system is stabilizable. Indeed, the trivial pick pro-
duces the stable error system . This can be intuitively
explained: if is asymptotically constant, a piecewise-constant
reconstruction of its sampled noise-free measurements yields
asymptotically perfect reconstruction.

a) Parameterization of All Stabilizing Holds: Although
the zero-order hold stabilizes the error system, it is not neces-
sarily optimal. This particular stabilizing solution, however, can
be used to generate all other stabilizing solutions. To see this,
consider the error transfer function , defined by the rela-
tion , that is

where is the -transform the interpolation kernel of .
Whilst the first of the two integrals defines a stable system (it
equals ), the second integral contains a singularity on the
unit circle , at . Every stabilizing hold must therefore
cancel this singularity and this is the only requirement on sta-
bilizing holds (apart from introducing no new instabilities, of
course). Thus, the requirement that the hold be stabilizing can
be cast as the following interpolation constraint on its -trans-
formed interpolation kernel,

(8)

Clearly, the zero order hold, , satisfies this constraint as
for all . Standard interpolation arguments [9,

Theorem 10.18] yield then that all -causal holds satisfying (8)
are parameterized as

(9)

where

for any fixed , and but otherwise ar-
bitrary. In other words, all -causal stabilizing holds are the
parallel interconnection of a particular solution and
the cascade of a discrete stable and proper transfer function
having its zero at the interpolation point and an arbitrary

. The freedom in and (which does not affect
as the term can always be canceled by ), will

be exploited later. With this parameterization, the error systems
becomes

(10)

with verifying

(11)

This is causal and stable (i.e., ).
b) The Optimal Hold: Now that the stability issue is re-

solved, the solution of follows from a standard projection
argument. By (6), our design parameter resides in a
subspace of . It is further easy to see that and are both
stable and have finite norms.
By the Projection Theorem (orthogonality principle [5]) a

hold minimizes the -norm of (10) if

In other words, solves if

(12)

where . The orthogonality here is satisfied if the
impulse response of is zero at all . This
condition might not be easy to enforce for an arbitrary of the
form (11), because is in general noncausal, so that the
-causality of is not preserved in . Indeed, by the
results of [3, Sec. V-B], the conjugate is

(the zero-order hold preceded by a discrete filter), so that

which is noncausal for all . Yet if , we have
that , which is static and therefore causal (and
causally invertible). It is convenient to normalize this static
system by choosing . In this case, the orthogonality
condition (12) reads

This is trivially achieved by taking the orthogonal projection

which, hence, is the solution that we seek. This projection is
merely the truncation of the impulse response of to .
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Given our choice of and , we have

and therefore the solution to our problem is

if
if

The optimal hold, finally, is obtained by substituting this into
(9). For (no preview), the optimal hold is the zero-order
hold. For (finite preview), the optimal hold turns out to be
the first-order hold:

(see [3, Example 4.4]).
Remark 3.1: It is worth emphasizing that the optimal causal

reconstructor, , is not a truncated version of the optimal
noncausal reconstructor, . The truncation is involved in
the optimal solution, yet in an intermediate stage only.
Remark 3.2: Quite interesting is that the optimal recon-

structor in this case, as well as in all cases where
are first-order systems, exploits only one preview step. Even
if we allow a wider preview window , the optimal
solution is 1-causal. This property, however, is not generic in
the -optimization, see the discussion in [8, Sec. IV-C]. In
general, the optimal reconstructor exploits all preview available
and the larger the preview length is, the better reconstruction
performance is achieved, see the examples in [1].
To complete the solution, we need to calculate the achieved

optimal reconstruction performance. By orthogonality,

where the fact that was used. Routine calculation
yields that

Finally, if , we clearly have and if ,
then , so that . Thus, the optimal
performance index is

if
if

It shows that the availability of preview improves the recon-
struction performance by a factor of 3 in this case. Also, for all
preview lengths, , which agrees with our in-
tuition that this signal can be perfectly reconstructed from its
analog noise-free measurements.
We are now in the position to describe the general solution

procedure. The solution follows the same lines as the example
of this section.

IV. FREQUENCY-DOMAIN SOLUTION

Stability of the error system is the first issue to be addressed
when solving . As we saw in the previous section, stabiliza-
tion amounts to canceling the instabilities of the signal genera-
tors by the reconstructor . For the simple system considered in
the previous section stabilization is fairly straightforward. For
the general case, when

we use the coprime factorization approach [2]. This offers an
elegant formalism to parameterize all stabilizing holds as we
shall soon see.
We say that functions and are left coprime

over if there exist compatibly dimensioned functions
and such that

This equation is called the Bézout equation and the corre-
sponding and are the Bézout factors of and . Left
coprimeness effectively says that and have no common
unstable (i.e., in ) zeros, including their multiplicity and
output directions. Another way to say this is that
is right invertible in . Consequently, if and are left
coprime, then necessarily implies that

as well.

A. Stabilization

We start with the following result, which states that the stabi-
lizability is equivalent to the existence of a special upper trian-
gular coprime factorization.
Proposition 4.1: There is rendering stable iff

(13)

for some left coprime and some
. In this case the right-hand side of (13) is a left coprime

factorization.
Proof (Essentially From [8]): Let be a left co-

prime factorization of . This exists because is
rational and proper and is stable (in fact, we construct one in
Section VI). If in addition stable and can be found to
satisfy (13), then is a stable and stabilizing hold be-
cause it gives the stable . Conversely, if and are
both stable, then (13) holds for and .
Once is coprime, the coprimeness of the right-hand

side of (13) follows from the Bézout identity

where and are the Bézout factors of and .
Remark 4.1: Note that Proposition 4.1 considers ,

which might appear to be more restrictive than what we need
. It can be shown, however, that if is proper

(i.e., bounded in for sufficiently large ), the preview
has no effect on the stabilization. This is because the relaxation
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of the causality constraints does not relax the requirement that
is analytic in .

Factorization (13) facilitates the parameterization of the set of
all stabilizing reconstructors and corresponding error systems.
The following result is essentially a systematic generalization
of (9) and (10).
Proposition 4.2: Suppose (13) is a coprime factorization.

Then stabilizes iff

(14a)

for some . In this case,

(14b)

parameterizes the set of all stable error transfer functions.
Proof (Essentially From [8]): If and we take

as defined in (14a), then it follows by direct substitutions that
(14b) holds, which is stable. To prove the converse, let

stabilize the error system. Then,
solved from (14a) satisfies

Therefore,

As (13) is a left coprime factorization, the right-most 2 3
partitioned matrix has a right inverse in . Hence, we have

, i.e., .

B. Normalization and Orthogonalization

The choice of coprime factors in (13) is not unique. Indeed,
given any particular solution, we may redefine the coprime fac-
tors using appropriately dimensioned and

as

because the 2 2 matrix in the middle is bistable and cancels
in the factorization (13). We exploit this freedom to supplement
the factors in (13) with desirable properties facilitating the
performance analysis.
First, motivated by the analysis in Section III, we choose

so that the factor in (14b) that depends on the design parameter
, is co-inner in the redefined coprime factors, i.e., such that

(15)

(normalization). Since on the unit disk the conjugate transfer
function is the adjoint, the (rational and matrix-valued) transfer
function

(16)

is self-adjoint for . Equation (15) rewrites then as

(17)

This shows that the required , if it exists, is merely the inverse
of the spectral factor [10] of . The existence of this spectral
factor is equivalent to the nonsingularity of on the unit
disk. This condition is also the standard nonsingularity condi-
tion [11] for the estimation problem associated with (14b): if it
does not hold, the optimal might not belong to , albeit
can be arbitrarily closely approximated by a stable . To rule
out such situations, we assume hereafter that

for all .

It is worth emphasizing that this condition does not depend on
the particular choice of coprime factorization in (13). Indeed,
(as well as ) is unique [2] modulo the left multiplication

by a bi-stable (i.e., ), which is well defined
and nonsingular on .
Consider now the transfer function, obtained from the first

term in (14b) times the conjugate of second term of (14b),
without , for the redefined coprime factors and with satis-
fying (17),

(18)

Since , the first term in (18) is stable but most
probably not causal. This transfer function can always be de-
composed into causal and strictly anticausal parts. Denoting the
former by , the choice

(19)

yields a strictly anticausal (that is, ). We thus
just proved the following result:
Proposition 4.3: Let hold and admit a left coprime fac-

torization as in (13). Then the factors can be chosen so that

(20)

with .

C. Optimization

With the left coprime factorization we turned the design of
stabilizing into that of a . The minimiza-
tion of the -norm of follows the standard Hilbert space
optimization arguments presented in Section III. To apply these
arguments, we have to assume that

.

This assumption does not depend on the choice of coprime fac-
torization because it is in fact equivalent to the assumption that

admits a solution with finite cost . Indeed, as the term
in (14b) has finite rank at each frequency, it is in for

every . Hence, is in iff the first term, , of
(14b) is in .
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Fig. 5. Impulse response pattern of .

By the Projection Theorem, is optimal if and only if the
error system is orthogonal to all possible i.e.,

for all . By (5) and (20) this condition holds iff

[mind (6)]. This, in turn, is achieved by taking

(21)

The required projection amounts to truncation of the interpola-
tion kernel of , which has support in strictly negative time ,
to . The result is an FIR hold . This optimal FIR , sub-
stituted in (14a), determines the optimal hold . Typically, this
is not FIR.
Finally, by Pythagoras, the optimal performance level can be

expressed as

Because , the quantity expresses the improve-
ment of the achievable performance level due to the preview.

V. CONSISTENCY ANALYSIS

A widely used approach in the design of hold devices, is
one based on the notion of consistency [12, p. 2918]. Loosely
speaking, a hold is said to be consistent if its output, when again
sampled, recovers the samples that where injected into the hold.
A precise definition follows shortly.
Interestingly, consistency and -optimality are often not

conflicting criteria. To make the link, we assume in this section
that the discrete noise is absent and that is
a filtered version of , that is,

for some LCTI . The filter in this context is known as an
antialiasing filter. The series is a generalized sampler and
we denote it as . Now the signal that is injected into the
hold is in the image of and the consistency property in
this situation is then that the hold has the property

This is implied by the identity

(22)

In fact, in most of the cases, is right-invertible, so consis-
tency is then equivalent to (22).
In Subsections V-A and V-B, we prove that -optimal holds

are always consistent if no causality constraint are imposed
and that consistency at any positive finite preview, ,

is also guaranteed provided that the impulse response of the an-
tialiasing filter has support on .

A. Noncausal Reconstruction

Take . In the absence of we have
, and therefore

and

Now, using the fact that the optimal equals , we get for the
optimal hold

It is now trivial to see that this hold satisfies the consistency
criterion (22). In other words, noncausal optimal holds are
always consistent if and .

B. -Causal Reconstruction for FIR Antialiasing Filters

Since consistency is guaranteed for infinite preview, ,
it makes sense to write the finite preview case in terms of the
infinite preview case. So express the optimal as

where

for some static holds . Using the consistency of infinite pre-
view we now have

Thus, the optimal hold is consistent if , which is
the same as

(23)

because is nonsingular.
A key observation, which we shall use in the analysis, is that

while is anticausal, the series

is causal because all its factors are. In other words, we have a
causal system as the series interconnection of an anticausal and
a causal system. Fig. 5 illustrates this situation in terms of its
impulse response.
Now assume that the antialiasing filter is an LCTI system

with the impulse response having support in . This is the
case that is a zero-order generalized sampler, acting as

(24)
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with the impulse response of . This includes the
ideal sampler (if ) and the averaging sampler (if

).
In the lifted domain, (24) reads , where

is the integral operator with the kernel . This
means that in this case and

Since this system is causal, only the final term can remain, so
all others are necessarily zero, for all . This
implies that (23) holds for all . Thus, -causal -optimal
reconstruction always produces consistent solutions if and
the antialiasing filter has an impulse response with support
on .

C. General Antialiasing Filters

It is as yet not clear what category of antialiasing filters result
in consistent holds. Apart from the two cases considered above,
we showed in [13] that if the output of the antialiasing filter is
its state, then again consistency follows for every . Ex-
tensive numerical testing bears out that in about all other cases
-optimal holds are not consistent; see [13] for an example.

VI. STATE-SPACE SOLUTION

The frequency domain solution of Section IV may not yet
be regarded as explicit, since it is formulated in terms of oper-
ator-valued lifted transfer functions. Every step of this solution,
however, can be spelled out in time domain (peeling-off) and
this leads to an implementable form of the optimal reconstructor
and a calculable expression for the optimal performance. That
is the topic of this section. A certain level of technicality cannot
be avoided.
We argue that it is advantageous to carry out the peeling-off

procedure in terms of state-space realizations. State-space
methods are rigorous, equally suit for SISO and MIMO sys-
tems, and results in efficient computational algorithms. We,
therefore, bring in a minimal state-space realization of the
combined and as described in [1, Sec. III]:

(25)

where is detectable and has full row rank.
Before we proceed with the algorithm, we need to review

some aspects of the state-space theory for lifted transfer func-
tions. This is the subject of the rest of this section (for more
details, the reader is referred to [4]).

A. Preliminaries: State Space in the Lifted Domain

Based on (25), we develop state-space realizations of
and . As the systems are assumed causal, the impulse re-
sponse of in terms of its state-space realization is

Its lifted -transform, for thus is

Taking into account (4a), we have

(26)

where [with denoting the state dimension in (25)]

(27a)

(27b)

(27c)

(27d)

As we can see, (26) has the form of a discrete state-space re-
alization. The only difference from the “conventional” form is
that the “ ,” “ ,” and “ ” parameters of (26) are operators
from or/and to infinite-dimensional space, , rather than plain
matrices. This difference, however, is not crucial.
Eventually, we shall see that all lifted systems we face in the

development of the solution of either have transfer func-
tions of the form

(28)

or are conjugate of such transfer functions. Here, we use the
tilde accent to indicate that the corresponding operator, say ,
might be either or or or . In all cases we consider,
the parameters of are bounded operators. For example, the
lifted transfer function of is

where and are as in (27a) and (27b), respectively, and
(just take in (27) and replace with ).
Using the definition of the conjugate transfer function in

Section II-C, it can be shown that

This implies that we shall need to calculate the adjoints of the
parameters of lifted state-space realizations. This can be done
by the use of the very definition of the adjoint operator. For ex-
ample, to calculate the adjoint of in (27b), write the definition

as
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This yields

(29b)

Analogously, it is straightforward to show that

(29c)

We shall use these formulas in Sections VI-C and VI-D.
Note that the “ ” part in (28) is always finite dimensional.

This is a fundamental property of lifted state-space realizations
associated with finite-dimensional analog systems. It plays an
important role in our developments. The first consequence of
this fact is that the stability of (operator-valued) transfer func-
tion (28) can be verified in terms of eigenvalues of a matrix,
exactly like in the case of matrix-valued transfer functions. We
have the following.
Proposition 6.1: Let be as in (28). Then if

is Schur (i.e., with all eigenvalues in ).
Proof: If is Schur, is invertible for all .

Hence, is analytic and bounded in .
Like in the matrix-valued case, the impulse response of a

stable causal system having the transfer function (28) is

if
if
otherwise.

Using this formula, the following results can be proved:
Proposition 6.2: Let given by (28) be the transfer func-

tion of a causal system and let be Schur. Then,
iff is a Hilbert–Schmidt operator and in this case

(30a)

(30b)

where are the controllability and observability
Gramians of (28), respectively, which are the solutions of the
Lyapunov equations

and

Proof: Because is bounded at each
is a bounded finite-rank perturbation of

for all possible i/o spaces. This proves the first statement. To
calculate the norm, we use [3, eq. (33)]

The result follows by the fact that the last two sums equal
and , respectively.
It is readily seen that both and are ma-

trices, so that the second terms in the right-hand sides of (30)
are the plain matrix traces. As we shall see in Section VI-D
(Lemma 6.3), the evaluation of the Hilbert–Schmidt norm of
also reduces to a matrix trace calculation.
We are now in the position to peel off the lifted solution of

Section IV. To simplify the exposition, we first assume that
(no measurement noise). At the end of this section, we explain
how the formulas should be adjusted when .

B. Constructing Coprime Factors (Proposition 4.1)

Now, define for some matrix such that
is Schur (exists by detectability) and consider the transfer

function

(31a)

where is some square nonsingular matrix which we determine
later. It can be verified that in this case

, so

(31b)

where is defined by (27b). By construction, .
Moreover, as shown in Lemma A.1, these factors are coprime in

. Thus, for any stabilizing and nonsingular , (31a) and
(31b) define coprime factors of .
As a candidate for consider the transfer function

(31c)

where is as in (27c). This is more than an educated guess
but its derivation would lead too far (it somehow follows from
[14]). We can, however, verify that this guess works, which is
all we need here. In this case

so that verifies

(31d)

and is indeed stable (belongs to ).
Thus, the construction of a coprime factorization of as in

(13) amounts to the choice of such that is Schur.
The factors are then explicitly given by (31). This proves, by
construction, that assumption from [1] is sufficient for the
stabilizability of .

C. Normalization (Proposition 4.3)

The freedom we have in the choice of and will be used to
normalize the factorization as in (20) with . The
conjugate of defined by (31b) is

(32)
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where is given in (29b). It is readily seen that

(the positive definiteness of for all follows from
the controllability of ). Hence, from (16) reads

(33)

The nonsingularity of ( is Schur), and
yields then that is equivalent to the full row rank of ,
which, in turn, is exactly from [1] if .
We will now exploit the freedom in and to render
. As is Schur and , the Lyapunov equation

(34)

is solvable by . This allows us to split into causal
and anticausal parts. To this end, we first split

Substituting this split into (33) gives

(35)

with and .
To render static, we now choose such that .
This is guaranteed if

(36)

Any such (assuming it exists and is stabilizing) yields
and so by the full row rank of the matrix is nonsin-
gular. Consequently, (36) has a unique solution

(37)

It is not yet clear that this gain is stabilizing. Substituting (37)
into (34), we end up with the following equation for :

(38)

This is a standard discrete algebraic Riccati equation (DARE)
[11], [15]. The detectability of and the nonsingularity
of (which, together with the full rank of , implies that

is right invertible for all ) guarantee that this DARE
admits a stabilizing solution such that is Schur and

is nonsingular (in fact, ).
Thus, by solving the DARE (38) we obtain the static

. To render it identity, we just choose as an arbitrary
square matrix that satisfies

(39)

(e.g., may be the Cholesky factor of ).

It is time to check the condition on in (20). Using (31d)
and (32), we obtain

By (34), we have that

where we used (36) to obtain the last equality. Thus, we end up
with

(40)

where

This is indeed the conjugate of a system. So we need
not adjust the coprime factors by choice of as we did in the
frequency domain solution (19). Thus, the choices of (unique)
and according to (37) and (39), respectively, where is the
stabilizing solution of (38), renders the factors in (31) satisfying
(20).
We conclude this section with spelling out and its adjoint.

Using (27d), (29b), (27c), and then (34), we obtain

(41)

The adjoint of this operator, , transforms

(42)

which can be verified by the direct use of the definition.

D. Assumption

Here we establish that always holds in our case and quan-
tify the norm of . To this end, define

Then, the following result can be formulated:
Lemma 6.3: and

Proof: It is known [16, Theorem 8.8] that defined by
(27d) is a Hilbert–Schmidt operator. Then, the first statement
follows by Proposition 6.2.



MEINSMA AND MIRKIN: SAMPLED SIGNAL RECONSTRUCTION WITH CAUSALITY CONSTRAINTS—PART II 2283

To compute the norm, we use (30a). First, it is a known fact
[4, Example 12.2.2] that . Now, it follows
from (34) and the equality that is actually the
controllability Gramian of the realization (31d) of . Thus, the
second term in the right-hand side of (30a) is

The result then follows by the facts that
[just combine (29c) and (27c)] and , see
(34).
Remark 6.1: The strict properness of in (25) is neces-

sary for establishing that . Indeed, if
for some , the only change in is

its feedthrough term, which in this case would transform
. This is not com-

pact, and thus not a Hilbert–Schmidt operator [16, Theorem
8.7].

E. Projection: The Optimal by (21) and Its Norm

Now, consider from (40). Because is Schur, the
power series expansion is well
defined, where, with some abuse of notation,

The coefficients of are the impulse response of at the time
instance . By (21), the optimal , denoted by , is then the
(FIR) truncation of this series to its first terms:

(43)

Denote

We thus may also write , which is a useful form
to carry out state-space calculations involving .
Our next step is to calculate the -norm of . By [3, eq.

(33)], it can be obtained directly from (43) as follows:

It follows from (41) and (42) that , where

(44)

Standard Lyapunov arguments yield that

where is the solution of the Lyapunov equation

(45)

Thus, we just proved the following result:
Lemma 6.4: .

F. When Is Nonzero

The derivation for nonzero is similar to that for . The
only difference is that the intermediate steps are now quite a bit
longer. In essence, however, the derivation is equally involved.
We briefly outline the modifications to the formulas.
A key observation is that a coprime factorization of the form

(13) for a nonzero constant is readily derived from that for
zero . Indeed, it can be verified that the factorization

is coprime provided so is its first column. This means that the
addition of amounts to the replacement of and with

and , respectively. These re-
placements affect then the choice of the matrices and in
(31), assumptions , and the optimal performance.
Let us start with . Because now ,

this assumption fails iff such that

(46)

for some . We already saw in Section VI-C that the
first condition above is equivalent to . For every such
, we have that , which implies that (46) holds
iff . Therefore, is equivalent to assumption
from [1].
To normalize , use (31a) and (31b) to obtain

(33 )

To split this transfer function to causal and anticausal parts, we
need to replace the Lyapunov equation (34) with

(34 )

for which we still have that because .
Following the steps in Section VI-C, we end up with the split as
in (35), but now with and

Thus, (36) is replaced with , from which

(37 )



2284 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

where the invertibility is guaranteed by the nonsingularity of
and . This yields

(38 )

and

(39 )

instead of (38) and (39), respectively. It is now a matter of
a straightforward algebra to verify that the other formulas of
Section VI-C remain unchanged, including the fact that

is still strictly anticausal and given by (40).
Now, the presence of changes by adding to it a finite-

rank column . This implies that assumption is still valid.
To compute the norm in Lemma 6.3, note that

because the -norm is computed column-wise and is inner
and, hence, does not affect the norm. Thus, we need to calculate
the -norm of

[obtained by (31c) and (31d)]. The feedthrough term of this re-
alization has obviously the same norm as that of . Also, the
controllability Gramian is still , which can be seen from (34 )
and the fact that . These arguments show that the
result of Lemma 6.3 remains unchanged.

G. Formulating the Solution in the Form of [1, Theorem 3.1]

In this subsection, we show that the solution derived so far is
exactly the solution of [1, Theorem 3.1].
We start with expressing matrix exponentials and their inte-

grals used in this section in terms of1 and defined in
[1, eq. (6) and (7)]. Because and
(follows by the Van Loan formulas; see [1, Lemma A.1]), the
matrix , (38 ) and (45) equal their counterparts defined by
[1, eq. (8)–(10)]. Further use of the Van Loan formulas yields
that and

(47)

The latter, in turn, allows us to apply the Van Loan formulas

to (44), resulting in . Finally, it is

known [17, Lemma 5.5] that . It then
follows that the norms calculated in Lemmas 6.3 and 6.4 add up
to the optimal performance of [1, Theorem 3.1].
Now, denote

1Following [1], the notation (without the argument) indicates .

Fig. 6. The optimal -causal reconstructor in the lifted domain.

It is readily verified that these transfer functions are equivalent
to their namesakes defined in [1, Theorem 3.1]. By formulas
(31c), (31a), and (43), we have that

, and .
It then follows from Proposition 4.2 that the optimal (i.e., that
with ) reconstructor can be presented in the form
depicted in Fig. 6. The discrete part of this block-diagram, ,
is equivalent to the discrete part of the optimal reconstructor in
[1, Fig. 3]. The same is true regarding the D/A converter ,
which can be seen from (27c), (41), and (47) (just substitute

).

VII. CONCLUDING REMARKS

In this second part, we have addressed the optimal design
of D/A converters (reconstructors) with causality constraints
imposed on them. Optimal solutions have been derived in both
frequency domain and time domain (state-space) representa-
tions of the signal generators. The frequency domain solution
revolves around coprime and spectral factorizations and the
state space solution around Riccati and Lyapunov equations.
The state-space machinery facilitates both computational and
efficiency of implementation of the optimal reconstructors.
Although our main objective of this part was to provide

proofs for the solution presented in [1], the presented results
are of independent interest and can be useful in other sampling
and reconstruction applications. For example, the presented
state-space machinery plays a key role in the solution of the

reconstruction problem with FIR constraints in [18]. We
also expect that the factorization formulas could be used in the
solution of the (minmax) version of the problem.

APPENDIX

Lemma A.1: The factors and defined by (31a) and
(31b) are coprime in .

Proof: Let be any matrix such that
is Hurwitz (this is always possible because the pair is
controllable). Consider then the following candidates Bézout
factors:

where verifies . Then,
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Also,

The integral in the last expression can be interpreted as the
response, at the time instance , of the continuous-time
system to the input , which, in turn,
is the impulse response of the system .
Thus, the integral can be interpreted as the impulse response of
the system taken at the time instance . The cascade

can be also represented as a parallel interconnection:

Hence, the impulse response of is the difference of the
impulse responses of and

so that

Thus, and are Bézout factors of and , which
proves the statement.
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