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Sparse Signal Reconstruction from Quantized Noisy
Measurements via GEM Hard Thresholding

Kun Qiu and Aleksandar DogandZi

Abstract

We develop a generalized expectation-maximization (GEM) algorithm for sparse signal reconstruction from quantized
noisy measurements. The measurements follow an underdetermined linear model with sparse regression coefficients,
corrupted by additive white Gaussian noise having unknown variance. These measurements are quantized into bins and
only the bin indices are used for reconstruction. We treat the unquantized measurements as the missing data and propose
a GEM iteration that aims at maximizing the likelihood function with respect to the unknown parameters. Under mild
conditions, our GEM iteration yields a convergent monotonically non-decreasing likelihood function sequence and the
Euclidean distance between two consecutive GEM signal iterates goes to zero as the number of iterations grows. We
compare the proposed scheme with the state-of-the-art convex relaxation method for quantized compressed sensing via
numerical simulations.

Index Terms

Compressed sensing, sparse signal reconstruction, quantization, generalized expectation-maximization (GEM) algorithm.

I. INTRODUCTION

In the past few years, compressed sensing [1]-[4] has attracted considerable attention spanning a wide variety of ar
including applied mathematics, statistics and engineering. The compressed sensing theory asserts that, if the sic
of interest is sparse or nearly sparse in some (e.g. Fourier, wavelet, etc.) domain, it is possible to reconstruct t
underlying signal with high fidelity from only a few linear measurements whose dimension is much lower than that o
the signal. The sparse signhal reconstruction techniques can be roughly divided into three categories: convex relaxati
greedy pursuit, and probabilistic methods, see [5] for a survey. Digital storage and processing are integral parts
most modern systems, thereby necessitating quantization. There have recently been several efforts to incorporate
guantization effect into compressed sensing [6]-[9], see also the discussion on the state of the art in [9, Sec.
However, as observed in [9], references [6]-[8] focus only on the quantization effectioamotl account for noise or
approximately sparse signals. Most methods developed so far for quantized compressed sensing belong to the cor
relaxation category, see [6]-[9]. In [9], Zymnés al. consider a convex relaxation approach for signal reconstruction
from quantized Gaussian-noise corrupted CS measurements usihagnarm regularization term and two convex cost
functions: the negative log-likelihood function of the underlying sparse signal given the quantized data and a weighte
least squares cost that employs virtual measurements constructed from centroids of the quantization bins. In both ca
the noise variance is assumed known and must be tuned to achieve good performance.

In this paper (see also [10]), we proposeusinelaxed probabilistic model with/y-norm constrained signal space and
derive ageneralized expectation-maximization (GEM) algorithm for approximately computing the maximum likelihood
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(ML) estimates of the unknown sparse signal and noise vagigacameter. As [9], we considboth the quantization
and noise effects. However, in contrast to [9], our GEM alfponi estimates the noise variance from the data. We
prove that, under certain mild conditions, the GEM iteratgaurarantees a convergent monotonically non-decreasing
likelihood function sequence and diminishing Euclideartattise between consecutive signal parameter estimates as
the number of iterations grows. The reconstruction perfoicaaof our method is studied via numerical examples and
compared with the likelihood based convex relaxation apgmdrom [9].

We introduce the notation used in this pap®ity ; i, X') denotes the multivariate probability density functionffpd
of a real-valued Gaussian random vecgowith mean vectogs and covariance matriX’; ¢(-) and®(-) denote the pdf
and cdf of the standard normal random variallleand0,,«; are the identity matrix of size and then x 1 vector of
zeros;| - ||, and ‘I denote thef, norm and transpose, respectively; the hard thresholdiegaopr7,(s) keeps ther

largest-magnitude elements of a vectdntact and sets the rest to zero, €Jg([0, 1, —5,0,3,0]7) = [0,0, -5, 0, 3, 0]

Il. MEASUREMENTMODEL
We model aN x 1 real-valued measurement vect@r= [y1, 2, ...,yn]’ as
y=Hs+e (1a)

where H is a knownN x m full-rank sensing matrix, s is anunknown m x 1 sparse signal vector containing at most
r nonzero elementsr (< m), e is an N x 1 additive Gaussian noise vector with zero mean and covariamatrix

o2 Iy; the noise variance? is unknown. The set of unknown parameters is

6 = (s,0%) €O, (1b)
with the parameter space
0, =S8, x (0,+00) (1c)
and
Sr={seR™: |s|lo<r} (1d)

is the sparse signal parameter space. We refer a8 thesparsity level of the signal and to the signal as being
r-gparse. In this paper, we assume that the sparsity levid known. In (1¢), we impose strict positivity on the noise
varianceo?, which is needed to ensure that the quantization is nonregee and the likelihood function of the
unknown parameters is computable, see the following désons The elements of are quantized into codewords
b = [b1,bo,- - ,bn]T, where eaclb; indexes the quantization interval (bin) thatfalls in:

yi € D) = [I(bs),u(®:)) 2 [liyws), Li<w, i=1,2,...,N )

where the real numbels andu; are the upper and lower boundaries of the quantizationviateontainingy; .
Our goal is to estimate the paramet@rérom the quantized dath. Since the unquantized measuremeapigre not
available for reconstruction, we refer ¢pas theunobserved (missing) data; the concept of missing data is key for the

development of our GEM algorithm, see Section Il



The joint distribution of the observed dabaand the unobserved dagagiven the parametem® is

N
Pybo(Y,b]0) = N(y; Hs,o” In) [ [ 1@, (vi) H{N yi; b s,0%) 1pw,) (vi) } (3a)
=1 =1
whereh! denotes theth row of H and
|1, yeA,
Laly) = { 0, otherwise (30)
is the indicator function. Consequently, the conditiondf pf y givenb is
N N To 2
N(yi; hi 8,0%) 1pe, (yi)
Py b0y |0.0) = || Py |b.0ilbi0) = l (3c)
vl Hl vl Hl ®((u; — hTs)/o) — ®((l; — hL's)/0)
whereo = V/o2. We call the quantizationon-degenerate if
N
trlcovy bo(y |5, 0)] = > var, |, o(yi|bi,6) >0 (4)

i=1
for any @ € ©,, which ensures that there exists some uncertainty ap@inen the quantized data Since we assume
in (1c) and (2) that? > 0 andl; < u;, i = 1,2,..., N, our quantization is non-degenerate, see (3c).
The marginal log-likelihood function of is
T T
’i S lZ - hl S
£(8) =1n[py(b]6)] Zln ) — & )] (5)

g

where the marginal likelihoog, |4 (b | ) is obtained byintegrating y out from the joint distribution ob andy in (3a).
To compute£(6), we need the noise varianeé to be strictly positive and restrict the parameter spaceraaugly,
see (1c). Note that (5) has the same form as the log-liketiffanction in [9, Sect. 11I-A]; however, unlike [9], which
treatso2 as known, here the noise variange is unknown and estimated from the data.

The ML estimate o is

BML = (SML, UML) = rré%x L£(6). (6)

Obtaining the exact ML estimatEML in (6) requires a combinatorial search and is thereforeasifde in practice.
In the following section, we develop a GEM algorithm that aiatsmaximizing (5) with respect t@ € ©, and

circumvents the combinatorial search.

[11. THE GEM ALGORITHM

We now derive a GEM algorithm for estimating the parametensy treating the unquantized measuremeutas
the missing data. The observed dataand missing datay together make up theomplete data. In our problem,
the expectation (E) step can be readily computed, but the mzaiion (M) step is computational infeasible, see
the following discussion. We propose an alternative cosmarally tractable generalized M step and prove that the
generalized M parameter update improves the desired ketjHbod objective function (5).

Assume that the parameter estimate) = (s, (#2)®)) is available, wherg denotes the iteration index. Then, the
E step of the EM-type algorithms consists of evaluating thievieng expected complete-data log-likelihood function
[see (33)]:



Q(016W) = By polnpysioy,b]6) 6,67 = —ENI(270%) — By pel(y — Hs) (y — Hs)|b,67]/(207)

N
= —INWm@no?) ~ [[§7 — Hs|3+ vary, p,0(y | b, 07)] /(20%) (7a)
=1
where
§® =GP 5", TP =y bely | 5,07 (7b)

is the Bayesian minimum mean-square error (MMSE) estimatbeofrtissing data for known 8 [11, Sec. 11.4] and
we have used the fact thait, |y e[In 1p,)(y:) | b,6®)] = 0 for eachi = 1,2,..., N. From (7), the E step reduces
to evaluating@(p) andvary, |y, (i | bz-,e@), i =1,2,..., N using the expressions for the mean and variance of the
truncated Gaussian pdf [12, eqgs. (13.134) and (13.135]ats® (3c).

E step: Compute

g® = 7 s®) 4 5 §@) (8a)

vary, 15,0 (i |0, 7)) = (0°)® (1~ &) (8b)
wheres® =[5 5P sO1T, o) = [(02)®)]/2, and
Ul(p) = (u; — hTs®) /5P) (8c)
)\l(p) = — hiTs(p))/o(p) (8d)
50 _ _ ¢(v,§pz) - ¢<A§(”>)> ce)
O(v;”) — d(N)

e (g2 4 U 900) =P G0 -

2(v”) — (1)
fori = 1,2,...,N. Whenu; or [; is infinite, so isv; or );, and, in this caseugp) qb(vz.(p)) or A§p> gb(AEp)) in (8f)
becomes zero.

The standard M step of an EM algorithm for the above model requite maximization o9 (6 | 0(p)) in (7a) with

respect tad € O,.. For any givens, Q((s,0?)|6)) is uniquely maximized with respect i at

N
5%(s,0®)) = [I[g% — Hs|3+ > vary, |y, 0(i |b,6%)] /N (9a)
i=1
implying

Q((s,5%(s,0%)) |6¥)) > Q((s,0?) | 6P)) (9b)
where the equality in (9b) holds onlydf = 52 (s, 0(7’)). The exact M step for updating the estimates tence reduces
to the maximization of theoncentrated expected complete-data log-likelihood functi@({ (s, 5%(s,8®)) | 8®)) with
respect tos or, equivalently, to solving the following optimizationgiiem:

in lla® — g sl2 1
min |y s)l2 (10)

which requires combinatorial search and is therefore sifdg@ in practice. We now propose a generalized M step that

increases (rather than maximizes) the expected compégtelog-likelihood function (7a).



Generalized M step: Compute
1 .
s = T, (s ;2 HT (3P — Hs®)) = 7;(s®) + e HT 5)) (11a)

N
(02)(p+1) — [”@(p) _ Hs(pH)Hg + ZVaryi\bi,e(yi ‘ bi,é)(p))] /N
i=1
N

=I5 = HsPDB/N + (o) (1= P/N) (11b)
=1
wheres®) = [6§p), 5§p), .. ,5%’)]T andép),fép), . 5](5) are computed using (8). Construct the new parameter estimat
as
ortl) _ (3(1>+1)7 (02)(p+1))_ (12)

lterate between the above E and generalized M steps untitbmsecutive sparse signal estima#€8 and s do
not differ significantly.

In (11a),c is a step size coefficient chosen to satisfy the following uradity:
c> pu (13)

wherepy denotes the largest singular valuef also known as the spectral norm Bt Interestingly, (11a) is closely

related to the hard-thresholded gradient-search step &ximizing the marginal log likelihood in (5):

0L(0)
(p+1) _ (p)
s 77"('5 tT Js ‘0:90@)' (14)

Indeed, choosing the step size in (14) adaptively as(02)() /c? leads to our GEM update (11a). Observe that (11b)

follows by substitutings = s**1) into (9a). Because the quantization is non-degeneratg(4)éolds, we have

N N

1

~ D_vary, jo,0(yi | 6,6%) = ()P (1= 3" /N) >0 (15)
=1 =1

and, consequentlyz?)®*+1) > 0 for all indicesp = 0,1, ... as long agc?)® > 0, see (11b).
In the limiting case where all quantization bins are infiryitemall, our GEM iteration reduces to the iterative hard

thresholding method in [13] founquantized measurementg
st — 7;(8(10) +uHT (y — Hs(p))) (16)

with 1 = 1/c2. We refer to the resulting method as GEMClearly, GEM,, is the benchmark for the reconstruction
performance achievable by our GEM algorithm.
In Lemma 1, we verify that, for the choice ofin (13), the above scheme is indeed a GEM iteration by prowiag t
the parameter update (11) guarantees monotonically noreasing expected complete-data log-likelihood func{ion
Lemma 1: Assuming that the parameter estimate in b iterationd® = (s, (¢2)®) belongs to the parameter
space®,, (13) holds, and the quantization is non-degenerate [dp.holds], the sparse signal upda#&t!) =

(sP+D, (¢2)P+1)) in (11) also belongs t®, and satisfies
Q>8P 1) | oP) > 0P | oP)). 17)

Proof: See the Appendix. O



A. Initialization and Termination of the GEM Algorithm

We initialize the proposed GEM iteration as follows:

N
1 (—
5O = 0,01, (0620 = = Z;(yz( )2 (18a)
where .
(l; + u;)/2, if l; > —oco andu; < +o00
gl = li, if u; = +oo : (18b)
U, if li = —0

Denote byg(+°) = (s(+) (52)(+>)) andg(+>) the estimates of the unknown parameter set and missing gata u
convergence of the GEM iteration. To estimate the signave propose to use either the sparse estimgte®) or the

non-sparse estimatasfore thresholding [see (11a)]:
5 =s(to) 4 % HT (o) — g s(+o0)) (19)
C

which is appealing for recovering nearly sparse signall wiany small nonzero elements. If the sensing mdifikas
orthonormal rows, i.eH H” = Iy, then the marginal likelihood function under our measuneinmeodel in Section Il
coincides with the marginal likelihood function under the random signaldelo(where the random signal is the sum
of the sparse signal component and additive signal ‘nols& models approximate signal sparsity) in [14] and [15];
consequently, the MMSE estimatés, |, ¢[y | b, 0] coincide as well for the two models. Under the random signal
model and forc = pyg = 1, (19) is closely related to thempirical Bayesian (EB) estimate of the random signal

in [15, eq. (7.7)]: It follows by replacing the unobservedalaectory with its empirical Bayesian MMSE estimate
9 =B p0ly| 5,67 in [15, eq. (7.7)], see also (7b).

B. Convergence Analysis

Theorem 1 establishes convergence properties of our GEMithligor
Theorem 1. Under the conditions of Lemma 1, the GEM iteration guaranteamsatonically nondecreasing marginal
log-likelihood function (5):
LoP) > £(o®) (20)

and the log-likelihood sequena& ) converges to a limit as the iteration indgxgoes to infinity.
Furthermore, if

C> pPpH (21)

and if there exists at least oniec {1,2,..., N} such that both the upper and lower boundariesand I; of the
ith quantization interval are finite, then the Euclidean distanbetween two consecutive GEM signal and variance
parameter iterates®t1) — 5|, and ||(c2)P+D) — (62)P)||, go to zero as the iteration indexgoes to infinity.
Proof: See the Appendix. O
The additional convergence condition in the second part obfidm 1 requiring the existence of finite upper and

lower quantization boundaries is related to the paramdéstifiability under our model. For example, consider thatl-b



guantization scheme in [6] where the quantization thrastsotero for alli = 1,2, ..., N, i.e. only the sign information
of the unquantized measurements is recorded. In this casany indexi, one of the quantization boundaries and

I; is infinite and the parameter sefs, o%) and (as,a”c?) yield the same marginal distribution,|¢(b|6) for any
positive constant, implying that the model is not identifiable; it is also impitds to determine the magnitude of the

signal s unless additional information about the signal magnituglprovided, see [6].

IV. NUMERICAL EXAMPLES

We consider reconstructions of one- and two-dimensiorgaiads from quantized compressive samples and compare
the performances of
« our GEM algorithm in Section Il with the step size coefficient &ec = py and

« the fixed point continuation algorithm (labeled FPC) in [9] fohsng the/; -regularized ML optimization problem:

min [~£((5,0%)) + A [15]1] 22)

where the noise variance’ is assumednown and the regularization parametgr,, controls the sparsity of the
output.
The unquantized measurements are partitioned itoins, where the quantization thresholds are chosen sohhbat t
bins contain approximately equal numbers of measuremeng&verage. In the following examples, GgMand FPG
denote the GEM and FPC algorithms that usdins for quantization.
The main step of the FPC iteration in [9] can be obtained by rémjaihe hard thresholding operator in (14) with
a soft thresholding operator. Observe that the FPC method]ireffuires tuning of several quantities, whereas our
GEM algorithm requires only the knowledge of the signal sipatsvel ». Upon tuning the noise varianee’, we set
the step-size parameter of FPC to
T=0%/p} (23)

which results in better performance and numerical stgiitian the suggested valugp?; in [9, Sec. 1V], see also the
following discussion. We set the shrinkage paramgtef FPC algorithm to the suggested valus, see [9, Sec. IV].

We employ the following convergence criterion:
Is®H) — s®5 /m < e (24)

where, for the FPC method, we apply (24) in the inner loop of the F@@tion, see also [9, Sec. IV].

A. One-dimensional Sgnal Reconstruction

We generated sparse signalsof length m = 500 containing20 randomly located nonzero elements, see also the
simulation examples in [2] and [16]. The nonzero componelffits are independent, identically distributed (i.i.d.)
random variables that are eithed or +1 with equal probability. The sensing matricBsare constructed by creating

an N x m matrix containing i.i.d. samples from the zero-mean Gaumsslistribution with variancea /m; therefore,
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Fig. 1. (a) Average MSEs of various estimatorssofs functions of the number of measuremeMsand (b) average MSEs of the GEM
estimators ofs as functions of the sparsity levelwith the number of measuremenié fixed at 400.

each row ofH approximately has a unit magnitude. Thiex 1 unquantized measurement vecipis generated using
(1a) with noise variance? = 10~%.

Our performance metric is thaverage mean-square error (MSE) of a signal estimate
MSE{3} = E[[[s — s|j3]/m (25)

computed usingl000 Monte Carlo trials, wheraveraging is performed over the random sensing matriéésthe
sparse signas, and the noisee. We selected the convergence threshotd 10713 in (24).

Fig. 1(a) shows the average MSEs of the compared methods as wéheanumber of measuremem$ and the
number of quantization binB. Since the true signal is sparse, we use&*>°) upon convergence of the GEM iteration
as our GEM signal estimate. GEMand FPC, are the limiting cases for the GEM and FPC algorithms, where #ia m
steps of GEM, and FPG, are the hard thresholding step (16) and its soft threshgldounterpart, respectively. The
sparsity level of the GEM algorithm is set #5, slightly higher than the true signal support s To implement the
FPC algorithm, we chose the true value of the noise variafice 10~* and the regularization parametgg, = 400,
which yields sparse signal estimates with approxima28lyo 25 nonzero signal elements. We use the FPC step-size
parameter in (23): In this example, FPC does not always coeviérge applyT = 1/p?, suggested in [9, Sec. IV].
From Fig. 1(a), our GEM algorithm achieves consistently low&Hd than the convex FPC method over wide ranges of
N and B. WhenN > 400, GEM with only 3 quantization bins outperforms the FPC method withquantization bins.
The performance of the GEM method with quantization bins is quite close to that of the limiting GEMlgorithm.

We now study the sensitivity of our GEM algorithm to the choafethe signal sparsity levet. Fig. 1(b) shows
the average MSEs achieved by the GEM scheme as werveoly N = 400 measurements. Setting= 25 yields the
smallest MSE for the GEM method witB = 3,4, 8, and16 bins. The MSE increases for> 25, but the rate of MSE

degradation is quite mild.



Fig. 2. PSNR curves for GEM and FPC reconstructions of (aRtiiex 256 Lena image and (b) thg56 x 256 Cameraman image as functions
of the normalized number of measurementgm.

B. Two-dimensional Image Reconstruction

In this example, we reconstruct the standard Lena and Caraeré@st images, both of size = 2562. Here, the
sensing matrixd has the structuré/ = ® ¥, where @ is the N x m structurally random sampling matrix [17] and

¥ is them x m inverse Daubechies-8 discrete wavelet transform (DWT) imdtmder these choices op and ¥,

the rows of H are orthonormal, i.eH H” = Iy and, consequentlyy;; = 1. The signal vectors consisting of the
wavelet coefficients of the Lena and Cameraman images are niaityssparse and contain many small but nonzero
elements. No noise is added, and therefore the unquantizadurements satisty = H s. Here, the role of the noise
variance parameter? is to account for the fact that the wavelet coefficients of tst tmages are not strictly sparse
(i.e. for the presence of the signal ‘noise’).

Our performance metric is the peak signal-to-noise ratio ®Sdf a signal estimat@ [18, eq. (3.7)]:

_ 2
PSNR (dB)= 10 logy, { (¥ Sﬂ“,;fi séf;)“‘““} } (26)

where( ¥ s),,x and (¥ s),.x denote the smallest and largest elements of the imageWe selected the convergence
thresholde = 10~1Y in (24). The sparsity level of the GEM algorithm is setrte= 4000 N/m. For the FPC algorithm,
we tuned manually the regularization and noise variancarpeters to achieve good performance, yielding = 0.1
ando? = 10, respectively. Upon the convergence of the GEM algorithmusethe empirical Bayesian signal estimate
(19) to reconstruct the Lena and Cameraman images. Similastgad of the sparse signal estimagec obtained upon
convergence of the FPC iteration, we chose the approximapehgs signal estimat@pc+ 7 8£(0)/8s\6:(§FP002) =
Sepc—THT V £ (H Sepe) in [9, Sec. 1V]. In this example, these signal estimates ledmktter reconstructions compared
with the corresponding purely sparse estimates.

Fig. 2 shows the PSNR performances of the GEM and FPC methods a®funttsubsampling factoN/m for
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various numbers of quantization bitis For both the Lena and Cameraman images, the GEM algorithneidakms

the convex FPC method for coarser quantizatiBn= 3 and 4), where the performance gap increases as the number
of measurement®V decreases. Fa8 quantization bins, the reconstruction performance of GEMinsilar to FPC

for Lena reconstruction and slightly better than FPC for Camarareconstruction, see Figs. 2(a) and 2(b). When
B = 16, FPC exhibits better performance than GEM. Note that, in amitito the regularization paramet&y,,, the

FPC method requires tuning of the noise variance paraméteand we have found that its performance is sensitive
to the choice o2, In contrast, our GEM achieves good performance with auticnestimation of the noise variance

parameter.

V. CONCLUDING REMARKS

We developed a generalized expectation-maximization (GEMY thresholding reconstruction algorithm for sparse
signal reconstruction from quantized Gaussian-noiseupted compressed sensing measurements. We showed that the
likelihood of our GEM iteration is monotonically non-decs#gy and converges to a limit and the Euclidean distance
between two GEM iterates goes to zero. The major advantager giroposed method over the existing FPC method in
[9] is that our method automates the estimation of the noisampeter from the quantized measurements whereas the
FPC method requires tuning of the noise variance. The numeari@ahples showed good reconstruction performance
of our GEM algorithm. Specifically, in the one dimensional spasignal simulation, our GEM methods consistently
outperforms the FPC method. We also find that in this experintbatperformance of our GEM algorithm is quite
stable when the sparsity levelis larger than or equal to the true signal support size. Fertwo dimensional image
reconstruction method, our method performs better whenulaatization is coarser whereas FPC achieves higher PSNR
when the quantization bins shrink. Further research willuide developing theoretical analysis of the reconstruactio
accuracy of the proposed algorithm and automating the GEModeby estimating the signal sparsity level from the

data.

APPENDIX

Proof of Lemma 1: Without loss of generality, we assums&@*1) = s() (Lemma 1 holds trivially whers®+1) =
s®)). The claim that9*™!) = (s@+1) (¢2)P+1) € @, is an immediate consequence of the GEM update (11) and

the non-degenerate quantization assumption (4). Now,identhe following inequality:

15® — H w3 =& ||(g® — H sPHY)/c|3 (Ala)
<A (@Y — HsP) fe|§ + [|s0TD) — @2 — | H(sTD — s®))/c|3)  (Alb)
<A [I1@P - HsP) /el + [|s® — s®3 — || H(s®) — s@))/c||3] (Alc)
= g™ — Hs®|3 (Ald)

where (Alb) follows by using (13) and the Rayleigh-quotipriiperty [19, Theorem 21.5.6]

| (s0+D — sz _

2
[seD) — sz = PH sc¢ (A2)




11
and (Alc) follows by the fact tha¢®+1) in (11a) minimizes the following function of over all s € S,
1@P — Hs)/ell3 +[ls = sP5 — | H(s — sP)/c|3. (A3a)
To see this, observe that (A3a) can be rewritten as
ls —s® —H" (G — HsW)/|3 (A3b)

up to an additive constant that is not a functionsof

Now, (17) follows easily:

((S(pH) (o )(p))|9(p)) (Ada)

Q8P+ ) > 9
> (8™ | 9P) (A4b)

where (Ada) follows by setting = st ando? = (¢2)®) in (9b) and noting that2(s®+D) 9P)) = (¢2)@+D);
(A4b) follows by using (Al). O

Proof of Theorem 1: The first claim in (20) is a direct consequence of Lemma 1 and theniog property of
the EM-type algorithms [20] (see e.g. [20, eq. (3.2)]):

£(0) = Q(6]6") —H(0]6™) (A5)
where
N
H(0|0%) = E,|pe[Inpy|se(y|b,0)|b 0% (A6)
which is maximized ap = 6%, i.e
H(O|0P)) < H(0P) | P) (A7)
see [20, Lemma 1]. The first claim follows by combining the reséiltemma 1 in (17) with (A5) and (A7):
L£(0PT)) = 9(o® V) | 9®)) — (0P | 9P)) > 08P |9P)) — 1 (0P | 6P)) = L£(6W)). (A8)
Now, we move on to prove the second part of Theorem 1. From (A&)have
£OPT)) — £(6P) = 9(o®+V) |9®)) — Q(6®) | 9P + 1 (8P |9P)) — 7 (9P TV | o)) (A9a)
> Q" [6%W) — Q(o") |6 ) (A9b)
= QoD |gP)) — Q((s (P+1) (52)P)) | g(p))
o ) s (8 — HsP 3~ [§» — HsPD|3) (A9c)
> ey (187 — HsO[3 — [ — H s0+)|3) (A%d)
2 (%)@
>0 (A9e)

where (A9b)—(A9e) follow by using (A7), (7), (Ad4a) and Lemma respectively. Since the sequenc¢d®)) is
monotonically nondecreasing and upper-bounded by zermmriterges to a limit. Consequentl&](e(p“)) — 5(0(1’))
converges to zero. Therefore, the quantity in (A9d) [sanbedcby £(0P1)) — £(6P)) and zero via inequalities]
converges to zero as well.

Now, we have
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1§ = H W3- [§ = BswD|3 st — a3 — |1 H(s"+D — )3 ALD
2 (02)(P) = 2 (02)(®) (Al0a)

> M |sPHD) — s(P))|2 (A10b)
= 2(02)®) 2

where (A10a) follows by (Alb)-(Ald) and (A10Db) results frofA2). Since the quantization is non-degenerate,

(02)®) > 0. Further, since there exists an ind&such that bothu; and /; are finite, we claim(¢?)®) < oo for

all p > 0. If (¢2)(®) grows to infinity, then the-th term in the summation of the marginal likelihood (5) gé@s-cc.

Note that all summands in (5) are upper bounded by zero. Thidiémthat the marginal likelihood (6”)) goes

to negative infinity if (#2)®) grows to infinity, which is certainly less thaﬁ(e(o)) for any reasonable initialization.

This then contradicts with (20). Note also that the step sogdficient satisfieg > py, see (21). Therefore, the term

(—p%)/[2 (¢%)P)] in (A10b) is positive and bounded away from zero, which ieplihat|s?+1) —s() |2 goes to zero.
Finally, from (A9), we also conclude that the seque@@®+1|9®) — O((s¥+1, (52)))|6®)) converges to

zero. Since the quantization is non-degeneratepv,, ,0(y | b,0%)] = SN, var,, |4, o(yi | b,8®) > 0 [see (4)],

the function

157 — H 5@ D3+ 55N, var,, 4, o(u:] b,6%)
202

Q((sPt) 6%)|8W)) = ~INn(270?) —

is a continuous and unimodal function of, with the unique maximum achieved @t = (¢2)**+1), see also (9a). We

conclude thaic?)® — (¢2)+1) must go to zero. The second claim of Theorem 1 follows.
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