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Sparse Signal Reconstruction from Quantized Noisy
Measurements via GEM Hard Thresholding

Kun Qiu and Aleksandar Dogandžić

Abstract

We develop a generalized expectation-maximization (GEM) algorithm for sparse signal reconstruction from quantized
noisy measurements. The measurements follow an underdetermined linear model with sparse regression coefficients,
corrupted by additive white Gaussian noise having unknown variance. These measurements are quantized into bins and
only the bin indices are used for reconstruction. We treat the unquantized measurements as the missing data and propose
a GEM iteration that aims at maximizing the likelihood function with respect to the unknown parameters. Under mild
conditions, our GEM iteration yields a convergent monotonically non-decreasing likelihood function sequence and the
Euclidean distance between two consecutive GEM signal iterates goes to zero as the number of iterations grows. We
compare the proposed scheme with the state-of-the-art convex relaxation method for quantized compressed sensing via
numerical simulations.

Index Terms

Compressed sensing, sparse signal reconstruction, quantization, generalized expectation-maximization (GEM) algorithm.

I. I NTRODUCTION

In the past few years, compressed sensing [1]–[4] has attracted considerable attention spanning a wide variety of areas

including applied mathematics, statistics and engineering. The compressed sensing theory asserts that, if the signal

of interest is sparse or nearly sparse in some (e.g. Fourier, wavelet, etc.) domain, it is possible to reconstruct the

underlying signal with high fidelity from only a few linear measurements whose dimension is much lower than that of

the signal. The sparse signal reconstruction techniques can be roughly divided into three categories: convex relaxation,

greedy pursuit, and probabilistic methods, see [5] for a survey. Digital storage and processing are integral parts of

most modern systems, thereby necessitating quantization. There have recently been several efforts to incorporate the

quantization effect into compressed sensing [6]–[9], see also the discussion on the state of the art in [9, Sec. I].

However, as observed in [9], references [6]–[8] focus only on the quantization effects anddo not account for noise or

approximately sparse signals. Most methods developed so far for quantized compressed sensing belong to the convex

relaxation category, see [6]–[9]. In [9], Zymniset al. consider a convex relaxation approach for signal reconstruction

from quantized Gaussian-noise corrupted CS measurements using anℓ1-norm regularization term and two convex cost

functions: the negative log-likelihood function of the underlying sparse signal given the quantized data and a weighted

least squares cost that employs virtual measurements constructed from centroids of the quantization bins. In both cases,

the noise variance is assumed known and must be tuned to achieve good performance.

In this paper (see also [10]), we propose anunrelaxed probabilistic model withℓ0-norm constrained signal space and

derive ageneralized expectation-maximization (GEM) algorithm for approximately computing the maximum likelihood
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(ML) estimates of the unknown sparse signal and noise variance parameter. As [9], we considerboth the quantization

and noise effects. However, in contrast to [9], our GEM algorithm estimates the noise variance from the data. We

prove that, under certain mild conditions, the GEM iterationguarantees a convergent monotonically non-decreasing

likelihood function sequence and diminishing Euclidean distance between consecutive signal parameter estimates as

the number of iterations grows. The reconstruction performance of our method is studied via numerical examples and

compared with the likelihood based convex relaxation approach from [9].

We introduce the notation used in this paper:N (y ; µ,Σ ) denotes the multivariate probability density function (pdf)

of a real-valued Gaussian random vectory with mean vectorµ and covariance matrixΣ ; φ(·) andΦ(·) denote the pdf

and cdf of the standard normal random variable;In and0n×1 are the identity matrix of sizen and then× 1 vector of

zeros;‖ · ‖p and “T ” denote theℓp norm and transpose, respectively; the hard thresholding operatorTr(s) keeps ther

largest-magnitude elements of a vectors intact and sets the rest to zero, e.g.T2([0, 1,−5, 0, 3, 0]T ) = [0, 0,−5, 0, 3, 0]T .

II. M EASUREMENTMODEL

We model aN × 1 real-valued measurement vectory = [y1, y2, . . . , yN ]T as

y = H s+ e (1a)

whereH is a knownN ×m full-rank sensing matrix, s is anunknown m× 1 sparse signal vector containing at most

r nonzero elements (r ≤ m), e is anN × 1 additive Gaussian noise vector with zero mean and covariance matrix

σ2 IN ; the noise varianceσ2 is unknown. The set of unknown parameters is

θ = (s, σ2) ∈ Θr (1b)

with the parameter space

Θr = Sr × (0,+∞) (1c)

and

Sr = {s ∈ Rm : ‖s‖0 ≤ r } (1d)

is the sparse signal parameter space. We refer tor as thesparsity level of the signal and to the signals as being

r-sparse. In this paper, we assume that the sparsity levelr is known. In (1c), we impose strict positivity on the noise

varianceσ2, which is needed to ensure that the quantization is non-degenerate and the likelihood function of the

unknown parameters is computable, see the following discussion. The elements ofy are quantized into codewords

b = [b1, b2, · · · , bN ]T , where eachbi indexes the quantization interval (bin) thatyi falls in:

yi ∈ D(bi) = [l(bi), u(bi))
△
= [li, ui), li < ui, i = 1, 2, . . . , N (2)

where the real numbersli andui are the upper and lower boundaries of the quantization interval containingyi.

Our goal is to estimate the parametersθ from the quantized datab. Since the unquantized measurementsy are not

available for reconstruction, we refer toy as theunobserved (missing) data; the concept of missing data is key for the

development of our GEM algorithm, see Section III.
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The joint distribution of the observed datab and the unobserved datay given the parametersθ is

py,b |θ(y, b |θ) = N (y ; Hs, σ2 IN )

N∏

i=1

1D(bi)(yi) =

N∏

i=1

{
N (yi ; h

T
i s, σ

2) 1D(bi)(yi)
}

(3a)

wherehT
i denotes theith row of H and

1A(y) =

{
1, y ∈ A,
0, otherwise

(3b)

is the indicator function. Consequently, the conditional pdf of y given b is

py | b,θ(y | b,θ) =
N∏

i=1

pyi | bi,θ(yi | bi,θ) =
N∏

i=1

N (yi ; h
T
i s, σ

2) 1D(bi)(yi)

Φ
(
(ui − hT

i s)/σ
)
− Φ

(
(li − hT

i s)/σ
) (3c)

whereσ =
√
σ2. We call the quantizationnon-degenerate if

tr[covy | b,θ(y | b,θ)] =
N∑

i=1

varyi | bi,θ(yi | bi,θ) > 0 (4)

for anyθ ∈ Θr, which ensures that there exists some uncertainty abouty given the quantized datab. Since we assume

in (1c) and (2) thatσ2 > 0 and li < ui, i = 1, 2, . . . , N , our quantization is non-degenerate, see (3c).

The marginal log-likelihood function ofθ is

L(θ) = ln
[
pb |θ(b |θ)

]
=

N∑

i=1

ln
[
Φ(

ui − hT
i s

σ
)− Φ(

li − hT
i s

σ
)
]

(5)

where the marginal likelihoodpb |θ(b |θ) is obtained byintegrating y out from the joint distribution ofb andy in (3a).

To computeL(θ), we need the noise varianceσ2 to be strictly positive and restrict the parameter space accordingly,

see (1c). Note that (5) has the same form as the log-likelihood function in [9, Sect. III-A]; however, unlike [9], which

treatsσ2 as known, here the noise varianceσ2 is unknown and estimated from the data.

The ML estimate ofθ is

θ̂ML =
(
ŝML, σ̂

2
ML

)
= max

θ∈Θr

L(θ). (6)

Obtaining the exact ML estimatêθML in (6) requires a combinatorial search and is therefore infeasible in practice.

In the following section, we develop a GEM algorithm that aimsat maximizing (5) with respect toθ ∈ Θr and

circumvents the combinatorial search.

III. T HE GEM ALGORITHM

We now derive a GEM algorithm for estimating the parametersθ by treating the unquantized measurementsy as

the missing data. The observed datab and missing datay together make up thecomplete data. In our problem,

the expectation (E) step can be readily computed, but the maximization (M) step is computational infeasible, see

the following discussion. We propose an alternative computationally tractable generalized M step and prove that the

generalized M parameter update improves the desired log-likelihood objective function (5).

Assume that the parameter estimateθ(p) =
(
s(p), (σ2)(p)

)
is available, wherep denotes the iteration index. Then, the

E step of the EM-type algorithms consists of evaluating the following expected complete-data log-likelihood function

[see (3a)]:
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Q(θ |θ(p))
△
= E y | b,θ[ln py,b |θ(y, b |θ) | b,θ(p)] = −1

2N ln(2π σ2)− E y | b,θ[(y −H s)T (y −H s) | b,θ(p)]/(2σ2)

= −1
2N ln(2π σ2)−

[
‖ŷ(p) −H s‖22 +

N∑

i=1

varyi | bi,θ(yi | bi,θ(p))
]
/(2σ2) (7a)

where

ŷ(p) = [ŷ
(p)
1 , ŷ

(p)
2 , . . . , ŷ

(p)
N ]T = E y | b,θ[y | b,θ(p)] (7b)

is the Bayesian minimum mean-square error (MMSE) estimate of the missing datay for known θ [11, Sec. 11.4] and

we have used the fact thatE y | b,θ[ln 1D(bi)(yi) | b,θ(p)] = 0 for eachi = 1, 2, . . . , N . From (7), the E step reduces

to evaluatingŷ(p) andvaryi | bi,θ(yi | bi,θ(p)), i = 1, 2, . . . , N using the expressions for the mean and variance of the

truncated Gaussian pdf [12, eqs. (13.134) and (13.135)], see also (3c).

E step: Compute

ŷ(p) = H s(p) + σ(p) δ(p) (8a)

varyi | bi,θ(yi | bi,θ(p)) = (σ2)(p) (1− ξ
(p)
i ) (8b)

whereδ(p) = [δ
(p)
1 , δ

(p)
2 , . . . , δ

(p)
N ]T , σ(p) = [(σ2)(p)]1/2, and

υ
(p)
i = (ui − hT

i s
(p))/σ(p) (8c)

λ
(p)
i = (li − hT

i s
(p))/σ(p) (8d)

δ
(p)
i = − φ(υ

(p)
i )− φ(λ

(p)
i )

Φ(υ
(p)
i )− Φ(λ

(p)
i )

(8e)

ξ
(p)
i = (δ

(p)
i )2 +

υ
(p)
i φ(υ

(p)
i )− λ

(p)
i φ(λ

(p)
i )

Φ(υ
(p)
i )− Φ(λ

(p)
i )

(8f)

for i = 1, 2, . . . , N . When ui or li is infinite, so isυi or λi, and, in this case,υ(p)i φ(υ
(p)
i ) or λ

(p)
i φ(λ

(p)
i ) in (8f)

becomes zero.

The standard M step of an EM algorithm for the above model requires the maximization ofQ(θ |θ(p)) in (7a) with

respect toθ ∈ Θr. For any givens, Q((s, σ2) |θ(p)) is uniquely maximized with respect toσ2 at

σ̂2(s,θ(p)) =
[
‖ŷ(p) −H s‖22 +

N∑

i=1

varyi | bi,θ(yi | b,θ(p))
]
/N (9a)

implying

Q
((
s, σ̂2(s,θ(p))

)
|θ(p)

)
≥ Q

(
(s, σ2) |θ(p)

)
(9b)

where the equality in (9b) holds only ifσ2 = σ̂2(s,θ(p)). The exact M step for updating the estimates ofs hence reduces

to the maximization of theconcentrated expected complete-data log-likelihood functionQ
((
s, σ̂2(s,θ(p))

)
|θ(p)

)
with

respect tos or, equivalently, to solving the following optimization problem:

min
s∈Sr

‖ŷ(p) −H s‖22 (10)

which requires combinatorial search and is therefore infeasible in practice. We now propose a generalized M step that

increases (rather than maximizes) the expected complete-data log-likelihood function (7a).
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Generalized M step: Compute

s(p+1) = Tr
(
s(p) +

1

c2
HT (ŷ(p) −H s(p))

)
= Tr

(
s(p) +

σ(p)

c2
HT δ(p)

)
(11a)

(σ2)(p+1) =
[
‖ŷ(p) −H s(p+1)‖22 +

N∑

i=1

varyi | bi,θ(yi | bi,θ(p))
]
/N

= ‖ŷ(p) −H s(p+1)‖22/N + (σ2)(p)
(
1−

N∑

i=1

ξ
(p)
i /N

)
(11b)

whereδ(p) = [δ
(p)
1 , δ

(p)
2 , . . . , δ

(p)
N ]T andξ(p)1 , ξ

(p)
2 , . . . , ξ

(p)
N are computed using (8). Construct the new parameter estimate

as

θ(p+1) =
(
s(p+1), (σ2)(p+1)

)
. (12)

Iterate between the above E and generalized M steps until twoconsecutive sparse signal estimatess(p) ands(p+1) do

not differ significantly.

In (11a),c is a step size coefficient chosen to satisfy the following inequality:

c ≥ ρH (13)

whereρH denotes the largest singular value ofH, also known as the spectral norm ofH. Interestingly, (11a) is closely

related to the hard-thresholded gradient-search step for maximizing the marginal log likelihood in (5):

s(p+1) = Tr
(
s(p) + τ

∂L(θ)
∂s

∣∣∣
θ=θ(p)

)
. (14)

Indeed, choosing the step size in (14) adaptively asτ = (σ2)(p)/c2 leads to our GEM update (11a). Observe that (11b)

follows by substitutings = s(p+1) into (9a). Because the quantization is non-degenerate, i.e. (4) holds, we have

1

N

N∑

i=1

varyi | bi,θ(yi | b,θ(p)) = (σ2)(p)
(
1−

N∑

i=1

ξ
(p)
i /N

)
> 0 (15)

and, consequently,(σ2)(p+1) > 0 for all indicesp = 0, 1, . . . as long as(σ2)(0) > 0, see (11b).

In the limiting case where all quantization bins are infinitely small, our GEM iteration reduces to the iterative hard

thresholding method in [13] forunquantized measurementsy

s(p+1) = Tr
(
s(p) + µHT (y −H s(p))

)
(16)

with µ = 1/c2. We refer to the resulting method as GEM∞. Clearly, GEM∞ is the benchmark for the reconstruction

performance achievable by our GEM algorithm.

In Lemma 1, we verify that, for the choice ofc in (13), the above scheme is indeed a GEM iteration by proving that

the parameter update (11) guarantees monotonically non-decreasing expected complete-data log-likelihood function(7).

Lemma 1: Assuming that the parameter estimate in thep-th iterationθ(p) =
(
s(p), (σ2)(p)

)
belongs to the parameter

spaceΘr, (13) holds, and the quantization is non-degenerate [i.e. (4) holds], the sparse signal updateθ(p+1) =
(
s(p+1), (σ2)(p+1)

)
in (11) also belongs toΘr and satisfies

Q(θ(p+1) |θ(p)) ≥ Q(θ(p) |θ(p)). (17)

Proof: See the Appendix.
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A. Initialization and Termination of the GEM Algorithm

We initialize the proposed GEM iteration as follows:

s(0) = 0m×1, (σ2)(0) =
1

N

N∑

i=1

(ŷ
(−1)
i )2 (18a)

where

ŷ
(−1)
i =





(li + ui)/2, if li > −∞ andui < +∞
li, if ui = +∞
ui, if li = −∞

. (18b)

Denote byθ(+∞) = (s(+∞), (σ2)(+∞)) and ŷ(+∞) the estimates of the unknown parameter set and missing data upon

convergence of the GEM iteration. To estimate the signals, we propose to use either the sparse estimates(+∞) or the

non-sparse estimatebefore thresholding [see (11a)]:

s̃ = s(+∞) +
1

c2
HT (ŷ(+∞) −H s(+∞)) (19)

which is appealing for recovering nearly sparse signals with many small nonzero elements. If the sensing matrixH has

orthonormal rows, i.e.HHT = IN , then the marginal likelihood function under our measurement model in Section II

coincides with the marginal likelihood function under the random signal model (where the random signal is the sum

of the sparse signal component and additive signal ‘noise’ that models approximate signal sparsity) in [14] and [15];

consequently, the MMSE estimatesE y | b,θ[y | b,θ] coincide as well for the two models. Under the random signal

model and forc = ρH = 1, (19) is closely related to theempirical Bayesian (EB) estimate of the random signal

in [15, eq. (7.7)]: It follows by replacing the unobserved data vectory with its empirical Bayesian MMSE estimate

ŷ(+∞) = E y | b,θ[y | b,θ(+∞)] in [15, eq. (7.7)], see also (7b).

B. Convergence Analysis

Theorem 1 establishes convergence properties of our GEM algorithm.

Theorem 1: Under the conditions of Lemma 1, the GEM iteration guarantees monotonically nondecreasing marginal

log-likelihood function (5):

L(θ(p+1)) ≥ L(θ(p)) (20)

and the log-likelihood sequenceL(θ(p)) converges to a limit as the iteration indexp goes to infinity.

Furthermore, if

c > ρH (21)

and if there exists at least onei ∈ {1, 2, . . . , N} such that both the upper and lower boundariesui and li of the

ith quantization interval are finite, then the Euclidean distances between two consecutive GEM signal and variance

parameter iterates‖s(p+1) − s(p)‖2 and‖(σ2)(p+1) − (σ2)(p)‖2 go to zero as the iteration indexp goes to infinity.

Proof: See the Appendix.

The additional convergence condition in the second part of Theorem 1 requiring the existence of finite upper and

lower quantization boundaries is related to the parameter identifiability under our model. For example, consider the 1-bit
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quantization scheme in [6] where the quantization threshold is zero for alli = 1, 2, . . . , N , i.e. only the sign information

of the unquantized measurements is recorded. In this case, for any indexi, one of the quantization boundariesui and

li is infinite and the parameter sets(s, σ2) and (as, a2σ2) yield the same marginal distributionpb |θ(b |θ) for any

positive constanta, implying that the model is not identifiable; it is also impossible to determine the magnitude of the

signals unless additional information about the signal magnitude is provided, see [6].

IV. N UMERICAL EXAMPLES

We consider reconstructions of one- and two-dimensional signals from quantized compressive samples and compare

the performances of

• our GEM algorithm in Section III with the step size coefficient set to c = ρH and

• the fixed point continuation algorithm (labeled FPC) in [9] for solving theℓ1-regularized ML optimization problem:

min
s∈Rm

[−L((s, σ2)) + λreg ‖s‖1] (22)

where the noise varianceσ2 is assumedknown and the regularization parameterλreg controls the sparsity of the

output.

The unquantized measurements are partitioned intoB bins, where the quantization thresholds are chosen so that the

bins contain approximately equal numbers of measurements on average. In the following examples, GEMB and FPCB

denote the GEM and FPC algorithms that useB bins for quantization.

The main step of the FPC iteration in [9] can be obtained by replacing the hard thresholding operator in (14) with

a soft thresholding operator. Observe that the FPC method in [9] requires tuning of several quantities, whereas our

GEM algorithm requires only the knowledge of the signal sparsity level r. Upon tuning the noise varianceσ2, we set

the step-size parameter of FPC to

τ = σ2/ρ2H (23)

which results in better performance and numerical stability than the suggested value1/ρ2H in [9, Sec. IV], see also the

following discussion. We set the shrinkage parameterβ of FPC algorithm to the suggested value0.5, see [9, Sec. IV].

We employ the following convergence criterion:

‖s(p+1) − s(p)‖22 /m < ǫ (24)

where, for the FPC method, we apply (24) in the inner loop of the FPCiteration, see also [9, Sec. IV].

A. One-dimensional Signal Reconstruction

We generated sparse signalss of length m = 500 containing20 randomly located nonzero elements, see also the

simulation examples in [2] and [16]. The nonzero components of s are independent, identically distributed (i.i.d.)

random variables that are either−1 or +1 with equal probability. The sensing matricesH are constructed by creating

an N × m matrix containing i.i.d. samples from the zero-mean Gaussian distribution with variance1/m; therefore,
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Fig. 1. (a) Average MSEs of various estimators ofs as functions of the number of measurementsN , and (b) average MSEs of the GEM
estimators ofs as functions of the sparsity levelr with the number of measurementsN fixed at 400.

each row ofH approximately has a unit magnitude. TheN × 1 unquantized measurement vectory is generated using

(1a) with noise varianceσ2 = 10−4.

Our performance metric is theaverage mean-square error (MSE) of a signal estimateŝ:

MSE{ŝ} = E [‖ŝ− s‖22]
/
m (25)

computed using1000 Monte Carlo trials, whereaveraging is performed over the random sensing matricesH, the

sparse signals, and the noisee. We selected the convergence thresholdǫ = 10−13 in (24).

Fig. 1(a) shows the average MSEs of the compared methods as we vary the number of measurementsN and the

number of quantization binsB. Since the true signals is sparse, we uses(+∞) upon convergence of the GEM iteration

as our GEM signal estimate. GEM∞ and FPC∞ are the limiting cases for the GEM and FPC algorithms, where the main

steps of GEM∞ and FPC∞ are the hard thresholding step (16) and its soft thresholding counterpart, respectively. The

sparsity level of the GEM algorithm is set to25, slightly higher than the true signal support size20. To implement the

FPC algorithm, we chose the true value of the noise varianceσ2 = 10−4 and the regularization parameterλreg = 400,

which yields sparse signal estimates with approximately20 to 25 nonzero signal elements. We use the FPC step-size

parameter in (23): In this example, FPC does not always converge if we applyτ = 1/ρ2H suggested in [9, Sec. IV].

From Fig. 1(a), our GEM algorithm achieves consistently lower MSEs than the convex FPC method over wide ranges of

N andB. WhenN > 400, GEM with only3 quantization bins outperforms the FPC method with16 quantization bins.

The performance of the GEM method with16 quantization bins is quite close to that of the limiting GEM∞ algorithm.

We now study the sensitivity of our GEM algorithm to the choiceof the signal sparsity levelr. Fig. 1(b) shows

the average MSEs achieved by the GEM scheme as we varyr for N = 400 measurements. Settingr = 25 yields the

smallest MSE for the GEM method withB = 3, 4, 8, and16 bins. The MSE increases forr ≥ 25, but the rate of MSE

degradation is quite mild.
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Fig. 2. PSNR curves for GEM and FPC reconstructions of (a) the256×256 Lena image and (b) the256×256 Cameraman image as functions
of the normalized number of measurementsN/m.

B. Two-dimensional Image Reconstruction

In this example, we reconstruct the standard Lena and Cameraman test images, both of sizem = 2562. Here, the

sensing matrixH has the structureH = Φ Ψ , whereΦ is theN ×m structurally random sampling matrix [17] and

Ψ is them × m inverse Daubechies-8 discrete wavelet transform (DWT) matrix. Under these choices ofΦ andΨ ,

the rows ofH are orthonormal, i.e.HHT = IN and, consequently,ρH = 1. The signal vectorss consisting of the

wavelet coefficients of the Lena and Cameraman images are not strictly sparse and contain many small but nonzero

elements. No noise is added, and therefore the unquantized measurements satisfyy = H s. Here, the role of the noise

variance parameterσ2 is to account for the fact that the wavelet coefficients of the test images are not strictly sparse

(i.e. for the presence of the signal ‘noise’).

Our performance metric is the peak signal-to-noise ratio (PSNR) of a signal estimatês [18, eq. (3.7)]:

PSNR (dB)= 10 log10

{ [(Ψ s)MAX − (Ψ s)MIN]
2

‖ŝ− s‖22/m
}

(26)

where(Ψ s)MIN and(Ψ s)MAX denote the smallest and largest elements of the imageΨ s. We selected the convergence

thresholdǫ = 10−10 in (24). The sparsity level of the GEM algorithm is set tor = 4000N/m. For the FPC algorithm,

we tuned manually the regularization and noise variance parameters to achieve good performance, yieldingλreg = 0.1

andσ2 = 10, respectively. Upon the convergence of the GEM algorithm, weuse the empirical Bayesian signal estimate

(19) to reconstruct the Lena and Cameraman images. Similarly,instead of the sparse signal estimateŝFPC obtained upon

convergence of the FPC iteration, we chose the approximately sparse signal estimatêsFPC+τ ∂L(θ)/∂s
∣∣
θ=(ŝFPC,σ

2)
=

ŝFPC−τHT ∇fml(H ŝFPC) in [9, Sec. IV]. In this example, these signal estimates lead to better reconstructions compared

with the corresponding purely sparse estimates.

Fig. 2 shows the PSNR performances of the GEM and FPC methods as function of subsampling factorN/m for
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various numbers of quantization binsB. For both the Lena and Cameraman images, the GEM algorithm outperforms

the convex FPC method for coarser quantization (B = 3 and4), where the performance gap increases as the number

of measurementsN decreases. For8 quantization bins, the reconstruction performance of GEM issimilar to FPC

for Lena reconstruction and slightly better than FPC for Cameraman reconstruction, see Figs. 2(a) and 2(b). When

B = 16, FPC exhibits better performance than GEM. Note that, in addition to the regularization parameterλreg, the

FPC method requires tuning of the noise variance parameterσ2, and we have found that its performance is sensitive

to the choice ofσ2. In contrast, our GEM achieves good performance with automatic estimation of the noise variance

parameter.

V. CONCLUDING REMARKS

We developed a generalized expectation-maximization (GEM)hard thresholding reconstruction algorithm for sparse

signal reconstruction from quantized Gaussian-noise corrupted compressed sensing measurements. We showed that the

likelihood of our GEM iteration is monotonically non-decreasing and converges to a limit and the Euclidean distance

between two GEM iterates goes to zero. The major advantage of our proposed method over the existing FPC method in

[9] is that our method automates the estimation of the noise parameter from the quantized measurements whereas the

FPC method requires tuning of the noise variance. The numericalexamples showed good reconstruction performance

of our GEM algorithm. Specifically, in the one dimensional sparse signal simulation, our GEM methods consistently

outperforms the FPC method. We also find that in this experiment,the performance of our GEM algorithm is quite

stable when the sparsity levelr is larger than or equal to the true signal support size. For the two dimensional image

reconstruction method, our method performs better when thequantization is coarser whereas FPC achieves higher PSNR

when the quantization bins shrink. Further research will include developing theoretical analysis of the reconstruction

accuracy of the proposed algorithm and automating the GEM method by estimating the signal sparsity level from the

data.

APPENDIX

Proof of Lemma 1: Without loss of generality, we assumes(p+1) 6= s(p) (Lemma 1 holds trivially whens(p+1) =

s(p)). The claim thatθ(p+1) =
(
s(p+1), (σ2)(p+1)

)
∈ Θr is an immediate consequence of the GEM update (11) and

the non-degenerate quantization assumption (4). Now, consider the following inequality:

‖ŷ(p) −H s(p+1)‖22 = c2 ‖(ŷ(p) −H s(p+1))/c‖22 (A1a)

≤ c2
(
‖(ŷ(p) −H s(p+1))/c‖22 + ‖s(p+1) − s(p)‖22 − ‖H(s(p+1) − s(p))/c‖22

)
(A1b)

≤ c2
[
‖(ŷ(p) −H s(p))/c‖22 + ‖s(p) − s(p)‖22 − ‖H(s(p) − s(p))/c‖22

]
(A1c)

= ‖ŷ(p) −H s(p)‖22 (A1d)

where (A1b) follows by using (13) and the Rayleigh-quotientproperty [19, Theorem 21.5.6]

‖H (s(p+1) − s(p))‖22
‖s(p+1) − s(p)‖22

≤ ρ2H ≤ c2 (A2)
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and (A1c) follows by the fact thats(p+1) in (11a) minimizes the following function ofs over all s ∈ Sr:

‖(ŷ(p) −H s)/c‖22 + ‖s− s(p)‖22 − ‖H(s− s(p))/c‖22. (A3a)

To see this, observe that (A3a) can be rewritten as

‖s− s(p) −HT (ŷ(p) −H s(p))/c2‖22 (A3b)

up to an additive constant that is not a function ofs.

Now, (17) follows easily:

Q(θ(p+1) |θ(p)) ≥ Q
(
(s(p+1), (σ2)(p)) |θ(p)

)
(A4a)

≥ Q(θ(p) |θ(p)) (A4b)

where (A4a) follows by settings = s(p+1) and σ2 = (σ2)(p) in (9b) and noting that̂σ2(s(p+1),θ(p)) = (σ2)(p+1);

(A4b) follows by using (A1).

Proof of Theorem 1: The first claim in (20) is a direct consequence of Lemma 1 and the following property of

the EM-type algorithms [20] (see e.g. [20, eq. (3.2)]):

L(θ) = Q(θ |θ(p))−H(θ |θ(p)) (A5)

where

H(θ |θ(p))
△
= E y | b,θ

[
ln py | b,θ(y | b,θ)

∣∣ b,θ(p)
]

(A6)

which is maximized atθ = θ(p), i.e.

H(θ |θ(p)) ≤ H(θ(p) |θ(p)) (A7)

see [20, Lemma 1]. The first claim follows by combining the resultof Lemma 1 in (17) with (A5) and (A7):

L(θ(p+1)) = Q(θ(p+1) |θ(p))−H(θ(p+1) |θ(p)) ≥ Q(θ(p) |θ(p))−H(θ(p) |θ(p)) = L(θ(p)). (A8)

Now, we move on to prove the second part of Theorem 1. From (A5), we have

L(θ(p+1))− L(θ(p)) = Q(θ(p+1) |θ(p))−Q(θ(p) |θ(p)) +H(θ(p) |θ(p))−H(θ(p+1) |θ(p)) (A9a)

≥ Q(θ(p+1) |θ(p))−Q(θ(p) |θ(p)) (A9b)

= Q(θ(p+1) |θ(p))−Q
(
(s(p+1), (σ2)(p)) |θ(p)

)

+
1

2 (σ2)(p)
(‖ŷ(p) −H s(p)‖22 − ‖ŷ(p) −H s(p+1)‖22) (A9c)

≥ 1

2 (σ2)(p)
(‖ŷ(p) −H s(p)‖22 − ‖ŷ(p) −H s(p+1)‖22) (A9d)

≥ 0 (A9e)

where (A9b)–(A9e) follow by using (A7), (7), (A4a) and Lemma 1, respectively. Since the sequenceL(θ(p)) is

monotonically nondecreasing and upper-bounded by zero, itconverges to a limit. Consequently,L(θ(p+1))− L(θ(p))

converges to zero. Therefore, the quantity in (A9d) [sandwiched byL(θ(p+1)) − L(θ(p)) and zero via inequalities]

converges to zero as well.

Now, we have
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‖ŷ(p) −H s(p)‖22 − ‖ŷ(p) −H s(p+1)‖22
2 (σ2)(p)

≥ c2‖s(p+1) − s(p)‖22 − ‖H(s(p+1) − s(p))‖22
2 (σ2)(p)

(A10a)

≥ c2 − ρ2H
2 (σ2)(p)

‖s(p+1) − s(p)‖22 (A10b)

where (A10a) follows by (A1b)–(A1d) and (A10b) results from(A2). Since the quantization is non-degenerate,

(σ2)(p) > 0. Further, since there exists an indexi such that bothui and li are finite, we claim(σ2)(p) < ∞ for

all p > 0. If (σ2)(p) grows to infinity, then thei-th term in the summation of the marginal likelihood (5) goesto −∞.

Note that all summands in (5) are upper bounded by zero. This implies that the marginal likelihoodL(θ(p)) goes

to negative infinity if(σ2)(p) grows to infinity, which is certainly less thanL(θ(0)) for any reasonable initialization.

This then contradicts with (20). Note also that the step size coefficient satisfiesc > ρH , see (21). Therefore, the term

(c2−ρ2H)/[2 (σ2)(p)] in (A10b) is positive and bounded away from zero, which implies that‖s(p+1)−s(p)‖22 goes to zero.

Finally, from (A9), we also conclude that the sequenceQ(θ(p+1) |θ(p)) − Q
(
(s(p+1), (σ2)(p)) |θ(p)

)
converges to

zero. Since the quantization is non-degenerate,tr[covy | b,θ(y | b,θ(p))] =
∑N

i=1 varyi | bi,θ(yi | b,θ(p)) > 0 [see (4)],

the function

Q
(
(s(p+1), σ2) |θ(p)

)
= −1

2N ln(2πσ2)−
‖ŷ(p) −H s(p+1)‖22 +

∑N
i=1 varyi | bi,θ(yi | b,θ(p))

2σ2

is a continuous and unimodal function ofσ2, with the unique maximum achieved atσ2 = (σ2)(p+1), see also (9a). We

conclude that(σ2)(p) − (σ2)(p+1) must go to zero. The second claim of Theorem 1 follows.
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