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Partially Linear Estimation with Application to
Sparse Signal Recovery From Measurement Pairs
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Abstract—We address the problem of estimating a random
vector X from two sets of measurementsY and Z, such that
the estimator is linear in Y. We show that the partially linear
minimum mean squared error (PLMMSE) estimator does not
require knowing the joint distribution of X and Y in full,
but rather only its second-order moments. This renders it of
potential interest in various applications. We further show that
the PLMMSE method is minimax-optimal among all estimators
that solely depend on the second-order statistics oK and Y.
We demonstrate our approach in the context of recovering
a signal, which is sparse in a unitary dictionary, from noisy
observations of it and of a filtered version of it. We show that
in this setting PLMMSE estimation has a clear computational
advantage, while its performance is comparable to state-ethe-art
algorithms. We apply our approach both in static and dynamic
estimation applications. In the former category, we treat he
problem of image enhancement from blurred/noisy image pas,
where we show that PLMMSE estimation performs only slightly
worse than state-of-the art algorithms, while running an oder of
magnitude faster. In the dynamic setting, we provide a recusive
implementation of the estimator and demonstrate its utility in
the context of tracking maneuvering targets from position ad
acceleration measurements.

Index Terms—Bayesian estimation, minimum mean squared
error, linear estimation.

I. INTRODUCTION

For example, the amount of computation required for cal-
culating the MMSE estimate of a jump-Markov Gaussian
random process from its noisy version grows exponentially
in time [1]. By contrast, the LMMSE estimator in this setting
possesses a simple recursive implementation, similar ¢o th
Kalman filter [2]. A similar problem arises in the area of sgar
representations, in which the use of sparsity-inducingsSiain
mixture priors and of Laplacian priors is very common. The
complexity of calculating the MMSE estimator under the
former prior is exponential in the vector’'s dimension, ical
for approximate solution$ [3]. The MMSE estimator under the
latter prior does not possess a closed form expressibn [4],
which has motivated the use of alternative estimationegias
such as the maximum a-posteriori (MAP) method.

In practical situations, the reasons for not using the MMSE
estimator may only apply to a subset of the measurements.
In these cases, it may be desirable to construct an estimator
that is linear in part of the measurements and nonlinear
in the rest. Partially linear estimation was studied in the
statistical literature in the context of regression [5]. this
line of research, it is assumed that the conditional expiecta
g(y,z) = E[X|Y =y, Z = 2] is linear iny. The goal, then,
is to approximatey(x,y) from a set of example$x;, y;, z; }
drawn independently from the joint distribution &f, Y and
Z. In this paper, our goal is to derive the separable partially

Bayesian estimation is concerned with the prediction %ear MMSE (PLMMSE) estimator. Namely, we do not make

a random quantityX based on a set of observation§

which are statistically related t&. It is well known that
the estimator minimizing the mean squared error (MSE)
given by the conditional expectatioN = E[X|Y]. There

any assumptions on the structure of the MMSE estimate
E[X]Y, Z], but rather look for the estimator that minimizes
{ie MSE among all functiong(z, y) of the form Ay + b(z).

We show that in certain sparse approximation scenarios, the

are various scenarios, however, in which the minimal MSIE’LMMSE solution may be computed much more efficiently
(MMSE) estimator cannot be used. This can either be dye,, the MMSE estimator. We demonstrate the usefulness of

to implementation constraints, because of the fact that
closed form expression fdE[X |Y] exists, or due to lack of
complete knowledge of the joint distribution of and Y.

fife sparse PLMMSE both in static and in dynamic estimation
settings. In the static case, we apply our method to the probl
of image deblurring from blurred/noisy image palir$ [6]. Eler

In these cases, one often resorts to linear estimation. T\DS show that PLMMSE estimation performs only slightly

appeal of the linear MMSE (LMMSE) estimator is rooted i

Worse than state-of-the art methods, but is much faster. In

the fact that it possesses an easily implementable closed f he dynamic regime, we provide a recursive implementation

expression, which merely requires knowledge of the joistfir
and second-order moments &f andY.
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of the PLMMSE solution and demonstrate its usefulness in
tracking a maneuvering target from position and accelemati
measurements. We show the advantage of PLMMSE filtering
over state-of-the-art algorithms when the measurememts ar
prone to faults or contain outliers.

The paper is organized as follows. In Secfidn Il we present
the PLMMSE estimator and discuss some of its properties. In
Section 1], we show that the PLMMSE method is optimal in
a minimax sense among all estimators that solely rely on the
second-order statistics of andY". In Section 1V we derive
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the PLMMSE estimator for recovering a signal, sparse in a Cov(X)

unitary dictionary, from a pair of observations, one bldrasd

one noisy. In Section V we apply our method to the problem

of image enhancement from blurred/noisy measurement. pairs Cov(X, Yy @[XM]
In Section[V] we apply PLMMSE estimation to tracking

maneuvering targets.

Fy gz
II. PARTIALLY LINEAR ESTIMATION

We denote random variables (RVs) by capital letters. THd9- 1: The statistical knowledge required for computing th
pseudo-inverse of a matrid is denoted byA'. The mean PLMMSE estimator[(#).
E[X] of an RV X is denotedux and the auto-covariance
matrix Cov(X) = E[(X — ux)(X — ux)T] of X is denoted
Ty x. Similarly, T'xy stands for the cross-covariance matri : R? — R™ . Then the estimator minimizing the MSE within
Cov(X,Y) = E[(X — ux)(Y — uy)”] of two RVs X and this class is given by
Y. The joint cumulative distribution function ok and Y’ . B
is written as Fxy(z,y) = P(X < z,Y < y), where XPl =T TL Y +E[X|2], (4)
the inequalities are element-wise. By definition, the mzabi
distribution of X is Fx(z) = Fxy (z,00). In our setting, X where

is the quantity to be estimated and and Z are two sets of Y=Y - E[Y|Z]. (5)
measurements thereof. The RXS Y and Z take values in
RM, RN andR@, respectively. The MSE of an estimatar Proof: See AppendifB. -

of X is defined ag[|| X — X|?].
We begin by considering the most general form of a partial
linear estimator ofX based onY” and Z, which is given by

[\lote again that({4) is of the form dfl(3) witd = I‘x?ri*/y
gndb(Z) =E[X|Z] —I‘XyI‘IW]E[Y|Z]. The major advantage
. of this solution with respect to the non-separable estim@p
X =A(Z)Y +b(Z). (1) is that the only required knowledge regarding the statibtie-
lation betweenX andY is of second-order type. Specifically,

Here A is a matrix-valued function an#l(z) is a vector- . ’ .
(2) (2) as we show in Appendix]C[1(4) can be equivalently written as

valued function, so that the realizatiorof Z is used to choose
one of a family of linear estimators af based ony.

A T ~
. | _ K = Ty = Tgugpn) (Tyy = Dypugp) (V= 27)
Theorem 1 Consider estimators of X having the form (), XY TR XREYE) B YY T v z

for some (Borel measurable) functions A : RQ — RMxN + X3* (6)

and b : R® — RM, Then the estimator minimizing the MSE A A

within this class is given by where we denotedXJt = E[X|Z] and YU = E[Y|Z].
5 Therefore, all we need to know in order to be able to compute
X =TxyzThy (Y ~EY|Z) +EX|Z, () o

the separable PLMMSE estimatbi (4) is the covariance matrix
where T'xy |z = E[(X —E[X|Z))(Y —E[Y]Z])"|Z] denotes T'xy, the conditional expectatiofi[X|Z] and the marginal

the cross-covariance of X and Y given Z and I'yy |z = joint cumulative distribution functiorfy z of Y and Z. This
E[(Y —E[Y|Z])(Y —E[Y|Z])T|Z] is the auto-covariance of is illustrated in Fig[lL. In fact, as we show in Sectlad Ill, in
Y given Z. addition to being optimal among all partially linear metkpd

the PLMMSE solution [(4) is also optimal in a minimax

Proof: See AppendiX A. sense among all estimation strategies that rely solely en th

|
Note th?t [[2) is indeed of the form 0[](1)Twitlz1(Z) = quantities appearing in Fig] 1.
Lxvizlyy ), andb(Z) = E[X|Z] — FXY‘Z.FYYIZ]E[Y|Z]' The intuition behind[{¥) is similar to that arising in dynami
As can be seen, although_the MMSE §0Iut|or_1 among t_he CIaessstimation schemes, such as the Kalman filter. Specifically,
of estimators[{ll) has a simple form, it requires knowing th\ﬁe begin by constructing the estimaBéX|Z] of X based
conditional covarianc&xy |z, which limits its applicability. on the measurements, which minimizes the MSE among
In particular, this solution cannot be applied in cases wh '

. - €I functions of Z. Next, we would like to account fok’.
we merely know the unconditional covarianEe y .

) - ) . However, sinceZ has already been accounted for, we first
To relax this restriction, we next consideparable partially y

. L S eed to subtract fromy” all variations caused by. This is
linear estimation. Namely, we seek to minimize the Msgone by constructing the RY of (), which can be thought
among all functions of the form §

of as theinnovation associated with the measuremevitsvith
X = AY +b(2), (3) respect to the initial estimatg[X|Z]. Finally, since we want
an estimate that is partially linear i, we update our initial
estimate with the LMMSE estimate of based ony’.

Before discussing the minimax-optimality of the PLMMSE
Theorem 2 Consider estimators of X having the form (@), estimator, it is insightful to examine several special sass
for some matrix A € RM>*~ and (Borel measurable) function we do next.

where A is a deterministic matrix andl(z) is a vector-valued
function.



a) Independent measurements. Consider first the case inwhere H € RY*M and G € R®*M are given matrices
which Y and Z are statistically independent. In this settingand U and V' are zero-mean RVs such thaf, U and V
Y = Y — puy and therefore the PLMMSE estimatdr] (4)are mutually independent. As we show in Secfion IV, there
becomes are situations in which the distribution of is such that
Pl ; . the complexity of computing the MMSE estimafBfX |Y, Z]
X =Ty Tyy (Y = py) + E[X[Z] = Xy + XZ" — ix, is huge, whereas the complexity of computifigX|Z] is
(") modest. In these cases one may prefer to resort to PLMMSE

WhereX{; denotes the LMMSE estimate &f from Y. Thus, estlm{mon. This method does n.ot correspond to a convex
) . . . .’ _combination of the LMMSE estimate oK from Y and
in this setting, the PLMMSE estimate reduces to a line

r . )
combination of the LMMSE estimaté(%, and the MMSE ﬁqe MMSE estimate ofX’ from Z, as might be suspected.

estimatef(gL. AThe neepi for subtracting the meanfarises Irr‘1 dezt},ngl:lztltrl‘Jtlng:— Iﬁ‘X +I§]T’ ﬁerhave ;Bﬁfg ;o:e

because bottK}: and X3 account for it. Indeed, note that]E[);)TZ] B HE[XTE] o thatf‘({( T I[‘]U T and

E[X}] = E[X}] = ux, so that without subtraction gfx, - ’ o EYZh T XERXGE

the estimateX L would be biased, with a mean 8f.x. Pyauypn = HT ¢ x4y H' . Consequently, the PLMMSE
b) Z is independent of X and Y: Suppose next that eStimator [(5) becomes

both X and Y are statistically independent d¢f. Thus, in X = AV + (I — AH)E[X|Z], (13)

addition to the fact that” = Y — uy, we also hav&[ X |Z] =

ux. Consequently, the PLMMSE solutionl (4) reduces to thehereT is the identity matrix andA is given by

LMMSE estimate ofX givenY’:

N N A:(FXX_I‘XNLXNL)HT

X =TxyT{y (Y = py) + px = Xy ®) 2 ) .

©) Y is uncorrelated with X and independent of Z: % (H (FXX a FX?LX?L) H+ FUU)

Consider the situation in whick and Z are statistically (14)

independentan& andY” are uncorrelated. Théfi = Y —py,

and alsol'yy = I'xy = 0 so that [(#) becomes the MMSE

estimate ofX from Z:

We see that, as opposed to a convex combinatiorf(gf*
and X%, the PLMMSE method reduces to a combination of
XY andY. Furthermore, the weights of this combination are
X =E[X|Z] = X}V (9) Mmatrices rather than scalars.
As a toy example demonstrating this, suppose fKiak a

d) X isindependent of Z: In situations whereX andZ scalar binary RV taking the valuesl with equal probability,
are statistically independent, one may be tempted to cdeclthat H = G = 1, and that/ ~ N(0,0%) andV ~ N (0, 0%).
that the PLMMSE estimator should not be a functionf It is easily verified that in this case
However, this is not necessarily the case. Specificallgpaigh
the second term ir{4) becomes the consB{if | Z] = ux in XX = E[X|Z] = N(Z - 1;0’0‘2/) ~N(Z+ 1;0’0‘2/)7
this setting, it is easily verified thdt .y = I'xy, so that the N(Z -1;0,0%) + N(Z + 10, UV)(lS

first term in [4) does not vanish unle&sis uncorrelated with 5 . . . .
Y. As a consequence, the PLMMSE estimator can be writtgvrbereN(% o U.) de”g’tes the Gaussian .de.nsny function with
meany and variancer=, evaluated aty. Similarly,

as
v T _ T . 1
X = I‘XyI‘Y{,Y + Ux I‘XyI‘YYIE[Y|Z], (10) X)I; _ 0'X2Y (Y - ,Lty) Ty = . Y, (16)
oy 1+of

in which the last term is a function of. This should come
as no surprise, though, because if, for instaites X + Z, Wwhere we used the facts _thaﬁ = o% + o? and oxy =
then the optimal estimate & = Y — Z, even if X andZ are o% = 1. The PLMMSE estimatoi[(13), is therefore given by
independent. This solution is clearly a function 2f SPL £ NL

€) X is uncorrelated with Y: A similar phenomenon X =9V + {1 =9)&7% (17)
occurs whenX andY are uncorrelated. Indeed in this caseyherey = (1 — CfigNL)/(l +0? — C,?(NL) (see [TH)). FigurEl3

Pxy = —Tgyeyye, S0 that the first term inL{4) does not,mpares the MSE attained by the PLMMSE method to that
vanish unlessX " is uncorrelated withy’Y'™. Consequently, of the naive convex-combination estimator
the estimator[{4) can be expressed as . N .

A . T Xraive — o XLE 4 (1 — a) X3, (18)

X = -TowealL Y +T oy I UE[Y|Z] + E[X|Z],

Xgvettyy xXpvettyy (11) foralla € [0,1]. As can be seen, when; = oy, the MMSE
in which the first term is clearly a linear function &f. of the PLMMSE method is roughly2% lower than the lowest
f) Additive noise: Perhaps the most widely studied meaMSE of the naive estimator. This advantage becomes less

surement model corresponds to linear distortion and agditSignificant assy and oy draw apart. As mentioned above,
noise. Specifically, suppose that though, in multi-dimensional problems the PLMMSE method

uses matrix weights rather than scalars, so that its pafenti
Y=HX+U Z=GX+YV, (12) for improvement over the naive estimator is yet greater.
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Fig. 2: The MSE attained byxFL of (I7) and by X"*ve of (I8) as a function ofx for several values ofy and oy .
(@03 =050% =2.(b)o} =1,08 =1.(c) o} =2, 0% = 0.5.

I1l. PARTIAL KNOWLEDGE OFSTATISTICAL RELATIONS IV. PLMMSE ESTIMATION OF SPARSEVECTORS

As discussed in Sectidnl ll, one of the appealing propertiesWe now demonstrate the usefulness of the PLMMSE es-
of the PLMMSE solution is that it does not require knowingimator in the context of sparse approximations. Specifical
the entire joint distribution ofX andY’, but rather only its consider the situation in whiclX' is known to be sparsely
second-order moments. However, the fact that the PLMMSEpresentable in a unitary dictionally € RM > in the sense
estimator is merely determined W[X|Z], Cov(X,Y) and that
Fy z(y, z), does not yet imply that it is optimal among all
methods that rely solely on these quantities. The question
optimality of an estimator with respect to partial knowledg
regarding the joint distribution of the signal and measugets
was recently addressed [ [7]. One of the notions of optiyali
considered there, which we adopt here as well, follows from o )

a worst-case perspective. Specifically, any estimafor= Where the RVs{B;} and {S;} are statistically independent,
g(Y,Z), may attain high MSE under certain distributiond?: ~ N(0,1) and S; = 0 (or take small values) with high
Fxyz(z,y,z) consistent with our knowledge and it mayprobab_lhty._Tms_ assumption is very common in the sparse
attain low MSE under other such distributions. We consid@pPproximation literature. For example, inl [8] and [9] the
an estimator minimax-optimal if its worst-case MSE over th¥ariables 5; are assumed to follow a Gamma distribution.
set of all feasible distributions is minimal. For example, iHere, we assume, as inl[3], that they are binary, such that
was shown in[[7] that the LMMSE estimatof® attains the P(Si = 01:) = 1 = P(S; = 03,:) = p; with someo, ; > 0,
minimal possible worst-case MSE over the set of distrimgtio 72 = 0 and p; > 0. In particular, settingr,; = 0 and
Fxy (z,y) with given first- and second-order moments. P smal_llcorresponds to vectol¥ that are sparse with high

In the next theorem we show that the PLMMSE method Rfobability. _ _
optimal in the sense that its worst-case MSE over the set ofASSUmMeX is observed through two linear systems, as in

all distributionsFy 7 (z, y, z) complying with the knowledge (12), where H is an arbitrary matrix,G is an orthogonal
appearing in Figll1 is minimal. matrix satisfyingG* G = oI for some constanty # 0,

and U and V are Gaussian RVs witl'yy = a%I and
I'yvy = o 1. A practical image enhancement scenario and
a target tracking situation corresponding to this setting a
detailed in sectiong1v and VI, respectively. This setting ca
be cast in the standard sparse approximation form as

(2) = (&) (v)

It is well known that the expression for the MMSE estimate
E[XY, Z] in this case generally compris@d’ summands,
which correspond to all different possibilities of sparsit
patterns inWW [3]. This renders computation of the MMSE
estimate prohibitively expensive even for modest values of
M and consequently various approaches have been devised
to approximate this solution by a small number of terms (see
e.g., [3] and references therein). For example, the fast Bayesian

X =W (21)

f8r some RVW that is sparse with high probability. More
concretely, we assume that the element$iofare given by

W; =SB, i=1,...M, (22)

P

Theorem 3 Let A be the set of probability distributions of
(X,Y, Z) satisfying

COV(X):Fxx, COV(X,Y):ny, E[X|Z]:g(Z),

FXYZ(OOJJ,Z) :FYZ(y72)7 (19)

where 'y x and I'xy are given matrices, g(z) is a given (23)

function and Fyz(y,z) is a given cumulative distribution

function. Then, among all estimators of X based on Y and

Z, the PLMMSE method (4) has the minimal worst-case MSE
FxyzcA [

]
over the set A.
Proof: See AppendixD. [

(20)

‘X—X

sup EFXYZ



matching pursuit (FBMP) algorithm developed (in [3] employand, similarly,P(S; = 02_,Z-|Z~Z-) is given by

a search in the tree representing all sparsity patterngiier do S o o 9

choose the terms participating in the approximation. Weenot ____ N(Zi;0,0%03,; + CfV)(l —Pi) .

that FBMP, as well as other sparse recovery methods, canV(Zi;0,a207 ; + of )pi + N (Z;;0,03 ; + o3 )(1 — pi)

operate with general measurement and dictionary matrices. (30)
There are some speugl cases, however, in which the N_'M%Ebstituting [(3D) and(28) intd (27) leads to the following

estimate possesses a simple structure, which can be 'm%lséervation.

mented efficiently. As we show next, one such case is when _ _

both the channel’s response and the dictionary over which Theorem 4 The MMSE estimate of X of (21)) given Z of (24)

is sparse correspond to orthogonal matrices. As in oumsgettilS

W is unitary andG is orthogonal, this implies that we can E[X|Z] = Uf (l\IITGTZ) , (31)
efficiently compute the MMSE estimal&{ X | Z] of X from Z. @
Therefore, instead of resorting to schemes for approxitgatiyhere F(2) = (F(z1),..., f(Ga))T, with

E[X]Y, Z], we can employ the PLMMSE estimator &fbased

onY and Z, which possesses a closed form expression (sééfi) =
(13)) in this situation. This technique is particularlyeaffive - (ad%,iPiN(5i§Owo‘20f,i+U%/) i (17Pi)a‘7§,iN(2iQovazgg,i+dg/))
when the SNR of the observatidn is much worse than that o?of itoy a?o} itoy

of Z, since the MMSE estimafg[X |Y, Z] in this case is close pi N (%i;0,0207 ; + 0%) + (1 — pi) N(2;;0,0%03 ; + 03,)
to being partially linear inY”. Such a setting is demonstrated (32)

in Section IV-C. Therefore, if, for example¥ is a wavelet basis an@ = I
(so thata = 1), thenE[X|Z] can be efficiently computed
A. MMSE Estimate of a Sparse Signal in a Unitary Dictionary by taking the wavelet transform df (multiplication by &),
applying a scalar shrinkage function on each of the coeffisie
(namely calculatingf(2;) for theith coefficient) and applying
Z=GX+V=GUW +V, (24) the inverse wavelet trapsform (multiplicat_ion _by) on the
result. Note that the shrinkage cur{el(32) is different ttram
with W of [22). SinceG and ¥ are orthogonal, they are soft-threshold operation, originally proposedin/[10]Tatter
invertible, so that can be obtained as the MAP solution with a Laplacian prior,
7 l‘IITGTZ (25) Whereas_our fl_mction c_orresponds to the MMSE solution with
! a Gaussian mixture prior.

i

In our setting

carries the same information oXi as Z does, namely
B. PLMMSE Estimate of a Sparse Sgnal

) ) Equipped with a closed form expression f8fX|Z], we
Now, for everyi = 1,..., M, we have thatZ; = aW; +V;, cannow obtain an expression for the PLMMSE estimaialr (13).
whereV = o '®"G"V is distributed (0,02 I). There- Specifically, we have that
fore, the set{Z;};.; is statistically independent of the pair B T
(W3, Z;) and consequently Dxx = WTww¥, (33)

E[X|Z] = E[X|Z] = $E[W|Z]. (26)

whereT'yyw is a diagonal matrix with Ty ) = pio—fi +

E[Wi|Z] = E[Wi| Z] (1—pi)o3,;. Similarly,

= E[W;|Z:, S; = o1,:)P(S; = Ul,i|Zi)
+E[Wi|Zi, Si = 094]P(Si = 094 Z:).  (27)

T xi gy = Cov( f(2)e”, (34)

. . . hereCov(f(Z)) is a diagonal matrix whosg, i) element is
Under the eventS; = o;; with a fixedj € {1,2}, the RVs w . L ’

. 5 . " L : Bi = Cov(f(Z;)). This is due to the fact that the elements of
W, and Z; are jointly normally distributed with mean 2610, 7 are statistically independent and the fact that the functio

implying that f(-) operates element-wise on its argument. Therefore, the
- Cov(Ws, Z;) 040]2-71- - PLMMSE estimator is given in our setting by equation](13)
E[Wi|Zi, 8; = 0] = Cov(Z;) T 202 + o2 Zs. with E[X|Z] of (81) and with the matrix
3 75
~ (28) _ 505 T T
Finally, using Bayes rule, the terf(S; = oy ;|Z;) reduces to A=1¥ (FWW - COV(f(Z))) ¥ H
- - T
F215,(ZilSi = o1.0)p; x (H® (Tww - Cov(f(2)) ¥ H" +031) .
F205,(ZilSi = 01.00ps + [2,5,(ZilSi = 02,)(1 — py) (39)

N(Z::0,0202 , + o2)p; Observe that there is generally no closed form expression

= = = for the scalarss; = Cov(f(Z;)), rendering it necessary to
. 2 2 . . 2 2 oy, . ! . .
N(Zi;0,a207 ; + o(,)pi + N (250,03, + 03, )(1 = pi) compute them numerically. Since eaghis the variance of
(29)  a scalar RV, it can be computed very efficiently, either by



approximating the corresponding integral by a sum over a setse M = 5122), the FBMP method becomes impractical

of points on the real line or by Monte Carlo simulation. Irno apply while PLMMSE estimation can still be used very

Sectior Y we demonstrate how this can be done in a practieddiciently.

scenario. A word of caution is in place, though. In situations in which

An important special case corresponds to the setting tine SNR of the measuremeht is roughly the same as that

which p; = p, 0} ; = 07, andoj; = o3 for everyi. In this of Z (or better), the FBMP method is advantageous in terms

situation, we also have tha@ = 3 for everyi. Furthermore, of performance. Therefore in this regime, decision on tree us
9 9 of PLMMSE estimation boils down a performance-complexity

Pww = (poy + (1 —p)oz)I (36)  tradeoff.
so thatA is simplified to V. APPLICATION TOIMAGE DEBLURRING WITH
o2 T BLURRED/NOISY IMAGE PAIRS
2 . 2 I) ‘ (37) When taking photos in dim light using a hand-held camera

poi+ (1 —p)os — g photos In dim fig g ,

there is a tradeoff between noise and motion blur, which can

be controlled by tuning the shutter speed. Indeed, whemsin

long exposure time, the image typically comes out blurreel du

o camera shake. On the other hand, with a short exposure time

(and high camera gain), the image is very noisy!ln [6] it was

demonstrated how a high quality image can be constructed by

C. Numerical Sudy properly processing two images of the same scene, one Blurre

~We now compare via simulations the MSE attained pgnd one noisy. _
XPL to that attained byX YL, XL and the approximation to We now _show how Fhe PLMMSE approgch can be applied
E[X|Y, Z] produced by the FBMP method. Since we generalf this setting to obtain plausible recoveries at a speed sev
the signalX and measurementg and Z according to the eral orders of magnitude faster than any other sparsitgebas
assumed model, we do not compare our method to otffBgthod. In our settingy, Y and Z correspond, respectively,
Baysian approaches, such as Bayesian compressive seni§rf§€ original, blurred (and slightly noisy) and noisy ireag
(BSC) [8] and sparse Bayesian learning (SBL) [9], whic/hhus, the measurement model is that described By (23), where
assume a different generative model. Nevertheless, we ndfecorresponds to spatial convolution with some blur kernel,
that a practical scenario, which deviates from the assumgti G = I, andU and V' correspond to white Gaussian images
of all these methods, was studied in [3] and showed that tAé#h small and large variances respectively. We furthenmes
performance of FBMP is commonly better than that of Bs&1at the imageX is sparse in some orthogonal wavelet basis
and SBL. In terms of running time, FBMP is typically an ordel¥ such that it can be written as in_{21) andl(22).

of magnitude faster than SBL and roughly twice as slow asAS We have seen, in this setting, the PLMMSE estimator
BSC. can be computed in two stages. In the first stage, we cal-

In our experiment®# € R256x236 \as taken to be a culate XEL = E[X|Z] (namely, genoiseT the imag) by
Hadamard matrix with normalized columns. The matfik COMputing the wavelet transford = ¥ Z, applying the
corresponded to (circular) convolution with the sequend&@lar shrinkage function (B2) on each wavelet coefficimd,
h[n] = exp{—|n|/8.5} and G was taken to be diagonal. Totaking the inverse wavelet transform of the result. Thigesta
comply with the assumption made i [3] that the columns Ggauires knowledge of the parametérs}, {01}, {_02,i} and
the measurement matrix are normalized, we normalized tfig- 10 this end, we assume that; = 0 for all i (a truly
columns of E to be of norm0.99 and set = 0.011. We set SParse image) and thaf ando, ; are the same for wavelets
pi = p, o2, = o2, ando? ; = 0 for everyi, so thatX was truly coefficients at the same level. In other words, all wavelet
sparse with high probability. Figuf@ 3 depicts the MSE of aﬂoefﬂments of the noisy image at Ievellé correspond to
estimators as a function of the input SNR, which we define idependent draws from the Gaussian mixture
101logo(pot/a?). As can be seen, the MSE of the PLMMSE f (2) = p‘N(%;0, 0203 j+0% ) +(1—p" )N (;0,0%). (38)

method is significantly lower then that dfY" and X% and . .
g y z Y v(\;onsequentl;pf, 010 andoy can be estimated by expectation

is very close to that attained by the FBMP method. At lo mizati EM). | ) " d that
SNR levels and low sparsity levels (high the performance maximization (EM). N our experiments, we assume
known and thus did not estimate it.

of the PLMMSE method is even slightly better than the FBMP In the second stage, the denoised im @gl needs 1o be

approach. . . : Lo
The average running time of the PLMMSE method w gombined .W'th the plurred_lmagE’ using (13) W'thA.Of
. ). As discussed in Sectidn TVW-B, this can be carried out
0.6msec for all tested values gf. The average running - ) .
. very efficiently if p; = p andoy; = oy for all i. For the
times of the FBMP method werg2.7msec, 79.6msec and - : .

. sake of efﬁmemﬂf, we therefore abandon the assumption that
125.2msec, respectively, fop = 1/3, p = 1/2 andp =
2/3. The ratio between the computational cost of the two!The exact solution involving[{35) can be computed by usirgative
approaches which was two orders of magnitude in this expggchniques for matrix inversion, in which each iteratiormgoises filtering
. ! . . . . operations and forward and inverse wavelet transforms. edew we found
iment, becomes hlgher as the dimension¥ofs increased. At that in most cases this approach leads to improvement of @8yB-0.6dB

certain dimensions, such as images of $iz2x 512 (in which  in PSNR and is much more demanding computationally.

A=H" (HHT +

As can be seen, in this setting does not involve multipli-
cation by® or @' Thus, if H corresponds to a convolution
operation, thenA also corresponds to a filter, which can b
efficiently applied in the Fourier domain.
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Fig. 3: The MSE attained byx}*, X}, X" and the approximation oE[X|Y, Z] produced by the FBMP method][3].
@p=1/3.(b)p=1/2.(c)p=2/3.

p; andoy ; vary across wavelet levels and assume hencefoegkample, the authors of|[3] reported that FBMP requires a
that all wavelet coefficients are independent and idemyicafuntime of 38 minutes to recover a28 x 128 image from a

distributed. In this cased corresponds to the filter few thousands of measurements and that GPSR reqaiires
(02, — B)H*(w) minutes for the same task. BCS [8] was reported to require
Alw) = W (39) 15 seconds for reconstructingm 2 x 512 image from a few

7 _ 21 527
(of — BH(W)I* + oy thousands of samples.

where H(w) is the frequency response of the blur kernel. As can be seen in Figufd 4, the quality of the recoveries
Consequently, the final PLMMSE estimate corresponds to tberresponding to the denoised imagel"™ and deblurred

inverse Fourier transform of image X} is rather poor with respect to the state-of-the-
. (U%V_ﬁ)H*(w)yF(w)JrU%}Xg(w) art BMSD d_ebnoising method_[14] gnd BM3_D_ debluring
Xprvuse(w) = (02 — B)HW)? + o2 ) algorithm [15]. Nevertheless, the quality of the joint psite

(40) XprLMMsE Surpasses each of these techniques alone. The resid-

whereYT (w) and X§(w) denote the Fourier transforms gf ual deconvolution (RD) algpritkﬁnproposed in[[5] for joint
and X}, respectively. In our experiment, we assumed th8gbluring and denoising slightly outperforms the PLMMSE
the blur H(w) and noise variance? are known. In practice, method In terms of recovery error. _ _ _
they can be estimated from and Z, as proposed iri [6]. This A quantitative comparison on several test images is pravide
Stage a|so requires knowing the Sca|a1% — E[WQ] and n Ta.ble[] ThIS Compal‘ISQn ShOWS that the PSNR atta.|ned
B = E[f2(3)], which we estimate as by the PLMMSE method is, on averag&3dB higher than
BM3D debluring, 0.4dB higher than BM3D denoising, and
0.8dB lower than RD. In terms of running times, however, our
method is, on average] times faster than BM3D deblurring,
, 16 times faster than BM3D denoising and times faster
Figure[4 demonstrates our approach on @& x 512 a0 Rp. Note that RD requires initialization with a dendise
Gold-hill image. In this experiment, the blur corresponded ¢ gjon of 7, for which purpose we used the BM3D algorithm.
a Gaussian kernel with standard deviatib2. To model a Consequently, the running time reported in the last column

situation in which the noise iY" is due only to quantization of Table[l includes the running time of the BM3D denoising
errorsy we ChOS@-U = 1/\/12 ~ 03 a.nd oy = 4.5 These methOd.

parameters correspond to a peak signal to noise ratio (PSNR)

of 25.08dB for the blurred image and5.07dB for the noisy /| A ppLICATION TO MANEUVERING TARGET TRACKING
image.

We used the orthogonal Symlet wavelet of ordemland fNext, we Qemonstrate PklfMMAS\E l(_esur_natlo_n 'nht.hﬁ ;}qntext
employed10 EM iterations to estimate’ and o1, in each of maneuvering target tracking. Applications in which thes

wavelet level. The entire process takes seconds on a Dual- 2 need to track the kinematic features of a target are ubiqui-
Core3GHz computer with un-optimized Matlab code. We notPus: Often, mulnple types of measurements are avallable..
that our approach can be viewed as a smart combinationrkﬁn'C(_)Operat've scenarios, these may include range,r.&gga.rl
Wiener filtering for image debluring and wavelet threshoggi €/€vation, range rate (Doppler), and marel[16]. In navigati

for image denoising, which are among the simplest and ﬁastggp_hcapons, megsurements may !nclu_de the signals ofaglob
methods available. Consequently, the running time is att leavigation satellite systems and inertial sensors (mle .
an order of magnitude faster than any other sparsity-ba s and r.ate gyros). Such sensors are used in satellites
method, including the Bayesian approaches FBMP [3], BCRS well as in modern cellular phones, tablet computers and
[8] and SBL [9] and fast; minimization algorithms such as 2y, oy setting this method does not produce ringing effeots thus the
NESTA [11], GPSRI[12] and Bergman iterations[13]. As aadditional de-ringing stage proposed fin [6] was not applied

M
- ~ 1 -
o= E mor B=gp ) fR). (41)
= =1



Fig. 4: Debluring with a blurred/noisy image pair using PLME estimation and RO [6]. (a) Blurred image (top left) and
noisy imageZ (bottom-right). (b) LMMSE-deblurred imag&: (top-left) and MMSE-denoised imag& " (bottom-right).
(c) BM3D-deblurred image (top left) and BM3D-denoised iraggottom-right). (d) Original imag& . () PLMMSE estimate
XPL from Y and Z. (f) RD recovery fromY and Z.

vehicles. Measurements of this type can be fused toeaid, At the nth time instant, the goal is to obtain an estimate

autonomous navigation [17] or traffic monitoririg [18]. X(n) of X(n) based on the measuremeds(k)}7_, and
To model the tracking problem one usually defines a staf&(k)}7_,. Ideally, we would like our estimation scheme to

vector X (k) comprising the target kinematic data, whictpossess a recursive structure such ffiat) is computed from

evolves via the following stochastic linear equation the previous estimat& (n — 1) and the current measurements
Y (n) and Z(n) without needing to store the entire measure-
X(k+1) = FpX(k)+ BeW (k). (42)  ment history.

Here,{W (k)} is a zero-mean white noise sequence satisfyingA simple, yet popular method for modeling maneuvering
Cov(W (k) = o, I for all k and{F}} and{B;,} are known targets is the dynamic multiple-model methad|[19] in which
deterministic matrices. For the simplicity of the expasitiwe W (k) follows a Gaussian mixture distribution. In this case,
assume thak (0) = 0 (modification to other initializations is low intensity noise represents the nominal, non-manengeri

trivial). Suppose that two sets of measurements of the staf@tion regime of the target, and high intensity processenois

are observed, so that represents abrupt maneuvers characterized by increasgel mo
uncertainty, and caused bgg., faults in the actuators of
<Y(k)) = <Hk) X (k) + <U(k)) (43) an autonomous aerospace system. Unfortunately, the MMSE
Z(k) Gr V(k))’ solution does not admit a recursive implementation [20his t

where {U(k)} and {V(k)} are mutually independent zero-S€tting.
mean white noise sequences satisfyihg (U(k)) = o7 I and One alternative is to resort in these cases to LMMSE
Cov(V(k)) = o3I, and{H} and{G}} are given matrices. estimation, whose recursive implementation is given by the



TABLE [ Performance of deblurring/denoising on severalages. Numbers on the left and right of the slash indicate,
respectively, PSNR in dB and running time in seconds.

| X3t | XL | BM3D Denoising | BM3D Deblurring | PLMMSE | RD |
Boat (12 X 512) 25.3970.83 | 23.45/0.06 | 27.85/ 13.52 28.40 7 10.23 28.0570.88 | 29.22/15.31
Lena 612 x 512) 26.93/0.73 | 24.59/0.03 | 29.47/13.22 30.58 / 8.90 30.58 / 0.81 | 31.37/15.19
Mandrill (512 x 512) || 21.40/0.64 | 20.59/0.06 | 22.72/13.58 21.78 / 9.57 22.58 /0.72 | 23.30/15.58
Peppers 12 x 512) 26.74 1 0.81 | 24.89/0.08 | 29.49/13.14 29.74 1 8.91 29.80 /0.88 | 31.52/15.03
Mountain 640 x 480) || 19.23/0.95 | 17.69/0.09 | 20.11/15.24 18.45 / 11.12 20.03 /1.05 | 20.42 /17.47
Frog (621 x 498) 23.23/0.94 | 22.35/0.16 | 24.00 / 16.07 24.40 /13.37 | 24.69/1.09 | 24.69 / 21.14
Gold-hill (512 x 512) || 25.90 /0.69 | 24.26 /0.06 | 27.52/13.41 28.70 / 9.54 28.82 /1.09 | 29.09 / 21.14
Average 24.1270.81 | 22.55/0.08 | 25.887 14.03 26.01 7 10.23 26.3170.89 | 27.09716.19
Kalman filter. Another option is to employ approximations H = diag (H1 Hy, - Hn), 47

of the MMSE estimate, which can be computed recursively,

such as the interacting-multiple-model (IMM) filtérl [1]. &h and

performance of these methods tends to depend heavily on G=diag(Gi G2 - Gy). 48)
the assumption that the measurement noises are Gaussian.

When their actual distribution is unknown, their perforre@n Therefore, as we have seen in](13), the batch PLMMSE

deteriorates. estimate ofX from Y and Z is given in this case by
Sometimes, nonetheless, the MMSE estimate can be cal-
culated in an online manner. As shown below, this happens, E[X|Z]+ A(Y — HE[X|Z]) (49)

e.g., when the state evolves according to titate acceleration

model [21] and available are acceleration measurements. Wh\g%1 the mﬁ mI)éAXO; @?)\PE W2l and taking i
supplied with two sets of measurements, only one of which oting thatE[X|Z] = [W]Z] and taking into account

allowing recursive MMSE estimation, it may be advantageo 4r assumption tth[W(k —1)|2] =E[W(k—1)|Z(k)] and
to use PLMMSE estimation rather than approximate MMS € blOCk_ lower-triangular str_uctl_Jre &, we see that théth
solutions. In this case, under some mild conditions, t ement in the vectaE[X|Z] is given by
PLMMSE esfcimate can be updated recursively, similarly tngL(k) _ Fk_ngL(k—1)+Bk_1]E[W(k—1)|Z(k)]. (50)
the Kalman filter.

Suppose that the distribution dfV’(k)} and {W(k)} is We have thus obtained a recursive computationXgf" (k)
such that, for anyk < n, EW(k)|Z(1),...,Z(n)] = from XY (k—1) and Z(k).
E[W (k)|Z(k+ 1)] and that the RVdE[W (k)| Z(k+1)]} are Next, it remains to determine whether the operationdof
uncorrelated. As we discuss in the sequel, this impliesttieat admits a recursive implementation. Before we do so, we Irecal
MMSE estimateX(n) can be computed recursively fromthat the LMMSE estimate ok from Y, which is given by
XYE(n—1) andZ(n). Our goal is to compute the PLMMSE ;
estimateX " (n) of X (n) from {Y (k)}7_, and{Z(k)}?_,. XY =TxxHT (HI‘XXHT + U?JI) Y (51)
To obtain a recursive implementation, it is insightful tcaee
ine first the batch PLMMSE solution. To this end, we definé this case, can be implemented recursively via the Kalman
filter. In our setting,I'xx = U%V\II\IIT and, due to the as-

X1 Y1) Z(1) sumption thatCov(E[W|Z]) = I, we have thangLXgL =
X = o Y= A= ) pew’ = (B/0%,)Txx. Therefore, the matrixA of the
X(n) Y(n) Z(n) PLMMSE estimate reduces frofi{14) to
U(1) V(1) w(0) i
) ) . p T p T, o
U= : , V= : , W= : . 1_O'T IxxH 1—07 HTU'xxH" +o;1
w w
U(n) V(n) W(n-1) o2 o2 i
(44) =TxxH” (HI‘XXHT + ¥ Uﬁ1> :
o2, —
Therewith, we have froni(42) that v (52)
X=9W, Y=HX+U, Z=GX+YV, (45) We see that this matrix is the same as that appearing in
where (51), except for the noise variance which is multiplied here
by o%./(c%, — B3). This implies that multiplication byA
By 0 T 0 corresponds to a Kalman filter with higher observation noise
F1Bo B 0 We conclude that the complete recursive PLMMSE imple-
o F>F1Bo F2B, 0 (46) mentation comprises the following steps:

a) Initialization: X}(0) =0, X(0) =0, Py = 0.
b) Recursion: For k = 1,2,... perform the routine sum-

n—1 n—2
kl;ll FnkBo kl;ll FngBi - B marized in Alg[1.
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Algorlthm 1 One CyCle of the Recursive PLMMSE. 0n|y the target’s positions at times, £k — 1, and k — 2,

Input: Y'(k), Z(k) XgL(k ~1) X(k —1), Py estimating the velocity and acceleration is straightforivas

1 WS (k — 1) = E[W (k — 1)|Z(k)]. P(k)—P(k—1)andP(k)—2P(k—1)+P(k—2), respectively.

2 XDU(k) = Fip 1 X3%(k — 1) + B WhT (k — 1).

3 YZI%L((k)): H];Xl'gLZ ( ) kW2 ) We compare the performance of the recursive PLMMSE

Y (k) = Y (k) — V) (k). methoq with the one of a standeird KF which providgs,
recursively, the LMMSE optimal estimate of the state using

the measurement se{<Z (k)} and {Y(k)}, as well as with

P, =F; P, F_, + 0% BB} that of the IMM filter [1] which is known to be extremely

»

o

. UpdateX (k — 1), P_; usingY (k) via a Kalman step:

02 52 i effective in multiple model estimation problems [19]. The
K = P;Hf (HPka + 2W v I) main idea underlying the IMM algorithm is to maintain a bank
ow B of primitive Kalman filters, each matched to a different mlode
Ly =(I-KHy)Ap in the given model set. Each filter produces a local estimate
X (k)= LpX(k— 1)+ K.Y (k) with an associated error covariance using its initial estén
02 o2 and covariance and the current measurement. The key element
Py =P Ky (HkPng + UQW_UﬁI> Ky of the IMM scheme is the interaction block that generates,
w using all local estimates, individual initial conditionsrfeach
6: XPL(k) _ XEL(k:) + X(k). of tiie primitive filters in the bank. In our case, the two m@d_el
Output: XPL(k),XgL(k),X(k), P, maintained by the IMM method correspond to the two possible

realizations ofS;, such that one model corresponds to the low
process noise variance representing the nominal targeheeg
and the second model for the maneuvering one.

A. Example: Tracking a Maneuvering Target From Position

and Acceleration Observations We simulated a random sequendeX(k)} for k =

A common way of describing target kinematics is via the, ... 1000 according to [(4R) initialized afX(0) = 0 and
nearly-constant-vel ocity model, also known as thehite accel-  driven by a process noidéV (k)} having, at each time, a two-
eration model [21]. Focusing on one dimension for simplicity,modal Gaussian mixture distribution, with= 0.05, o; = 10,
and denoting byP(k) the position of the target at timkT’, and o, = 1. The state position is observed via a Gaussian
the state vectoX (k) = (P(k) P(k—1) P(k— 2))T in  measurement equation with; = 5 and the covariance of the
this model evolves according tb (42) with Gaussian measurement noise of the acceleragipnis swept
from 1 to 15. Averaged overb00 independent Monte Carlo

2 -1 0 " . .
runs, the average squared position, velocity, and actielera
Fp,=|1 0 0]. (53) . X
0 1 0 errors are presented, respectively, on the top, middle, and
bottom of the left chart of Fid.]5. Outperformed by the IMM,
If the samgling intervall” is small, then, to close extenl8, = the PLMMSE method scores better than the Kalman filter
(1 0 0)° (seeeg, [21]). The driving noiseW,, in this since it optimally utilizes the acceleration measuremelhis
model corresponds to the target’s acceleration. noticeable that at high values @}, Kalman’s and PLMMSE's

In many applications[[22], the target's velocity changesrrors coincide indicating that acceleration measuremdat
gradually most of the time apart for abrupt transients, Whiaot carry valuable information in addition to that carrieg b
occur every once in a while. This behavior can be describédf (k)}.
by letting W), = Sk By, where B, ~ N (0,1) andP(S;, =
01) = 1 —=P(Sx = 02) = p. If o1 is much larger tharr, In many practical scenarios the distribution of the positio
andp is small then the mean time between consecutive largeasurement noise is far from Gaussian (seg [23] and
acceleration events is large. In the terminology of the iplalt references therein). On the right chart of Hig. 5 we present
model approach mentioned above, each of the componetis position, velocity and acceleration errors obtainedao
in the Gaussian mixture corresponds to a different dynantBaussian mixture distribution of the position noise hawimeg
model. same first- and second-order statistics as before. Suchra dis

Suppose that we observe noisy measuremé&f(ts) and bution may model occasional outlier measurements or sensor
Z (k) of the position P(k) and acceleratiodV (k — 1), re- faults [24]. None of the filters is supplied with this infortian
spectively. These measurements relate to the state veetorand only the first- and second-order moments are provided to
(@#3), withH, = (1 0 0)andGr = (1 —2 1).Indeed, the algorithms. Utilizing the position measurements imadir
it is easily verified that in this setting (k) = W(k — 1) + manner, both Kalman and PLMMSE keep the performance

V (k). Consequently, fon > k, E[W(k)|Z(1),...,Z(n)] = unchanged relative to the Gaussian case. In a contradistinc
EW (k)| Z(k + 1)] = f(Z(k + 1)) with the functionf(-) of the IMM algorithm results in an inferior performance. This
(32). phenomenon is tightly related to the statement of Thedrem 3

Equipped with the matriced'y, By, H, and G, we claiming that the PLMMSE method is ensured to attain a
estimate the state vector ¢f {42) using the recursive PLMMS#naller worst-case MSE in comparison to any other estimatio
method described above. Note that althougtk) comprises technique provided the appropriate moments are kept aunsta
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(@) (b)

Fig. 5: Mean squared estimation errors of the position (tepjocity (middle) and acceleration (bottom) vs, using the
PLMMSE approach (solid), IMM (dashed) and standard KF (elstted). (a{ U (k)} have a Gaussian distribution. (p)/ ()}
have a Gaussian mixture distribution.

VII. CONCLUSIONS to the LMMSE estimate o based ort”, under the the joint

In this paper we derived the PLMMSE estimator, whicKistribution of (X, Y’) given Z, concluding the proof.
is the method whose MSE is minimal among all functions
that are linear inY”. We showed that the PLMMSE solution APPENDIX B
depends only on the joint second-order statisticsXofand PROOF OFTHEOREM[Z
Y, which renders it applicable in a wide variety of situations
Furthermore, we showed that this estimator attains thedbwe We start by noting that the se of RVs constituting
worst-case MSE over the set of distributions whose joiﬁpndidate estimates is a closed linear subspace within the
second-order moments &f andY” are fixed. We demonstratedsPace of finite-second-order-moment RVs taking values in
our approach in the context of recovering a vector, which &"'- Therefore, the MMSE estimat& within this subspace,
sparse in a unitary dictionary, from a pair of noisy measuréhich is the projection of the R onto5, is the uniqué RV
ments. In this setting, the PLMMSE solution achieves an MSfhose estimation erroX — X is orthogonal to every RV of the
very close to that attained by iterative approximationtsgs, formAY +b(Z). To demonstrate thaX' of (4) indeed satisfies
such as the FBMP method of1[3], and is much cheapH¥s property, note that the inner product betwéen- X and
computationally. We applied our method to the problemdY +b(Z) is given by
of image enhancement from blurred/noisy image pairs and- . T N 1 N
maneuvering target tracking from position and accelenatié” {(X - X)" (AY + b(Z))} = Tr{E [(X - X)Y } A }
me_asur.ements. In both applications, we showed tr_lat PLMMSE CTr {E [(X _ X)b(Z)T} } .
estimation performs close to state-of-the-art algorithimshe
image enhancement setting, we showed that it can run much (55)
faster than competing approaches. In the context of tar@gfnsiituting [(%), the expectation within the second term be
tracking, we demonstrated the insensitivity of the solutio .qyes
the distribution of the noise i’. This property provides
robustness against sensor faults and outlier measurementg [(I‘X?I‘;?Y/ +E[X|Z] - X) b(Z)T}
problems which are very common in target tracking situation -

=TT E [V0(2)7] + E[(E[X|Z] - X)b(2)7].
APPENDIXA (56)

PROOF OFTHEOREMII

Using the smoothing property, the MSE of any estimator @ecall thaty’ = Y —[E[Y|Z] is the estimation error incurred in

the form [1) is given by estimatingy” from Z. Consequentlyy” and X — E[X|Z] are
Elrlix — A2y — 2121 54 uncorrelated Wlt.h every fu_nct|on cﬂ’ and, in parncular, V\(lth_
[ [” (2) (2)I°] H (54) b(Z), so that this expression vanishes. Similarly, substigutin

Thus, for every specific value that Z can take, the optimal (@) and expressing” = Y + E[Y'|Z], the expectation within
choice of A(z) andb(z) is that minimizing the inner expec-
tation. The solution to this minimization problem corresd®  3In an almost-sure sense.
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the first summand i (35) becomes the joint distribution ofX, Y and Z is Fxyz(z,y, 2). It is
easily verified that
)¥']

e(Fxyz, Xprmmse) = Tr{Txx}

- —Tr {(FXY - FX?LY%\TL ) (Fyy — I‘YgLYgL )T (FXY _ I‘)A(EL)A/%\TL )T}
~E[(X -E[X|Z)(7 +E[V|Z)7].  (57) 2

E [(rxyr;?? +E[X|Z] -

=Ty TL B[V +E[Y|2))7]

for all Fxyz € A. Therefore, in particular[(62) is also the
worst-case MSE ofXFT over 4. We next make use of the
following lemma.

I‘X?FI};?]E F/Y/T} —E[(X —E[X|Z))W"] Lemma 1 There exists a distribution F%. , in the set A

B o o _ _ ~ T of distributions satisfying (I9), under which the PLMMSE
=Lyl vy —E [(X px + px — EX|Z])Y } estimate of X based on Y and Z coincides with the MMSE

:rxf/—rxwuus[(}E[X|Z]_NX)YT} estimate E[X|Y, Z].
Proof: See AppendikE. ]
Now, any estimatoX that is a function ofy” andZ satisfies

Being a function ofZ, the RVE[Y'|Z] is uncorrelated with”
and X — E[X|Z] so that this expression can be reduced to

=Txy —Txy
=0, (58)

sup e(F X)) > e(Fiy,, X
where we used the facts tHE[ | =0, thatT" I‘~~I‘YY = nyzpeA Fxvz, X) (Fxyz:X)

Ty [25, Lemma 2], and thaY is uncorrelated witfE[X | Z] > mine(Fiy 4, X)
(due to the same argument as above). This completes the proof X
=e(Fyyz, E[XY, Z])
APPENDIXC =e(Fyyz, X'
DERIVATION OF EQUATION (@) = max e(Fxyz XTY), (63)
By definition Poveed
efinition, __

y where the first line follows from the fact thaty, , € A, the

Ty = E[(X — ux)(Y —E[Y|Z)"] third line is a result of the fact that the MMSE and PLMMSE
=E[(X — pux)(Y — py + py — E[Y|Z]

T estimators coincide undéfy ,, and the last line is due to the
: - fact thate(Fxy 7, XPL) is constant as a function dfxy z

)
(

_ T
= E[(X —px) (Y —py) ] = E[(X = px)(E[Y[Z]=1yv)"] gyer A. We have thus established that the worst-case MSE
=Txy — EE[(X — pux)(E]Y|Z] — uy)"|Z]] of any estimator overd is greater or equal to the worst-case
=Txy — E[(E[X|Z] — ux)(E[Y|Z] — uy)T] MSE of the PLMMSE solution over, proving thatXtL is
—Tyy — FXgLYgL, (59) minimax optimal.

where XJ* = E[X|Z] and Y} = E[Y|Z]. Here, the fourth APPENDIXE

equality is a result of the smoothing property and the last PROOF OFLEMMA [1]

equality follows from the facts thaE[E[X|Z]] = ux and  we prove the statement by construction. YeandZ be two

E[E[Y]Z]] = py. In @ similar manner, it is easy to show thaRys distributed according 8y and denotéi(Z) = E[Y'|Z]
andY =Y — h(Z). Let U be a zero-mean RV, statistically

Tyy =Tyy = Fypyp. (60) independent of the paifY’, Z), whose covariance matrix is
Using [60) and the fact thaf is uncorrelated wittE[Y|Z] — Tyy = Txx — Cov(g(Z)) =T 3T Ty . (64)
Ly, we obtain vy
o It can be easily verified that this is the covariance matrithef
Iyy =E[YY7] estimation error of the LMMSE estimate &f = X —E[X|Z]
=E[(Y —E[Y|Z])YT] based oY’ = Y —E[Y'|Z]. Therefore, this is a valid covariance
- = matrix. Consider the
=E[(Y — uy)YT] ~ E[E[Y|Z] - py)Y"]
~T,. X =Ty yTL YV +9(2)+U. (65)
=TDyy = Tynupae. (61)  we will show that the so constructel, ¥ and Z satisfy

the constraints[(19). Indeed, using the fact thahas zero
mean and is statistically independent ©&f we find that the
conditional expectation oKX of (63) givenZ is

Substituting [(BR) and (61) int¢1(4) leads {d (6).
APPENDIXD
PROOF OFTHEOREM[ E[X|Z] = g(2). (66)

Let (FXYZ5X> = Enyz[HX XH ] denote the MSE ‘Recall thatl" , ;- andT'; - are functions ofCov (X, Y) and Fy z, which
incurred by an estimatoX of X based onY and Z, when are given.



Furthermore, sinc&”, g(Z) andU are pairwise uncorrelated, [g]
the covariance of{ of (6H) can be computed as -

Cov(X) =Ty TL TyeTh Ty + Cov(g(2)) + Twu
=Ty Th Ty + Cov(g(2))
+Txx — Cov(g(Z)) - TypTL Ty

= FXXa

[20]

[11]
(67)

where we substituted (64). Finally, the cross covarianc of [12]
of (€5) andY is given by

Cov(X,Y) =Ty TL Ty, + Cov(g(2), h(2)) [13]
=Ty TL Ty + Cov(g(2), h(Z2))
=Ty + Cov(g(2),h(2)) [14]
=Txy — Cov(g9(Z2),h(Z)) + Cov(y(Z),(Z))

[15]

6]

=Ty, (68)

where the second equality follows from the third line [6_1‘"](61)[1
the third equality follows from[[25, Lemma 2], and the fourt
equality follows from [(EB). Equationd (b6)[_(67) an(68’117]
demonstrate that the distributiafiy, , associated withX,
Y and Z, belongs to the family of distributiongl satisfying
19).

Next, we show that the PLMMSE and MMSE estimators
coincide undefy- ;. Indeed, sincé/ is statistically indepen- (19]
dent of the pai(Y’, Z), we have thaE[U[Y', Z] = E[U] =0, [yq
so that

(18]

E[X|Y,Z] =T yyTL E[Y|Y, Z] + E[g(Z) + U], Z] [21]

=TyyTLo (Y = h(2)) +g(Z) + E[U]Y, Z]

+ [22]
— Dy TL (Y = h(2)) + 9(2), (69)

where we used the fact that there is a one-to-one transfiggl
mation between the paifY, Z) and the pair(Y, Z). This [24]
expression is partially linear iF, implying that this is also the
PLMMSE estimator in this setting. Thus, for the distributio
F%y 5, the PLMMSE estimator is optimal not only among all®®
partially linear functions, but also amorayl functions ofY

and Z.
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