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Abstract—We address the problem of estimating a random
vector X from two sets of measurementsY and Z, such that
the estimator is linear in Y . We show that the partially linear
minimum mean squared error (PLMMSE) estimator does not
require knowing the joint distribution of X and Y in full,
but rather only its second-order moments. This renders it of
potential interest in various applications. We further show that
the PLMMSE method is minimax-optimal among all estimators
that solely depend on the second-order statistics ofX and Y .
We demonstrate our approach in the context of recovering
a signal, which is sparse in a unitary dictionary, from noisy
observations of it and of a filtered version of it. We show that
in this setting PLMMSE estimation has a clear computational
advantage, while its performance is comparable to state-of-the-art
algorithms. We apply our approach both in static and dynamic
estimation applications. In the former category, we treat the
problem of image enhancement from blurred/noisy image pairs,
where we show that PLMMSE estimation performs only slightly
worse than state-of-the art algorithms, while running an order of
magnitude faster. In the dynamic setting, we provide a recursive
implementation of the estimator and demonstrate its utility in
the context of tracking maneuvering targets from position and
acceleration measurements.

Index Terms—Bayesian estimation, minimum mean squared
error, linear estimation.

I. I NTRODUCTION

Bayesian estimation is concerned with the prediction of
a random quantityX based on a set of observationsY ,
which are statistically related toX . It is well known that
the estimator minimizing the mean squared error (MSE) is
given by the conditional expectation̂X = E[X |Y ]. There
are various scenarios, however, in which the minimal MSE
(MMSE) estimator cannot be used. This can either be due
to implementation constraints, because of the fact that no
closed form expression forE[X |Y ] exists, or due to lack of
complete knowledge of the joint distribution ofX and Y .
In these cases, one often resorts to linear estimation. The
appeal of the linear MMSE (LMMSE) estimator is rooted in
the fact that it possesses an easily implementable closed form
expression, which merely requires knowledge of the joint first-
and second-order moments ofX andY .
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For example, the amount of computation required for cal-
culating the MMSE estimate of a jump-Markov Gaussian
random process from its noisy version grows exponentially
in time [1]. By contrast, the LMMSE estimator in this setting
possesses a simple recursive implementation, similar to the
Kalman filter [2]. A similar problem arises in the area of sparse
representations, in which the use of sparsity-inducing Gaussian
mixture priors and of Laplacian priors is very common. The
complexity of calculating the MMSE estimator under the
former prior is exponential in the vector’s dimension, calling
for approximate solutions [3]. The MMSE estimator under the
latter prior does not possess a closed form expression [4],
which has motivated the use of alternative estimation strategies
such as the maximum a-posteriori (MAP) method.

In practical situations, the reasons for not using the MMSE
estimator may only apply to a subset of the measurements.
In these cases, it may be desirable to construct an estimator
that is linear in part of the measurements and nonlinear
in the rest. Partially linear estimation was studied in the
statistical literature in the context of regression [5]. Inthis
line of research, it is assumed that the conditional expectation
g(y, z) = E[X |Y = y, Z = z] is linear in y. The goal, then,
is to approximateg(x, y) from a set of examples{xi, yi, zi}
drawn independently from the joint distribution ofX , Y and
Z. In this paper, our goal is to derive the separable partially
linear MMSE (PLMMSE) estimator. Namely, we do not make
any assumptions on the structure of the MMSE estimate
E[X |Y, Z], but rather look for the estimator that minimizes
the MSE among all functionsg(x, y) of the formAy + b(z).

We show that in certain sparse approximation scenarios, the
PLMMSE solution may be computed much more efficiently
than the MMSE estimator. We demonstrate the usefulness of
the sparse PLMMSE both in static and in dynamic estimation
settings. In the static case, we apply our method to the problem
of image deblurring from blurred/noisy image pairs [6]. Here,
we show that PLMMSE estimation performs only slightly
worse than state-of-the art methods, but is much faster. In
the dynamic regime, we provide a recursive implementation
of the PLMMSE solution and demonstrate its usefulness in
tracking a maneuvering target from position and acceleration
measurements. We show the advantage of PLMMSE filtering
over state-of-the-art algorithms when the measurements are
prone to faults or contain outliers.

The paper is organized as follows. In Section II we present
the PLMMSE estimator and discuss some of its properties. In
Section III, we show that the PLMMSE method is optimal in
a minimax sense among all estimators that solely rely on the
second-order statistics ofX andY . In Section IV we derive
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the PLMMSE estimator for recovering a signal, sparse in a
unitary dictionary, from a pair of observations, one blurred and
one noisy. In Section V we apply our method to the problem
of image enhancement from blurred/noisy measurement pairs.
In Section VI we apply PLMMSE estimation to tracking
maneuvering targets.

II. PARTIALLY L INEAR ESTIMATION

We denote random variables (RVs) by capital letters. The
pseudo-inverse of a matrixA is denoted byA†. The mean
E[X ] of an RV X is denotedµX and the auto-covariance
matrix Cov(X) = E[(X − µX)(X − µX)T ] of X is denoted
ΓXX . Similarly, ΓXY stands for the cross-covariance matrix
Cov(X,Y ) = E[(X − µX)(Y − µY )

T ] of two RVs X and
Y . The joint cumulative distribution function ofX and Y
is written as FXY (x, y) = P(X ≤ x, Y ≤ y), where
the inequalities are element-wise. By definition, the marginal
distribution ofX is FX(x) = FXY (x,∞). In our setting,X
is the quantity to be estimated andY andZ are two sets of
measurements thereof. The RVsX , Y andZ take values in
RM , RN andRQ, respectively. The MSE of an estimator̂X
of X is defined asE[‖X − X̂‖2].

We begin by considering the most general form of a partially
linear estimator ofX based onY andZ, which is given by

X̂ = A(Z)Y + b(Z). (1)

HereA(z) is a matrix-valued function andb(z) is a vector-
valued function, so that the realizationz of Z is used to choose
one of a family of linear estimators ofx based ony.

Theorem 1 Consider estimators of X having the form (1),
for some (Borel measurable) functions A : RQ → RM×N

and b : RQ → RM . Then the estimator minimizing the MSE
within this class is given by

X̂ = ΓXY |ZΓ
†
Y Y |Z(Y − E[Y |Z]) + E[X |Z], (2)

where ΓXY |Z = E[(X − E[X |Z])(Y − E[Y |Z])T |Z] denotes
the cross-covariance of X and Y given Z and ΓY Y |Z =
E[(Y − E[Y |Z])(Y − E[Y |Z])T |Z] is the auto-covariance of
Y given Z .

Proof: See Appendix A.
Note that (2) is indeed of the form of (1) withA(Z) =
ΓXY |ZΓ

†
Y Y |Z and b(Z) = E[X |Z] − ΓXY |ZΓ

†
Y Y |ZE[Y |Z].

As can be seen, although the MMSE solution among the class
of estimators (1) has a simple form, it requires knowing the
conditional covarianceΓXY |Z , which limits its applicability.
In particular, this solution cannot be applied in cases where
we merely know the unconditional covarianceΓXY .

To relax this restriction, we next considerseparable partially
linear estimation. Namely, we seek to minimize the MSE
among all functions of the form

X̂ = AY + b(Z), (3)

whereA is a deterministic matrix andb(z) is a vector-valued
function.

Theorem 2 Consider estimators of X having the form (3),
for some matrix A ∈ RM×N and (Borel measurable) function

X

Y Z

E[X|Z]

FY Z

Cov(X)

Cov(X,Y )

Fig. 1: The statistical knowledge required for computing the
PLMMSE estimator (4).

b : RQ → RM . Then the estimator minimizing the MSE within
this class is given by

X̂PL = ΓXỸ Γ
†

Ỹ Ỹ
Ỹ + E[X |Z], (4)

where

Ỹ = Y − E[Y |Z]. (5)

Proof: See Appendix B.
Note again that (4) is of the form of (3) withA = ΓXỸ Γ

†

Ỹ Ỹ

andb(Z) = E[X |Z]−ΓXỸ Γ
†

Ỹ Ỹ
E[Y |Z]. The major advantage

of this solution with respect to the non-separable estimator (1),
is that the only required knowledge regarding the statistical re-
lation betweenX andY is of second-order type. Specifically,
as we show in Appendix C, (4) can be equivalently written as

X̂PL =
(
ΓXY − Γ

X̂NL

Z
Ŷ NL

Z

)(
ΓY Y − Γ

Ŷ NL

Z
Ŷ NL

Z

)†(
Y − Ŷ NL

Z

)

+ X̂NL
Z , (6)

where we denotedX̂NL
Z = E[X |Z] and Ŷ NL

Z = E[Y |Z].
Therefore, all we need to know in order to be able to compute
the separable PLMMSE estimator (4) is the covariance matrix
ΓXY , the conditional expectationE[X |Z] and the marginal
joint cumulative distribution functionFY Z of Y andZ. This
is illustrated in Fig. 1. In fact, as we show in Section III, in
addition to being optimal among all partially linear methods,
the PLMMSE solution (4) is also optimal in a minimax
sense among all estimation strategies that rely solely on the
quantities appearing in Fig. 1.

The intuition behind (4) is similar to that arising in dynamic
estimation schemes, such as the Kalman filter. Specifically,
we begin by constructing the estimateE[X |Z] of X based
on the measurementsZ, which minimizes the MSE among
all functions ofZ. Next, we would like to account forY .
However, sinceZ has already been accounted for, we first
need to subtract fromY all variations caused byZ. This is
done by constructing the RṼY of (5), which can be thought
of as theinnovation associated with the measurementsY with
respect to the initial estimateE[X |Z]. Finally, since we want
an estimate that is partially linear inY , we update our initial
estimate with the LMMSE estimate ofX based onỸ .

Before discussing the minimax-optimality of the PLMMSE
estimator, it is insightful to examine several special cases, as
we do next.
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a) Independent measurements: Consider first the case in
which Y andZ are statistically independent. In this setting,
Ỹ = Y − µY and therefore the PLMMSE estimator (4)
becomes

X̂PL = ΓXY Γ
†
Y Y (Y − µY ) + E[X |Z] = X̂L

Y + X̂NL
Z − µX ,

(7)

whereX̂L
Y denotes the LMMSE estimate ofX from Y . Thus,

in this setting, the PLMMSE estimate reduces to a linear
combination of the LMMSE estimatêXL

Y and the MMSE
estimateX̂NL

Z . The need for subtracting the mean ofX arises
because botĥXL

Y and X̂NL
Z account for it. Indeed, note that

E[X̂L
Y ] = E[X̂NL

Z ] = µX , so that without subtraction ofµX ,
the estimateX̂PL would be biased, with a mean of2µX .

b) Z is independent of X and Y : Suppose next that
both X and Y are statistically independent ofZ. Thus, in
addition to the fact that̃Y = Y −µY , we also haveE[X |Z] =
µX . Consequently, the PLMMSE solution (4) reduces to the
LMMSE estimate ofX givenY :

X̂ = ΓXY Γ
†
Y Y (Y − µY ) + µX = X̂L

Y . (8)

c) Y is uncorrelated with X and independent of Z:
Consider the situation in whichY and Z are statistically
independent andX andY are uncorrelated. TheñY = Y −µY ,
and alsoΓXỸ = ΓXY = 0 so that (4) becomes the MMSE
estimate ofX from Z:

X̂ = E[X |Z] = X̂NL
Z . (9)

d) X is independent of Z: In situations whereX andZ
are statistically independent, one may be tempted to conclude
that the PLMMSE estimator should not be a function ofZ.
However, this is not necessarily the case. Specifically, although
the second term in (4) becomes the constantE[X |Z] = µX in
this setting, it is easily verified thatΓXỸ = ΓXY , so that the
first term in (4) does not vanish unlessX is uncorrelated with
Y . As a consequence, the PLMMSE estimator can be written
as

X̂ = ΓXY Γ
†

Ỹ Ỹ
Y + µX − ΓXY Γ

†

Ỹ Ỹ
E[Y |Z], (10)

in which the last term is a function ofZ. This should come
as no surprise, though, because if, for instance,Y = X + Z,
then the optimal estimate iŝX = Y −Z, even ifX andZ are
independent. This solution is clearly a function ofZ.

e) X is uncorrelated with Y : A similar phenomenon
occurs whenX andY are uncorrelated. Indeed in this case,
ΓXỸ = −Γ

X̂NL

Z
Ŷ NL

Z

, so that the first term in (4) does not

vanish unlessX̂NL
Z is uncorrelated withŶ NL

Z . Consequently,
the estimator (4) can be expressed as

X̂ = −Γ
X̂NL

Z
Ŷ NL

Z

Γ
†

Ỹ Ỹ
Y + Γ

X̂NL

Z
Ŷ NL

Z

Γ
†

Ỹ Ỹ
E[Y |Z] + E[X |Z],

(11)
in which the first term is clearly a linear function ofY .

f) Additive noise: Perhaps the most widely studied mea-
surement model corresponds to linear distortion and additive
noise. Specifically, suppose that

Y = HX + U, Z = GX + V, (12)

where H ∈ RN×M and G ∈ RQ×M are given matrices
and U and V are zero-mean RVs such thatX , U and V
are mutually independent. As we show in Section IV, there
are situations in which the distribution ofX is such that
the complexity of computing the MMSE estimatorE[X |Y, Z]
is huge, whereas the complexity of computingE[X |Z] is
modest. In these cases one may prefer to resort to PLMMSE
estimation. This method does not correspond to a convex
combination of the LMMSE estimate ofX from Y and
the MMSE estimate ofX from Z, as might be suspected.
Indeed, substitutingY = HX + U , we have thatΓXY =
ΓXXH

T and ΓY Y = HΓXXH
T + ΓUU . Furthermore,

E[Y |Z] = HE[X |Z], so thatΓ
X̂NL

Z
Ŷ NL

Z

= Γ
X̂NL

Z
X̂NL

Z

H
T and

Γ
Ŷ NL

Z
Ŷ NL

Z

= HΓ
X̂NL

Z
X̂NL

Z

H
T . Consequently, the PLMMSE

estimator (6) becomes

X̂ = AY + (I −AH)E[X |Z], (13)

whereI is the identity matrix andA is given by

A =
(
ΓXX − Γ

X̂NL

Z
X̂NL

Z

)
H

T

×
(
H

(
ΓXX − Γ

X̂NL

Z
X̂NL

Z

)
H

T + ΓUU

)†

.

(14)

We see that, as opposed to a convex combination ofX̂NL
Z

and X̂L
Y , the PLMMSE method reduces to a combination of

X̂NL
Z andY . Furthermore, the weights of this combination are

matrices rather than scalars.
As a toy example demonstrating this, suppose thatX is a

scalar binary RV taking the values±1 with equal probability,
thatH = G = 1, and thatU ∼ N (0, σ2

V ) andV ∼ N (0, σ2
V ).

It is easily verified that in this case

X̂NL
Z = E[X |Z] =

N (Z − 1; 0, σ2
V )−N (Z + 1; 0, σ2

V )

N (Z − 1; 0, σ2
V ) +N (Z + 1; 0, σ2

V )
,

(15)
whereN (γ;µ, σ2) denotes the Gaussian density function with
meanµ and varianceσ2, evaluated atγ. Similarly,

X̂L
Y =

σXY

σ2
Y

(Y − µY ) + µX =
1

1 + σ2
U

Y, (16)

where we used the facts thatσ2
Y = σ2

X + σ2
U and σXY =

σ2
X = 1. The PLMMSE estimator (13), is therefore given by

X̂PL = γY + (1− γ)X̂NL
Z , (17)

whereγ = (1− σ2
X̂NL

Z

)/(1+ σ2
U − σ2

X̂NL

Z

) (see (14)). Figure 3
compares the MSE attained by the PLMMSE method to that
of the naive convex-combination estimator

X̂naive = αX̂L
Y + (1 − α)X̂NL

Z , (18)

for all α ∈ [0, 1]. As can be seen, whenσU = σV , the MMSE
of the PLMMSE method is roughly12% lower than the lowest
MSE of the naive estimator. This advantage becomes less
significant asσU and σV draw apart. As mentioned above,
though, in multi-dimensional problems the PLMMSE method
uses matrix weights rather than scalars, so that its potential
for improvement over the naive estimator is yet greater.
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Fig. 2: The MSE attained bŷXPL of (17) and byX̂naive of (18) as a function ofα for several values ofσU and σV .
(a) σ2

U = 0.5, σ2
V = 2. (b) σ2

U = 1, σ2
V = 1. (c) σ2

U = 2, σ2
V = 0.5.

III. PARTIAL KNOWLEDGE OFSTATISTICAL RELATIONS

As discussed in Section II, one of the appealing properties
of the PLMMSE solution is that it does not require knowing
the entire joint distribution ofX and Y , but rather only its
second-order moments. However, the fact that the PLMMSE
estimator is merely determined byE[X |Z], Cov(X,Y ) and
FY Z(y, z), does not yet imply that it is optimal among all
methods that rely solely on these quantities. The question of
optimality of an estimator with respect to partial knowledge
regarding the joint distribution of the signal and measurements
was recently addressed in [7]. One of the notions of optimality
considered there, which we adopt here as well, follows from
a worst-case perspective. Specifically, any estimatorX̂ =
g(Y, Z), may attain high MSE under certain distributions
FXY Z(x, y, z) consistent with our knowledge and it may
attain low MSE under other such distributions. We consider
an estimator minimax-optimal if its worst-case MSE over the
set of all feasible distributions is minimal. For example, it
was shown in [7] that the LMMSE estimator̂XL

Y attains the
minimal possible worst-case MSE over the set of distributions
FXY (x, y) with given first- and second-order moments.

In the next theorem we show that the PLMMSE method is
optimal in the sense that its worst-case MSE over the set of
all distributionsFXY Z(x, y, z) complying with the knowledge
appearing in Fig. 1 is minimal.

Theorem 3 Let A be the set of probability distributions of
(X,Y, Z) satisfying

Cov(X) = ΓXX , Cov(X,Y ) = ΓXY , E[X |Z] = g(Z),

FXY Z(∞, y, z) = FY Z(y, z), (19)

where ΓXX and ΓXY are given matrices, g(z) is a given
function and FY Z(y, z) is a given cumulative distribution
function. Then, among all estimators of X based on Y and
Z , the PLMMSE method (4) has the minimal worst-case MSE

sup
FXY Z∈A

EFXY Z

[∥∥∥X − X̂
∥∥∥
2
]
, (20)

over the set A.

Proof: See Appendix D.

IV. PLMMSE ESTIMATION OF SPARSEVECTORS

We now demonstrate the usefulness of the PLMMSE es-
timator in the context of sparse approximations. Specifically,
consider the situation in whichX is known to be sparsely
representable in a unitary dictionaryΨ ∈ R

M×M in the sense
that

X = ΨW (21)

for some RVW that is sparse with high probability. More
concretely, we assume that the elements ofW are given by

Wi = SiBi, i = 1, . . .M, (22)

where the RVs{Bi} and {Si} are statistically independent,
Bi ∼ N (0, 1) and Si = 0 (or take small values) with high
probability. This assumption is very common in the sparse
approximation literature. For example, in [8] and [9] the
variablesSi are assumed to follow a Gamma distribution.
Here, we assume, as in [3], that they are binary, such that
P(Si = σ1,i) = 1 − P(Si = σ2,i) = pi with someσ1,i ≥ 0,
σ2,i ≥ 0 and pi ≥ 0. In particular, settingσ2,i = 0 and
pi small corresponds to vectorsW that are sparse with high
probability.

AssumeX is observed through two linear systems, as in
(12), whereH is an arbitrary matrix,G is an orthogonal
matrix satisfyingGT

G = α2I for some constantα 6= 0,
and U and V are Gaussian RVs withΓUU = σ2

UI and
ΓV V = σ2

V I. A practical image enhancement scenario and
a target tracking situation corresponding to this setting are
detailed in sections V and VI, respectively. This setting can
be cast in the standard sparse approximation form as

(
Y
Z

)
=

(
H

G

)
X +

(
U
V

)
. (23)

It is well known that the expression for the MMSE estimate
E[X |Y, Z] in this case generally comprises2M summands,
which correspond to all different possibilities of sparsity
patterns inW [3]. This renders computation of the MMSE
estimate prohibitively expensive even for modest values of
M and consequently various approaches have been devised
to approximate this solution by a small number of terms (see
e.g., [3] and references therein). For example, the fast Bayesian
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matching pursuit (FBMP) algorithm developed in [3] employs
a search in the tree representing all sparsity patterns in order to
choose the terms participating in the approximation. We note
that FBMP, as well as other sparse recovery methods, can
operate with general measurement and dictionary matrices.

There are some special cases, however, in which the MMSE
estimate possesses a simple structure, which can be imple-
mented efficiently. As we show next, one such case is when
both the channel’s response and the dictionary over whichX
is sparse correspond to orthogonal matrices. As in our setting
Ψ is unitary andG is orthogonal, this implies that we can
efficiently compute the MMSE estimateE[X |Z] of X from Z.
Therefore, instead of resorting to schemes for approximating
E[X |Y, Z], we can employ the PLMMSE estimator ofX based
on Y andZ, which possesses a closed form expression (see
(13)) in this situation. This technique is particularly effective
when the SNR of the observationY is much worse than that
of Z, since the MMSE estimateE[X |Y, Z] in this case is close
to being partially linear inY . Such a setting is demonstrated
in Section IV-C.

A. MMSE Estimate of a Sparse Signal in a Unitary Dictionary

In our setting

Z = GX + V = GΨW + V, (24)

with W of (22). SinceG and Ψ are orthogonal, they are
invertible, so that

Z̃ =
1

α
Ψ

T
G

TZ (25)

carries the same information onX asZ does, namely

E[X |Z] = E[X |Z̃] = ΨE[W |Z̃]. (26)

Now, for everyi = 1, . . . ,M , we have thatZ̃i = αWi + Ṽi,
where Ṽ = α−1

Ψ
T
G

TV is distributedN (0, σ2
V I). There-

fore, the set{Z̃j}j 6=i is statistically independent of the pair
(Wi, Z̃i) and consequently

E[Wi|Z̃] = E[Wi|Z̃i]

= E[Wi|Z̃i, Si = σ1,i]P(Si = σ1,i|Z̃i)

+ E[Wi|Z̃i, Si = σ2,i]P(Si = σ2,i|Z̃i). (27)

Under the eventSi = σj,i with a fixed j ∈ {1, 2}, the RVs
Wi and Z̃i are jointly normally distributed with mean zero,
implying that

E[Wi|Z̃i, Si = σj,i] =
Cov(Wi, Z̃i)

Cov(Z̃i)
=

ασ2
j,i

α2σ2
j,i + σ2

V

Z̃i.

(28)
Finally, using Bayes rule, the termP(Si = σ1,i|Z̃i) reduces to

fZ̃i|Si
(Z̃i|Si = σ1,i)pi

fZ̃i|Si
(Z̃i|Si = σ1,i)pi + fZ̃i|Si

(Z̃i|Si = σ2,i)(1 − pi)

=
N (Z̃i; 0, α

2σ2
1,i + σ2

V )pi

N (Z̃i; 0, α2σ2
1,i + σ2

V )pi +N (Z̃i; 0, σ2
2,i + σ2

V )(1 − pi)

(29)

and, similarly,P(Si = σ2,i|Z̃i) is given by

N (Z̃i; 0, α
2σ2

2,i + σ2
V )(1 − pi)

N (Z̃i; 0, α2σ2
1,i + σ2

V )pi +N (Z̃i; 0, σ2
2,i + σ2

V )(1 − pi)
.

(30)

Substituting (30) and (28) into (27) leads to the following
observation.

Theorem 4 The MMSE estimate of X of (21) given Z of (24)
is

E[X |Z] = Ψf̃

(
1

α
Ψ

T
G

TZ

)
, (31)

where f̃(z̃) = (f(z̃1), . . . , f(z̃M ))T , with

f(z̃i) =

z̃i

(
ασ2

1,ipiN (z̃i;0,α
2σ2

1,i+σ2

V )

α2σ2

1,i
+σ2

V

+
(1−pi)ασ

2

2,iN (z̃i;0,α
2σ2

2,i+σ2

V )

α2σ2

2,i
+σ2

V

)

piN (z̃i; 0, α2σ2
1,i + σ2

V ) + (1 − pi)N (z̃i; 0, α2σ2
2,i + σ2

V )
.

(32)

Therefore, if, for example,Ψ is a wavelet basis andG = I

(so thatα = 1), then E[X |Z] can be efficiently computed
by taking the wavelet transform ofZ (multiplication byΨT ),
applying a scalar shrinkage function on each of the coefficients
(namely calculatingf(z̃i) for the ith coefficient) and applying
the inverse wavelet transform (multiplication byΨ) on the
result. Note that the shrinkage curve (32) is different thanthe
soft-threshold operation, originally proposed in [10]. The latter
can be obtained as the MAP solution with a Laplacian prior,
whereas our function corresponds to the MMSE solution with
a Gaussian mixture prior.

B. PLMMSE Estimate of a Sparse Signal

Equipped with a closed form expression forE[X |Z], we
can now obtain an expression for the PLMMSE estimator (13).
Specifically, we have that

ΓXX = ΨΓWWΨ
T , (33)

whereΓWW is a diagonal matrix with(ΓWW )i,i = piσ
2
1,i +

(1− pi)σ
2
2,i. Similarly,

Γ
X̂NL

Z
X̂NL

Z

= ΨCov(f̃(Z̃))ΨT , (34)

whereCov(f̃(Z̃)) is a diagonal matrix whose(i, i) element is
βi = Cov(f(Z̃i)). This is due to the fact that the elements of
Z̃ are statistically independent and the fact that the function
f̃(·) operates element-wise on its argument. Therefore, the
PLMMSE estimator is given in our setting by equation (13)
with E[X |Z] of (31) and with the matrix

A = Ψ

(
ΓWW − Cov(f̃(Z̃))

)
Ψ

T
H

T

×
(
HΨ

(
ΓWW − Cov(f̃(Z̃))

)
Ψ

T
H

T + σ2
UI

)†

.

(35)

Observe that there is generally no closed form expression
for the scalarsβi = Cov(f(Z̃i)), rendering it necessary to
compute them numerically. Since eachβi is the variance of
a scalar RV, it can be computed very efficiently, either by
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approximating the corresponding integral by a sum over a set
of points on the real line or by Monte Carlo simulation. In
Section V we demonstrate how this can be done in a practical
scenario.

An important special case corresponds to the setting in
which pi = p, σ2

1,i = σ2
1 , andσ2

2,i = σ2
2 for every i. In this

situation, we also have thatβi = β for every i. Furthermore,

ΓWW = (pσ2
1 + (1− p)σ2

2)I (36)

so thatA is simplified to

A = H
T

(
HH

T +
σ2
U

pσ2
1 + (1− p)σ2

2 − β
I

)†

. (37)

As can be seen, in this settingA does not involve multipli-
cation byΨ or ΨT . Thus, ifH corresponds to a convolution
operation, thenA also corresponds to a filter, which can be
efficiently applied in the Fourier domain.

C. Numerical Study

We now compare via simulations the MSE attained by
X̂PL to that attained byX̂NL

Z , X̂L
Y and the approximation to

E[X |Y, Z] produced by the FBMP method. Since we generate
the signalX and measurementsY and Z according to the
assumed model, we do not compare our method to other
Baysian approaches, such as Bayesian compressive sensing
(BSC) [8] and sparse Bayesian learning (SBL) [9], which
assume a different generative model. Nevertheless, we note
that a practical scenario, which deviates from the assumptions
of all these methods, was studied in [3] and showed that the
performance of FBMP is commonly better than that of BSC
and SBL. In terms of running time, FBMP is typically an order
of magnitude faster than SBL and roughly twice as slow as
BSC.

In our experimentΨ ∈ R256×256 was taken to be a
Hadamard matrix with normalized columns. The matrixH
corresponded to (circular) convolution with the sequence
h[n] = exp{−|n|/8.5} andG was taken to be diagonal. To
comply with the assumption made in [3] that the columns of
the measurement matrix are normalized, we normalized the
columns ofH to be of norm0.99 and setG = 0.01I. We set
pi = p, σ2

1,i = σ2
1 , andσ2

2,i = 0 for everyi, so thatX was truly
sparse with high probability. Figure 3 depicts the MSE of all
estimators as a function of the input SNR, which we define as
10 log10(pσ

2
1/σ

2). As can be seen, the MSE of the PLMMSE
method is significantly lower then that of̂XNL

Z and X̂L
Y and

is very close to that attained by the FBMP method. At low
SNR levels and low sparsity levels (highp) the performance
of the PLMMSE method is even slightly better than the FBMP
approach.

The average running time of the PLMMSE method was
0.6msec for all tested values ofp. The average running
times of the FBMP method were52.7msec,79.6msec and
125.2msec, respectively, forp = 1/3, p = 1/2 and p =
2/3. The ratio between the computational cost of the two
approaches, which was two orders of magnitude in this exper-
iment, becomes higher as the dimension ofX is increased. At
certain dimensions, such as images of size512×512 (in which

caseM = 5122), the FBMP method becomes impractical
to apply while PLMMSE estimation can still be used very
efficiently.

A word of caution is in place, though. In situations in which
the SNR of the measurementY is roughly the same as that
of Z (or better), the FBMP method is advantageous in terms
of performance. Therefore in this regime, decision on the use
of PLMMSE estimation boils down a performance-complexity
tradeoff.

V. A PPLICATION TO IMAGE DEBLURRING WITH

BLURRED/NOISY IMAGE PAIRS

When taking photos in dim light using a hand-held camera,
there is a tradeoff between noise and motion blur, which can
be controlled by tuning the shutter speed. Indeed, when using a
long exposure time, the image typically comes out blurred due
to camera shake. On the other hand, with a short exposure time
(and high camera gain), the image is very noisy. In [6] it was
demonstrated how a high quality image can be constructed by
properly processing two images of the same scene, one blurred
and one noisy.

We now show how the PLMMSE approach can be applied
in this setting to obtain plausible recoveries at a speed sev-
eral orders of magnitude faster than any other sparsity-based
method. In our settingX , Y andZ correspond, respectively,
to the original, blurred (and slightly noisy) and noisy images.
Thus, the measurement model is that described by (23), where
H corresponds to spatial convolution with some blur kernel,
G = I, andU andV correspond to white Gaussian images
with small and large variances respectively. We further assume
that the imageX is sparse in some orthogonal wavelet basis
Ψ, such that it can be written as in (21) and (22).

As we have seen, in this setting, the PLMMSE estimator
can be computed in two stages. In the first stage, we cal-
culate X̂NL

Z = E[X |Z] (namely, denoise the imageZ) by
computing the wavelet transform̃Z = Ψ

TZ, applying the
scalar shrinkage function (32) on each wavelet coefficient,and
taking the inverse wavelet transform of the result. This stage
requires knowledge of the parameters{pi}, {σ1,i}, {σ2,i} and
σV . To this end, we assume thatσ2,i = 0 for all i (a truly
sparse image) and thatpi andσ1,i are the same for wavelets
coefficients at the same level. In other words, all wavelet
coefficients of the noisy imageZ at level ℓ correspond to
independent draws from the Gaussian mixture

fZ̃i
(z̃) = pℓN (z̃; 0, α2σ2

1,ℓ+σ2
V )+(1−pℓ)N (z̃; 0, σ2

V ). (38)

Consequently,pℓ, σ1,ℓ andσV can be estimated by expectation
maximization (EM). In our experiments, we assumed thatσV

is known and thus did not estimate it.
In the second stage, the denoised imageX̂NL

Z needs to be
combined with the blurred imageY using (13) withA of
(35). As discussed in Section IV-B, this can be carried out
very efficiently if pi = p and σ1,i = σ1 for all i. For the
sake of efficiency1, we therefore abandon the assumption that

1The exact solution involving (35) can be computed by using iterative
techniques for matrix inversion, in which each iteration comprises filtering
operations and forward and inverse wavelet transforms. However, we found
that in most cases this approach leads to improvement of only0.2dB-0.6dB
in PSNR and is much more demanding computationally.
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Fig. 3: The MSE attained bŷXNL
Z , X̂L

Y , X̂PL and the approximation ofE[X |Y, Z] produced by the FBMP method [3].
(a) p = 1/3. (b) p = 1/2. (c) p = 2/3.

pi andσ1,i vary across wavelet levels and assume henceforth
that all wavelet coefficients are independent and identically
distributed. In this case,A corresponds to the filter

A(ω) =
(σ2

W − β)H∗(ω)

(σ2
W − β)|H(ω)|2 + σ2

U

, (39)

where H(ω) is the frequency response of the blur kernel.
Consequently, the final PLMMSE estimate corresponds to the
inverse Fourier transform of

X̂F
PLMMSE(ω) =

(σ2
W − β)H∗(ω)Y F(ω) + σ2

U X̂
F
Z(ω)

(σ2
W − β)|H(ω)|2 + σ2

U

,

(40)
whereY F(ω) andX̂F

Z(ω) denote the Fourier transforms ofY
and X̂NL

Z , respectively. In our experiment, we assumed that
the blurH(ω) and noise varianceσ2

U are known. In practice,
they can be estimated fromY andZ, as proposed in [6]. This
stage also requires knowing the scalarsσ2

W = E[W 2] and
β = E[f2(z̃)], which we estimate as

σ̂2
W =

1

M

M∑

i=1

z̃2i − σ2
V , β̂ =

1

M

M∑

i=1

f2(z̃i). (41)

Figure 4 demonstrates our approach on the512 × 512
Gold-hill image. In this experiment, the blur correspondedto
a Gaussian kernel with standard deviation3.2. To model a
situation in which the noise inY is due only to quantization
errors, we choseσU = 1/

√
12 ≈ 0.3 and σV = 45. These

parameters correspond to a peak signal to noise ratio (PSNR)
of 25.08dB for the blurred image and15.07dB for the noisy
image.

We used the orthogonal Symlet wavelet of order4 and
employed10 EM iterations to estimatepℓ and σ2

1,ℓ in each
wavelet level. The entire process takes1.1 seconds on a Dual-
Core3GHz computer with un-optimized Matlab code. We note
that our approach can be viewed as a smart combination of
Wiener filtering for image debluring and wavelet thresholding
for image denoising, which are among the simplest and fastest
methods available. Consequently, the running time is at least
an order of magnitude faster than any other sparsity-based
method, including the Bayesian approaches FBMP [3], BCS
[8] and SBL [9] and fastℓ1 minimization algorithms such as
NESTA [11], GPSR [12] and Bergman iterations [13]. As an

example, the authors of [3] reported that FBMP requires a
runtime of38 minutes to recover a128 × 128 image from a
few thousands of measurements and that GPSR requires2.7
minutes for the same task. BCS [8] was reported to require
15 seconds for reconstructing a512× 512 image from a few
thousands of samples.

As can be seen in Figure 4, the quality of the recoveries
corresponding to the denoised imagêXNL

Z and deblurred
image X̂L

Y is rather poor with respect to the state-of-the-
art BM3D debnoising method [14] and BM3D debluring
algorithm [15]. Nevertheless, the quality of the joint estimate
X̂PLMMSE surpasses each of these techniques alone. The resid-
ual deconvolution (RD) algorithm2 proposed in [6] for joint
debluring and denoising slightly outperforms the PLMMSE
method in terms of recovery error.

A quantitative comparison on several test images is provided
in Table I. This comparison shows that the PSNR attained
by the PLMMSE method is, on average,0.3dB higher than
BM3D debluring,0.4dB higher than BM3D denoising, and
0.8dB lower than RD. In terms of running times, however, our
method is, on average,11 times faster than BM3D deblurring,
16 times faster than BM3D denoising and18 times faster
than RD. Note that RD requires initialization with a denoised
version ofZ, for which purpose we used the BM3D algorithm.
Consequently, the running time reported in the last column
of Table I includes the running time of the BM3D denoising
method.

VI. A PPLICATION TO MANEUVERING TARGET TRACKING

Next, we demonstrate PLMMSE estimation in the context
of maneuvering target tracking. Applications in which there is
a need to track the kinematic features of a target are ubiqui-
tous. Often, multiple types of measurements are available.In
non-cooperative scenarios, these may include range, bearing,
elevation, range rate (Doppler), and more [16]. In navigation
applications, measurements may include the signals of global
navigation satellite systems and inertial sensors (accelerom-
eters and rate gyros). Such sensors are used in satellites
as well as in modern cellular phones, tablet computers and

2In our setting this method does not produce ringing effects and thus the
additional de-ringing stage proposed in [6] was not applied.



8

(a) (b) (c)

(d) (e) (f)

Fig. 4: Debluring with a blurred/noisy image pair using PLMMSE estimation and RD [6]. (a) Blurred imageY (top left) and
noisy imageZ (bottom-right). (b) LMMSE-deblurred imagêXL

Y (top-left) and MMSE-denoised imagêXNL
Z (bottom-right).

(c) BM3D-deblurred image (top left) and BM3D-denoised image (bottom-right). (d) Original imageX . (e) PLMMSE estimate
X̂PL from Y andZ. (f) RD recovery fromY andZ.

vehicles. Measurements of this type can be fused to aid,e.g.,
autonomous navigation [17] or traffic monitoring [18].

To model the tracking problem one usually defines a state
vector X(k) comprising the target kinematic data, which
evolves via the following stochastic linear equation

X(k + 1) = F kX(k) +BkW (k). (42)

Here,{W (k)} is a zero-mean white noise sequence satisfying
Cov(W (k)) = σ2

W I for all k and{F k} and{Bk} are known
deterministic matrices. For the simplicity of the exposition, we
assume thatX(0) = 0 (modification to other initializations is
trivial). Suppose that two sets of measurements of the state
are observed, so that

(
Y (k)
Z(k)

)
=

(
Hk

Gk

)
X(k) +

(
U(k)
V (k)

)
, (43)

where {U(k)} and {V (k)} are mutually independent zero-
mean white noise sequences satisfyingCov(U(k)) = σ2

UI and
Cov(V (k)) = σ2

V I, and{Hk} and{Gk} are given matrices.

At the nth time instant, the goal is to obtain an estimate
X̂(n) of X(n) based on the measurements{Y (k)}nk=1 and
{Z(k)}nk=1. Ideally, we would like our estimation scheme to
possess a recursive structure such thatX̂(n) is computed from
the previous estimatêX(n− 1) and the current measurements
Y (n) andZ(n) without needing to store the entire measure-
ment history.

A simple, yet popular method for modeling maneuvering
targets is the dynamic multiple-model method [19] in which
W (k) follows a Gaussian mixture distribution. In this case,
low intensity noise represents the nominal, non-maneuvering
motion regime of the target, and high intensity process noise
represents abrupt maneuvers characterized by increased model
uncertainty, and caused by,e.g., faults in the actuators of
an autonomous aerospace system. Unfortunately, the MMSE
solution does not admit a recursive implementation [20] in this
setting.

One alternative is to resort in these cases to LMMSE
estimation, whose recursive implementation is given by the
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TABLE I: Performance of deblurring/denoising on several images. Numbers on the left and right of the slash indicate,
respectively, PSNR in dB and running time in seconds.

X̂NL

Z
X̂L

Y
BM3D Denoising BM3D Deblurring PLMMSE RD

Boat (512× 512) 25.39 / 0.83 23.45 / 0.06 27.85 / 13.52 28.40 / 10.23 28.05 / 0.88 29.22 / 15.31
Lena (512 × 512) 26.93 / 0.73 24.59 / 0.03 29.47 / 13.22 30.58 / 8.90 30.58 / 0.81 31.37 / 15.19
Mandrill (512× 512) 21.40 / 0.64 20.59 / 0.06 22.72 / 13.58 21.78 / 9.57 22.58 / 0.72 23.30 / 15.58
Peppers (512 × 512) 26.74 / 0.81 24.89 / 0.08 29.49 / 13.14 29.74 / 8.91 29.80 / 0.88 31.52 / 15.03
Mountain (640× 480) 19.23 / 0.95 17.69 / 0.09 20.11 / 15.24 18.45 / 11.12 20.03 / 1.05 20.42 / 17.47
Frog (621× 498) 23.23 / 0.94 22.35 / 0.16 24.00 / 16.07 24.40 / 13.37 24.69 / 1.09 24.69 / 21.14
Gold-hill (512× 512) 25.90 / 0.69 24.26 / 0.06 27.52 / 13.41 28.70 / 9.54 28.82 / 1.09 29.09 / 21.14
Average 24.12 / 0.81 22.55 / 0.08 25.88 / 14.03 26.01 / 10.23 26.31 / 0.89 27.09 / 16.19

Kalman filter. Another option is to employ approximations
of the MMSE estimate, which can be computed recursively,
such as the interacting-multiple-model (IMM) filter [1]. The
performance of these methods tends to depend heavily on
the assumption that the measurement noises are Gaussian.
When their actual distribution is unknown, their performance
deteriorates.

Sometimes, nonetheless, the MMSE estimate can be cal-
culated in an online manner. As shown below, this happens,
e.g., when the state evolves according to thewhite acceleration
model [21] and available are acceleration measurements. When
supplied with two sets of measurements, only one of which
allowing recursive MMSE estimation, it may be advantageous
to use PLMMSE estimation rather than approximate MMSE
solutions. In this case, under some mild conditions, the
PLMMSE estimate can be updated recursively, similarly to
the Kalman filter.

Suppose that the distribution of{V (k)} and {W (k)} is
such that, for anyk < n, E[W (k)|Z(1), . . . , Z(n)] =
E[W (k)|Z(k+1)] and that the RVs{E[W (k)|Z(k+1)]} are
uncorrelated. As we discuss in the sequel, this implies thatthe
MMSE estimateX̂NL

Z (n) can be computed recursively from
X̂NL

Z (n− 1) andZ(n). Our goal is to compute the PLMMSE
estimateX̂PL(n) of X(n) from {Y (k)}nk=1 and{Z(k)}nk=1.
To obtain a recursive implementation, it is insightful to exam-
ine first the batch PLMMSE solution. To this end, we define

X =



X(1)

...
X(n)


 , Y =



Y (1)

...
Y (n)


 , Z =



Z(1)

...
Z(n)


 ,

U =



U(1)

...
U(n)


 , V =



V (1)

...
V (n)


 , W =




W (0)
...

W (n− 1)


 .

(44)

Therewith, we have from (42) that

X = ΨW, Y = HX + U, Z = GX + V, (45)

where

Ψ =




B0 0 · · · 0
F 1B0 B1 · · · 0

F 2F 1B0 F 2B1 · · · 0
...

...
. . .

...
n−1∏
k=1

F n−kB0

n−2∏
k=1

F n−kB1 · · · Bn−1




, (46)

H = diag
(
H1 H2 · · · Hn

)
, (47)

and

G = diag
(
G1 G2 · · · Gn

)
. (48)

Therefore, as we have seen in (13), the batch PLMMSE
estimate ofX from Y andZ is given in this case by

E[X |Z] +A(Y −HE[X |Z]) (49)

with the matrixA of (35).
Noting thatE[X |Z] = ΨE[W |Z] and taking into account

our assumption thatE[W (k− 1)|Z] = E[W (k− 1)|Z(k)] and
the block lower-triangular structure ofΨ, we see that thekth
element in the vectorE[X |Z] is given by

X̂NL
Z (k) = F k−1X̂

NL
Z (k−1)+Bk−1E[W (k−1)|Z(k)]. (50)

We have thus obtained a recursive computation ofX̂NL
Z (k)

from X̂NL
Z (k − 1) andZ(k).

Next, it remains to determine whether the operation ofA

admits a recursive implementation. Before we do so, we recall
that the LMMSE estimate ofX from Y , which is given by

X̂Y
L = ΓXXH

T
(
HΓXXH

T + σ2
UI

)†

Y (51)

in this case, can be implemented recursively via the Kalman
filter. In our setting,ΓXX = σ2

WΨΨ
T and, due to the as-

sumption thatCov(E[W |Z]) = βI, we have thatΓ
X̂NL

Z
X̂NL

Z

=

βΨΨ
T = (β/σ2

W )ΓXX . Therefore, the matrixA of the
PLMMSE estimate reduces from (14) to
(
1− β

σ2
W

)
ΓXXH

T

((
1− β

σ2
W

)
HΓXXH

T + σ2
UI

)†

= ΓXXH
T

(
HΓXXH

T +
σ2
Wσ2

U

σ2
W − β

I

)†

.

(52)

We see that this matrix is the same as that appearing in
(51), except for the noise variance which is multiplied here
by σ2

W /(σ2
W − β). This implies that multiplication byA

corresponds to a Kalman filter with higher observation noise.
We conclude that the complete recursive PLMMSE imple-

mentation comprises the following steps:

a) Initialization: X̂NL
Z (0) = 0, X̃(0) = 0, P 0 = 0.

b) Recursion: For k = 1, 2, . . . perform the routine sum-
marized in Alg. 1.
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Algorithm 1 One Cycle of the Recursive PLMMSE.

Input: Y (k), Z(k), X̂NL
Z (k − 1), X̃(k − 1),P k−1

1: ŴNL
Z (k − 1) = E[W (k − 1)|Z(k)].

2: X̂NL
Z (k) = F k−1X̂

NL
Z (k − 1) +Bk−1Ŵ

NL
Z (k − 1).

3: Ŷ NL
Z (k) = HkX̂

NL
Z .

4: Ỹ (k) = Y (k)− Ŷ NL
Z (k).

5: UpdateX̃(k − 1),P k−1 using Ỹ (k) via a Kalman step:

P
−
k = F k−1P k−1F k−1 + σ2

WBkB
T
k

Kk = P
−
k H

T
k

(
HP

−
k H

T
k +

σ2
Wσ2

U

σ2
W − β

I

)†

Lk = (I −KkHk)Ak−1

X̃(k) = LkX̃(k − 1) +KkỸ (k)

P k = P
−
k Kk

(
HkP

−
k H

T
k +

σ2
Wσ2

U

σ2
W − β

I

)
K

T
k

6: X̂PL(k) = X̂NL
Z (k) + X̃(k).

Output: X̂PL(k), X̂NL
Z (k), X̃(k),P k

A. Example: Tracking a Maneuvering Target From Position
and Acceleration Observations

A common way of describing target kinematics is via the
nearly-constant-velocity model, also known as thewhite accel-
eration model [21]. Focusing on one dimension for simplicity,
and denoting byP (k) the position of the target at timekT ,
the state vectorX(k) =

(
P (k) P (k − 1) P (k − 2)

)T
in

this model evolves according to (42) with

F k =



2 −1 0
1 0 0
0 1 0


 . (53)

If the sampling intervalT is small, then, to close extent,Bk =(
1 0 0

)T
(see e.g., [21]). The driving noiseWk in this

model corresponds to the target’s acceleration.
In many applications [22], the target’s velocity changes

gradually most of the time apart for abrupt transients, which
occur every once in a while. This behavior can be described
by letting Wk = SkBk, whereBk ∼ N (0, 1) and P(Sk =
σ1) = 1 − P(Sk = σ2) = p. If σ1 is much larger thanσ2

andp is small then the mean time between consecutive large
acceleration events is large. In the terminology of the multiple
model approach mentioned above, each of the components
in the Gaussian mixture corresponds to a different dynamic
model.

Suppose that we observe noisy measurementsY (k) and
Z(k) of the positionP (k) and accelerationW (k − 1), re-
spectively. These measurements relate to the state vector via
(43), withHk =

(
1 0 0

)
andGk =

(
1 −2 1

)
. Indeed,

it is easily verified that in this settingZ(k) = W (k − 1) +
V (k). Consequently, forn > k, E[W (k)|Z(1), . . . , Z(n)] =
E[W (k)|Z(k + 1)] = f(Z(k + 1)) with the functionf(·) of
(32).

Equipped with the matricesF k, Bk, Hk, and Gk, we
estimate the state vector of (42) using the recursive PLMMSE
method described above. Note that althoughX(k) comprises

only the target’s positions at timesk, k − 1, and k − 2,
estimating the velocity and acceleration is straightforward as
P̂ (k)−P̂ (k−1) andP̂ (k)−2P̂ (k−1)+P̂ (k−2), respectively.

We compare the performance of the recursive PLMMSE
method with the one of a standard KF which provides,
recursively, the LMMSE optimal estimate of the state using
the measurement sets{Z(k)} and {Y (k)}, as well as with
that of the IMM filter [1] which is known to be extremely
effective in multiple model estimation problems [19]. The
main idea underlying the IMM algorithm is to maintain a bank
of primitive Kalman filters, each matched to a different model
in the given model set. Each filter produces a local estimate
with an associated error covariance using its initial estimate
and covariance and the current measurement. The key element
of the IMM scheme is the interaction block that generates,
using all local estimates, individual initial conditions for each
of the primitive filters in the bank. In our case, the two models
maintained by the IMM method correspond to the two possible
realizations ofSk such that one model corresponds to the low
process noise variance representing the nominal target regime
and the second model for the maneuvering one.

We simulated a random sequence{X(k)} for k =
1, . . . , 1000 according to (42) initialized atX(0) = 0 and
driven by a process noise{W (k)} having, at each time, a two-
modal Gaussian mixture distribution, withp = 0.05, σ1 = 10,
and σ2 = 1. The state position is observed via a Gaussian
measurement equation withσU = 5 and the covariance of the
Gaussian measurement noise of the acceleration,σV , is swept
from 1 to 15. Averaged over500 independent Monte Carlo
runs, the average squared position, velocity, and acceleration
errors are presented, respectively, on the top, middle, and
bottom of the left chart of Fig. 5. Outperformed by the IMM,
the PLMMSE method scores better than the Kalman filter
since it optimally utilizes the acceleration measurements. It is
noticeable that at high values ofσ2

V , Kalman’s and PLMMSE’s
errors coincide indicating that acceleration measurements do
not carry valuable information in addition to that carried by
{Y (k)}.

In many practical scenarios the distribution of the position
measurement noise is far from Gaussian (seee.g., [23] and
references therein). On the right chart of Fig. 5 we present
the position, velocity and acceleration errors obtained for a
Gaussian mixture distribution of the position noise havingthe
same first- and second-order statistics as before. Such a distri-
bution may model occasional outlier measurements or sensor
faults [24]. None of the filters is supplied with this information
and only the first- and second-order moments are provided to
the algorithms. Utilizing the position measurements in a linear
manner, both Kalman and PLMMSE keep the performance
unchanged relative to the Gaussian case. In a contradistinction,
the IMM algorithm results in an inferior performance. This
phenomenon is tightly related to the statement of Theorem 3
claiming that the PLMMSE method is ensured to attain a
smaller worst-case MSE in comparison to any other estimation
technique provided the appropriate moments are kept constant.
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Fig. 5: Mean squared estimation errors of the position (top), velocity (middle) and acceleration (bottom) vs.σv using the
PLMMSE approach (solid), IMM (dashed) and standard KF (dash-dotted). (a){U(k)} have a Gaussian distribution. (b){U(k)}
have a Gaussian mixture distribution.

VII. C ONCLUSIONS

In this paper we derived the PLMMSE estimator, which
is the method whose MSE is minimal among all functions
that are linear inY . We showed that the PLMMSE solution
depends only on the joint second-order statistics ofX and
Y , which renders it applicable in a wide variety of situations.
Furthermore, we showed that this estimator attains the lowest
worst-case MSE over the set of distributions whose joint
second-order moments ofX andY are fixed. We demonstrated
our approach in the context of recovering a vector, which is
sparse in a unitary dictionary, from a pair of noisy measure-
ments. In this setting, the PLMMSE solution achieves an MSE
very close to that attained by iterative approximation strategies,
such as the FBMP method of [3], and is much cheaper
computationally. We applied our method to the problems
of image enhancement from blurred/noisy image pairs and
maneuvering target tracking from position and acceleration
measurements. In both applications, we showed that PLMMSE
estimation performs close to state-of-the-art algorithms. In the
image enhancement setting, we showed that it can run much
faster than competing approaches. In the context of target
tracking, we demonstrated the insensitivity of the solution to
the distribution of the noise inY . This property provides
robustness against sensor faults and outlier measurements,
problems which are very common in target tracking situations.

APPENDIX A
PROOF OFTHEOREM 1

Using the smoothing property, the MSE of any estimator of
the form (1) is given by

E

[
E

[
‖X −A(Z)Y − b(Z)‖2 |Z

]]
. (54)

Thus, for every specific valuez thatZ can take, the optimal
choice ofA(z) and b(z) is that minimizing the inner expec-
tation. The solution to this minimization problem corresponds

to the LMMSE estimate ofX based onY , under the the joint
distribution of (X,Y ) givenZ, concluding the proof.

APPENDIX B
PROOF OFTHEOREM 2

We start by noting that the setB of RVs constituting
candidate estimates is a closed linear subspace within the
space of finite-second-order-moment RVs taking values in
RM . Therefore, the MMSE estimatêX within this subspace,
which is the projection of the RVX ontoB, is the unique3 RV
whose estimation error̂X−X is orthogonal to every RV of the
formAY +b(Z). To demonstrate that̂X of (4) indeed satisfies
this property, note that the inner product betweenX̂ −X and
AY + b(Z) is given by

E

[
(X̂ −X)T (AY + b(Z))

]
= Tr

{
E

[
(X̂ −X)Y T

]
A

T
}

+Tr
{
E

[
(X̂ −X)b(Z)T

]}
.

(55)

Substituting (4), the expectation within the second term be-
comes

E

[(
ΓXỸ Γ

†

Ỹ Ỹ
Ỹ + E[X |Z]−X

)
b(Z)T

]

= ΓXỸ Γ
†

Ỹ Ỹ
E

[
Ỹ b(Z)T

]
+ E

[
(E[X |Z]−X) b(Z)T

]
.

(56)

Recall thatỸ = Y −E[Y |Z] is the estimation error incurred in
estimatingY from Z. Consequently,̃Y andX − E[X |Z] are
uncorrelated with every function ofZ and, in particular, with
b(Z), so that this expression vanishes. Similarly, substituting
(4) and expressingY = Ỹ + E[Y |Z], the expectation within

3In an almost-sure sense.
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the first summand in (55) becomes

E

[(
ΓXỸ Γ

†

Ỹ Ỹ
Ỹ + E[X |Z]−X

)
Y T

]

= ΓXỸ Γ
†

Ỹ Ỹ
E

[
Ỹ (Ỹ + E[Y |Z])T

]

− E

[
(X − E[X |Z])(Ỹ + E[Y |Z])T

]
. (57)

Being a function ofZ, the RVE[Y |Z] is uncorrelated with̃Y
andX − E[X |Z] so that this expression can be reduced to

ΓXỸ Γ
†

Ỹ Ỹ
E

[
Ỹ Ỹ T

]
− E

[
(X − E[X |Z])WT

]

= ΓXỸ Γ
†

Ỹ Ỹ
ΓỸ Ỹ − E

[
(X − µX + µX − E[X |Z])Ỹ T

]

= ΓXỸ − ΓXỸ + E

[
(E[X |Z]− µX)Ỹ T

]

= ΓXỸ − ΓXỸ

= 0, (58)

where we used the facts thatE[Ỹ ] = 0, thatΓXỸ Γ
†

Ỹ Ỹ
ΓỸ Ỹ =

ΓXỸ [25, Lemma 2], and that̃Y is uncorrelated withE[X |Z]
(due to the same argument as above). This completes the proof.

APPENDIX C
DERIVATION OF EQUATION (6)

By definition,

ΓXỸ = E[(X − µX)(Y − E[Y |Z])T ]

= E[(X − µX)(Y − µY + µY − E[Y |Z])T ]

= E[(X−µX)(Y −µY )
T ]− E[(X−µX)(E[Y |Z]−µY )

T ]

= ΓXY − E[E[(X − µX)(E[Y |Z]− µY )
T |Z]]

= ΓXY − E[(E[X |Z]− µX)(E[Y |Z]− µY )
T ]

= ΓXY − Γ
X̂NL

Z
Ŷ NL

Z

, (59)

whereX̂NL
Z = E[X |Z] and Ŷ NL

Z = E[Y |Z]. Here, the fourth
equality is a result of the smoothing property and the last
equality follows from the facts thatE[E[X |Z]] = µX and
E[E[Y |Z]] = µY . In a similar manner, it is easy to show that

ΓY Ỹ = ΓY Y − Γ
Ŷ NL

Z
Ŷ NL

Z

. (60)

Using (60) and the fact that̃Y is uncorrelated withE[Y |Z]−
µY , we obtain

ΓỸ Ỹ = E[Ỹ Ỹ T ]

= E[(Y − E[Y |Z])Ỹ T ]

= E[(Y − µY )Ỹ
T ]− E[(E[Y |Z]− µY )Ỹ

T ]

= ΓY Ỹ

= ΓY Y − Γ
Ŷ NL

Z
Ŷ NL

Z

. (61)

Substituting (59) and (61) into (4) leads to (6).

APPENDIX D
PROOF OFTHEOREM 3

Let ε(FXY Z , X̂) = EFXY Z
[‖X̂ − X‖2] denote the MSE

incurred by an estimator̂X of X based onY andZ, when

the joint distribution ofX , Y andZ is FXY Z(x, y, z). It is
easily verified that

ε(FXY Z , X̂PLMMSE) = Tr{ΓXX}
− Tr

{
(ΓXY −Γ

X̂NL

Z
Ŷ NL

Z

)(ΓY Y −Γ
Ŷ NL

Z
Ŷ NL

Z

)†(ΓXY −Γ
X̂NL

Z
Ŷ NL

Z

)T
}

(62)

for all FXY Z ∈ A. Therefore, in particular, (62) is also the
worst-case MSE ofX̂PL over A. We next make use of the
following lemma.

Lemma 1 There exists a distribution F ∗
XY Z in the set A

of distributions satisfying (19), under which the PLMMSE
estimate of X based on Y and Z coincides with the MMSE
estimate E[X |Y, Z].

Proof: See Appendix E.
Now, any estimator̂X that is a function ofY andZ satisfies

sup
FXY Z∈A

ε(FXY Z , X̂) ≥ ε(F ∗
XY Z , X̂)

≥ min
X̂

ε(F ∗
XY Z , X̂)

= ε(F ∗
XY Z ,E[X |Y, Z])

= ε(F ∗
XY Z , X̂

PL)

= max
FXY Z∈A

ε(FXY Z , X̂
PL), (63)

where the first line follows from the fact thatF ∗
XY Z ∈ A, the

third line is a result of the fact that the MMSE and PLMMSE
estimators coincide underF ∗

XY Z , and the last line is due to the
fact thatε(FXY Z , X̂

PL) is constant as a function ofFXY Z

over A. We have thus established that the worst-case MSE
of any estimator overA is greater or equal to the worst-case
MSE of the PLMMSE solution overA, proving thatX̂PL is
minimax optimal.

APPENDIX E
PROOF OFLEMMA 1

We prove the statement by construction. LetY andZ be two
RVs distributed according toFY Z and denoteh(Z) = E[Y |Z]
and Ỹ = Y − h(Z). Let U be a zero-mean RV, statistically
independent of the pair(Ỹ , Z), whose covariance matrix is

ΓUU = ΓXX − Cov(g(Z))− ΓXỸ Γ
†

Ỹ Ỹ
ΓỸ X . (64)

It can be easily verified that this is the covariance matrix ofthe
estimation error of the LMMSE estimate of̃X = X−E[X |Z]
based oñY = Y−E[Y |Z]. Therefore, this is a valid covariance
matrix. Consider the RV4

X = ΓXỸ Γ
†

Ỹ Ỹ
Ỹ + g(Z) + U. (65)

We will show that the so constructedX , Y andZ satisfy
the constraints (19). Indeed, using the fact thatU has zero
mean and is statistically independent ofZ, we find that the
conditional expectation ofX of (65) givenZ is

E[X |Z] = g(Z). (66)

4Recall thatΓ
XỸ

andΓ
Ỹ Ỹ

are functions ofCov(X, Y ) andFY Z , which
are given.
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Furthermore, sincẽY , g(Z) andU are pairwise uncorrelated,
the covariance ofX of (65) can be computed as

Cov(X) = ΓXỸ Γ
†

Ỹ Ỹ
ΓỸ Ỹ Γ

†

Ỹ Ỹ
ΓỸ X + Cov(g(Z)) + ΓUU

= ΓXỸ Γ
†

Ỹ Ỹ
ΓỸ X + Cov(g(Z))

+ ΓXX − Cov(g(Z))− ΓXỸ Γ
†

Ỹ Ỹ
ΓỸ X

= ΓXX , (67)

where we substituted (64). Finally, the cross covariance ofX
of (65) andY is given by

Cov(X,Y ) = ΓXỸ Γ
†

Ỹ Ỹ
ΓỸ Y + Cov(g(Z), h(Z))

= ΓXỸ Γ
†

Ỹ Ỹ
ΓỸ Ỹ + Cov(g(Z), h(Z))

= ΓXỸ + Cov(g(Z), h(Z))

= ΓXY − Cov(g(Z), h(Z)) + Cov(g(Z), h(Z))

= ΓXY , (68)

where the second equality follows from the third line of (61),
the third equality follows from [25, Lemma 2], and the fourth
equality follows from (59). Equations (66), (67) and (68)
demonstrate that the distributionF ∗

XY Z associated withX ,
Y andZ, belongs to the family of distributionsA satisfying
(19).

Next, we show that the PLMMSE and MMSE estimators
coincide underF ∗

XY Z . Indeed, sinceU is statistically indepen-
dent of the pair(Ỹ , Z), we have thatE[U |Ỹ , Z] = E[U ] = 0,
so that

E[X |Y, Z] = ΓXỸ Γ
†

Ỹ Ỹ
E[Ỹ |Y, Z] + E[g(Z) + U |Y, Z]

= ΓXỸ Γ
†

Ỹ Ỹ
(Y − h(Z)) + g(Z) + E[U |Ỹ , Z]

= ΓXỸ Γ
†

Ỹ Ỹ
(Y − h(Z)) + g(Z), (69)

where we used the fact that there is a one-to-one transfor-
mation between the pair(Y, Z) and the pair(Ỹ , Z). This
expression is partially linear inY , implying that this is also the
PLMMSE estimator in this setting. Thus, for the distribution
F ∗
XY Z , the PLMMSE estimator is optimal not only among all

partially linear functions, but also amongall functions ofY
andZ.

REFERENCES

[1] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model
algorithm for systems with Markovian switching coefficients,” IEEE
Trans. Autom. Control, vol. 33, no. 8, pp. 780–783, 1988.

[2] O. L. V. Costa, “Linear minimum mean square error estimation for
discrete-time Markovian jump linear systems,”IEEE Trans. Autom.
Control, vol. 39, no. 8, pp. 1685–1689, 1994.

[3] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,”
in Information Theory and Applications Workshop (ITA’08), 2008, pp.
326–333.

[4] M. Girolami, “A variational method for learning sparse and overcom-
plete representations,”Neural Computation, vol. 13, no. 11, pp. 2517–
2532, 2001.
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