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Abstract

The problem of estimating the parameters of a moving tamemultiple-input multiple-output
(MIMO) radar is considered and a new approach for estimatiegnoving target parameters by making
use of the phase information associated with each tramewmdéive path is introduced. It is required for this
technique that different receive antennas have the sangeréfarence, but no synchronization of initial
phases of the receive antennas is needed and, therefosstitmation process is non-coherent. We model
the target motion within a certain processing interval aolyrpmial of general order. The first three
coefficients of such a polynomial correspond to the initi@ltion, velocity, and acceleration of the target,
respectively. A new maximum likelihood (ML) technique fastienating the target motion coefficients is
developed. It is shown that the considered ML problem camtegpreted as the classic “overdetermined”
nonlinear least-squares problem. The proposed ML estmmatpires multi-dimensional search over the
unknown polynomial coefficients. The Cramér-Rao Bound BCRr the proposed parameter estimation
problem is derived. The performance of the proposed estimisitvalidated by simulation results and is

shown to achieve the CRB.
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. INTRODUCTION

The detection and parameter estimation of moving targetséf the most important radar applications
[1]-[3]. The moving target parameters of interest can beadldar cross section (RCS), Doppler frequency,
range/location, velocity, acceleration, efcl [2]. In centional single antenna radar, the target RCS and
range are measured from the amplitude and the time delayeofetiurn signal, respectively, while the
target velocity is measured from the Doppler frequencyt stiithe received signal [1]. The use of antenna
arrays enables improving the signal strength resultingmproving the accuracy of target parameter
estimation. In particular, antenna arrays are used at émsmnitter to form/steer a beam towards a certain
direction in space yielding coherent processing gain artdeateceiver to coherently process the received
data. A corresponding radar system is commonly referredstphesed-array raddr| [2]. However, it is
well-known that phased-array radar suffers from RCS dEitibns which are responsible for signal fading
[4]. Therefore, a multiple-input multiple-output (MIMOg@dar has recently become the focus of intensive
research[[5]-H[9].

The essence of the MIMO radar concept is to employ multipteramas for emitting several orthogonal
waveforms and multiple antennas for receiving the echoftascted by the target. MIMO radar can be
either equipped with widely separated antennas [6] or ettt antennas][7]. The latter type employs
arrays of closely spaced transmit/receive antennas wihashlts in increasing the virtual aperture of
the receive array due to the fact that multiple independexveforms are received by the same receive
array. This enables improving angular resolution, indregaghe upper limit on the number of detectable
targets, and improving parameter identifiability at thegof losing the transmit coherent processing gain
offered by the phased-array radar [8]. On the other hand, M®tadar systems with widely separated
transmit/receive antennas enable capturing the spatiatgiy of the target's RCS [6]. Capitalizing on
the spatial diversity of the target, MIMO radar offers a mti@ to prevent RCS scintillation and to
combat signal fading.

Several techniques are reported in the literature for tatgction and localization in coherent MIMO
radar systems [4][ [10]/[11]. However, the main focus ofsthéechniques is to estimate the directions-
of-arrival of targets located within a certain range-D@ygbin. The problem of estimating the location
and/or velocity of a moving target is investigated [in/[12]3]. However, in some practical applications
the target may have variable speed which necessitatesagisijmnot only the velocity but also the
acceleration of the target. In this case, the target motmulsl be modeled as a second order polynomial.

In other cases, even higher order polynomials for modeliegtarget motion have to be considered. For

February 2, 2012 DRAFT



example, acceleration and jerk (rate of acceleration) aesl ilo model the motion of agile maneuvering
targets as described in [14], J15]. Note that for a maneugetarget, the radial velocity with respect to
any single receiver exhibits variation which causes sigaiifi spread of the radar echo in the Doppler
spectrum[[16]. Other practical examples that exhibit ames in the target speed and, therefore, require
high-order target motion modeling, include motion of hightaneuvering tactical ballistic missiles [17],
landing of fighter jets on warship carriefs [18], etc. Unfioiately, the variation in the target's speed in
the aforementioned applications limits the applicabitifyconventional techniques for target localization
and parameter estimation.

In this WOI’lH, we develop a maximum likelihood (ML) based estimator fdineating the parameters
of a moving target in multi-static non-coherent MIMO radgstems. The radar motion within a certain
processing interval is modeled as a general-order polyalonm the specific case when the polynomial
order is two, the polynomial coefficients correspond to thigail location, velocity, and acceleration of
the target. By concentrating the ML function with respecttie nuisance parameters, e.g., reflection
coefficients, we show that the ML problem can be interpreteteims of the classic “overdetermined”
nonlinear least-squares (LS) problem. The proposed MLmestir requires multi-dimensional search
over the unknown parameters of interest, i.e., the unknosWnpmial coefficients of the target motion.
Simulation results demonstrate an excellent performaridben proposed estimator. It is worth noting
that the superior performance of the proposed algorithmesoat price of the higher computational
complexity mandated by the ML algorithm. Therefore, theedepment of a computationally efficient
algorithms that enable reducing the computational costobfirsgy the proposed parameter estimation
problem is of interest.

The rest of the paper is organized as follows. The MIMO radgma model is given in Section Il
while the proposed moving target motion model is given inti®aclll. We derive the ML estimator in
Section IV. The Cramér-Rao Bound (CRB) is derived in Sectb Simulation results which show the
effectiveness of the proposed ML estimator are reporteceirti@n VI followed by conclusions drawn in
Section VII and Appendix where the details of CRB derivasi@ane presented. This paper is reproducible
research[[20] and the software needed to generate the siomutasults will be provided to the IEEE

Xplore together with the paper upon its acceptance.

The initial results have been reported in][19].
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[I. MIMO RADAR SIGNAL MODEL

Consider a non-coherent MIMO radar system equipped withtransmit andN receive widely
separated antennas. In a Cartesian three-dimensionals{¥ize, the transmit and receive antennas are
assumed to be located pf, = (2, Ym 2m]’, m=1,...,M andq, = [z, ¥n z2)7, n=1,...,N,
respectively, wheré)” stands for the transpose operator. The complex envelogeafignal transmitted

by the m-th transmitter can be written as

=it 02157 .

where E is the total transmitted energ¥, is the radar pulse duration,is the time index within the
radar pulse ang,,(t) is a unit-energy baseband waveform. Waveforms used atetfifferansmitters are

assumed to satisfy the orthogonality condition/[12]

/ om(t)ei*(t —7)dt =0, for m #i, V1 2)
T

where (-)* stands for the conjugate operator ands some time delay. Lep,,(t — 7,,)e 72"/=t be a
time-delayed frequency shifted version @f,(¢). Define the two-dimensional (2D) functiog,, ;(7, )

as

Xm,i(7_7 y) 2 /me (t—Tm) e—j27rfmt
T
“pr (t—T)ejzm’tdt. 3)

wherer andv are the time delay and frequency indexes, respectivelynfgoitant property ok, ; (7, v)

is that

H}%X‘Xm7m(7—7 V)’ = 17 T="Tm, V= fm (4)

[1l. PROPOSEDTARGET MOTION MODEL

Consider a moving target whose location during thth radar pulse is given in the 3D space by
L(k) = [z(k) y(k) z(k)]", k=1,... K (5)

wherek is the slow time index (i.e. pulse number), aidis the total number of radar pulses within a
certain processing interval. 1al(5)(k), y(k), andz(k) are thex-, y—, and z-components of the target
location, respectively. The target location during fhéh radar pulse can be described by the following

Q-th order polynomials

Q
w(k):ZCq(kT)q, k=0,....K (6)

February 2, 2012 DRAFT



Q
kT)?
y(k:):ZDq( ') , k=0,....K 7)
q=0 T
Q
(KT)?
z2(k) = E. , k=0,...,K 8
(k) ; g ®
whereCy, D,, andE, (¢ = 0,...,Q) are the unknown target motion coefficients ahdtands for the

factorial of an integer. It is worth noting that for the mosiatic radar, the use dfl(6)4(8) to model the
target location results in a polynomial-phase signal (PR$)e receiver and leads to the problem of PPS
parameter estimation that has been extensively studidukititerature [[21L]-[23]. Note that the order of
the PPS can be higher than two in the case when the carriareiney at the transmitter is not constant
(e.g., in the case when linear FM signals are used).

The complex envelope of the signal received by thih receiver can be written as

M
n(t, k) £ elon Z Brnsm (t — Tmn(k)) 127 frmn (R)E

m=1

C e 2T ) (), k=1, K (9)

where ¢,, is the unknown initial phase of the-th receiver,j,,, is the target reflection coeﬁicign
associated with thenn-th transmit-receive pathf,,..(k) is the Doppler frequency associated with the
mn-th path during thé:-th pulse,f. is the carrier frequencyy(t, k) is the independent sensor noise which
is assumed to be zero-mean white circularly Gaussian ppaeslr,,,, (k) is the time delay required for
the carrier wave to travel through then-th transmit-receive path during tlteth pulse. We assume that
the signal echoed from the target is present in the backgrotinlutter plus noise. Moreover, we assume
that the target can only migrate to an adjacent range-Dopelt and, therefore, the characteristics of
the noise plus clutter component remains the same. If theeclcomponent is not Gaussian, space-time
adaptive processing (STAP) can be used as a preprocessmgpsfilter out the clutter component [3].
Note that when the relative speed between the target andata platform is large, the fact that the
spectrum of the clutter is centered around the platformoigld24, Ch. 8] enables the use of STAP
techniques to filter out the cIutBrThe time delay associated with tfwen)-th transmit-receive path can

be defined as
2 LK) = pmll + (k) — qul
C

T (k)

(10)

2\We assume that the reflection coefficient obeys the Swerlingdel, i.e., it remains constant within the observatioerivel.

3In this paper we assume that the locations of all transraitive antennas are fixed.
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wherec is the speed of light.
Using [2) and[(#), the received signgl (9) can be decompo;zedatched-filterinB the signalr, (¢, k)

to the waveformsp,, (t— T (k)) e =727 /mn (B}t yielding

E - .
P (8) = 1 B 27870 (1) (11)

where B, 2 Bimnel®" andw,,, (k) is the noise component at the output of the matched filtere Nt
the unknown initial phase component is absorbed in the unkreflection coefficient. It is worth noting
that it is assumed i .(11) that range-Doppler cell synctmaton [25] is performed before applying the
matched-filtering step. More specifically, for each raddseyuit is assumed that the range-Doppler cell
that contains the target is known. We also assume that treeditay and the Doppler shift at which the
matched-filter is performed coincide with the location of fheak of [(#). In practice, the synchronized
range-Doppler cell may slightly deviate from the locatidrtte peak of[(#). To account for the effect of
such a deviation, the ambiguity function of the considerd® radar should be also consideréd][26].

The M'N x 1 virtual data vector can be formed as

r(k) £ [ri(k),...,run (k)"
B
- \/%T(k:)b +wi(k) (12)

whereT(k) is a M N x MN diagonal matrix whosenn-th diagonal element is given by 727 /<7mn (k)
b2 [Bi1,..., Bun]T is MN x 1 the vector of reflection coefficients, and 2 [wy1(k), ..., warn (k)]

is the M N x 1 virtual additive noise term. Note that each elementdf:) has the same statistics as
Wi (k).

IV. MAXIMUM LIKELIHOOD ESTIMATION

Let the3(Q + 1) x 1 vector of unknown coefficients associated with the movingdgabe defined as
Y =1[Co,..., Cg, Dy,..., Dg, Ey, ..., EQ]T. Assuming that the reflection coefficients associated with
different transmit-receive paths are constant (detesti@)ivalues, the virtual observatiodis12) satisfy

the following statistical model:

r(k) ~ No ( %T(k)b,a%) (13)

“In pulsed radar, this process is commonly referred to asmdmpression. In MIMO radar, it additionally enables tossape

the mixed data at each receive antenna into componentsiassbwith different transmit-receive paths.
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where N denotes the complex multivariate circularly symmetric &aan probability density function,
o2 is the noise variance, aridis the identity matrix.

Then, the negative Iog-IikeIihood (LL) function of the urdsn parameters is given as

i 2
\/7 T(k)b
k=1
K
- rws= (i)
E E
—bH (&;TW@N@) + b (H

The minimization of [(I4) oveb yields

A 7 (K -1 K
b = 1/5 <k§ TH(k:)T(k)> : <Z TH(k:)r(k:)>
1 IME
= /=S "TH (k) (k) (15)
KV E kzzl

where the second equality follows from the fact th&t;_, T (k)T(k))~' = 1/KIyy. It is worth

K
> TH(k:)T(k)> b. (14)

noting that [(I5) can be used to compute the RCSs associatkdlifferent transmit-receive paths. This
can be employed for reducing the dimensionality of the datdiscarding the data associated with weak

RCSs especially in the case of large values\bfand V. Substituting[(Ib) into[{14), we obtain

K
L) = Y " (k)r(k)
k=1
1 (& =
-= <Z rH(k:)T(k)> : <Z TH(k‘)r(k)> : (16)
k=1 k=1

The target parameters can be estimated by minimiZing (16) the unknown parameters. Alternatively,
they can be obtained by maximizing the second terri_ih (16¢rdfore, the ML estimator can be defined

as 9

17)

K
> T (k)r(k)

k=1

¢ = arg mlpin L(1) = arg max

The above estimator jointly estimates the target parametad generally requires a highly nonlinear
optimization of [1¥) over)y. However, if properly initialized, the optimization of tHd. function may
be implemented by means of simple local optimization athors.

It is worth noting that the ML estimator can be recast in thenfaf the classic “overdetermined”

nonlinear LS problem. Denoting = [r7(1),...,r"(K)]T and Q = [T7(1),...,TT(K)]T, we can
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rewrite [14) as

2
- E
L(3.b) = |[F—/57Qb (18)
Minimizing (I8) overb and substituting the result ib_({18), we obtain
2
L(y) = HPJQyH = #1P4E (19)

wherePg = I - Q(Q”Q)'Q" is the orthogonal projection matrix onto the column subspafcQ.

Therefore, the ML estimator can be re-defined as

P = arg mlpin fHPJQf' = arg mlzmx 1Q(Q7Q)1Qr. (20)

Note that [(1F) and[(20) are equivalent. However, usind (1Apmwoptimizing the ML estimator is
computationally more attractive than usigl(20) as it asadmputing the inverse of th&/ N x M N
matrix Q7 Q.

Finding the ML estimation based ob_{17) is in general difficahd computationally demanding
problem especially for large values of the polynomial or@erTherefore, nonlinear optimization tools
such as genetic algorithms, simulated annealing basedongtlor expectation-maximization (EM)-
type procedures can be used. However, good initializatibsugh algorithms is desirable to reduce
the complexity. Here, we suggest a simple way for such amliziation. Particularly, we assume for
initialization that each receive antenna can be used toiroltacoarse estimate of the target range at
the discrete time instants = 1,..., K. Then the coarse estimates to the target range with respect t
different receive antennas can be used jointly to obtain arsepestimate to the instantaneous target
Iocationﬁ(k), k=1,...,K. The range-only based target tracking approach reporté¥incan be, for
example, used. Once, this coarse estimate is obtained péesrolynomial regression can be performed to
obtained the polynomial coefficients of the model. The saioletd estimates of the polynomial coefficients

of the target model are then used as initial values for a Speptimization algorithm used.

V. CRAMER-RAO BOUND

In this section, we give explicit expressions for the exa&BCon the accuracy of estimating the
target model parameters. TK@M N +3(Q + 1)) x 1 vector of unknown parameters (including reflection

coefficients) can be defined as
T T T T T 2T
v = [¢,, o ., Re{b}" ,Im{b}", o7

xT

= [T, b, 0" (21)
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wherevp, £ [Co,..., ColT, ¢, £ [Dy,..., D|", v, £ [Eo,..., EQ|", ¥ = [, ¢, ,¢!]", and
b = [Re{b}”, Im{b}7|T.
The elements of the FIM has the form of the complex circul@aussian proceds (|13) can be expressed
as
2F | Fyyp Fyp

F — . (22)
2M
7 F'{Zb Fip

where the3(Q + 1) x 3(Q + 1) matrix F ., the3(Q + 1) x 2N M matrix Fyp, and the2N M x 2N M

matrix F;; are defined as follows

K-1
Fyyp = Re { > BH(k)T(k)HT(k)B(k)} (23)
k=0
K—-1
Fyb = Re { > BH(k:)’i‘(k:)HT(k)J} (24)
k=0
K-1
Fi; = Re { > JHTH (k:)T(k)J} . (25)
k=0

Derivation of [23)4(Z5) and definitions @& (k), T(k), andJ are given in Appendix.

Form [22), it follows that the CRB can be obtained as

o? 1

A )
CRB = 2F /M

(26)

From [26), we observe that the CRB on estimation performanloeearly proportional to the noise power
and inversely proportional to the transmitted power peeiand, i.e., the CRB is directly proportional to

the signal-to-noise ratio (SNR).

V1. SIMULATION RESULTS

In the first example, we assume that there &fe= 3 transmit antennas in a 2D plane located at
[(0,—5000), (0,5000), (5000,5000)]m and there aréV = 5 receive antennas located @b, —5000),
(0,0), (0,5000), (2500,5000), (5000,5000)]m. The motion of the target is parameterized by a second-
order motion equation, i.e., by the initial locati@®800, 0)m, velocity (100, O)m/s, and acceleratipn20,
0)m/s’. The radar pulse repetition time (PRT) used.25ms. The baseband (orthogonal) waveforms used
at the three transmit antennas are exponential harmonitteedfequencies KHz, 2 KHz, and3 KHz,
respectively. The carrier frequengy = 300 MHz is used at all transmit antennas and the propagation
speed is assumed to Bex 108 m/s. The transmitted energy is normalized so tha{/E/—M = 1. The

MN x 1 reflection coefficient vector is drawn randomly and then Keqtd throughout the simulations.
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The additive noise is modeled as a complex Gaussian zero-on@gvariance spatially and temporally
white process that has identical variances in each receitenaa. The whole observation time used in
0.5s and is assumed to be divided info= 50, (Z < K) equally spaced intervals of widthO1s each,
where K was introduced earlier to denote the number of radar pusash interval is assumed to be
a coherent integration time (CIT), i.e., every CIT conta@ight radar pulses. It is observed that the
difference between the Doppler frequencies associateu thé first and the last radar pulses within a
certain CIT does not exceédd013 Hz for all CITs within the whole observation time. Therefoitecan

be assumed that the Doppler frequency does not change dhengame CIT but changes from CIT to
CITH The ML estimator[(1l7) is used to estimate the target parameltgstead of finding the minimum

of (I9), we search for the peak of the positive LL function

Ly(¢) = y"Pqy (27)
wherePq £ Q(QQ)~1Q*. The genetic algorithm (GA) is used to optimiZg(zp) over the unknown
parameters’,, ¢ =0, 1, 2, i.e., the unknown target initial location, velocity, anctealeration. To make
sure that the estimation accuracy is not limited by the sfabesearch region, the boundaries of the GA
search region, for each parameter, are taken wide en@ugtinfes larger than the corresponding CRB)
and centered at the true values. The root mean-square éRBISES) are computed for the parameters
of interest based on00 independent simulation runs. The RMSEs of the estimatehi@funknown
parameters are compared to the corresponding CRBs.

Fig.[ shows the contour plot df ({17) computed in the 2D véyeacceleration plane while the initial
location is fixed to its true value. The SNR for this case isdik@0 dB. It can be seen from this figure
that the ML estimator exhibits main peak close to the trueieslof both the velocity and acceleration
parameters. Two other 2D contour plots computed in the ilmeatelocity and location-acceleration planes
exhibit similar behavior as that in Figl 1. The locatione@ty and location-acceleration contour plots
are similar.

Fig.[2 shows the RMSEs versus SNR for the initial locatiolpeiéy and acceleration. It can be seen

from the figure that the initial IocatiHnestimation accuracy is in the range of tens of meters at SNR

SFor scenarios that involve rapid change in the target spaetl as a highly maneuvering target, the duration of the CIT
should be reduced. The shortest CIT duration that can beigsate PRT. However, this comes at the price of higher number
data samples, i.e., the number of intervalsThis leads to a higher computational cost.

®Note that the initial location corresponds to the locatiamimy the 1-st pulse, i.e., ak = 0. The location atk-th time
instant within the observation interval can be easily cora@iy substituting the estimated values of the polynonuefficients

corresponding to initial location, velocity, and accetena in (@)-[8).
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values belowd dB and it is in the range of meters at SNR values ablibaB. Also, it can be observed
from the figure that the RMSEs for the initial location, veatgcand acceleration estimation coincide
with the CRB at moderate and high SNR regions. It is clear ffagi[2 that the proposed ML estimator
offers excellent estimation accuracy for estimating thigetlocation, velocity, and acceleration.

In the second example, we show that the proposed method dsaglslicable to the case of fixed
speed targets. In this case, the target motion is descripedl fivst-order polynomial where the initial
location of the target is taken 8400, 9800)m and the target velocity is assumed to be (40, -50)m/s.
The transmit antennas are located(at0), (4000,0), (0,4000)]m and the receive antennas are located
at[(0,0), (2000,0), (0,2000), (6000,0), (0,6000)]m. The radar pulse width and the waveforms used at
the transmitters are the same as in the first example. Thalbebservation duration i2.0s. Noting that
the target speed is constant, the Doppler frequency is tine slring the whole observation time which
enables using longer CITs. The observation time is divideéd K = 50 equally spaced intervals of
duration0.04s each. Each CIT involves energy integration o¥2radar pulses. Similar to the previous
example, the GA initialized around the true parameters edus optimize the LL function over the
unknown initial location and target velocity components.

Fig.[3 shows the RMSEs versus SNR for theand they-components of the target initial location. It
can be seen from this figure that the performance of the peaplb. method coincides with the CRB for
SNR values higher thar 10 dB. Fig.[4 shows the RMSEs versus SNR for theand they-components
of the target velocity. It can be seen from the figure that tteppsed ML method has excellent velocity

estimation performance which coincides with the CRB as tN& $hcreases.

VIlI. CONCLUSIONS

A new ML estimator for moving target parameter estimatiomon-coherent MIMO radar has been
developed. The target motion within a certain processitegwal is modeled as a general-order polynomial
which is suitable for modeling the motion of a moving targéthwapidly changing speed such as a jet
landing on an aircraft carrier. The ML function is concetgthwith respect to the nuisance parameters
(target reflection coefficients). The resulting ML estintatequires a multi-dimensional search over the
unknown parameters of interest (coefficients of the targetion model). It has been shown that the
proposed ML approach can be interpreted in the form of thesata‘overdetermined” nonlinear LS
problem. The performance of the proposed ML estimator iglagdd by simulations and it is shown that

it achieves the CRB derived for the considered parameténatsbn problem.
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APPENDIX: COMPUTATION OF THE FISHER INFORMATION MATRIX

The elements of the FIM of a complex circularly Gaussian essx(k) ~ N¢ (u(k), R) are given

by [28]

OR OR
_ —1 -1 o
[Fl,; = Ntrace{R 8\IfiR 8\11]}
LoR Kzl O (k) o1 Opa(h) 28)
¢ o7, 0,
k=0
where ¥, is thei-th element of®. Applying (28) to the model[(13), we obtain
= KNM 9o? do*
A ot O0W; 0V,
K—1
2F o{bATH(k)} o{T(k)b}
ot { kzzo av, oy, (29)
Direct computation yields,
o {bHTH(k)} I
T ORe(b] T (k) (30)
o {bHTH(k)} -
Zﬂm—M = —jT" (k). (31)
Introducing theN M x 2N M matrix J = [I,jI], we can rewrite[(30) and(B1) in a compact form as
o0 {bHTH (K
ALELO); = JTT (k). (32)
b
Eq. (10) can be rewritten as
T (kT 2 dm F (33)
&
where
2
Q
(kT)*
q=0
2 24 1/2
Q Q
kT kT)4
+ ZDq( |) — Ym + ZEq( ') — Zm (34)
q=0 T q=0 T
2
Q
(KT)1
q

=0
Q . > /aQ . ?
+(Z p, 40 y) . (Z 7 Z)] | o5
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Straightforward computations yield
o {e—j27rfCTmn(kT)} B {e—j27rchmn(kT)} aTmn(kT)

9Cy Oyn (kT A0,
— {_j2ﬂ.fc€—j27rfc7'mn(kT)}
1 Z Cq qlq_ﬂjm Z q q, —:En
e ( I T (36)
Therefore, we obtain
O {bATH (I
% = b (T(k) © Z, (k)" (37)
0

where theM N x M N diagonal matrixZ, (k) is given by
—jorf, (Z CEE — o,

[Zm(k)]nM+m,nM+m —

c dm
Z q q' —In
38
T (38)
Similar computations yield
o {biTH (L kT)4
{ W} _ Dk om0 2u0) ", g =100 (39)
00, q!
Introducing the(Q + 1) x 1 vectorh = [1,. .., (kf;)Q]T, we can define the N M x (Q + 1) matrix
B(k) =hT ®b. (40)
Therefore, we obtain
o {bHTH (L .
LA L L) (@1)

whereT, (k) £ T(k) ® Z,(k).
Following the same steps, we obtain

o{pHTH(k)} N
— e, BY (k)T (k). (42)

whereT, (k) 2 T(k) ® Z,(k) and theM N x M N diagonal matrixZ (k:) is given by
—jorf. (Z D —

c dm

Z q ql _yn>' (43)

[Zy(k)]n]\/f—i-m,nM-‘rm -

dn

February 2, 2012 DRAFT



14

Similarly, we have

d{b"TH(k)}

5 = B (k)TH (k). (44)

z

whereT. (k) £ T(k) ® Z.(k) and theM N x M N diagonal matrixZ. (k) is given by

1 Q (KT)e
—927 f. > o E —
(Z. (k)| nM4munM+m = j2nf, ( q=0 4" ¢

c dm
R
+ 4 . (45)
Introducing the matrixB (k) 2 I3 @ B(k) and the matrixT(k) = [T.(k), T,(k), T.(k)], we obtain
HpH
a{ba—fp(’f)} = B (k)TH (k). (46)

Substituting[(3R) and_ (46) ih_(29), the expressions thanadfie FIM in [22)-1(2b) are readily obtained.
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