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Abstract

The problem of estimating the parameters of a moving target in multiple-input multiple-output

(MIMO) radar is considered and a new approach for estimatingthe moving target parameters by making

use of the phase information associated with each transmit-receive path is introduced. It is required for this

technique that different receive antennas have the same time reference, but no synchronization of initial

phases of the receive antennas is needed and, therefore, theestimation process is non-coherent. We model

the target motion within a certain processing interval as a polynomial of general order. The first three

coefficients of such a polynomial correspond to the initial location, velocity, and acceleration of the target,

respectively. A new maximum likelihood (ML) technique for estimating the target motion coefficients is

developed. It is shown that the considered ML problem can be interpreted as the classic “overdetermined”

nonlinear least-squares problem. The proposed ML estimator requires multi-dimensional search over the

unknown polynomial coefficients. The Cramér-Rao Bound (CRB) for the proposed parameter estimation

problem is derived. The performance of the proposed estimator is validated by simulation results and is

shown to achieve the CRB.
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I. INTRODUCTION

The detection and parameter estimation of moving targets isone of the most important radar applications

[1]–[3]. The moving target parameters of interest can be theradar cross section (RCS), Doppler frequency,

range/location, velocity, acceleration, etc. [2]. In conventional single antenna radar, the target RCS and

range are measured from the amplitude and the time delay of the return signal, respectively, while the

target velocity is measured from the Doppler frequency shift of the received signal [1]. The use of antenna

arrays enables improving the signal strength resulting in improving the accuracy of target parameter

estimation. In particular, antenna arrays are used at the transmitter to form/steer a beam towards a certain

direction in space yielding coherent processing gain and atthe receiver to coherently process the received

data. A corresponding radar system is commonly referred to as phased-array radar [2]. However, it is

well-known that phased-array radar suffers from RCS scintillations which are responsible for signal fading

[4]. Therefore, a multiple-input multiple-output (MIMO) radar has recently become the focus of intensive

research [5]–[9].

The essence of the MIMO radar concept is to employ multiple antennas for emitting several orthogonal

waveforms and multiple antennas for receiving the echoes reflected by the target. MIMO radar can be

either equipped with widely separated antennas [6] or colocated antennas [7]. The latter type employs

arrays of closely spaced transmit/receive antennas which results in increasing the virtual aperture of

the receive array due to the fact that multiple independent waveforms are received by the same receive

array. This enables improving angular resolution, increasing the upper limit on the number of detectable

targets, and improving parameter identifiability at the price of losing the transmit coherent processing gain

offered by the phased-array radar [8]. On the other hand, a MIMO radar systems with widely separated

transmit/receive antennas enable capturing the spatial diversity of the target’s RCS [6]. Capitalizing on

the spatial diversity of the target, MIMO radar offers a potential to prevent RCS scintillation and to

combat signal fading.

Several techniques are reported in the literature for target detection and localization in coherent MIMO

radar systems [4], [10], [11]. However, the main focus of these techniques is to estimate the directions-

of-arrival of targets located within a certain range-Doppler bin. The problem of estimating the location

and/or velocity of a moving target is investigated in [12], [13]. However, in some practical applications

the target may have variable speed which necessitates estimating not only the velocity but also the

acceleration of the target. In this case, the target motion should be modeled as a second order polynomial.

In other cases, even higher order polynomials for modeling the target motion have to be considered. For
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example, acceleration and jerk (rate of acceleration) are used to model the motion of agile maneuvering

targets as described in [14], [15]. Note that for a maneuvering target, the radial velocity with respect to

any single receiver exhibits variation which causes significant spread of the radar echo in the Doppler

spectrum [16]. Other practical examples that exhibit variations in the target speed and, therefore, require

high-order target motion modeling, include motion of highly maneuvering tactical ballistic missiles [17],

landing of fighter jets on warship carriers [18], etc. Unfortunately, the variation in the target’s speed in

the aforementioned applications limits the applicabilityof conventional techniques for target localization

and parameter estimation.

In this work1, we develop a maximum likelihood (ML) based estimator for estimating the parameters

of a moving target in multi-static non-coherent MIMO radar systems. The radar motion within a certain

processing interval is modeled as a general-order polynomial. In the specific case when the polynomial

order is two, the polynomial coefficients correspond to the initial location, velocity, and acceleration of

the target. By concentrating the ML function with respect tothe nuisance parameters, e.g., reflection

coefficients, we show that the ML problem can be interpreted in terms of the classic “overdetermined”

nonlinear least-squares (LS) problem. The proposed ML estimator requires multi-dimensional search

over the unknown parameters of interest, i.e., the unknown polynomial coefficients of the target motion.

Simulation results demonstrate an excellent performance of the proposed estimator. It is worth noting

that the superior performance of the proposed algorithm comes at price of the higher computational

complexity mandated by the ML algorithm. Therefore, the development of a computationally efficient

algorithms that enable reducing the computational cost of solving the proposed parameter estimation

problem is of interest.

The rest of the paper is organized as follows. The MIMO radar signal model is given in Section II

while the proposed moving target motion model is given in Section III. We derive the ML estimator in

Section IV. The Cramér-Rao Bound (CRB) is derived in Section V. Simulation results which show the

effectiveness of the proposed ML estimator are reported in Section VI followed by conclusions drawn in

Section VII and Appendix where the details of CRB derivations are presented. This paper is reproducible

research [20] and the software needed to generate the simulation results will be provided to the IEEE

Xplore together with the paper upon its acceptance.

1The initial results have been reported in [19].
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II. MIMO R ADAR SIGNAL MODEL

Consider a non-coherent MIMO radar system equipped withM transmit andN receive widely

separated antennas. In a Cartesian three-dimensional (3D)space, the transmit and receive antennas are

assumed to be located atpm , [xm ym zm]T , m = 1, . . . ,M andqn , [xn yn zn]
T , n = 1, . . . , N ,

respectively, where(·)T stands for the transpose operator. The complex envelope of the signal transmitted

by them-th transmitter can be written as

sm(t) =

√

E

M
ϕm(t), 0 ≤ t ≤ T (1)

whereE is the total transmitted energy,T is the radar pulse duration,t is the time index within the

radar pulse andϕm(t) is a unit-energy baseband waveform. Waveforms used at different transmitters are

assumed to satisfy the orthogonality condition [12]
∫

T
ϕm(t)ϕi

∗(t− τ)dt = 0, for m 6= i, ∀τ (2)

where (·)∗ stands for the conjugate operator andτ is some time delay. Letϕm(t − τm)e−j2πfmt be a

time-delayed frequency shifted version ofϕm(t). Define the two-dimensional (2D) functionχm,i(τ, ν)

as

χm,i(τ, ν) ,

∫

T
ϕm (t−τm) e−j2πfmt

·ϕ∗

i (t−τ)ej2πνtdt. (3)

whereτ andν are the time delay and frequency indexes, respectively. An important property ofχm,i(τ, ν)

is that

max
τ,ν

|χm,m(τ, ν)| = 1, τ = τm, ν = fm. (4)

III. PROPOSEDTARGET MOTION MODEL

Consider a moving target whose location during thek-th radar pulse is given in the 3D space by

L(k) = [x(k) y(k) z(k)]T , k = 1, . . . ,K (5)

wherek is the slow time index (i.e. pulse number), andK is the total number of radar pulses within a

certain processing interval. In (5),x(k), y(k), andz(k) are thex-, y−, andz-components of the target

location, respectively. The target location during thek-th radar pulse can be described by the following

Q-th order polynomials

x(k) =

Q
∑

q=0

Cq
(kT )q

q!
, k = 0, . . . ,K (6)
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y(k) =

Q
∑

q=0

Dq
(kT )q

q!
, k = 0, . . . ,K (7)

z(k) =

Q
∑

q=0

Eq
(kT )q

q!
, k = 0, . . . ,K (8)

whereCq, Dq, andEq (q = 0, . . . , Q) are the unknown target motion coefficients and·! stands for the

factorial of an integer. It is worth noting that for the mono-static radar, the use of (6)–(8) to model the

target location results in a polynomial-phase signal (PPS)at the receiver and leads to the problem of PPS

parameter estimation that has been extensively studied in the literature [21]–[23]. Note that the order of

the PPS can be higher than two in the case when the carrier frequency at the transmitter is not constant

(e.g., in the case when linear FM signals are used).

The complex envelope of the signal received by then-th receiver can be written as

rn(t, k) , ejφn

M
∑

m=1

βmnsm (t− τmn(k)) e
j2πfmn(k)t

· e−j2πfcτmn(k)+w(t, k), k = 1,. . .,K (9)

where φn is the unknown initial phase of then-th receiver,βmn is the target reflection coefficient2

associated with themn-th transmit-receive path,fmn(k) is the Doppler frequency associated with the

mn-th path during thek-th pulse,fc is the carrier frequency,w(t, k) is the independent sensor noise which

is assumed to be zero-mean white circularly Gaussian process, andτmn(k) is the time delay required for

the carrier wave to travel through themn-th transmit-receive path during thek-th pulse. We assume that

the signal echoed from the target is present in the background of clutter plus noise. Moreover, we assume

that the target can only migrate to an adjacent range-Doppler cell, and, therefore, the characteristics of

the noise plus clutter component remains the same. If the clutter component is not Gaussian, space-time

adaptive processing (STAP) can be used as a preprocessing step to filter out the clutter component [3].

Note that when the relative speed between the target and the radar platform is large, the fact that the

spectrum of the clutter is centered around the platform velocity [24, Ch. 8] enables the use of STAP

techniques to filter out the clutter.3 The time delay associated with the(mn)-th transmit-receive path can

be defined as

τmn(k) ,
‖L(k)− pm‖+ ‖L(k)− qn‖

c
(10)

2We assume that the reflection coefficient obeys the Swerling Imodel, i.e., it remains constant within the observation interval.

3In this paper we assume that the locations of all transmit-receive antennas are fixed.
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wherec is the speed of light.

Using (2) and (4), the received signal (9) can be decomposed by matched-filtering4 the signalrn(t, k)

to the waveformsϕm (t−τmn(k)) e
−j2πfmn(k)t, yielding

rmn(k) =

√

E

M
β̃mne

−j2πfcτmn(k) +wmn(k) (11)

whereβ̃mn , βmne
jφn andwmn(k) is the noise component at the output of the matched filter. Note that

the unknown initial phase component is absorbed in the unknown reflection coefficient. It is worth noting

that it is assumed in (11) that range-Doppler cell synchronization [25] is performed before applying the

matched-filtering step. More specifically, for each radar pulse, it is assumed that the range-Doppler cell

that contains the target is known. We also assume that the time delay and the Doppler shift at which the

matched-filter is performed coincide with the location of the peak of (4). In practice, the synchronized

range-Doppler cell may slightly deviate from the location of the peak of (4). To account for the effect of

such a deviation, the ambiguity function of the considered MIMO radar should be also considered [26].

TheMN × 1 virtual data vector can be formed as

r(k) , [r11(k), . . . , rMN (k)]T

=

√

E

M
T(k)b+w(k) (12)

whereT(k) is aMN ×MN diagonal matrix whosemn-th diagonal element is given bye−j2πfcτmn(k),

b , [β̃11, . . . , β̃MN ]T is MN ×1 the vector of reflection coefficients, andw , [w11(k), . . . , wMN (k)]T

is theMN × 1 virtual additive noise term. Note that each element ofw(k) has the same statistics as

wmn(k).

IV. M AXIMUM L IKELIHOOD ESTIMATION

Let the3(Q+ 1)× 1 vector of unknown coefficients associated with the moving target be defined as

ψ = [C0, . . . , CQ, D0, . . . , DQ, E0, . . . , EQ]
T . Assuming that the reflection coefficients associated with

different transmit-receive paths are constant (deterministic) values, the virtual observations (12) satisfy

the following statistical model:

r(k) ∼ NC

(
√

E

M
T(k)b, σ2I

)

(13)

4In pulsed radar, this process is commonly referred to as pulse compression. In MIMO radar, it additionally enables to separate

the mixed data at each receive antenna into components associated with different transmit-receive paths.
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whereNC denotes the complex multivariate circularly symmetric Gaussian probability density function,

σ2 is the noise variance, andI is the identity matrix.

Then, the negative log-likelihood (LL) function of the unknown parameters is given as

L(ψ,b) =

K
∑

k=1

∥

∥

∥

∥

∥

r(k)−

√

E

M
T(k)b

∥

∥

∥

∥

∥

2

=

K
∑

k=1

rH(k)r(k) −

(
√

E

M

K
∑

k=1

rH(k)T(k)

)

b

−bH

(
√

E

M

K
∑

k=1

TH(k)r(k)

)

+ bH

(

E

M

K
∑

k=1

TH(k)T(k)

)

b. (14)

The minimization of (14) overb yields

b̂ =

√

M

E

(

K
∑

k=1

TH(k)T(k)

)−1

·

(

K
∑

k=1

TH(k)r(k)

)

=
1

K

√

M

E

K
∑

k=1

TH(k)r(k) (15)

where the second equality follows from the fact that(
∑K

k=1T
H(k)T(k))−1 = 1/KIMN . It is worth

noting that (15) can be used to compute the RCSs associated with different transmit-receive paths. This

can be employed for reducing the dimensionality of the data by discarding the data associated with weak

RCSs especially in the case of large values ofM andN . Substituting (15) into (14), we obtain

L(ψ) =

K
∑

k=1

rH(k)r(k)

−
1

K

(

K
∑

k=1

rH(k)T(k)

)

·

(

K
∑

k=1

TH(k)r(k)

)

. (16)

The target parameters can be estimated by minimizing (16) over the unknown parameters. Alternatively,

they can be obtained by maximizing the second term in (16). Therefore, the ML estimator can be defined

as

ψ̂ = argmin
ψ

L(ψ) = argmax
ψ

∥

∥

∥

∥

∥

K
∑

k=1

TH(k)r(k)

∥

∥

∥

∥

∥

2

. (17)

The above estimator jointly estimates the target parameters and generally requires a highly nonlinear

optimization of (17) overψ. However, if properly initialized, the optimization of theLL function may

be implemented by means of simple local optimization algorithms.

It is worth noting that the ML estimator can be recast in the form of the classic “overdetermined”

nonlinear LS problem. Denoting̃r = [rT (1), . . . , rT (K)]T and Q = [TT (1), . . . ,TT (K)]T , we can
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rewrite (14) as

L(ψ,b) =

∥

∥

∥

∥

∥

r̃−

√

E

M
Qb

∥

∥

∥

∥

∥

2

. (18)

Minimizing (18) overb and substituting the result in (18), we obtain

L(ψ) =
∥

∥

∥
P⊥

Qy

∥

∥

∥

2
= r̃HP⊥

Qr̃ (19)

whereP⊥

Q = I −Q(QHQ)−1QH is the orthogonal projection matrix onto the column subspace of Q.

Therefore, the ML estimator can be re-defined as

ψ̂ = argmin
ψ

r̃HP⊥

Qr̃ = argmax
ψ

r̃HQ(QHQ)−1QH r̃. (20)

Note that (17) and (20) are equivalent. However, using (17) when optimizing the ML estimator is

computationally more attractive than using (20) as it avoids computing the inverse of theMN ×MN

matrix QHQ.

Finding the ML estimation based on (17) is in general difficult and computationally demanding

problem especially for large values of the polynomial orderQ. Therefore, nonlinear optimization tools

such as genetic algorithms, simulated annealing based methods, or expectation-maximization (EM)-

type procedures can be used. However, good initialization of such algorithms is desirable to reduce

the complexity. Here, we suggest a simple way for such an initialization. Particularly, we assume for

initialization that each receive antenna can be used to obtain a coarse estimate of the target range at

the discrete time instantsk = 1, . . . ,K. Then the coarse estimates to the target range with respect to

different receive antennas can be used jointly to obtain a coarse estimate to the instantaneous target

locationL̂(k), k = 1, . . . ,K. The range-only based target tracking approach reported in[27] can be, for

example, used. Once, this coarse estimate is obtained, a simple polynomial regression can be performed to

obtained the polynomial coefficients of the model. The so obtained estimates of the polynomial coefficients

of the target model are then used as initial values for a specific optimization algorithm used.

V. CRAMÉR-RAO BOUND

In this section, we give explicit expressions for the exact CRB on the accuracy of estimating the

target model parameters. The(2MN +3(Q+1))×1 vector of unknown parameters (including reflection

coefficients) can be defined as

Ψ = [ψT
x ,ψ

T
y ,ψ

T
z ,Re{b}

T , Im{b}T , σ2]T

= [ψT , b̆T , σ2]T (21)
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whereψx , [C0, . . . , CQ]
T , ψy , [D0, . . . , DQ]

T , ψz , [E0, . . . , EQ]
T , ψ = [ψT

x ,ψ
T
y ,ψ

T
z ]

T , and

b̆ = [Re{b}T , Im{b}T ]T .

The elements of the FIM has the form of the complex circularlyGaussian process (13) can be expressed

as

F =
2E

σ2M
·





Fψψ Fψb

FH
ψb F

b̆b̆



 (22)

where the3(Q+1)× 3(Q+1) matrix Fψψ, the3(Q+1)× 2NM matrix Fψb, and the2NM × 2NM

matrix F
b̆b̆

are defined as follows

Fψψ = Re

{

K−1
∑

k=0

B̃H(k)T̃(k)HT̃(k)B̃(k)

}

(23)

Fψb = Re

{

K−1
∑

k=0

B̃H(k)T̃(k)HT(k)J

}

(24)

F
b̆b̆

= Re

{

K−1
∑

k=0

JHTH(k)T(k)J

}

. (25)

Derivation of (23)–(25) and definitions of̃BH(k), T̃(k), andJ are given in Appendix.

Form (22), it follows that the CRB can be obtained as

CRB ,
σ2

2E/M
· F−1. (26)

From (26), we observe that the CRB on estimation performanceis linearly proportional to the noise power

and inversely proportional to the transmitted power per antenna, i.e., the CRB is directly proportional to

the signal-to-noise ratio (SNR).

VI. SIMULATION RESULTS

In the first example, we assume that there areM = 3 transmit antennas in a 2D plane located at

[(0,−5000), (0, 5000), (5000, 5000)]m and there areN = 5 receive antennas located at[(0,−5000),

(0, 0), (0, 5000), (2500, 5000), (5000, 5000)]m. The motion of the target is parameterized by a second-

order motion equation, i.e., by the initial location(9800, 0)m, velocity (100, 0)m/s, and acceleration(−20,

0)m/s2. The radar pulse repetition time (PRT) used is1.25ms. The baseband (orthogonal) waveforms used

at the three transmit antennas are exponential harmonics ofthe frequencies1 KHz, 2 KHz, and3 KHz,

respectively. The carrier frequencyfc = 300 MHz is used at all transmit antennas and the propagation

speed is assumed to be3× 108 m/s. The transmitted energyE is normalized so that
√

E/M = 1. The

MN × 1 reflection coefficient vector is drawn randomly and then keptfixed throughout the simulations.
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The additive noise is modeled as a complex Gaussian zero-mean unit-variance spatially and temporally

white process that has identical variances in each receive antenna. The whole observation time used in

0.5s and is assumed to be divided intoZ = 50, (Z < K) equally spaced intervals of width0.01s each,

whereK was introduced earlier to denote the number of radar pulses.Each interval is assumed to be

a coherent integration time (CIT), i.e., every CIT containseight radar pulses. It is observed that the

difference between the Doppler frequencies associated with the first and the last radar pulses within a

certain CIT does not exceed0.0013 Hz for all CITs within the whole observation time. Therefore, it can

be assumed that the Doppler frequency does not change duringthe same CIT but changes from CIT to

CIT.5 The ML estimator (17) is used to estimate the target parameters. Instead of finding the minimum

of (19), we search for the peak of the positive LL function

Lp(ψ) = yHPQy (27)

wherePQ , Q(QHQ)−1QH . The genetic algorithm (GA) is used to optimizeLp(ψ) over the unknown

parametersCq, q = 0, 1, 2, i.e., the unknown target initial location, velocity, and acceleration. To make

sure that the estimation accuracy is not limited by the size of the search region, the boundaries of the GA

search region, for each parameter, are taken wide enough (20 times larger than the corresponding CRB)

and centered at the true values. The root mean-square errors(RMSEs) are computed for the parameters

of interest based on100 independent simulation runs. The RMSEs of the estimates of the unknown

parameters are compared to the corresponding CRBs.

Fig. 1 shows the contour plot of (17) computed in the 2D velocity-acceleration plane while the initial

location is fixed to its true value. The SNR for this case is fixed to 0 dB. It can be seen from this figure

that the ML estimator exhibits main peak close to the true values of both the velocity and acceleration

parameters. Two other 2D contour plots computed in the location-velocity and location-acceleration planes

exhibit similar behavior as that in Fig. 1. The location-velocity and location-acceleration contour plots

are similar.

Fig. 2 shows the RMSEs versus SNR for the initial location, velocity and acceleration. It can be seen

from the figure that the initial location6 estimation accuracy is in the range of tens of meters at SNR

5For scenarios that involve rapid change in the target speed such as a highly maneuvering target, the duration of the CIT

should be reduced. The shortest CIT duration that can be usedis one PRT. However, this comes at the price of higher number

data samples, i.e., the number of intervalsZ. This leads to a higher computational cost.

6Note that the initial location corresponds to the location during the 1-st pulse, i.e., atk = 0. The location atk-th time

instant within the observation interval can be easily computed by substituting the estimated values of the polynomial coefficients

corresponding to initial location, velocity, and acceleration in (6)–(8).
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values below0 dB and it is in the range of meters at SNR values above0 dB. Also, it can be observed

from the figure that the RMSEs for the initial location, velocity, and acceleration estimation coincide

with the CRB at moderate and high SNR regions. It is clear fromFig. 2 that the proposed ML estimator

offers excellent estimation accuracy for estimating the target location, velocity, and acceleration.

In the second example, we show that the proposed method is also applicable to the case of fixed

speed targets. In this case, the target motion is described by a first-order polynomial where the initial

location of the target is taken as(8400, 9800)m and the target velocity is assumed to be (40, -50)m/s.

The transmit antennas are located at[(0, 0), (4000, 0), (0, 4000)]m and the receive antennas are located

at [(0, 0), (2000, 0), (0, 2000), (6000, 0), (0, 6000)]m. The radar pulse width and the waveforms used at

the transmitters are the same as in the first example. The overall observation duration is2.0s. Noting that

the target speed is constant, the Doppler frequency is the same during the whole observation time which

enables using longer CITs. The observation time is divided into K = 50 equally spaced intervals of

duration0.04s each. Each CIT involves energy integration over32 radar pulses. Similar to the previous

example, the GA initialized around the true parameters is used to optimize the LL function over the

unknown initial location and target velocity components.

Fig. 3 shows the RMSEs versus SNR for thex- and they-components of the target initial location. It

can be seen from this figure that the performance of the proposed ML method coincides with the CRB for

SNR values higher than−10 dB. Fig. 4 shows the RMSEs versus SNR for thex- and they-components

of the target velocity. It can be seen from the figure that the proposed ML method has excellent velocity

estimation performance which coincides with the CRB as the SNR increases.

VII. C ONCLUSIONS

A new ML estimator for moving target parameter estimation innon-coherent MIMO radar has been

developed. The target motion within a certain processing interval is modeled as a general-order polynomial

which is suitable for modeling the motion of a moving target with rapidly changing speed such as a jet

landing on an aircraft carrier. The ML function is concentrated with respect to the nuisance parameters

(target reflection coefficients). The resulting ML estimator requires a multi-dimensional search over the

unknown parameters of interest (coefficients of the target motion model). It has been shown that the

proposed ML approach can be interpreted in the form of the classic “overdetermined” nonlinear LS

problem. The performance of the proposed ML estimator is validated by simulations and it is shown that

it achieves the CRB derived for the considered parameter estimation problem.
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APPENDIX: COMPUTATION OF THE FISHER INFORMATION MATRIX

The elements of the FIM of a complex circularly Gaussian processx(k) ∼ NC (µ(k),R) are given

by [28]

[F ]i,j = N trace

{

R−1 ∂R

∂Ψi
R−1 ∂R

∂Ψj

}

+2Re

{

K−1
∑

k=0

∂µH(k)

∂Ψi
R−1 ∂µ(k)

∂Ψj

}

(28)

whereΨi is the i-th element ofΨ. Applying (28) to the model (13), we obtain

[F ]i,j =
KNM

σ4

∂σ2

∂Ψi

∂σ2

∂Ψj

+
2E

σ2M
Re

{

K−1
∑

k=0

∂
{

bHTH(k)
}

∂Ψi
·
∂ {T(k)b}

∂Ψj

}

(29)

Direct computation yields,

∂
{

bHTH(k)
}

∂Re{b}
= TH(k) (30)

∂
{

bHTH(k)
}

∂Im{b}
= −jTH(k). (31)

Introducing theNM × 2NM matrix J = [I, jI ], we can rewrite (30) and (31) in a compact form as

∂
{

bHTH(k)
}

∂b̆
= JHTH(k). (32)

Eq. (10) can be rewritten as

τmn(kT ) ,
dm + dn

c
(33)

where

dm =









Q
∑

q=0

Cq
(kT )q

q!
− xm





2

+





Q
∑

q=0

Dq
(kT )q

q!
− ym





2

+





Q
∑

q=0

Eq
(kT )q

q!
− zm





2



1/2

(34)

dn =









Q
∑

q=0

Cq
(kT )q

q!
− xn





2

+





Q
∑

q=0

Dq
(kT )q

q!
− yn





2

+





Q
∑

q=0

Eq
(kT )q

q!
− zn





2



1/2

. (35)
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Straightforward computations yield

∂
{

e−j2πfcτmn(kT )
}

∂C0
=

∂
{

e−j2πfcτmn(kT )
}

∂τmn(kT )
·
∂τmn(kT )

∂C0

=
{

−j2πfce
−j2πfcτmn(kT )

}

·
1

c

(
∑Q

q=0 Cq
(kT )q

q! − xm

dm
+

∑Q
q=0Cq

(kT )q

q! − xn

dn

)

(36)

Therefore, we obtain

∂
{

bHTH(k)
}

∂C0
= bH (T(k)⊙ Zx(k))

H (37)

where theMN ×MN diagonal matrixZx(k) is given by

[Zx(k)]nM+m,nM+m =
−j2πfc

c

(
∑Q

q=0Cq
(kT )q

q! − xm

dm

+

∑Q
q=0Cq

(kT )q

q! − xn

dn

)

(38)

Similar computations yield

∂
{

bHTH(k)
}

∂Cq
=

(kT )q

q!
bH (T(k)⊙ Zx(k))

H , q = 1, . . . , Q. (39)

Introducing the(Q+ 1)× 1 vectorh , [1, . . . , (kT )Q

q! ]T , we can define the2NM × (Q+ 1) matrix

B(k) = hT ⊗ b. (40)

Therefore, we obtain

∂
{

bHTH(k)
}

∂ψx

= BH(k)T̃H
x (k). (41)

whereT̃x(k) , T(k)⊙ Zx(k).

Following the same steps, we obtain

∂
{

bHTH(k)
}

∂ψy

= BH(k)T̃H
y (k). (42)

whereT̃y(k) , T(k)⊙ Zy(k) and theMN ×MN diagonal matrixZy(k) is given by

[Zy(k)]nM+m,nM+m =
−j2πfc

c

(
∑Q

q=0Dq
(kT )q

q! − ym

dm

+

∑Q
q=0Dq

(kT )q

q! − yn

dn

)

. (43)
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Similarly, we have

∂
{

bHTH(k)
}

∂ψz

= BH(k)T̃H
z (k). (44)

whereT̃z(k) , T(k)⊙ Zz(k) and theMN ×MN diagonal matrixZz(k) is given by

[Zz(k)]nM+m,nM+m =
−j2πfc

c

(
∑Q

q=0 Eq
(kT )q

q! − zm

dm

+

∑Q
q=0Eq

(kT )q

q! − zn

dn

)

. (45)

Introducing the matrixB̃(k) , I3 ⊗B(k) and the matrixT̃(k) = [T̃x(k), T̃y(k), T̃z(k)], we obtain

∂
{

bHTH(k)
}

∂ψ
= B̃H(k)T̃H(k). (46)

Substituting (32) and (46) in (29), the expressions that define the FIM in (22)–(25) are readily obtained.
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Fig. 1. Contour plot of the ML function (20) in the velocity-acceleration plane; example 1.
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Fig. 2. RMSEs versus SNR; example 1.
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Fig. 3. Initial position estimation RMSEs versus SNR; example 2.
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