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Abstract—This paper proposes a min-max design of noise-
shaping delta-sigma (ΔΣ) modulators. We first characterize
the all stabilizing loop-filters for a linearized modulator model.
By this characterization, we formulate the design problem of
lowpass, bandpass, and multi-band modulators as minimization
of the maximum magnitude of the noise transfer function (NTF)
in fixed frequency band(s). We show that this optimization mini-
mizes the worst-case reconstruction error, and hence improves the
SNR (signal-to-noise ratio) of the modulator. The optimization is
reduced to an optimization with a linear matrix inequality (LMI)
via the generalized KYP (Kalman-Yakubovich-Popov) lemma.
The obtained NTF is an FIR (finite-impulse-response) filter, which
is favorable in view of implementation. We also derive a stability
condition for the nonlinear model of ΔΣ modulators with general
quantizers including uniform ones. This condition is described
as an H∞ norm condition, which is reduced to an LMI via the
KYP lemma. Design examples show advantages of our design.

Index Terms—Delta-sigma modulators, min-max optimization,
noise-shaping, quantization.

I. INTRODUCTION

DELTA SIGMA (ΔΣ, see Table I on the next page for the
list of acronyms) modulators are widely used in over-

sampling AD (Analog-to-Digital) and DA (Digital-to-Analog)
converters, by which we can achieve high performance with
coarse quantizers [1], [2]. They have applications in digital
signal processing systems, such as digital audio [3], [4] and
digital communications [5], [6], [7]. More recently, the notion
of ΔΣ modulators is extended to several research areas related
to signal processing. In [8], [9], [10], the ΔΣ scheme is
introduced for quantizing coefficients in finite but redundant
frame expansion of signals, and is proved to outperform the
standard PCM (pulse code modulation) scheme. Based on this
study, ΔΣ scheme is also applied to compressed sensing [11],
[12]. In [13], [14], dynamic quantizers as ΔΣ modulators
are proposed for controlling linear time-invariant systems
with discrete-valued control inputs. The ΔΣ scheme is also
applied to obtain an approximate solution of large discrete
quadratic programming problems [15]. For independent source
separation [16] and manifold learning [17], machine learning
is combined with ΣΔ modulation, called the ΣΔ learner.

In designing ΔΣ modulators, noise shaping is a fundamental
issue [2]. To describe the issue of noise shaping, let us consider
a general ΔΣ modulator shown in Fig. 1. In this figure, Q
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Fig. 1. ΔΣ modulator with loop-filter H = [H1, H2] and quantizer Q.

is a quantizer and H = [H1,H2] is a linear filter with 2
inputs and 1 output. The filter H1 shapes the signal transfer
function (STF) from the input u to the output y to have a
unity magnitude in the frequency band of interest. On the
other hand, the filter H2 eliminates the in-band quantization
noise by shaping the noise transfer function (NTF). Then, if
the input signal u is sufficiently oversampled, the frequency
components in u are concentrated in the band of interest, and
hence one can effectively extract the original signal u from
the quantized signal y by applying a lowpass filter to y with a
suitable cutoff frequency. In fact, it is theoretically shown that
the reconstruction error decreases rapidly as the oversampling
ratio increases [8], [18].

A usual solution to noise shaping is to insert accumulators
(or integrators) in the feedback loop to attenuate the mag-
nitude of the NTF in low frequency. To improve upon the
performance, accumulators are cascaded in various ways such
as the MASH (multi-stage noise-shaping) modulators [19],
[20]. This methodology is analogous to a PID (Proportional-
Integral-Derivative) control [21], in which the performance of
the designed system depends on the experience of the designer.
That is, the conventional design is of ad hoc nature.

To obtain a systematic design method, one can adopt a more
general type of transfer functions than accumulators for H(z)
in Fig. 1. From this point of view, the NTF zero optimiza-
tion [22], [2] was proposed to shape the NTF optimally in
the frequency band of interest, say [0,Ω]. This optimization is
done by changing the zeros of the NTF so as to minimize the
normalized noise power given by the integral of the squared
magnitude of the NTF over [0,Ω]. While this method gives a
systematic way to design ΔΣ modulators, it can yield a peak in
the magnitude of the NTF at a certain frequency, since such a
peak cannot be captured by an integrated or averaged objective
function. A recent paper [23] has investigated this problem and
proposed to use semi-infinite programming for constraining
the maximum value of a function over the frequency band.
This method, however, does not necessarily optimize the
overall performance but only minimizes the denominator of a
loop-filter. That is, the method [23] does not necessarily reduce
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peaks in the NTF magnitude. Also, the computational cost for
the optimization is very high due to its infinite dimensionality.
Alternatively, the present authors has proposed to adopt H∞

optimization for attenuating the NTF magnitude itself with
a frequency-domain weighting function [24]. This method
gives a good performance if a suitable weighting function
was chosen. For general notion of H∞ optimization in signal
processing, see [25], [26]. The well-known Remez exchange
method (aka Parks-McClellan method) [27] is related to the
H∞ optimization. The method gives a near-optimal filter that
minimizes the maximum error between a given desired filter
and the filter to be designed. Strictly speaking, this is not
H∞-optimal since the response is ignored on the transition
frequency band.

In contrast to these methods, we propose1 a novel design
based on min-max optimization, which can be reduced to finite
dimensional convex optimization. That is, we directly mini-
mize the maximum magnitude of the NTF over the frequency
band of interest. In other words, we design ΔΣ modulators in
order to uniformly attenuate the magnitude over the prespeci-
fied band. This uniform minimization improves the worst-case
SNR (signal-to-noise ratio) to be defined in Section III-A, of
the modulator in the band of interest. Conversely, a peak of the
NTF magnitude as above can deteriorate the worst-case SNR
and also the dynamic range of the modulator. We propose in
this paper a more effective method that does not require a
selection of a weighting function.

To this end, we first characterize all stabilizing loop-filters
for a linearized modulator. Then, by using this parametrization,
we formulate the design problem as an optimization via a lin-
ear matrix inequality (LMI) for lowpass and bandpass modula-
tors using the generalized Kalman-Yakubovich-Popov (KYP)
lemma [30], [25]. Furthermore, we can assign arbitrarily zeros
of the NTF on the unit circle in the complex plane by adding
a linear matrix equality (LME) constraint to the LMI. These
techniques are mostly adopted from control theory. Recently,
control theory is effectively applied to ΔΣ modulator design
with finite horizon predictive control [31], [32], sliding mode
control [33], and robust control [34], [35], to name a few. In
particular, the idea of applying the generalized KYP lemma
to ΔΣ modulator design is proposed in [36], in which they
assume a one-bit quantizer for Q and optimize the average
power of the reconstruction error in low frequency for lowpass
modulators. In contrast, our approach minimizes the worst
reconstruction error, which can improve the overall SNR as
mentioned above.

Stability analysis of ΔΣ modulators is another fundamental
issue. For first-order [37] and second-order [38], [39] modula-
tors, stability is well-studied in terms of invariant set. On the
other hand, we derive a stability condition taking account of
nonlinearity in ΔΣ modulators of arbitrary order with general
quantizers including uniform ones. This condition is derived in
terms of a state-space representation, and is described by the
�1 norm of a linear system. This can be transformed into an

1This method was first proposed in our conference articles [28], [29]. The
present paper organizes these works with new results on SNR performance
(Section III-A), bandpass modulator design (Section III-C), and stability
theorems (Section IV). Simulation results in Section VI are also new.

TABLE I
ABBREVIATIONS

abbrev. full name
ΔΣ Delta Sigma
NTF Noise Transfer Function
STF Signal Transfer Function
OSR Over-Sampling Ratio
SNR Signal-to-Noise Ratio
KYP Kalman Yakubovich Popov
LMI Linear Matrix Inequality
LME Linear Matrix Equality

H∞-norm condition of the NTF as a sufficient condition. This
H∞-norm constraint can be equivalently expressed as an LMI
via the KYP lemma [40], [41], [25]. In summary, the proposed
method can be described by LMI’s and LME’s, which can be
solved effectively by numerical optimization softwares such
as YALMIP [42] and SeDuMi [43] with MATLAB.

The organization of this paper is as follows: Section II gives
characterization of all loop-filters that stabilize a linearized
feedback modulator. Section III is the main section of this
paper, in which we motivate the min-max design in view of
SNR improvement, and then we formulate the design as a
min-max optimization, which is reduced to LMI’s and LME’s.
Section IV discusses stability of the ΔΣ modulator model
without linearization. Section V introduces a cascade structure
for high-order modulators. Section VI gives design examples
to show advantages of our method. Section VII concludes our
study.

Notation and Convention

Throughout this paper, we use the following notations.
Abbreviations in this paper are summed up in Table I.

S, S ′ S is the set of all stable, causal, and rational transfer
functions with real coefficients, and S ′ := {R ∈ S :
R is strictly causal}.

�1 the Banach space of all real-valued absolutely
summable sequences. For {v(k)}k≥0 ∈ �1, the �1

norm is defined by ‖v‖1 :=
∑

k≥0 |v(k)|.
�∞ the Banach space of all real-valued bounded se-

quences. For {v(k)}k≥0 ∈ �∞, the �∞ norm is
defined by ‖v‖∞ := supk≥0 |v(k)|.

v ∗ w convolution of two sequences {v(k)}k≥0 and
{w(k)}k≥0, that is,

(v∗w)(m) :=
∑
k≥0

v(m−k)w(k), m = 0, 1, 2, . . . .

For this computation, we set v(m−k) = 0 if m < k.

II. CHARACTERIZATION OF LOOP-FILTERS

In this section, we characterize all H(z)’s that stabilize the
linearized model shown in Fig. 2. This characterization is a ba-
sis for the proposed min-max design formulated in Section III.
For a stability condition taking account of the nonlinear effect
of the quantizer, see the discussion in Section IV.

We first define causality, stability, well-posedness and inter-
nal stability of linear systems.
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Fig. 2. Linearized model for ΔΣ modulator with loop-filter H = [H1, H2].

Definition 1 (Causality and Stability): A rational transfer
function P (z) is said to be (strictly) causal if the order
of the numerator of P (z) is (strictly) less than that of the
denominator, and said to be stable if the poles of P (z) are all
in the open unit disk D = {z ∈ C : |z| < 1}.

Definition 2 (Well-posedness): The feedback system in
Fig. 2 is well-posed if there is at least one clock of delay in
H2(z), that is, the transfer function H2(z) is strictly causal.

Definition 3 (Internal stability): The feedback system
Fig. 2 is internally stable if the four transfer functions from
[u, n]� to [ψ, y]� are all stable.

We here characterize the filter H(z) that makes the lin-
earized feedback system well-posed and internally stable. All
stabilizing filters are characterized as follows:

Proposition 1: The linearized feedback system in Fig. 2 is
well-posed and internally stable if and only if

H1(z) =
P (z)

1 +R(z)
, H2(z) =

R(z)
1 +R(z)

,

P (z) ∈ S, R(z) ∈ S ′,
(1)

where S denotes the set of all stable, causal, and rational
transfer functions with real coefficients, and S ′ := {R(z) ∈
S : R(z) is strictly causal}.

Proof: See Appendix A.
By using the parameters P (z) ∈ S and R(z) ∈ S ′, we

obtain the STF and NTF respectively as TSTF(z) = P (z) and
TNTF(z) = 1+R(z). From this, it follows that the input/output
equation of the system in Fig. 2 is given by

y = TSTF u+ TNTF n = Pu+ (1 +R)n. (2)

By equation (2), the ΔΣ modulator can be realized by
means of the design parameters P (z) ∈ S and R(z) ∈ S′

as shown in Fig. 3. This structure, called error-feedback
structure [2] or noise-shaping coder [1], is often applied in
the digital loops required in ΔΣ DA converters [2]. By this
block diagram, we can interpret the filter P (z) as a pre-filter
to shape the frequency response of the input signal, and R(z)
as a feedback gain for the quantization noise Qψ − ψ.

III. OPTIMAL LOOP-FILTER DESIGN VIA LINEAR MATRIX

INEQUALITIES AND EQUALITIES

In this section, we propose a min-max design of the loop-
filter H(z) by using the parametrization in Proposition 1.
First, we introduce the worst-case analysis of reconstruction
errors in ΔΣ modulators to motivate the min-max design to
be proposed. We then present design procedures for lowpass
and bandpass modulators.

P (z) Q

R(z)

y = Qψψu +
+

− +

n

Fig. 3. Error-feedback structure of ΔΣ modulator with design parameters
P (z) ∈ S and R(z) ∈ S′.

A. Worst-case analysis of reconstruction errors

In oversampling lowpass ΔΣ converters with oversampling
ratio NOSR (see Table I) [2], the authors attempt to attenuate
the magnitude of the NTF in the frequency band IB = [0,Ω] ⊂
[0, π] where Ω = π/NOSR. In a bandpass converter, the band
will be IB = [ω0 −Ω, ω0 +Ω] where ω0 ∈ (0, π) is the center
frequency. We here consider a general interval IB ⊂ [0, π]
in which the magnitude of the NTF is designed to be small.
In a conventional design [22], [2], the attenuation level of the
magnitude is measured by the average or the root mean square

Naverage(TNTF, IB) :=

√
1

|IB|
∫

IB

|TNTF(ejω)|2dω. (3)

On the other hand, we consider the worst-case measure

Nworst(TNTF, IB) := max
ω∈IB

∣∣TNTF(ejω)
∣∣ . (4)

It is easy to see that Nworst gives an upper bound of Naverage,
that is,

Naverage(TNTF, IB) ≤ Nworst(TNTF, IB).

Hence, minimization of Nworst(TNTF, IB) leads to small
Naverage(TNTF, IB), but not conversely. One can give an NTF
with the same average Naverage but much larger maximum
magnitude Nworst. That is, a small Naverage does not necessarily
yield a small Nworst.

Another advantage of minimizing Nworst is the worst-case
optimization of the reconstruction error y − u (see Fig. 3).
Define the worst-case reconstruction error Eworst by

Eworst := max
ω∈IB

∣∣ŷ(ejω) − û(ejω)
∣∣ ,

where ŷ and û are, respectively, the discrete-time Fourier
transforms of y and u in Fig. 3. Then this quantity can be
described by the maximum magnitude Nworst(TNTF, IB) of
TNTF(z) over IB. In fact, we have the following proposition:

Proposition 2: Assume that the magnitude |n̂(jω)| of the
quantization noise n = Qψ − ψ is bounded on IB, that is,
there exists C0 > 0 such that maxω∈IB |n̂(ejω)| = C0. Assume
also that

|TSTF(ejω)| = 1, ∀ω ∈ IB. (5)

Then the worst-case reconstruction error is given by

Eworst = C0 · Nworst(TNTF, IB). (6)
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Fig. 4. Peak-to-peak SNR for a narrow-band signal.

Proof: By the relation

ŷ(ejω) = TSTF(ejω)û(ejω) + TNTF(ejω)n̂(ejω)

= û(ejω) + TNTF(ejω)n̂(ejω), ∀ω ∈ IB,

we have

|ŷ(ejω) − û(ejω)| = |TNTF(ejω)n̂(ejω)|, ∀ω ∈ IB.

By taking the maximum over the interval IB, we obtain (6).

Note that the assumption (5) holds if we choose the pre-
filter P (z) that has a unity magnitude response over IB. In
particular, if we take P (z) = 1 then we have TSTF(z) = 1. By
Proposition 2, optimization of Nworst improves the worst-case
reconstruction error Eworst. Minimizing Nworst also improves
the peak-to-peak SNR (signal-to-noise ratio) of the modulator
defined by

SNRpp(u) :=
maxω∈IB |û(ejω)|2

maxω∈IB |ŷ(ejω) − û(ejω)|2 . (7)

Let us consider the following set of input signals:

U :=
{
u : max

ω∈IB

|û(ejω)|2 = 1
}
.

Suppose that the assumptions in Proposition 2 hold. Then, by
Proposition 2, we have

SNRworst := min
u∈U

SNRpp(u) =
1

C0Nworst(TNTF, IB)
.

It follows that smaller Nworst leads to better worst-case SNR.
Note that if condition (5) holds and if the input signal is
sufficiently narrow-banded, SNRpp can be estimated by the
difference2 between the peak of ŷ(jω) and the peak of noise,
or the maximum noise level in |ŷ(ejω)|, over the frequency
range IB (see Fig. 4).

Conversely, if Eworst is as large as maxω∈IB |û(ejω)|, then
the SNRpp will be very poor, and the dynamic range will also
be very narrow. As seen above, minimizing Naverage can yield
a large NTF magnitude at a certain frequency, and hence the
performance may be degraded. See examples in Section VI
where we illustrate that minimizing Nworst improves the SNRpp

better than minimizing Naverage.

2The difference is also known as the spurious-free dynamic range (SFDR).

|TNTF(ejω)|

ω

Ω

γ

0 π
Fig. 5. Min-max optimization of the lowpass NTF in the frequency domain:
minimize the maximum magnitude γ in the band Ilow = [0,Ω].

In what follows, we set P (z) = 1 for simplicity, and show
design methods of the loop-filter R(z). Since the STF and
the NTF can be designed independently by relation (2), one
can design P (z) after obtaining the loop-filter R(z) such that
|P (ejω)| = 1 over IB and |P (ejω)| 	 1 over [0, π] \ IB to
achieve better reconstruction performance.

B. Min-max design of lowpass modulators

We now consider the design of lowpass modulators based on
the discussion given in the previous section. Our objective here
is to find the loop-filter R(z) that minimizes the magnitude
of the frequency response of TNTF(z) over Ilow := [0,Ω] as
shown in Fig. 5. Our problem is formulated as follows:

Problem 1 (Lowpass modulator): Given Ω (0 < Ω < π),
find R(z) ∈ S ′ that solves the following min-max optimiza-
tion:

Jlow := min
R(z)∈S′

Nworst(TNTF, Ilow)

= min
R(z)∈S′

max
ω∈[0,Ω]

|TNTF(ejω)|,

or equivalently,

minimize γ subject to R(z) ∈ S ′ and

max
ω∈[0,Ω]

|TNTF(ejω)| < γ. (8)

To solve this problem, we assume that R(z) is a finite
impulse response (FIR) filter, that is, we set

R(z) =
N∑

k=0

αkz
−k, α0 = 0. (9)

Note that the constraint α0 = 0 ensures R(z) ∈ S ′. Note
also that FIR filters are often preferred to IIR filters that
may cause instability attributed to quantization and recursion
when they are implemented in digital devices. Therefore, the
assumption to use FIR filter for R(z) is not too restrictive. We
then introduce a state-space realization {A,B,C(α)}, such
that R(z) = C(α)(zI−A)−1B, where α := [α0, α1, . . . , αN ],

A :=

⎡
⎢⎢⎢⎢⎣

0 1 0
. . .

. . .

. . . 1
0 0

⎤
⎥⎥⎥⎥⎦ , B :=

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ ,

C(α) := [αN , αN−1, . . . , α1].

(10)
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Fig. 6. Min-max optimization of the bandpass NTF in the frequency domain:
minimize the maximum magnitude γ in the band Imid = [ω0 − Ω, ω0 + Ω].

Then inequality (8) can be described as a linear matrix
inequality (LMI) by using the generalized KYP lemma [30]:

Theorem 1: Inequality (8) holds if and only if there exist
symmetric matrices Y > 0 and X such that⎡

⎣ M1(X,Y ) M2(X,Y ) C(α)�

M2(X,Y )� M3(X, γ2) 1
C(α) 1 −1

⎤
⎦ < 0, (11)

where

M1(X,Y ) = A�XA+ Y A+A�Y −X − 2Y cos Ω,

M2(X,Y ) = A�XB + Y B,

M3(X, γ2) = B�XB − γ2.

Proof: By the generalized KYP lemma [30, Theorem 2]
for the low frequency range Ilow = [0,Ω] in the discrete-time
setting, inequality (8) is equivalent to[

M1 M2

M�
2 M3

]
+

[
C(α) 1

]�[
C(α) 1

]
< 0.

Then applying the Schur complement [40, Sec. 2.1] to this
inequality gives inequality (11).
By Theorem 1, the optimal coefficients α1, . . . αN of the filter
R(z) in (9) are obtained by minimizing γ subject to (11). This
LMI optimization is a convex optimization problem [40], [44],
and hence can be efficiently solved by standard optimization
softwares e.g., MATLAB. For optimization softwares and
MATLAB codes, see Appendix C.

Remark 1: The obtained NTF TNTF(z) = 1+R(z) is an FIR
filter, which is more preferred in view of implementation. On
the other hand, a conventional optimal design [22], [2] yields
an IIR (infinite-impulse-response) filter that has a problem of
stability in digital implementation. This is an advantage of the
proposed design.

C. Min-max design of bandpass modulators

Bandpass modulators are used in digital demodulation of
frequency modulated analog signals, e.g., [45], [46].

We can formulate the bandpass modulator design as a min-
max optimization in the same light of lowpass modulators.
Fig. 6 illustrates noise shaping for bandpass modulators, where
ω0 ∈ (0, π) is the center frequency and 2Ω is the bandwidth
of interest. Our objective here is to minimize the magnitude
of the NTF over the frequency band Imid := [ω0 −Ω, ω0 +Ω].
Our design process is formulated as follows:

Problem 2 (Bandpass modulator): Given ω0 ∈ (0, π) and
Ω > 0 such that Imid = [ω0 − Ω, ω0 + Ω] ⊂ [0, π], find
R(z) ∈ S ′ that solves the following min-max optimization:

Jmid := min
R(z)∈S′

Nworst(TNTF, Imid)

= min
R(z)∈S′

max
ω∈[ω0−Ω,ω0+Ω]

|TNTF(ejω)|,

or equivalently,

minimize γ subject to R(z) ∈ S ′ and

max
ω∈[ω0−Ω,ω0+Ω]

|TNTF(ejω)| < γ. (12)

As in the lowpass modulator design, we here constrain R(z) to
be an FIR filter defined in (9). Let {A,B,C(α)} be state-space
matrices as defined in the previous section. Then the bandpass
modulator problem is also reducible to an LMI optimization
via the generalized KYP lemma [30].

Theorem 2: Inequality (12) holds if and only if there exist
symmetric matrices Y > 0 and X such that⎡

⎣ M4(X,Y, ω0,Ω) M5(X,Y, ω0) C(α)�

M5(X,Y, ω0)� M6(X, γ2) 1
C(α) 1 −1

⎤
⎦ < 0, (13)

where

M4(X,Y, ω0,Ω) := A�XA+ Y Ae−jω0 +A�Y ejω0

−X − 2Y cos Ω,

M5(X,Y, ω0) := A�XB + Y Be−jω0 ,

M5(X,Y, ω0) := A�XB + Y Bejω0 ,

M6(X, γ2) := B�XB − γ2.

(14)

Proof: By the generalized KYP lemma [30, Theorem 2]
for the mid frequency range Imid := [ω0 − Ω, ω0 + Ω] in the
discrete-time setting, inequality (12) is equivalent to[

M4 M5

M
�
5 M6

]
+

[
C(α) 1

]�[
C(α) 1

]
< 0.

Then applying the Schur complement [40, Sec. 2.1] to this
inequality gives inequality (13).

Remark 2: LMI (13) is complex-valued, however, for some
LMI solvers, a real-valued LMI is required. An equivalent real-
valued LMI for (13) is given in Appendix B.

Remark 3: LMI (13) with the center frequency ω0 = 0
is equivalent to LMI (11) for lowpass modulator. That is,
Theorem 1 can be obtained as a special case of Theorem 2.

Theorem 2 can be directly extended to the following multi-
band bandpass modulator design:

Problem 3 (Multi-band bandpass modulator): Given ωl ∈
(0, π) and Ωl > 0, l = 1, 2, . . . , L such that

Il = [ωl − Ωl, ωl + Ωl] ⊂ [0, π], l = 1, 2, . . . , L,

find R(z) ∈ S ′ that solves the following min-max optimiza-
tion:

Jmb := min
R(z)∈S′

L∑
l=1

Nworst(TNTF, Il)2

= min
R(z)∈S′

L∑
l=1

max
ω∈[ωl−Ωl,ωl+Ωl]

|TNTF(ejω)|2,
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Fig. 7. Uniform quantizerQ withM = 5 (number of steps) and Δ = 2δ = 2
(step size).

or equivalently,

minimize γ2
1 + · · · + γ2

L subject to R(z) ∈ S ′ and

max
ω∈[ωl−Ωl,ωl+Ωl]

|TNTF(ejω)| < γl, l = 1, 2, . . . , L. (15)

Theorem 3: Inequalities (15) hold if and only if there exist
symmetric matrices Yl > 0 and Xl, l = 1, 2, . . . , L such that⎡

⎣ M4(Xl, Yl, ωl,Ωl) M5(Xl, Yl, ωl) C(α)�

M5(Xl, Yl, ωl)� M6(Xl, γ
2
l ) 1

C(α) 1 −1

⎤
⎦ < 0,

(16)

l = 1, 2, . . . , L,

where M4, M5, M5, and M6 are defined in (14).
Proof: A direct consequence of Theorem 2.

D. NTF zeros

To ensure perfect reconstruction of the DC input level, and
to reduce low-frequency tones, TNTF(z) should have zeros at
z = 1, or the frequency ω = 0 [2]. A similar requirement is
for a bandpass ΔΣ modulator; we set NTF zeros at a given
frequency ω0 ∈ (0, π), or z = e±jω0 . The zeros of TNTF(z)
can be assigned by linear equations (linear constraints) of
α1, . . . , αN . Define ν(z) := zN +

∑N
k=1 αkz

N−k. Then,
TNTF(z) has μ zeros at z = z0 if and only if

dkν(z)
dzk

∣∣∣∣
z=z0

= 0, k = 0, 1, . . . , μ− 1,

where d0ν(z)
dz0 := ν(z). The LMI with these linear constraints

can also be effectively solved.

IV. STABILITY OF NONLINEAR FEEDBACK SYSTEMS

Although the linearized model in Fig. 2 is useful for analyz-
ing and designing noise-shaping ΔΣ modulators as above, the
stability of ΔΣ modulators should be analyzed with respect
to their nonlinear behaviors induced by the quantizer Q. We
here discuss the stability of the ΔΣ modulator model without
linearization.

n = Qψ − ψ

ψ1

3

5

−1

−3

−5

2 4−2−4 0

Fig. 8. Quantization error n = Qψ − ψ of the quantizer Q in Fig. 7.

A. Stability analysis in state space

Let us first make the following assumptions:
Assumption 1: The linearized model shown in Fig. 2 is

internally stable. That is, the filter H(z) = [H1(z),H2(z)]
satisfies (1).

Assumption 2: There exist real numbers M > 0 and δ > 0
such that if |ψ| ≤M + 1 then |Qψ − ψ| ≤ δ.

Note that the first assumption is necessary for the stability
of the nonlinear system. The second assumption considers
general quantizers including uniform ones. For example, the
uniform quantizer shown in Fig. 7 has M = 5 and δ = 1; see
also Fig. 8. For uniform quantizers, the number Δ = 2δ is
called the step size and the interval [−M −1,M +1] is called
the no-overload input range [2]. Under these assumptions, we
have the following lemma:

Lemma 1: Assume that Assumptions 1 and 2 hold. If
ψ(0) ≤ M + 1 and if ‖p‖1‖u‖∞ + δ‖r‖1 ≤ M + 1, then
we have

|n(k)| ≤ δ, |ψ(k)| ≤M + 1, k = 0, 1, 2, . . . , (17)

where p and r are respectively the impulse responses of P
and R, and ‖ · ‖1 and ‖ · ‖∞ denote, respectively, the �1 norm
and �∞ norm of sequences.

Proof: Since the filter H = [H1,H2] satisfies (1), we
have ψ = Pu + Rn where n := Qψ − ψ. Then, we have
ψ(k) = (p ∗ u)(k) + (r ∗ n)(k) for k = 0, 1, 2, . . . . It follows
that

|ψ(k)| ≤ |(p ∗ u)(k)| +
k∑

i=1

|r(i)||n(k − i)|

≤ ‖p ∗ u‖∞ +
(

max
0≤i≤k−1

|n(i)|
) k∑

i=1

|r(i)|.

If |ψ(0)| ≤M + 1, then by Assumption 2, we have |n(0)| =
|Qψ(0) − ψ(0)| ≤ δ, and hence

|ψ(1)| ≤ ‖p ∗ u‖∞ + δ

k∑
i=1

|r(i)|

≤ ‖p‖1‖u‖∞ + δ‖r‖1 ≤M + 1.

Again by Assumption 2, we also have |n(1)| ≤ δ. By induction
on k, we deduce that |ψ(k)| ≤ M + 1 implies |ψ(k + 1)| ≤
M + 1 and |n(k + 1)| ≤ δ. We thus have inequality (17).
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This lemma gives a sufficient condition for the input ψ
of the quantizer Q to be always in the no-overload range
[−M − 1,M + 1]. A ΔΣ modulator is conventionally said
to be stable if ψ(k) ∈ [−M − 1,M + 1] for all k ≥ 0 [47],
[2]. However, since the modulator involves feedback, this does
not necessarily guarantee boundedness of all signals in the
feedback loop. To show the boundedness, we introduce a state-
space model of the ΔΣ modulator for analyzing the stability
of the feedback system.

First, invoke a minimal realization of the filter H(z) be
{AH , [B1, B2], CH , [DH , 0]}, as follows:

H1(z) = CH(zI −AH)−1B1 +DH ,

H2(z) = CH(zI −AH)−1B2.

Then a state-space model of the closed-loop system shown in
Fig. 1 is given by the following formulas:

x(k + 1) = Aclx(k) +Buu(k) +Bnn(k),
n(k) = (Qψ − ψ)(k),
ψ(k) = CHx(k) +DHu(k), k = 0, 1, 2, . . . ,
Acl := AH +B2CH ,

Bu := B1 +B2DH , Bn := B2.

(18)

The nonlinear effect of Q is represented by the signal n(k).
Consider the ideal state xI(k), which is the state when there

is no quantization, that is, when Q is identity (or n ≡ 0).
Define the state error e := x−xI. We then have the following
theorem:

Theorem 4: Suppose that the ΔΣ modulator shown in
Fig. 1 satisfies Assumptions 1 and 2. If ψ(0) ≤M + 1 and if

‖p‖1‖u‖∞ + δ‖r‖1 ≤M + 1, (19)

then there exists a bounded, real and monotone increasing
sequence {βk} such that

|e(k)| ≤ βk, k = 0, 1, 2, . . . , (20)

where |e(k)| denotes the Euclidean norm of vector e(k).
Proof: By the state-space representation (18), we have

x(k) = Ak
clx(0) +

k−1∑
i=0

Ai
clBuu(k − i) +

k−1∑
i=0

Ai
clBnn(k − i)

= xI(k) +
k−1∑
i=0

Ai
clBnn(k − i).

From this, we obtain

e(k) = x(k) − xI(k) =
k−1∑
i=0

Ai
clBnn(k − i).

By the triangle inequality, we have

|e(k)| ≤
k−1∑
i=0

‖Ai
clBn‖ · |n(k − i)|.

From Lemma 1, we have |n(k)| ≤ δ for all k ≥ 0. Put

βk := δ

k−1∑
i=0

‖Ai
clBn‖.

k

βk

|e(k)|
β∞

Fig. 9. Boundedness of quantization error |e(k)|, where β∞ is the limiting
value of {βk}.

Since matrix Acl is stable by Assumption 1, the sequence
{βk}k≥0 is bounded and monotone increasing, and we have
|e(k)| ≤ βk for all k = 0, 1, 2, . . . .

Stability condition (19) depends on the maximum amplitude
of the input u. This is different from stability condition (1) for
the linearized model that is independent of u. The difference
is due to the nonlinearity (in particular, saturation) in the
quantizer Q. Therefore, one should limit the level of inputs
before it is quantized. See also the example in Section VI-A.
From Theorem 4, it follows that when a ΔΣ modulator
satisfies the condition in Theorem 4, the error |e(k)| in the
state space is bounded as shown in Fig. 9. As a result, the state
x(k) is also bounded, and we can conclude that the system
is stable in a weak sense (i.e., bounded but not guaranteed to
converge to zero). By Theorem 4, we derive a generalization of
the stability condition given in [47] as the following corollary:

Corollary 1: Suppose that the ΔΣ modulator shown in
Fig. 1 satisfies Assumptions 1 and 2. Define the noise-to-state
transfer function G(z) by G(z) = (zI − Acl)−1Bn, and its
impulse response by g. If ψ(0) ≤ M + 1 and if inequality
(19) holds, then we have ‖e‖∞ ≤ δ‖g‖1.

Proof: By Theorem 4, we have

|e(k)| ≤ lim
k→∞

βk = δ

∞∑
i=0

‖Ai
clBn‖ = δ‖g‖1,

for all k = 0, 1, 2, . . . .

B. Stability condition by an H∞ norm inequality

Assume that ‖p‖1 = 1. Then, we can rewrite condition (19)
in Theorem 4 as

‖r‖1 ≤ 1
δ
(M + 1 − ‖u‖∞). (21)

By (9), we have ‖1+r‖1 = 1+
∑N

k=1 |αk| = 1+‖r‖1, and we
can show that (21) is equivalent to the condition given in [47],
[2]:

‖1 + r‖1 ≤ 1
δ
(M + 1 + δ − ‖u‖∞). (22)

Let N be the order of R(z). Then by the following inequality
(see [48, Theorem 4.3.1]),

‖1 + r‖1 ≤ (2N + 1)‖1 +R‖∞,
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+++

− − −
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Q

RRR

P
ψm ψ2 ψ1

Fig. 10. Cascade of Error Feedback

we have a sufficient condition for (22):

‖TNTF‖∞ = ‖1 +R‖∞
≤ 1

(2N + 1)δ
(M + 1 + δ − ‖u‖∞).

(23)

For the stability of binary ΔΣ modulators, the following
criterion3, called the Lee criterion, is widely used [49], [2]:

‖TNTF‖∞ = ‖1 +R‖∞ < 1.5. (24)

From conditions (23) and (24), attenuation of the H∞ norm
of TNTF = 1+R improves the stability. Therefore, we add the
following stability constraints to the design of modulators:

‖TNTF‖∞ = ‖1 +R‖∞ < γ0,

where γ0 > 0 is a constant (e.g., γ0 = 1.5 for the Lee
criterion). Assuming that R(z) is the FIR filter defined by
(9) and also that its state-space matrices are given in (10),
the above inequality is also reducible to an LMI via the KYP
lemma, also known as the bounded real lemma [40], [41]:

Lemma 2: The inequality ‖TNTF‖∞ < γ0 holds if and only
if there exists a symmetric matrix Z > 0 such that⎡

⎣A�ZA− Z A�ZB C(α)�

B�ZA B�ZB − γ2
0 1

C(α) 1 −1

⎤
⎦ < 0.

Proof: The equivalence is a direct consequence of the
KYP lemma (aka, bounded real lemma) [40, Sec. 2.7] and the
Schur complement [40, Sec. 2.1].

V. CASCADE OF ERROR FEEDBACK FOR HIGH-ORDER

MODULATORS

To design a high-order modulator, we can use the cascade
construction of the error feedback modulators in Fig. 3. The
proposed cascade structure is shown in Fig. 10. By using this
structure, we have TSTF(z) = P (z) and

TNTF(z) =
(
1 +R(z)

)m
,

where m denotes the number of filters R(z). This can be
proved by the following equations:

ψm = Pu+R(y − ψm),
y − ψk = (1 +R)(y − ψk−1), k = m,m− 1, . . . , 2,
y − ψ1 = n.

If R(z) ∈ S ′, then the linearized feedback system is stable.
An advantage of this structure is that the number of taps of
R(z) can be reduced, and hence the implementation is much
easier than a filter with a large number of taps. This structure
can be applied to ΔΣ DA converters.

3Note that this is neither sufficient nor necessary for stability.
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Fig. 11. NTF’s: proposed (solid) and the NTF zero optimization (dash).

To satisfy the stability condition ‖TNTF‖∞ < γ0, the filter
R(z) is designed to limit ‖1 + R‖∞ < m

√
γ0. If this is

satisfied, we have ‖TNTF‖∞ ≤ ‖1 + R‖m
∞ < γ0, by the sub-

multiplicative property of the H∞ norm [48].

VI. DESIGN EXAMPLES

In this section, we show two design examples of lowpass
and bandpass ΔΣ modulators by the proposed method.

A. Lowpass modulator

We here show a design example of a high-order lowpass
modulator with the cascade structure shown in Fig. 10. We
set P (z) = 1, that is, TSTF(z) = 1, and R(z) be an FIR filter
with 32 taps. The cutoff frequency Ω is set to be π/32. The
FIR filter R(z) is designed to minimize Nworst(TNTF, [0,Ω])
defined in (4) and the coefficients are obtained by the LMI in
Theorem 1, with the stability condition ‖TNTF‖∞ < 1.5, which
is also described by an LMI in Lemma 2. The number m of
cascades is 2, that is, the order of the modulator is 32×2 = 64.
We also design a modulator by the NTF zero optimization [22],
[2] that minimizes the average Naverage(TNTF, [0,Ω]) defined
in (3). This modulator is designed by the MATLAB function
synthesizeNTF in the Delta-Sigma Toolbox [2], [50],
where the order of TNTF is 4, the over sampling ratio NOSR is
32, and the stability condition ‖TNTF‖∞ < 1.5.

Fig. 11 shows the frequency responses of the proposed
modulator and that by optimizing the NTF zeros. By this
figure, we see that the magnitude of the proposed NTF is
uniformly attenuated over [0, π/32] while the conventional
one shows peaks in this band. The difference between the
two maximal magnitudes at the frequency ω = π/32 is
approximately 11.2 (dB), and the difference at low frequencies
is about 12.4 (dB).

Then we run a simulation to evaluate the obtained mod-
ulators. We used MATLAB functions simulateDSM and
simulateSNR in the Delta-Sigma Toolbox. Fig. 12 shows
the spectrum of the output when the input is the sinusoidal
wave with frequency 0.0325 (rad/sec) and amplitude 0.5. We
assume a uniform quantizer with M = 1 and δ = 1/2 (see
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Fig. 13. The SNR versus the amplitude of the input: proposed (solid) and
conventional (dash). -6.439 is the stability bound for the proposed modulator,
and -3.722 is for the conventional modulator.

Assumption 2). We observe that the quantization noise is
well attenuated in both cases. Note that the frequency 0.0325
(rad/sec) is taken around the first notch of the conventional
NTF gain (see Fig. 11). The notch frequency is expected to
give much better performance to the conventional modulator
than the proposed modulator. However, the simulation shows
this does not necessarily hold. In fact, the peak-to-peak SNR,
SNRpp defined in (7), of our modulator is 95.5 (dB), while that
of the conventional modulator is 91.5 (dB). That is, our design
is superior to the conventional one in SNRpp by approximately
4.0 (dB).

Fig. 13 shows the SNR, the ratio of the signal power to
the quantization noise power (SQNR), of the modulators as a
function of the amplitude of the input sinusoidal wave with
the frequency 0.0325 (rad/sec). For almost all amplitudes,
the proposed modulator shows better performance than the
conventional one, in particular, the difference of the peak
SNR, or the maximum SNR is about 4.8 (dB). The figure
also shows the stability bounds estimated by inequality (19) in
Theorem 4. That is, the bound for the conventional modulator
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Fig. 14. Enlarged plot of Fig. 13 with linear scale for input levels.

TABLE II
COMPARISON IN FIGS. 11–13.

max NTF (dB) SNRpp (dB) peak SNR (dB)
Conventional -49.4 91.5 79.6

Proposed -60.6 99.5 84.4
Improvement 11.2 4.0 4.8

is given by M +1−δ‖r‖1 ≈ 0.6514 (-3.722 dB), and that for
the proposed modulator is M + 1 − δ‖r‖1 ≈ 0.4765 (-6.439
dB). The degradation of the SNR for high input levels is due
to saturation in the quantizer that leads to instability in the
modulator. We can say that if the input level is limited to the
stability bound, the degradation is avoidable. We note that the
conventional modulator can accept higher level of inputs. To
see the difference more precisely, we show an enlarged plot in
Fig. 14. The difference however does not matter if the inputs
are limited to the pre-estimated bound by Theorem 4. These
simulation results show that the proposed min-max (or worst-
case) design gives a better SNR as mentioned in Section III-A.
We summarize the results in Table II.

B. Bandpass modulator

We next show a design example of a bandpass modulator.
We set P (z) = 1, and R(z) be an FIR filter with 32 taps.
The center frequency ω0 is set to be π/2, and the bandwidth
parameter Ω is π/16. The FIR filter R(z) is designed by
using the LMI in Theorem 2, with the stability condition
‖TNTF‖∞ < 1.5. We design two modulators, with zeros at
ω0 = ±π/2 and without assignment of zeros there. We also
design a modulator by the NTF zero optimization [22], [2],
designed by the MATLAB function synthesizeNTF in the
Delta-Sigma Toolbox, with the order of TNTF is 6, the over
sampling ratio NOSR is 16, the center frequency f0 = 1/4,
and ‖TNTF‖∞ < 1.5.

Fig. 15 shows the frequency responses of the two pro-
posed modulators and that by optimizing the NTF zeros. We
can see that the proposed modulator without assignment of
zeros shows the smallest magnitude over the band [π/2 −
π/16, π/2+π/16], and that of the proposed modulator with a
zero at π/2 is slightly larger. To see these precisely, enlarged
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Fig. 16. Enlarged view of bandpass NTF’s in Fig. 15.

figure of Fig. 15 around the center frequency is shown in
Fig. 16. By this figure, the magnitudes of the proposed NTF’s
are uniformly attenuated over the band, while the conventional
one shows a peak on the edges of the band. The differences
between the magnitudes of the proposed NTF’s and that of the
conventional one are about 12.9 (dB) and 15.3 (dB).

Finally, we give an example of a multi-band modulator
proposed in Section III-C. We set P (z) = 1, and R(z) be
an FIR filter with 32 taps. The center frequencies are set
by ω1 = π/4, ω2 = π/2, and ω3 = 3π/4. The bandwidth
parameter is Ωl = π/16, l = 1, 2, 3. We also impose the
infinity norm condition ‖TNTF‖ < 1.5 and place zeros at ω1,
ω2, and ω3. Fig. 17 shows the magnitude frequency response
of the NTF designed via Theorem 3. The figure shows that
our design method works well.

VII. CONCLUSION

We have proposed a min-max design method of ΔΣ mod-
ulators. First we have characterized all stabilizing loop-filters
for a linearized model. Then, based on this result, we have
formulated our problem of noise shaping in the frequency
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Fig. 17. Multi-band bandpass NTF designed by Theorem 3 with zeros at
ω1 = π/4, ω2 = π/2, and ω3 = 3π/4.

domain as a min-max optimization. It is seen that the proposed
min-max design has an advantage in improving SNR.

The proposed design problem is reduced to an LMI opti-
mization, using the generalized KYP lemma, and this has a
computational advantage. The assignment of NTF zeros can
be taken care of by an LME. We have given a stability analysis
of the ΔΣ modulator model without linearization and derived
an H∞-norm condition for stability, which is also described
as an LMI via the KYP lemma. The obtained NTF is an FIR
filter, which is favorable from the implementation viewpoint.
Design examples have shown effectiveness of our method.

Future work includes STF optimization as in [23], or
adaptive quantization as in [51] combined with the proposed
optimal filter.
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APPENDIX

A. Proof of Proposition 1

In this proof, we adopt a standard technique of control
theory [52].

First assume that H1(z) and H2(z) are given by (1) for
some P (z) ∈ S and R(z) ∈ S ′. Since R(z) ∈ S ′, R(z)
is strictly causal and so is H2(z) = R(z)/(1 + R(z)). This
implies that the system is well-posed. For internal stability, we
need to show that the four transfer functions 1/(1 −H2(z)),
H1(z)/(1−H2(z)), and H2(z)/(1−H2(z)) are all stable (i.e.,
their poles are inside the unit circle in the complex plane). By
the equalities in (1), we have 1/(1 − H2(z)) = 1 + R(z) ∈
S, and hence H1(z)/(1 − H2(z)) = P (z) and H2(z)/(1 −
H2(z)) = R(z) are stable.

Next assume that the feedback system is well-posed and
internally stable. Define R := H2/(1 − H2) and P :=
H1/(1 − H2). Since H2(z) is strictly proper from the well-
posedness, so is R(z). Then by the internal stability of the
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feedback system, R = H2/(1 −H2) and P = H1/(1 −H1)
are stable, that is R(z) ∈ S ′ and P (z) ∈ S.

B. Real-valued LMI for Theorem 2

For a Hermitian matrix F ∈ C
n×n the inequality F < 0 is

equivalent to ([44])[
ReF − ImF
ImF ReF

]
< 0.

Hence we obtain the following real-valued LMI for (13):[
Mr(X,Y, α) −Mi(Y )
Mi(Y ) Mr(X,Y, α)

]
< 0,

where

Mr(X,Y, α) :=

⎡
⎣ Mr1(X,Y ) Mr2(X,Y ) C(α)�

Mr2(X,Y )� Mr3(X, γ) 1
C(α) 1 −1

⎤
⎦ ,

Mr1(X,Y ) := A�XA+ (A�Y + Y A) cosω0

−X − 2Y cos Ω,

Mr2(X,Y ) := A�XB + Y B cosω0,

Mr3(X, γ) := B�XB − γ2,

Mi(Y ) :=

⎡
⎣Mi1(Y ) Mi2(Y ) 0

−M�
i2 0 0

0 0 0

⎤
⎦ ,

Mi1(Y ) := (A�Y − Y A) sinω0,

Mi2(Y ) := −Y B sinω0.

C. MATLAB codes for optimal NTF

We here introduce MATLAB codes for executing numerical
computation of the design proposed in this paper. The codes
are downloadable from the following web site:

http://www-ics.acs.i.kyoto-u.ac.jp/˜nagahara/ds/

This site provides a MATLAB function NTF_MINMAX,
which is the main function to design optimal modulators.
Note also that to execute the codes in this section, Control
System Toolbox [53], YALMIP [42], and SeDuMi [43] are
needed. We use Control System Toolbox for defining state-
space representation of systems. YALMIP is a parser for LMI
description and SeDuMi is a solver for convex optimization
problem including LMI’s with the self-dual embedding tech-
nique. This function computes the optimal NTF and R(z)
minimizing γ > 0 subject to LMI (11) for lowpass modulators
and (13) for bandpass modulators. The H∞-norm condition
of the NTF and assignment of the NTF zeros can be also
included using Lemma 2.

For example, the optimal lowpass NTF shown in Sec-
tion VI-A is obtained by

[ntf2,R]=NTF_MINMAX(32,32,1.5ˆ(1/2),0,0);
ntf=ntf2ˆ2;

The optimal bandpass NTF with zeros at z = e±jπ/2 shown
in Section VI-B is obtained by

[ntf,R]=NTF_MINMAX(32,16,1.5,1/4,1);

For the optimal multi-band bandpass NTF shown in
Section VI-B is also obtained by using another function
NTF_MINMAX_MB as

ff=[1/8,1/4,3/8];
[ntf,R]=NTF_MINMAX_MB(32,64,1.5,ff,1);

Remark 4: When one runs the codes, a message “Run
into numerical problems” may appear. This means
that there was some kind of a numerical problem encountered
in optimization, and the usefulness of the returned solution
should be judged by the designer. This may happen occasion-
ally in numerical LMI optimization. For example, in numerical
optimization with an LMI condition M > 0, the minimum
eigenvalue of M may be slightly negative due to numerical
problems. In many cases, this does not matter. To avoid this,
one can adopt very small ε > 0 and rewrite M > 0 as
M > εI .
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