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Reduced-Dimension Linear Transform Coding of

Correlated Signals in Networks
Naveen Goela,Student Member, IEEE,and Michael Gastpar†, Member, IEEE

Abstract

A model, called the linear transform network (LTN), is proposed to analyze the compression and

estimation of correlated signals transmitted over directed acyclic graphs (DAGs). An LTN is a DAG network

with multiple source and receiver nodes. Source nodes transmit subspace projections of random correlated

signals by applying reduced-dimension linear transforms.The subspace projections are linearly processed by

multiple relays and routed to intended receivers. Each receiver applies a linear estimator to approximate a

subset of the sources with minimum mean squared error (MSE) distortion. The model is extended to include

noisy networks with power constraints on transmitters. A key task is to compute all local compression

matrices and linear estimators in the network to minimize end-to-end distortion. The non-convex problem

is solved iteratively within an optimization framework using constrained quadratic programs (QPs). The

proposed algorithm recovers as special cases the regular and distributed Karhunen-Loève transforms (KLTs).

Cut-set lower bounds on the distortion region of multi-source, multi-receiver networks are given for linear

coding based on convex relaxations. Cut-set lower bounds are also given for any coding strategy based on

information theory. The distortion region and compression-estimation tradeoffs are illustrated for different

communication demands (e.g. multiple unicast), and graph structures.
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Index Terms

Karhunen-Loève transform (KLT), linear transform network (LTN), quadratic program (QP), cut-set

bound.

I. INTRODUCTION

THE compression and estimation of an observed signal via subspace projections is both a classical

and current topic in signal processing and communication. While random subspace projections have

received considerable attention in the compressed sensingliterature [1], subspace projections optimized

for minimal distortion are important for many applications. The Karhunen-Loève transform (KLT) and

its empirical form Principal Components Analysis (PCA), are widely studied in computer vision, biology,

signal processing, and information theory. Reduced dimensionality representations are useful for source

coding, noise filtering, compression, clustering, and datamining. Specific examples include eigenfaces for

face recognition, orthogonal decomposition in transform coding, and sparse PCA for gene analysis [2]–[4].

In contemporary applications such as wireless sensor networks (WSNs) and distributed databases, data is

available and collected in different locations. In a WSN, sensors are usually constrained by limited power and

bandwidth resources. This has motivated existing approaches to take into account correlations across high-

dimensional sensor data to reduce transmission requirements (see e.g. [5]–[11]). Rather than transmitting raw

sensor data to a fusion center to approximate a global signal, sensor nodes carry out local data dimensionality

reduction to increase bandwidth and energy efficiency.

In the present paper, we propose a linear transform network (LTN) model to analyze dimensionality

reduction for compression-estimation of correlated signals in multi-hop networks. In a centralized setting,

given a random source signalxxx with zero-mean and covariance matrixΣxxx, applying the KLT toxxx yields

uncorrelated components in the eigenvector basis ofΣxxx. The optimal linear least squareskth-order approx-

imation of the source is given by thek components corresponding to thek largest eigenvalues ofΣxxx. In

a network setting, multiple correlated signals are observed by different source nodes. The source nodes

transmit low-dimensional subspace projections (approximations of the source) to intended receivers via a

relay network. The compression-estimation problem is to optimize the subspace projections computed by all

nodes in order to minimize the end-to-end distortion at receiver nodes.

In our model, receivers estimate random vectors based on “one-shot” linearanalog-amplitudemultisensor

observations. The restriction to “one-shot”, zero-delay encoding of each vector of source observations

separately is interesting due to severe complexity limitations in many applications (e.g. sensor networks).
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Linear coding depends on first-order and second-order statistics and is robust to uncertainty in the precise

probabilistic distribution of the sources. Under the assumption of ideal channels between nodes, our task

is to optimize signal subspaces given limited bandwidth in terms of the number of real-valued messages

communicated. Our results extend previous work on distributed estimation in this case [5]–[8]. For the case

of dimensionality-reduction with noisy channel communication (see e.g. [6]), the task is to optimize signal

subspaces subject to channel noise and power constraints.

For noisy networks, the general communication problem is often referred to as thejoint source-channel-

network coding problemin the information-theoretic literature and is a famously open problem. Beyond the

zero-delay, linear dimensionality-reduction consideredhere, end-to-end performance in networks could be

improved by (i), non-linear strategies and (ii), allowing alonger coding horizon. Partial progress includes

non-linear low-delay mappings for only simple network scenarios [12]–[14]. For the case of an infinite

coding horizon, separation theorems for decomposing the joint communication problem have been analyzed

by [15]–[17].

A. Related Work

Directly related to our work in networks is thedistributed KLT problem. Distributed linear transforms

were introduced by Gastpar et al. for the compression of jointly Gaussian sources using iterative methods [5]

[18]. Simultaneous work by Zhang et al. for multi-sensor data fusion also resulted in iterative procedures [8].

An alternate proof based on innovations for second order random variables with arbitrary distributions was

given by [19]. The problem was extended for non-Gaussian sources, including channel fading and noise

effects to model the non-ideal link from sensors to decoder by Schizas et al. [6]. Roy and Vetterli provide

an asymptoticdistortion analysis of the distributed KLT, in the case whenthe dimension of the source and

observation vectors approaches infinity [20]. Finally, Xiao et al. analyze linear transforms for distributed

coherentestimation [7].

Much of the estimation-theoretic literature deals withsingle-hopnetworks; each sensor relays information

directly to a fusion center. Inmulti-hop networks, linear operations are performed by successive relays to

aggregate, compress, and redistribute correlated signals. The LTN model relates to recent work on routing and

network coding(Ahlswede et al. [21]). In pure routing solutions, intermediate nodes either forward or drop

packets. The corresponding analogy in the LTN model is to constrain transforms to be essentially identity

transforms. However, network coding (over finite fields) hasshown that mixing of data at intermediate nodes

achieves higher rates in the multicast setting (see [22] regarding the sufficiency of linear codes and [23] for

multicast code construction). Similarly in the LTN model, linear combining of subspace projections (over
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the real field) at intermediate nodes improves decoding performance. Lastly, the max-flow min-cut theorem

of Ford-Fulkerson [24] provides the basis for cut-set lowerbounds in networks.

The LTN model is partially related to the formulation of Koetter and Kschischang [25] modeling infor-

mation transmission as the injection of a basis for a vector space into the network, and subspace codes [26].

If arbitrary data exchange is permitted between network nodes, the compression-estimation problem is

related to estimation in graphical models (e.g. decomposable PCA [27], and tree-based transforms (tree-

KLT) [28]). Other related work involving signal projections in networks includes joint source-channel

communication in sensor networks [29], random projectionsin a gossip framework [30], and distributed

compressed sensing [31].

B. Summary of Main Results

We cast the network compression-estimation problem as a statistical signal processing and constrained

optimization problem. For most networks, the optimizationis non-convex. Therefore, our main results are

divided into two categories: (i) Iterative solutions for linear transform coding over acyclic networks; (ii)

Cut-set bounds based on convex relaxations and cut-set bounds based on information theory.

• Section III reviews linear signal processing in networks. Section IV outlines an iterative optimization

for compression-estimation matrices in ideal networks under a local convergence criterion.

• Section V analyzes an iterative optimization method involving constrained quadratic programs for noisy

networks with power allocation over subspaces.

• Section VI introduces cut-set lower bounds to benchmark theminimum mean square error (MSE) for

linear coding based on convex relaxations such as a semi-definite program (SDP) relaxation.

• Section VI-F describes cut-set lower bounds for any coding strategy in networks based on information-

theoretic principles of source-channel separation. The lower bounds are plotted for a distributed noisy

network.

• Sections IV-VI provide examples illustrating the tradeoffs between compression and estimation; upper

and lower bounds are illustrated for an aggregation (tree) network, butterfly network, and distributed

noisy network.

C. Notation

Boldface upper case letters denote matrices, boldface lower case letters denote column vectors, and

calligraphic upper case letters denote sets. Theℓ2-norm of a vectorxxx ∈ R
n is defined as‖xxx‖2 ,

√
∑n

i=1 |xi|2.
The weightedℓ2-norm ‖xxx‖

W
, ‖Wxxx‖2 whereW is a positive semi-definite matrix (writtenW � 0).
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Fig. 1. (a)Linear Transform Network:An LTN model with source nodes{v1, v2} and receivers{v5, v6}. Source nodes observe

vector signals{xxx1,xxx2}. All encoding nodes linearly process received signals using a transformLij . Receiversv5 andv6 compute

LLSE estimateŝr̂r̂r5 andr̂̂r̂r6 of desired signalsrrr5 andrrr6. (b) Signal Flow Graph:Linear processing of source signals{xxx1,xxx2} results

in signals transmitted along edges of the graph.

Let (·)T , (·)−1, and tr(·) denote matrix transpose, inverse, and trace respectively.Let A ⊗ B denote the

Kronecker matrix product of two matrices. The matrixIℓ denotes theℓ× ℓ identity. Forℓ ≥ k, the notation

Tk:ℓ , TkTk+1 · · ·Tℓ denotes the product of(ℓ− k+1) matrices. A matrixX ∈ R
m×n is written in vector

form vec(X) ∈ R
mn by stacking its columns; i.e. vec(X) = [xxx1;xxx2; . . . ;xxxn] wherexxxj is the j-th column

of X. For random vectors,E[·] denotes the expectation, andΣxxx , E[xxxxxxT ] denotes the covariance matrix of

the zero-mean random vectorxxx.

II. PROBLEM STATEMENT

Fig. 1 serves as an extended example of an LTN graph. The network is comprised of two sources, two

relays, and two receiver nodes.

Definition 1 (Relay Network):Consider a relay network modeled by a directed acyclic graph(DAG) G =

(V, E) and a set of weightsC. The setV = {v1, v2, . . . , v|V|} is the vertex/node set,E ⊂ {1, . . . , |V|} ×
{1, . . . , |V|} is the edge set, andC = {cij ∈ Z

+ : (i, j) ∈ E} is the set of weights. Each edge(i, j) ∈ E
represents a communication link with integer bandwidthcij from nodevi to vj. The in-degree and out-degree
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of a nodevi are computed as

d−i =
∑

q:(q,i)∈E

cqi, (1)

d+i =
∑

l:(i,l)∈E

cil. (2)

As an example, the graph in Fig. 1 consists of nodesV = {v1, v2, . . . , v6}. Integer bandwidthscij for each

communication link(i, j) are marked.

Definition 2 (Source and Receiver Nodes):Given a relay networkG = (V, E), the set of source nodesS ⊂
V is defined asS = {vi ∈ V | d−i = 0}. We assume a labeling of nodes inV so thatS = {v1, v2, . . . , v|S|}, i.e.

the first|S| nodes are source nodes. The set of receiver nodesT ⊂ V is defined asT = {vi ∈ V | d+i = 0}.1

Let κ , |V| − |T |. We assume a labeling of nodes inV so thatT = {vκ+1, vκ+2, . . . , v|V|}, i.e. the last|T |
nodes are receiver nodes.

In Fig. 1, S = {v1, v2} andT = {v5, v6}.

A. Source Model

Definition 3 (Basic Source Model):Given a relay networkG = (V, E) with source/receiver nodes(S,T ),

the source nodesS = {vi}|S|i=1 observe random signalsX = {xxxi}|S|i=1. The random vectorsxxxi ∈ R
ni are

assumed zero-mean with covarianceΣii, and cross-covariancesΣij ∈ R
ni×nj . Letn ,

∑

i ni. The distributed

network sources may be grouped into ann-dimensional random vectorxxx = [xxx1;xxx2; . . . ;xxx|S|] with known

second-order statisticsΣxxx ∈ R
n×n,

Σxxx =

















Σ11 Σ12 . . . Σ1|S|

Σ21 Σ22 . . . Σ2|S|

...
...

.. .
...

Σ|S|1 Σ|S|2 . . . Σ|S||S|

















. (3)

More generally, each source nodevi ∈ S emits independent and identically distributed (i.i.d.) source vectors

{xxxi[t]}t>0 for t a discrete time index; however, in the analysis of zero-delay linear coding, we do not write

the time indices explicitly.

Remark 1:A common linear signal-plus-noise model for sensor networks is of the formxxxi = Hixxx+nnni;

however, neither a linear source model nor the specific distribution ofxxxi is assumed here.A priori knowledge

of second-order statistics may be obtained during a training phase via sample estimation.

1For networks of interest in this paper, an arbitrary DAGG may be augmented with auxiliary nodes to ensure that source nodes

have in-degreed−i = 0 and receiver nodes have out-degreed+i = 0.
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In Fig. 1, two source nodesS = {v1, v2} observe the corresponding random signals inX = {xxx1,xxx2}.

B. Communication Model

Definition 4 (Communication Model):Given a relay networkG = (V, E) with weight-setC, each edge

(i, j) ∈ E represents a communication link of bandwidthcij from vi to vj . The bandwidth is the dimension

of the vector channel. We denote signals exitingvi ∈ V along edge(i, j) ∈ E by xxxij ∈ R
cij and signals

entering nodevj along edge(i, j) ∈ E by yyyij ∈ R
cij . If communication is noiseless,yyyij = xxxij . For all relay

nodes and receiver nodes, we further defineyyyj ∈ R
d−

j to be the concatenation of all signalsyyyij incident to

nodevj along edges(i, j) ∈ E .

A noisy communication link(i, j) ∈ E is modeled as:yyyij = xxxij + zzzij. The channel noisezzzij ∈ R
cij is

a Gaussian random vector with zero-mean and covarianceΣzzzij
. The channel input is power constrained so

that E[‖xxxij‖22] ≤ Pij . The power constraints for a network are given by setP = {Pij ∈ R
+ : (i, j) ∈ E}.

The signal-to-noise ratio (SNR) along a link is

SNRij =
E
[

‖xxxij‖22
]

E
[

‖zzzij‖22
] . (4)

Fig. 1(b) illustrates the signal flow of an LTN graph.

C. Linear Encoding over GraphG

Source and relay nodes encode random vector signals by applying reduced-dimension linear transforms.

Definition 5 (Linear Encoding):Given a relay networkG = (V, E), weight-setC, source/receiver nodes

(S,T ), sourcesX , and the communication model of Definition 4, the linear encoding matrices forG are

denoted by setLG = {Lij : (i, j) ∈ E}. EachLij represents the linear transform applied by nodevi in

communication with nodevj . For vi ∈ S, transformLij is of size cij × ni and represents the encoding

xxxij = Lijxxxi. For a relayvi, transformLij is of sizecij × d−i , andxxxij = Lijyyyi. Thecompression ratioalong

edge(i, j) ∈ E is

αij =











cij

ni
if vi ∈ S, (5a)

cij

d−i
if vi ∈ V \ S. (5b)

In Fig. 1, the linear encoding matrices for source nodev1 andv2 are{L15,L13} and{L26,L23} respectively.

The linear encoding matrices for the relays areL34, L45, L46. The output signals of source nodev1 are
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xxx15 = L15xxx1 andxxx13 = L13xxx1. Similarly, the output signal of relayv3 is

xxx34 = L34yyy3 = L34





yyy13

yyy23



 . (6)

D. Linear Estimation overG

Definition 6 (Linear Estimation):Given relay networkG = (V, E), weight-setC, source/receiver nodes

(S,T ), sourcesX , and the communication model of Def. 4, the set of linear decoding matrices is denoted

BG = {Bi}i:vi∈T . Each receivervi ∈ T estimates a (zero-mean) random vectorrrri ∈ R
ri which is correlated

with the sources inX . We assume that the second-order statisticsΣrrri , Σrrrixxx are known. Receivervi ∈ T
applies a linear estimator given by matrixBi ∈ R

ri×d−

i to estimaterrri given its observations and computes

r̂̂r̂ri = Biyyyi. The linear least squares estimate (LLSE) ofrrri is denoted bŷr̂r̂ri.

In Fig. 1, receiverv5 reconstructsrrr5 while receiverv6 reconstructsrrr6. The LLSE signalŝr̂r̂r5 and r̂̂r̂r6 are

computed as

r̂̂r̂r5 = B5yyy5 = B5





yyy15

yyy45



 , (7)

r̂̂r̂r6 = B6yyy6 = B6





yyy26

yyy46



 . (8)

Definition 7 (Distortion Metric): Let xxx and yyy be two real vectors of the same dimension. The MSE

distortion metric is defined as

dmse(xxx,yyy) , ‖xxx− yyy‖22 . (9)

E. Compression-Estimation in Networks

Definition 8 (Linear Transform NetworkN ): An LTN modelN is a communication network modeled by

DAG G = (V, E), weight-setC, source/receiver nodes(S,T ), sourcesX , setsLG, andBG from Definitions 1-

6. Second-order source statistics are given byΣxxx (Definition 3). The operational meaning of compression-

estimation matrices inLG andBG is in terms of signal flows onG (Definition 4). The desired reconstruction

vectors{rrri}i:vi∈T have known second-order statisticsΣrrri andΣrrrixxx. The set{r̂̂r̂ri}i:vi∈T denotes the LLSE

estimates formed at receivers (Definition 6). For noisy networks, noise variables along link(i, j) ∈ E have

known covariancesΣzzzij
. Power constraints are given by setP in Definition 4.

Given an LTN graphN , the task is to design anetwork transform code: the compression-estimation matrices

in LG andBG to minimize the end-to-end weighted MSE distortion. Let positive weights{wi}i:vi∈T represent
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the relative importance of reconstructing a signal at receiver vi ∈ T . Using indexing termκ , |V| − |T |
for receiver nodes, we concatenate vectorsrrri as rrr =

[

rrrκ+1;rrrκ+2; . . . ;rrr|V|

]

and LLSE estimateŝr̂r̂ri as

r̂̂r̂r =
[

r̂̂r̂rκ+1; r̂̂r̂rκ+2; . . . ; r̂̂r̂r|V|

]

. The average weighted MSE written via a weightedℓ2-norm is

DMSE,W , E

[

∑

i:vi∈T

dmse(
√
wirrri,

√
wir̂̂r̂ri)

]

,

= E
[

∥

∥rrr − r̂̂r̂r
∥

∥

2

W

]

, (10)

whereW contains diagonal blocksWi =
√
wi I.

Remark 2:The distortionDMSE,W is a function of the compression matrices inLG and the estimation

matrices inBG. In most network topologies, the weighted MSE distortion isnon-convex over the set of

feasible matrices. Even in the particular case of distributed compression [5], currently the optimal linear

transforms are not solvable in closed form.

III. L INEAR SIGNAL PROCESSING INNETWORKS

The linear processing and filtering of source signals by an LTN graphN is modeled compactly as a linear

system with inputs, outputs, and memory elements. At each time step, LTN nodes transmit random signals

through edges/channels of the graph.

A. Linear System

Consider edge(i, j) ∈ E as a memory element storing random vectoryyyij . Let c , (
∑

(i,j)∈E cij) and

d , (
∑

i:vi∈T
d−i ). The networkN is modeled as a linear system with the following signals: (i)input sources

{xxxi}i:vi∈S concatenated as global source vectorxxx ∈ R
n; (ii) input noise variables{zzzij}(i,j)∈E concatenated as

global noise vectorzzz ∈ R
c; (iii) memory elements{yyyij}(i,j)∈E concatenated as global state vectorµµµ[t] ∈ R

c

at time t; (iv) output vectors{yyyi}i:vi∈T concatenated asyyy ∈ R
d.

1) State-space Equations:The linear system2 is described by the following state-space equations for

i : vi ∈ T ,

µµµ[t+ 1] = Fµµµ[t] +Exxx[t] + Ẽzzz[t], (11)

yyyi[t] = Ciµµµ[t] +Dixxx[t] + D̃izzz[t]. (12)

The matrixF ∈ R
c×c is the state-evolution matrix common to all receivers,E ∈ R

c×n is the source-network

connectivity matrix, and̃E ∈ R
c×c is the noise-to-network connectivity matrix. The matricesCi ∈ R

d−

i ×c,

2When discussing zero-delay linear coding, the time indiceson vectorsxxx, zzz, andyyyi are omitted for greater clarity of presentation.
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Di ∈ R
d−

i ×n, andD̃i ∈ R
d−

i ×c represent how each receiver’s output is related to the state, source, and noise

vectors respectively. For networks considered in this paper, Di = 0 andD̃i = 0.

2) Linear Transfer Function:A standard result in linear system theory yields the transfer function

(assuming a unity indeterminate delay operator) for each receivervi ∈ T ,

yyyi = Ci (I− F)−1 (Exxx+ Ẽzzz), (13)

= Gixxx+ G̃izzz, (14)

whereGi , Ci (I− F)−1
E and G̃i , Ci (I− F)−1

Ẽ. For acyclic graphs,F is a nilpotent matrix and

(I− F)−1 = I+
∑γ

k=1F
γ for finite integerγ. Using indexing termκ, the observation vectors collected by

receivers are concatenated asyyy =
[

yyyκ+1; yyyκ+2; . . . ; yyy|V|

]

. Let

T ,
[

Gκ+1; Gκ+2; . . . ; G|V|

]

, (15)

and letT̃ be defined similarly with respect to matrices̃Gi. Then the complete linear transfer function of the

networkN is yyy = Txxx+ T̃zzz. Analog processing of signals without error control implies noise propagation;

the additive noisezzz is also linearly filtered by the network viãT.

Example 1:Fig. 2 is the LTN graph of a noisy relay network. Let stateµµµ = [yyy12; yyy13; yyy23], zzz =

[zzz12; zzz13; zzz23], and outputyyy3 = [yyy13; yyy23]. The linear system representation is given as follows,

µµµ[t+ 1] =











0 0 0

0 0 0

L23 0 0











µµµ[t] +











L12

L13

0











xxx1[t] + Iczzz[t],

yyy3[t] =





0 I 0

0 0 I



µµµ[t].

By evaluating Eqn. (14),

yyy3[t] =





L13

L23L12



xxx1[t] +





0 I 0

L23 0 I



zzz[t].

Dropping the time indices and writingxxx = xxx1 in addition toyyy = yyy3, the linear transfer function of the noisy

relay network is of the following form:yyy = Txxx+ T̃zzz.

B. Layered Networks

Definition 9 (Layered DAG Network):A layering of a DAGG = (V, E) is a partition ofV into disjoint

subsetsV1,V2, . . . ,Vp+1 such that if directed edge(u, v) ∈ E , whereu ∈ Vj and v ∈ Vk, then j > k. A

DAG layering (non-unique) is polynomial-time computable [32].
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xxx1

zzz13

zzz12 zzz23

v1

v2

v3
yyy13

yyy23

r̂̂r̂r3

Fig. 2. The LTN graph of a noisy relay network withS = {v1} andT = {v3}. The linear processing of the network is modeled

as a linear system with inputxxx1 and outputyyy3 = [yyy13; yyy23].

Given a layered partition{Vℓ}p+1
ℓ=1 of an LTN graph, source nodesvi ∈ S with in-degreed−i = 0 may be

placed in partitionVp+1. Similarly, receiversvi ∈ T with out-degreed+i = 0 may be placed in partitionV1.

The transfer functionT in Eqn. (15) may be factored into a product of matrices,

T = T1:p , T1T2 · · ·Tp, (16)

whereTℓ for 1 ≤ ℓ ≤ p is the linear transformation of signals between nodes in partition Vℓ+1 and Vℓ

(note the reverse ordering of theTℓ with respect to the partitionsVℓ). If an edge exists between nodes in

non-consecutive partitions, an identity transform is inserted to replicate signals between multiple layers. Due

to the linearity of transforms, for any layered partition{Vℓ}p+1
ℓ=1 of V, the layered transforms{Tℓ}pℓ=1 can

be constructed. The{Tℓ}pℓ=1 are structured matrices comprised of sub-blocksLij, identity matrices, and/or

zero matrices. The block structure is determined by the network topology.

Example 2:For the multiple unicast network of Fig. 1, a valid layered partition of V is V1 = {v5, v6},

V2 = {v4}, V3 = {v3}, andV4 = {v1, v2}. Let xxx = [xxx1; xxx2], yyy = [yyy5; yyy6] = [yyy15; yyy45; yyy46; yyy26], and

let L34 be partitioned asL34 = [L′
34 L

′′
34]. According to the layering, the transfer matrixT is factored in

product formT = T1T2T3,

T =

















I 0 0

0 L45 0

0 L46 0

0 0 I



























I 0 0 0

0 L
′
34 L

′′
34 0

0 0 0 I



























L15 0

L13 0

0 L23

0 L26

















.

Example 3:Consider the setting of Example 1 for the relay network shownin Fig. 2. A valid layered

partition of V is V1 = {v3}, V2 = {v2}, V3 = {v1}. According to the layering, the transfer matrixT may
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be written in product formT = T1T2,

T =





I 0

0 L23









L13

L12



 .

IV. OPTIMIZING COMPRESSION-ESTIMATION MATRICES

Our optimization method proceeds iteratively over networklayers. To simplify the optimization, we first

assume ideal channels (high-SNR communication) for whichyyyij = xxxij . Then the linear operation of the

network N is yyy = Txxx with zzz = 0. Linear transform coding is constrained according to bandwidth

compression ratiosαij .

A. MSE Distortion at Receivers

According to the linear system equations, Eqns. (11)-(14),each receivervi ∈ T receives filtered source

observationsyyyi = Gixxx. Receivervi applies a linear estimatorBi to estimate signalrrri. The MSE cost of

estimation is

Di = E
[

∥

∥rrri −BiGixxx
∥

∥

2

2

]

= tr
(

Σrrri

)

−2tr
(

BiGiΣxxxrrri

)

+tr
(

BiGiΣxxxG
T
i B

T
i

)

. (17)

Setting the matrix derivative with respect toBi in Eqn. (17) to zero yields:−2ΣrrrixxxG
T
i +2BiGiΣxxxG

T
i = 0.

For a fixed transfer functionGi, the optimal LLSE matrixBopt
i is

B
opt
i = ΣrrrixxxG

T
i

[

GiΣxxxG
T
i

]−1
. (18)

If Gi in Eqn. (18) is singular, the inverse may be replaced with a pseudo-inverse operation to computeBopt
i .

Let B denote a block diagonal global matrix containing individual decoding matrices{Bi}i:vi∈T on the

diagonal. For an LTN graphN with encoding transfer functionT = T1:p, we write the linear decoding

operation of all receivers aŝr̂r̂r = Byyy whereyyy = T1:pxxx are the observations received. The weighted MSE

cost in Eqn. (10) for reconstructing signals{rrri}i:vi∈T at all receivers is written as

DMSE,W = E
[

‖rrr − r̂̂r̂r‖2
W

]

= E
[

‖rrr −BT1:pxxx‖2W
]

= tr
(

WΣrrrW
T
)

− 2tr
(

WBT1:pΣxxxrrrW
T
)

+ tr
(

WBT1:pΣxxxT
T
1:pB

T
W

T
)

. (19)

By construction of the weighting matrixW, the MSE in Eqn. (19) is a weighted sum of individual distortions

at receivers, i.e.DMSE,W =
∑

i:vi∈T
wi Di.
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B. Computing Encoding TransformsTi

The optimization of the network transfer functionT = T1:p is more complex due to block constraints

imposed by the network topology on matrices{Ti}pi=1. In order to solve for a particular linear transform

Ti, we assume all linear transformsTj, j 6= i and the receivers’ decoding transformB are fixed. Then

the optimalTi is the solution to a constrained quadratic program. To derive this, we utilize the following

identities in whichxxx = vec(X):

tr
(

A
T
X
)

= vec(A)Txxx, (20)

tr
(

X
T
A1XA2

)

= xxxT (A2 ⊗A1)xxx. (21)

We write the network’s linear transfer function asT = T1:p = T1:i−1TiTi+1:p and define the following

matrices

Ji , Ti+1:pΣxxxrrrW
T
WBT1:i−1, (22)

J
′
i , (T1:i−1)

T
B

T
W

T
WBT1:i−1, (23)

J
′′
i , Ti+1:pΣxxx(Ti+1:p)

T . (24)

To write DMSE,W in terms of the matrix variableTi, we also define the following,

pi , tr
(

WΣrrrW
T
)

, (25)

pppi , −2vec
(

J
T
i

)

, (26)

Pi , J
′′
i ⊗ J

′
i, (27)

wherepi, pppi, andPi are a scalar, vector, and positive semi-definite matrix respectively. The following lemma

expressesDMSE,W as a function of the unknown matrix variableTi.

Lemma 1:Let transformsTj, j 6= i, andB be fixed. LetJi, J′
i, J

′′
i be defined in Eqns. (22)-(24), and

pi, pppi, andPi be defined in Eqns. (25)-(27). Then the weighted MSE distortion DMSE,W of Eqn. (19) is a

quadratic function ofttti = vec(Ti),

DMSE,W = tttTi Pittti + pppTi ttti + pi. (28)

Proof: Substituting the expressions forJi, J′
i, J

′′
i in Eqns. (22)-(24) into Eqn. (19) produces the inter-

mediate equation:DMSE,W = tr
(

T
T
i J

′
iTiJ

′′
i

)

−2tr
(

JiTi

)

+pi. Directly applying the vector-matrix identities

of Eqns. (20)-(21) results in Eqn. (28).
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(a) LTN BLOCK DIAGRAM (b) DISTORTION VS. COMPRESSION (c) CONVERGENCE
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Convergence of Algorithm

Fig. 3. (a) Block diagram of the “hybrid network” example. (b) The end-to-end distortion vs. compression for varying bandwidth

c = c13 = c23. The network operates in one of three modes (distributed, hybrid, or point-to-point) as described in Example 4. (c)

Convergence ofDMSE(n) for five different initializations of the iterative algorithm for the operating pointc = 6, c34 = 11.

C. Quadratic Program with Convex Constraints

Due to Lemma 1, the weighted MSE is a quadratic function ofttti = vec(Ti) if all other network matrices are

fixed. The optimalTi must satisfy block constraints determined by network topology. The block constraints

are linear equality constraintsof the formΦittti = φφφi. For example, ifTi contains an identity sub-block, this

is enforced by setting entries inttti to zero and one accordingly, via linear equality constraints.

Theorem 1 (Optimal Encoding):Let encoding matricesTj , j 6= i and decoding matrixB be fixed. Let

ttti = vec(Ti). The optimal encoding transformttti is given by the following constrained quadratic program

(QP) [33, Def. 4.34]

argmin
ttti

tttTi Pittti + pppTi ttti + pi (29)

s. t. Φittti = φφφi,

where(Φi,φφφi) represent linear equality constraints on elements ofTi. The solution to the above optimization

for ttti is obtained by solving a corresponding linear system




2Pi Φ
T
i

Φi 0









ttti

λλλ



 =





−pppi
φφφi



 . (30)

If the constraints determined by the pair(Φi,φφφi) are feasible, the linear system of Eqn. (30) is guaranteed

to have either one or infinitely many solutions.
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Algorithm 1 IDEAL-COMPRESSION-ESTIMATION(N , W, ǫ)

1: Identify compression matrices{Ti}pi=1 and corresponding linear equalities{Φi,φφφi}pi=1 for networkN .

Identify estimation matrices{Bi}i:vi∈T . [Sec. III, Sec. IV-C]

2: Initialize {T(0)
i }pi=1 randomly to feasible matrices.

3: Setn = 1, DMSE,W(0) = ∞.

4: repeat

5: Compute{B(n)
i }i:vi∈T given {T(n−1)

k }pk=1. [Eqn. (18)]

6: for i = 1 : p do

7: ComputeT(n)
i given {Φi,φφφi}, {B(n)

k }k:vk∈T , {T(n)
k }(i−1)

k=1 , {T(n−1)
k }pk=i+1. [Theorem 1]

8: end for

9: ComputeDMSE,W(n). [Eqn. (19)]

10: Set∆MSE,W = DMSE,W(n)−DMSE,W(n− 1).

11: Setn = n+ 1.

12: until ∆MSE,W ≤ ǫ or n ≥ Nmax.

13: return {T(n)
i }pi=1, {B

(n)
i }i:vi∈T .

Proof: The QP of Eqn. (29) follows from Lemma 1 with additional linear equality constraints placed on

ttti. The closed form solution to the QP is derived using Lagrangedual multipliers for the linear constraints,

and the Karush-Kuhn-Tucker (KKT) conditions. Letf(ttti,λλλ) represent the Lagrangian formed with dual

vector variableλλλ for the constraints,

f(ttti,λλλ) = tttTi Pittti + pppTi ttti + pi + λλλT (Φittti − φφφi) , (31)

∇tttif(ttti,λλλ) = 2Pittti + pppi +Φ
T
i λλλ, (32)

∇λλλf(ttti,λλλ) = Φitttitttittti − φφφi. (33)

Setting∇tttif(ttti,λλλ) = 0 and∇λλλf(ttti,λλλ) = 0 yields the linear system of Eqn. (30), the solutions to whichare

ttti and dual vectorλλλ. Since the MSE distortion is bounded by a minimum of zero error, the linear system

has a unique solution ifPi is full rank, or infinitely many solutions of equivalent objective value ifPi is

singular.

Remark 3:Beyond linear constraints, several other convex constraints on matrix variables could be applied

within the quadratic program. For example, theℓ1-norm of a vectorxxx ∈ R
n defined by‖xxx‖1 ,

∑

i |xi| is

often used in compressed sensing to enforcesparsity.
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TABLE I

A “H YBRID” L INEAR TRANSFORM NETWORK

Network Modes Bandwidth

Distributed c ≤ ⌊ c34
2
⌋

Hybrid ⌈ c34
2
⌉ < c < c34

Point to Point c34 ≤ c

D. An Iterative Algorithm

Algorithm 1 defines an iterative method to optimize all encoding matrices{Ti}pi=1 and the global decoding

matrix B for an LTN graph. The iterative algorithm begins with the random initialization of the encoding

matrices{Ti}pi=1 subject to size specifications and linear equality constraints given by{Φi}pi=1 and{φφφi}pi=1.

The iterative method proceeds by solving for the optimalB transform first. Similarly, withTj, j 6= i andB

fixed, the optimalTi is computed using Theorem 1. The iterative method proceeds for n ≤ Nmax iterations

or until the difference in error∆MSE,W is less than a prescribed toleranceǫ.

E. Convergence to Stationary Points

A key property of Algorithm 1 is the convergence to a stationary point (either local minimum or saddle-

point) of the weighted MSE.

Theorem 2 (Local Convergence):Denote the network’s linear transfer function after then-th outer-loop

iteration in Algorithm 1 byT(n), and the block-diagonal global decoding transform byB
(n) which contains

matrices{B(n)
i }i:vi∈T on the diagonal. Let̂r̂r̂r(n) = B

(n)
T

(n)xxx denote the estimate of desired signalrrr. Then

E

[

∥

∥

∥
rrr − r̂̂r̂r(n)

∥

∥

∥

2

W

]

≥ E

[

∥

∥

∥
rrr − r̂̂r̂r(n+1)

∥

∥

∥

2

W

]

, (34)

i.e., the weighted MSE distortion is a nonincreasing function of the iteration numbern.

Proof: In Step 5 of Algorithm 1, with matrices{T(n−1)
k }pk=1 fixed, the optimal transformB(n) is deter-

mined to minimizeDMSE,W. The current transformB(n−1) is feasible within the optimization space which

implies that the MSE distortion cannot increase. In Step 7 ofthe inner loop, with matricesB(n), {T(n)
k }(i−1)

k=1 ,

and{T(n−1)
k }pk=i+1 fixed, Theorem 1 computes the optimal transformT(n)

i to minimizeDMSE,W. A similar

argument shows that the error term cannot increase. The distortion sequence{DMSE,W(n)} is nonincreasing

and nonnegative; hencelimn→∞DMSE,W(n) = inf{DMSE,W(n)} by monotone convergence.

Remark 4:The local convergence in Theorem 2 is affected by several factors: (i) The covariance structure

Σxxx of the source; (ii) The DAG structure ofG; (iii) The schedule of iterative optimization of local matrices
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and factorization ofT into theTi; (iv) The random initialization of{Ti}pi=1. In practice, multiple executions

of Algorithm 1 increase the probability of converging to a global minimum.

F. Example: A Multi-Hop Network

Consider the noiseless multi-hop network of Fig. 3 in which arelay aggregates, compresses and/or forwards

its observations to a receiver. The network is a hybrid combination of a distributed and point-to-point network.

Example 4 (“Hybrid Network”): High-dimensional, correlated signalsxxx1 ∈ R
n1 andxxx2 ∈ R

n2 are ob-

served at nodesv1 and v2 where n1 = n2 = 15 dimensions. The covarianceΣxxx of the global source

xxx = [xxx1; xxx2] was generated as follows for the experiment, ensuringΣxxx ≻ 0. The diagonal entries(i, i) of

Σxxx were selected as15+ 2Uii, and off-diagonal entries(i, j) for j > i were selected as1+ 2Uij whereUii

andUij are i.i.d. uniform random variables over the interval[0, 1].

The linear transfer function is factored in the formT = T1T2 whereT1 = L34 and

T2 =





L13 0

0 L23



 .

The target reconstruction atv4 is the entire signalrrr4 = xxx. The bandwidthc34 = 11, while bandwidth

c = c13 = c23 is varied for the experiment. Depending on the amount of bandwidth c, the network operates

in one of the modes given in Table I. Fig. 3(b) plots the sum distortion vs. compression performance, and

Fig. 3(c) plots the convergence of Algorithm 1 for the operating point c = 6, c34 = 11.

V. NOISY NETWORKS

We now analyze communication for networks with non-ideal channels:yyyij = xxxij +zzzij. Edges(i, j) repre-

sent vector Gaussian channels. Network communication is limited according to both bandwidth compression

ratiosαij and signal-to-noise ratiosSNRij. We simplify optimization of subspaces by restricting attention

to single-layer multi-source, multi-receiver networks for which V = S ∪ T . In this case, the linear transfer

function isyyy = Txxx+ zzz, i.e. the noise is additive but not filtered over multiple network layers.

A. MSE Distortion at Receivers

Each receivervi ∈ T receives observationsyyyi = Gixxx+zzzi wherezzzi is the noise tovi. The MSE distortion

for reconstructingrrri at receivervi is given by,

D̃i = tr
(

Σrrr

)

−2tr
(

BiGiΣxxxrrri

)

+tr
(

BiΣzzzi
B

T
i

)

+ tr
(

BiGiΣxxxG
T
i B

T
i

)

. (35)
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Setting the matrix derivative with respect toBi in Eqn. (35) to zero yields the optimal linear transformBi

(cf. Eqn. (18)),

B
opt
i = ΣrrrixxxG

T
i

[

GiΣxxxG
T
i +Σzzzi

]−1
. (36)

Combining the LLSE estimates asr̂̂r̂r = Byyy, whereyyy = Txxx+ zzz, the weighted MSE for all receivers is given

by

D̃MSE,W = E
[

∥

∥rrr − r̂̂r̂r
∥

∥

2

W

]

= E
[

∥

∥rrr −B(Txxx+ zzz)
∥

∥

2

W

]

= tr
(

WBTΣxxxT
T
B

T
W

T
)

−2tr
(

WBTΣxxxrrrW
T
)

+ tr
(

WΣrrrW
T
)

+tr
(

WBΣzzzB
T
W

T
)

. (37)

By construction of the weighting matrixW, the MSE in Eqn. (37) is a weighted sum of individual distortions

at receivers, i.e.̃DMSE,W =
∑

i wi D̃i.

B. Computing Encoding TransformT

For noisy networks, power constraints on channel inputs limit the amount of amplification of transmitted

signals. For single-layer networks, letvi ∈ S be a source node with observed signalxxxi. A power constraint

on the input to channel(i, j) ∈ E is given by

E[‖xxxij‖22] = E[‖Lijxxxi‖22] = tr
(

LijΣxxxi
L
T
ij

)

≤ Pij. (38)

The power constraint in Eqn. (38) is a quadratic function of the entries of the global linear transformT. More

precisely, letℓℓℓij = vec(Lij) andttt = vec(T). Sincettt contains all variables ofℓℓℓij, we may writeℓℓℓij = Jijttt

whereJij selects variables fromttt. Using the matrix-vector identities of Eqn. (21), the powerconstraint in

Eqn. (38) can be written as

tr
(

LijΣxxxi
L
T
ij

)

= ℓℓℓTij (Σxxxi
⊗ I)ℓℓℓij

= tttTJT
ij (Σxxxi

⊗ I)Jijttt. (39)

Letting Γij , J
T
ij (Σxxxi

⊗ I)Jij , the quadratic constraint istttTΓijttt ≤ Pij . The matrixΓij is a symmetric,

positive semi-definite matrix. Thus a power constraint is a quadratic, convex constraint.
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Algorithm 2 NOISY-COMPRESSION-ESTIMATION (N ,W, ǫ)
1: Identify compression matrixT and corresponding linear equality constraints(Φ,φφφ), and quadratic power

constraints{(Γij , Pij)}(i,j)∈E . Identify estimation matrices{Bi}i:vi∈T . [Sec. III, Sec. V-B]

2: Initialize T
(0) randomly to a feasible matrix.

3: Setn = 1, D̃MSE,W(0) = ∞.

4: repeat

5: Compute{B(n)
i }i:vi∈T givenT

(n−1). [Eqn. (36)]

6: ComputeT(n) given {B(n)
i }i:vi∈T , (Φ,φφφ), {(Γij , Pij)}(i,j)∈E . [Theorem 3]

7: ComputeD̃MSE,W(n). [Eqn. (37)]

8: Set∆̃MSE,W = D̃MSE,W(n)− D̃MSE,W(n− 1).

9: Setn = n+ 1.

10: until ∆̃MSE,W ≤ ǫ or n ≥ Nmax.

11: return T
(n) and{B(n)

i }i:vi∈T .

C. Quadratic Program with Convex Constraints

As in Section IV-B, we use the vector formttt = vec(T) to enforce linear equality constraintsΦttt = φφφ. For

noisy networks, we include power constraintstttTΓijttt ≤ Pij for each channel(i, j) ∈ E . For a fixed global

decoding transformB, the distortionD̃MSE,W of Eqn. (37) is again a quadratic function ofttt. Using the

compact notation

p , tr
(

WΣrrrW
T
)

+tr
(

WBΣzzzB
T
W

T
)

, (40)

ppp , −2vec
(

B
T
W

T
WΣrrrxxx

)

, (41)

P , Σxxx ⊗B
T
W

T
WB, (42)

a derivation identical to that of Lemma 1 yields̃DMSE,W = tttTPttt + pppT ttt + p. The optimal encoding

transformT for single-layer noisy networks is solvable via a quadraticprogram with quadratic constraints

(QCQP), following the development of Eqns. (40)-(42), and the power constraints given in Eqns. (38)-(39);

cf. Theorem 1.

Theorem 3 (Optimal EncodingT for Noisy LTN): Let N be a single-layer LTN,B be the fixed decoding

transform, andttt = vec(T) be the encoding transform. The optimal encodingttt is the solution to the following
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xxx1

xxx2

xxx3

v1

v2

v3

v4 r̂̂r̂r4

zzz24

zzz14

zzz34

Fig. 4. A block diagram of a distributed, noise/power limited LTN. Each source node transmits signal projections of a vector

xxxi ∈ R
4 to a decoder over a vector arbitrary white Gaussian noise (AWGN) channel.

quadratic program with quadratic constraints (QCQP):

argmin
ttt

tttTPttt+ pppT ttt+ p (43)

s. t. Φttt = φφφ,

tttTΓijttt ≤ Pij , (i, j) ∈ E ,

where (Φ,φφφ) represent linear equality constraints (dictated by network topology), and{(Γij , Pij)}(i,j)∈E
represent quadratic power constraints on variables ofT.

Remark 5:A quadratic program with linear and convex quadratic constraints is solvable efficiently via

standard convex program solvers; the time complexity depends polynomially on the number of matrix

variables and constraints.

D. Iterative Algorithm and Convergence

Algorithm 2 defines an iterative algorithm for single-layer, noise/power limited networks. In addition to

subspace selection, the amount of power per subspace is determined iteratively. The iterative method alternates

between optimizing the global decoding transformB and the global encoding transformT, ensuring that

network topology and power constraints are satisfied. As in Theorem 2, the weighted MSE distortion is a

nonincreasing function of the iteration number, i.e.D̃MSE,W(n) ≥ D̃MSE,W(n+1). While convergence to

a stationary point is guaranteed, the optimization space ishighly complex– a globally optimal solution is not

guaranteed.
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(a) COMPRESSION-ESTIMATION TRADEOFFS

(b) CUT-SET LOWER BOUNDS (INFORMATION THEORY)
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Fig. 5. (a) Power-compression-distortion “spectra” of the network for varying compression ratiosα andSNR levels. The (red,

unmarked) dashed lines represent cut-set lower bounds on achievable MSE distortions for linear coding based on convex relaxations

discussed in Section VI-E. (b) For α ∈ {0.25, 1.0}, the performance of linear coding is compared with information-theoretic cut-set

bounds (described in Section VI-F). In the high-SNR setting, information-theoretic coding strategies are capable of zero-distortion;

however, in the low-SNR setting, linear coding achieves a competitive MSE performance while maintaining zero-delay and low-

complexity.

E. Example: A Distributed Noisy Network

Fig. 4 diagrams a classic example of a distributed network with multiple source (sensor) nodes transmitting

signal projections to a central decoder. Each source node ispower constrained and must transmit a compressed

description of its observed signal over a noisy vector channel.
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Example 5 (Distributed LTN):In Fig. 4, the global sourcexxx = [xxx1; xxx2; xxx3] is chosen to be ajointly

Gaussianvector withn = 12 dimensions, andni = 4 for each of|S| = 3 source nodes. Here, we specify

the exact distribution ofxxx in order to provide information-theoretic lower bounds. Weset the covariance of

xxx to be Gauss-Markov withρ = 0.8,

Σxxx =























1 ρ ρ2 . . . ρ11

ρ 1 ρ . . . ρ10

ρ2 ρ 1 . . . ρ9

...
...

...
. . .

...

ρ11 ρ10 ρ9 . . . 1























.

The network structure is specified by bandwidthsc14 = c24 = c34 = c. The global encoding transformT

is block-diagonal with matricesL14, L24, andL34 on the diagonal. The compression ratio is varied equally

for each source node,α = c
ni

whereni = 4. The noise variableszzzij are i.i.d. Gaussian random vectors

with zero-mean and identity covariances. The power constraints are set asP1 = P2 = P3 = c(SNR), where

SNRij = SNR for all links. The goal of destinationv4 is to reconstruct the entire sourcerrr4 = xxx. Fig. 5(a)

plots the performance of LTN optimization for varyingα andSNR ratios as well as cut-set lower bounds

for linear coding based on convex relaxations. Cut-set lower bounds for linear coding for this example are

explained further in Section VI-E. Fig. 5(b) plots cut-set bounds based on information theory which are

explained further in Sections VI-F and VI-G.

Remark 6 (Comparison with [5], [6]):For this example, as theSNR → ∞, the errorD̃MSE approaches

the error associated to the distributed KLT [5] where channel noise was not considered. In [6], the authors

model the effects of channel noise; however, they do not provide cut-set lower bounds. In addition, the

iterative optimization of the present paper optimizes all compression matrices simultaneously per iteration

and allows arbitrary convex constraints, as opposed to the schemes in both [5], [6] which optimize the

encoding matrix of each user separately per iteration.

VI. CUT-SET LOWER BOUNDS

In this section, we derive lower bounds on the minimum MSE distortion possible for linear compression

and estimation of correlated signals in the LTN model. Our main technique is to relax an arbitrary acyclic

graph along all possible graph cuts to point-to-point networks with side information. The cut-set bounds

provide a performance benchmark for the iterative methods of Sections IV-V.
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A. Point-to-Point Network with Side Information

Consider the point-to-point network of Fig. 6. Source nodev1 compresses sourcexxx ∈ R
n via a linear

transformL12. The signalxxx12 ∈ R
c12 is transmitted wherexxx12 = L12xxx andE[‖xxx12‖22] ≤ P . Receiverv2

computes a linear estimate of desired signalrrr ∈ R
r using observationsyyy12 = xxx12 + zzz and side information

sss ∈ R
s as follows,

r̂̂r̂r = B





yyy12

sss



 =
[

B11 B12

]





yyy12

sss



 . (44)

The decoding transformB is here partitioned into two sub-matricesB11 andB12. We will find it convenient

to define the following random vectors,

ξξξ , xxx−ΣxxxsssΣ
−1
sss sss, (45)

ννν , rrr −ΣrrrsssΣ
−1
sss sss. (46)

Signalsξξξ andννν are innovation vectors. For example,ξξξ is the difference betweenxxx and the linear least squares

estimate ofxxx givensss which is equivalent toΣxxxsssΣ
−1
sss sss.

B. Case I: Ideal Vector Channel

In the ideal case,P = ∞ or zzz = 0. The weighted, linear minimum MSE distortion of the point-to-point

network with side information is obtained by solving

D∗
ideal = min

L12,B
E
[

∥

∥rrr − r̂̂r̂r
∥

∥

2

W

]

,

= min
L12,B11,B12

E
[

∥

∥rrr − (B11L12xxx+B12sss)
∥

∥

2

W

]

. (47)

The following theorem specifies the solution to Eqn. (47).

Theorem 4 (Ideal Network Relaxation):Let xxx ∈ R
n, sss ∈ R

s, andrrr ∈ R
r be zero-mean random vectors

with given full-rank covariance matricesΣxxx, Σsss, Σrrr and cross-covariancesΣrxrxrx, Σrsrsrs, Σxsxsxs. Let ξξξ andννν be

the innovations defined in Eqn (45) and Eqn. (46) respectively. The solution to the minimization of Eqn. (47)

over matricesL12 ∈ R
c12×n, B11 ∈ R

r×c12 , andB12 ∈ R
r×s is obtained in closed form as

D∗
ideal = tr

(

ΣνννW
T
W

)

−
c12
∑

j=1

λj, (48)

where{λj}c12j=1 are thec12 largest eigenvalues of the matrixWΣνννξξξΣ
−1
ξξξ

ΣξξξνννW
T .

Proof: The optimization in Eqn. (47) is simplified by first determining the LMMSE optimalB12

transform in terms ofB11 and L12: B
opt
12 = ΣrrrsssΣ

−1
sss − B11L12ΣxxxsssΣ

−1
sss . PluggingB

opt
12 into Eqn. (47)
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xxx

zzz

v1 v2

sss

r̂̂r̂r

Fig. 6. A point-to-point network with side informationsss at the receiver. In the case of additive noisezzz, the input to the channel

is power-constrained so thatE[‖xxx12‖
2
2] ≤ P .

yields a minimization overB11 andL12 only. By grouping and rearranging variables in terms of innovation

vectorsξξξ andννν,

D∗
ideal = min

L12,B11

E
[

∥

∥ννν −B11L12ξξξ
∥

∥

2

W

]

. (49)

The optimization of Eqn. (49) is that of an equivalent point-to-point network with input signalξξξ and desired

reconstructionννν, without side information. Eqn. (49) is in standard form andsolvable using canonical

correlation analysis as detailed in [34, p. 368]. The optimal value D∗
ideal is given in Eqn. (48) in terms of

the eigenvalues ofWΣνννξξξΣ
−1
ξξξ

ΣξξξνννW
T .

C. Case II: Additive Noise and Power Constraints

In the case of additive noisezzz (here with assumed covarianceΣzzz = I for compactness) and a power-

constrained input to the vector channel, the weighted, linear minimum MSE distortion is obtained by solving

D∗
noisy = min

L12,B11,B12

E
[

∥

∥rrr − (B11(L12xxx+ zzz) +B12sss)
∥

∥

2

W

]

,

s.t. tr[L12ΣxxxL
T
12] ≤ P. (50)

Again, by solving for the optimal LMMSE matrixB12 and grouping terms in the resulting optimization

according to innovation vectorsξξξ andννν,

D∗
noisy = min

L12,B11

E
[

∥

∥ννν − (B11(L12ξξξ + zzz))
∥

∥

2

W

]

,

s.t. tr[L12ΣxxxL
T
12] ≤ P. (51)

Remark 7:The exact solution to Eqn. (51) involves handling a quadratic power constraint and a rank

constraint due to the reduced-dimensionality ofL12. In [6, Theorem 4], a related optimization problem

was solved via a Lagrangian relaxation. For our problem, we take a simpler approach using a semi-definite
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programming (SDP) relaxation. We first note thatD∗
noisy ≥ D∗

ideal. In the high-SNR regime, the two distortion

values are asymptotically equivalent. Therefore, we compute a good approximation for the distortionD∗
noisy

in the low-SNR regime via the following SDP relaxation.

Theorem 5 (SDP Relaxation):Consider random vectorsxxx, sss, rrr, ξξξ, ννν, and matricesL12, B11 as defined in

Theorem 4. In addition, let random vectorzzz have zero-mean and covarianceΣzzz = I. Let Ψ , L
T
12L12 and

Φ ∈ R
r×r be an arbitrary positive semi-definite matrix wherer is the dimension of random vectorrrr. The

following lower bound applies,

D∗
noisy ≥ min

Φ,Ψ
tr[Φ] + tr

[

W
[

Σννν −ΣνννξξξΣ
−1
ξξξ

Σξξξννν

]

W
T
]

,

s.t. tr[ΣxxxΨ] ≤ P, Ψ � 0,




Φ WΣνννξξξΣ
−1
ξξξ

Σ
−1
ξξξ

ΣξξξνννW
T

Σ
−1
ξξξ

+Ψ



 � 0. (52)

The proof of Theorem 5 is based on a rank relaxation as detailed in the Appendix. The power constraint

is still enforced in Eqn. (52). In the low-SNR regime, power allocation over subspaces dominates the error

performance. If we denote the solution to the SDP of Theorem 5as D∗
sdp, we arrive at the following

characterization,

D∗
noisy ≥ max{D∗

ideal,D
∗
sdp}. (53)

D. Cut-Set Lower Bounds for Linear Coding

Consider an LTN graphN with source nodesS ⊂ V and receiversT ⊂ V. We assume thatS ∩ T = ∅,

i.e. the set of sources and receivers are disjoint. The totalbandwidth and total power across acut F ⊂ V
are defined respectively as

C(F) =
∑

jk∈E
j∈F , k∈Fc

cjk, (54)

P (F) =
∑

jk∈E
j∈F , k∈Fc

Pjk, (55)

where the edge setE and bandwidthscjk were defined in Section II. The edges of the graph are directed,

hence the bandwidth across a cut accounts for thecij only for those edges directed from nodevi to vj. In

the following theorem, the notationxxxF denotes the concatenation of vectorsxxxi : vi ∈ F . The setFc denotes

the complement ofF in V.
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Definition 10: D∗
ideal

[

xxx,rrr
∣

∣sss; c,W
]

represents the distortionD∗
ideal computed with the weighted norm

via W for the ideal point-to-point network with inputxxx, bandwidthc, reconstruction vectorrrr, and side

information to receiversss. Similarly, D∗
noisy

[

xxx,rrr
∣

∣sss; c, P,W
]

represents the distortionD∗
noisy for a noisy

point-to-point network with channel-input power constraintP and noise vectorzzz with zero-mean with identity

covariance.

Theorem 6 (Cut-Set Lower Bounds):Let N be an arbitrary LTN graph with source nodesS and receivers

T . Let F ⊂ V be a cut of the graph. For ideal channel communication,

E
[

∥

∥rrrFc − r̂̂r̂rFc

∥

∥

2

W

]

≥ D∗
ideal

[

xxxF , rrrFc

∣

∣

∣
xxxFc ;C(F),W

]

. (56)

In the case of noisy channel communication over networkN with additive channel noisezzzij (assumed

zero-mean, identity covariance),

E
[

∥

∥rrrFc − r̂̂r̂rFc

∥

∥

2

W

]

≥ D∗
noisy

[

xxxF , rrrFc

∣

∣

∣
xxxFc ;C(F), P (F),W

]

. (57)

Proof: The LTN graph is partitioned into two setsF andFc. The source nodesvi ∈ F are merged as one

source “super” node, and the receiversvi ∈ Fc are merged into one receiver “super” node. The maximum

bandwidth and maximum power between the source and receiverare C(F) and P (F) respectively. The

random vectorxxxFc represents those signals with channels to the receiver super node, not accounted for in

the cutF ; hence, this information is given as side information (a relaxation) to the receiver. The relaxed

network after the merging process is the point-to-point network of Fig. 6 with noisezzz of dimension equal

to the bandwidthC(F) of the cut, and provides a lower bound on the MSE distortionE
[

∥

∥rrrFc − r̂̂r̂rFc

∥

∥

2

W

]

at receiversvi ∈ Fc.

Remark 8:The total number of distinct cutsF separating sources and receivers is(2|S| − 1)(2|T | − 1).

For a particular cut, there exists a continuum of lower bounds for multi-receiver networks depending on the

choice of weightingW.

E. Example: Cut-Set Lower Bounds for Linear Coding

In Fig. 5(a), cut-set lower bounds for linear coding are illustrated based on Theorem 6 for a distributed

noisy network. The bounds are depicted for the cut that separates all sources from the receiver. Due to our

approximation method in Eqn. (53) based on the SDP relaxation, the lower bounds show tight agreement in

the low-SNR and high-SNR asymptotic regimes.
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v1
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xxx1

r̂̂r̂r5

v2

v6

xxx2

r̂̂r̂r6
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v4
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rrr5
rrr6

]

=
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xxx1
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]
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=

[
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]
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Fig. 7. (a) Block diagram of a multi-source, multi-destination ideal network. Bandwidthscij of all links are labeled. Although the

graph is symmetric, the source covariance matrix given in Eqn. (63) includes cross-correlations which cause the distortion plots to

appear asymmetric. (b) The distortion region assuming thatnodev5 reconstructsxxx1, and nodev6 reconstructsxxx2. The cut-set lower

bounds are drawn as dotted lines, and the shaded region depicts the achievable points. (c) The distortion region assuming that node

v5 reconstructsxxx2, and nodev6 reconstructsxxx1.

F. Cut-Set Lower Bound From Information Theory

For the point-to-point communication scenario illustrated in Fig. 6, the information-theoretically optimal

performance can be determined precisely. Consider anℓ-length sequence{(xxx[t], sss[t])}ℓt=1 of jointly i.i.d.

random vectors. The source nodev1 has access to the source sequence{xxx[t]}ℓt=1. We will assume throughout

that rrr (respectivelyrrr[t]) is a deterministic function of(xxx,sss) (respectively(xxx[t], sss[t])). The goal of receiver

v2 is to minimize theaverageMSE distortionDℓ = E
[

1
ℓ

∑ℓ
t=1 ‖rrr[t]− r̂̂r̂r[t]‖22

]

where the reconstruction

sequence{r̂̂r̂r[t]}ℓt=1 is generated based on access to side information{sss[t]}ℓt=1 and the sequence of channel

output vectors. We study the performance in the limit asℓ → ∞ and denoteD , D∞.

1) Source-Channel Separation:We establish a lower bound by combining the data processing inequality

with the definitions of Wyner-Ziv rate-distortion functionand channel capacity. Specifically, by straight-

forward extension of [35], the minimum rateR(D) required to reconstruct{rrr[t]}∞t=1 at distortionD is

given byR(D) = min I(xxx;uuu|sss) where the minimization is over all “auxiliary” random vectors uuu for which

p(uuu,xxx,sss) = p(uuu|xxx)p(xxx,sss) and for whichE[‖rrr−E[rrr|uuu,sss]‖22] ≤ D. Furthermore, by definition of the channel
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capacityC(P ) betweenv1 and v2, C(P ) = maxp(xxx12):E[‖xxx12‖2

2
]≤P I(xxx12;yyy12).3 Source-channel separation

applies to the scenario of Fig. 6, and in a nearly identical proof as detailed in [36, Thm. 1.10],

R(D) ≤ C(P ). (58)

2) R(D) for Jointly Gaussian Sources:If {(rrr[t],xxx[t], sss[t])} form an i.i.d. sequence of jointly Gaussian

random vectors, thenR(D) is equal to the conditional rate-distortion function [5, Appendix II],

Rc(D) = min
p(r̂̂r̂r|xxx,sss):E[‖rrr−r̂̂r̂r‖2

2
]≤D

I(xxx; r̂̂r̂r|sss). (59)

3) Capacity of the Vector AWGN Channel:If the channel noisezzz is a Gaussian random vector with zero

mean and covarianceΣzzz = I, the capacity of the channel in Fig. 6 with bandwidthc12 and power constraint

P is

C(P ) =
c12

2
log2

[

1 +
P

c12

]

. (60)

4) Cut-set Bound:We utilize Eqn. (58) to obtain an information-theoretic lower bound to the distortion

achievable in any network of the type considered in this paper. An arbitrary graph is reduced via graph cuts

to point-to-point networks. The following theorem collects the known information-theoretic results discussed.

Theorem 7 (Cut-Set Bounds: Info. Theory):Let N be an arbitrary LTN graph with vector AWGN chan-

nels. Consider a cutF ⊂ V separating the graph into a point-to-point network with bandwidth C(F) and

powerP (F). Let R(D∗
opt) be the rate-distortion function for the sourcexxxF with side informationxxxFc and

reconstructionrrrFc .4 Then

R(D∗
opt) ≤

C(F)

2
log2

[

1 +
P (F)

C(F)

]

. (61)

G. Example: Cut-Set Lower Bound From Information Theory

For the noisy network in Example 5, consider cutF = {v1, v2, v3}. The source signalxxxF = xxx = [xxx1;xxx2;xxx3]

is jointly Gaussian, the side information is absent, andrrrFc = xxx. Denote the eigenvalues of the sourcexxxF

as {λxxx,i}ni=1. Evaluating Eqn. (59) as in [5, Appendix II], optimal sourcecoding corresponds to reverse

water-filling over the eigenvalues (see also [37, Chap. 10]),

3The notation in information theory vs. signal processing differs. The termI(xxx12;yyy12) denotes the mutual information between

random vectors whereas the termp(xxx12) indicates a probability distribution.

4We assume thatrrrFc is a deterministic function of the global sourcexxx.
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Rc(D
∗
opt) =

n
∑

i=1

max

{

1

2
log2

λxxx,i

Di
, 0

}

,

whereDi =

{

θ if θ < λxxx,i

λxxx,i if θ ≥ λxxx,i

and whereθ is chosen such that
∑n

i=1 Di = D∗
opt. The lower bound of Eqn. (61) is plotted in Fig. 5(b) for

two different bandwidth compression ratios.

H. Example: Multi-Source, Multi-Receiver Network

Example 6 (Multiple Unicast):In Fig. 7, the global sourcexxx = [xxx1; xxx2] wherexxx1 ∈ R
4 andxxx2 ∈ R

4.

The correlation structure ofxxx is given by the following matrices,

[

Σ11 Σ12

Σ21 Σ22

]

=





















2.4 1.1 0.4 0.0 0.1 0.1 0.0 0.1
1.1 1.7 0.8 0.4 0.0 0.2 0.2 0.1
0.4 0.8 1.2 0.0 0.2 0.6 0.1 0.3
0.0 0.4 0.0 0.8 0.3 0.0 0.1 0.0
0.1 0.0 0.2 0.3 1.1 0.1 0.2 0.0
0.1 0.2 0.6 0.0 0.1 1.2 0.2 0.1
0.0 0.2 0.1 0.1 0.2 0.2 1.0 0.6
0.1 0.1 0.3 0.0 0.0 0.1 0.6 1.2





















. (63)

The network structure is specified by bandwidthscij as labeled in Fig. 7(a). The factorization of the global

linear transformT was given in Example 2 of Section IV.

The distortion region for the network in the case when nodev5 estimatesrrr5 = xxx1, and nodev6 estimates

rrr6 = xxx2 is given in Fig. 7(b). A direct link exists from each source toreceiver. However, if the desired

reconstruction at the receivers is switched as in Fig. 7(c),the channel fromv3 to v4 must be shared fully and

becomes a bottleneck. The cut-set bounds of interest are shown in dotted lines. The shaded region depicts

the points achievable via the iterative method of Section IV. In Fig. 7(c), the upper and lower bounds are

not tight everywhere–even if one receiver is completely ignored, the resulting problem is still a distributed

compression problem for which tight bounds are not known. The achievable curve was generated by taking

the convex hull of32 points corresponding to weighting ratiosw5

w6

∈ [ 1
100 , 100].

In Table II, we compare the results of linear transform design methods for the minimum sum distortion

point (weighting ratiow5

w6

= 1).

• Random Projections– Each entry for all compression matrices is selected from the standard normal

distribution. The sum distortionD5 +D6 is averaged over102 random compression matrices selected

for all nodes.

• Routing and Network Coding (Ad-Hoc)– For the scenario in Fig. 7(b), nodesv1 and v2 project their

signal onto the principal eigenvectors ofΣ11 andΣ22 respectively. Routing permits each receiver to
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TABLE II

COMPARISON OFREDUCED-DIMENSION L INEAR TRANSFORMS

Fig. 5(b) Fig. 5(c)

Design Method D5 +D6 D5 +D6

Random Projections 4.3170 6.3471

Routing and Network Coding 2.7029 3.8170

Iterative QP Optimization 2.3258 2.6165

〈Lower Bound〉 2.3243 2.3243

receive the best two eigenvector projections from its corresponding source, as well as an extra projection

from the other source. For Fig. 7(c), using a simple “networkcoding” strategy of adding signals atv3,

one receiver is able to receive its best two eigenvector projections, but the other receiver can only receive

one best eigenvector projection.

• Iterative QP Optimization– Linear transforms are designed using the iterative methodof Section IV.

• Lower Bound– The minimum sum distortion possible due to the cut-set lower bound of Theorem 6.

VII. C ONCLUSION

The linear transform network (LTN) was proposed to model theaggregation, compression, and estimation

of correlated random signals in directed, acyclic graphs. For both noiseless and noisy LTN graphs, a new

iterative algorithm was introduced for the joint optimization of reduced-dimension network matrices. Cut-set

lower bounds were introduced for zero-delay linear coding based on convex relaxations. Cut-set lower bounds

for optimal coding were introduced based on information-theoretic principles. The compression-estimation

tradeoffs were analyzed for several example networks. A future challenge remains to compute tighter lower

bounds and relaxations for non-convex network optimization problems. Reduced-dimension linear transforms

have potential applications in data fusion and sensor networks. The idea of exploiting correlations between

network signals to reduce data transmission, and the idea ofapproximate reconstruction as opposed to exact

recovery at receivers may lead to further advances in networking.
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APPENDIX

Starting from the optimization in Eqn. (51), the LLSE optimal matrix B
opt
11 = ΣνννξξξL

T
12(L12ΣξξξL

T
12 + I)−1,

assumingΣzzz = I. Substituting this expression and simplifying the objective function in Eqn. (51),

D∗
noisy = min

L12

tr
[

WΣνννW
T
]

+ tr
[

WΣνννξξξL
T
12

[

L12ΣξξξL
T
12 + I

]−1
L12ΣξξξνννW

T
]

s.t. tr
[

L12ΣxxxL
T
12

]

≤ P. (64)

Applying the Woodbury (matrix-inversion) identity [33, C.4.3] to the objective function and simplifying

terms,

D∗
noisy = min

L12

tr
[

WΣνννW
T
]

− tr
[

WΣνννξξξΣ
−1
ξξξ

ΣξξξνννW
T
]

+ tr

[

WΣνννξξξΣ
−1
ξξξ

[

Σ
−1
ξξξ

+ L
T
12L12

]−1
Σ

−1
ξξξ

ΣξξξνννW
T

]

s.t. tr
[

L12ΣxxxL
T
12

]

≤ P. (65)

Introducing a positive semi-definite matrixΦ such thatΦ � WΣνννξξξΣ
−1
ξξξ

[

Σ
−1
ξξξ

+ L
T
12L12

]−1
Σ

−1
ξξξ

ΣξξξνννW
T ,

written equivalently in Schur-complement form [33, A.5.5], and settingΨ = L
T
12L12 ∈ R

n×n as a rankc12

matrix,

D∗
noisy = min

Φ,Ψ
tr [Φ] + tr

[

W
[

Σννν −ΣνννξξξΣ
−1
ξξξ

Σξξξννν

]

W
T
]

,

s.t. tr[ΣxxxΨ] ≤ P, Ψ � 0, rank[Ψ] = c12,




Φ WΣνννξξξΣ
−1
ξξξ

Σ
−1
ξξξ

ΣξξξνννW
T

Σ
−1
ξξξ

+Ψ



 � 0. (66)

Dropping the rank constraint yields the relaxation of Eqn. (52).
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