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Abstract

A model, called the linear transform network (LTN), is prepd to analyze the compression and
estimation of correlated signals transmitted over dideteyclic graphs (DAGs). An LTN is a DAG network
with multiple source and receiver nodes. Source nodesrriarssibspace projections of random correlated
signals by applying reduced-dimension linear transforfiie subspace projections are linearly processed by
multiple relays and routed to intended receivers. Eachivecapplies a linear estimator to approximate a
subset of the sources with minimum mean squared error (M&Ertdon. The model is extended to include
noisy networks with power constraints on transmitters. A kask is to compute all local compression
matrices and linear estimators in the network to minimizd-enend distortion. The non-convex problem
is solved iteratively within an optimization framework ngi constrained quadratic programs (QPs). The
proposed algorithm recovers as special cases the regulatistnibuted Karhunen-Loéve transforms (KLTS).
Cut-set lower bounds on the distortion region of multi-s@multi-receiver networks are given for linear
coding based on convex relaxations. Cut-set lower bourglalao given for any coding strategy based on
information theory. The distortion region and compressistimation tradeoffs are illustrated for different

communication demands (e.g. multiple unicast), and grapittsires.
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Index Terms
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I. INTRODUCTION

HE compression and estimation of an observed signal viapsuesprojections is both a classical
T and current topic in signal processing and communicatiohil&fandom subspace projections have
received considerable attention in the compressed setisgmgture [1], subspace projections optimized
for minimal distortion are important for many applicationBhe Karhunen-Loéve transform (KLT) and
its empirical form Principal Components Analysis (PCA)e avidely studied in computer vision, biology,
signal processing, and information theory. Reduced diientity representations are useful for source
coding, noise filtering, compression, clustering, and daiaing. Specific examples include eigenfaces for
face recognition, orthogonal decomposition in transfowdieg, and sparse PCA for gene analysis [2]-[4].

In contemporary applications such as wireless sensor meswi®/SNs) and distributed databases, data is
available and collected in different locations. In a WSNyss#s are usually constrained by limited power and
bandwidth resources. This has motivated existing appesth take into account correlations across high-
dimensional sensor data to reduce transmission requitsni@se e.g! [5]-[11]). Rather than transmitting raw
sensor data to a fusion center to approximate a global sigeasor nodes carry out local data dimensionality
reduction to increase bandwidth and energy efficiency.

In the present paper, we propose a linear transform netwdrk) model to analyze dimensionality
reduction for compression-estimation of correlated digia multi-hop networks. In a centralized setting,
given a random source signalwith zero-mean and covariance mati;, applying the KLT toz yields
uncorrelated components in the eigenvector basiEof The optimal linear least squaré¥-order approx-
imation of the source is given by the components corresponding to thkelargest eigenvalues oE,. In
a network setting, multiple correlated signals are obgkiwe different source nodes. The source nodes
transmit low-dimensional subspace projections (apprasions of the source) to intended receivers via a
relay network. The compression-estimation problem is tiintipe the subspace projections computed by all
nodes in order to minimize the end-to-end distortion at ikezenodes.

In our model, receivers estimate random vectors based os-$bpt” linearanalog-amplitudemultisensor
observations. The restriction to “one-shot”, zero-delagaaling of each vector of source observations

separately is interesting due to severe complexity linoitest in many applications (e.g. sensor networks).
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Linear coding depends on first-order and second-ordessstatiand is robust to uncertainty in the precise
probabilistic distribution of the sources. Under the agstiom of ideal channels between nodes, our task
is to optimize signal subspaces given limited bandwidtheinms of the number of real-valued messages
communicated. Our results extend previous work on digiithestimation in this casel[5]2+{8]. For the case
of dimensionality-reduction with noisy channel commutiima (see e.g. [6]), the task is to optimize signal
subspaces subject to channel noise and power constraints.

For noisy networks, the general communication problem tsrofeferred to as thpint source-channel-
network coding problenn the information-theoretic literature and is a famousgben problem. Beyond the
zero-delay, linear dimensionality-reduction considenede, end-to-end performance in networks could be
improved by (i), non-linear strategies and (ii), allowindamger coding horizon. Partial progress includes
non-linear low-delay mappings for only simple network saéws [12]-[14]. For the case of an infinite
coding horizon, separation theorems for decomposing tiné gpmmunication problem have been analyzed
by [15]-[17].

A. Related Work

Directly related to our work in networks is thdistributed KLT problem. Distributed linear transforms
were introduced by Gastpar et al. for the compression ofljofBaussian sources using iterative methads [5]
[18]. Simultaneous work by Zhang et al. for multi-sensordatsion also resulted in iterative procedures [8].
An alternate proof based on innovations for second ordedaianvariables with arbitrary distributions was
given by [19]. The problem was extended for non-Gaussiamcgsy including channel fading and noise
effects to model the non-ideal link from sensors to decogeBthizas et al. [|6]. Roy and Vetterli provide
an asymptoticdistortion analysis of the distributed KLT, in the case whlkee dimension of the source and
observation vectors approaches infinity |[20]. Finally, Xiat al. analyze linear transforms for distributed
coherentestimation [[7].

Much of the estimation-theoretic literature deals wdthgle-hopnetworks; each sensor relays information
directly to a fusion center. Imulti-hop networks, linear operations are performed by successlagsdo
aggregate, compress, and redistribute correlated sigitadsLTN model relates to recent work on routing and
network coding/Ahlswede et al.[[21]). In pure routing solutions, interrad nodes either forward or drop
packets. The corresponding analogy in the LTN model is testraim transforms to be essentially identity
transforms. However, network coding (over finite fields) Baswn that mixing of data at intermediate nodes
achieves higher rates in the multicast setting (5ee [223rdégg the sufficiency of linear codes andl[23] for

multicast code construction). Similarly in the LTN modehear combining of subspace projections (over
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the real field) at intermediate nodes improves decodingpednce. Lastly, the max-flow min-cut theorem
of Ford-Fulkerson[[24] provides the basis for cut-set loweunds in networks.

The LTN model is partially related to the formulation of Kteetand Kschischang [25] modeling infor-
mation transmission as the injection of a basis for a veqiacs into the network, and subspace codes [26].
If arbitrary data exchange is permitted between networkespdhe compression-estimation problem is
related to estimation in graphical models (e.g. decomgdesBEA [27], and tree-based transforms (tree-
KLT) [28]). Other related work involving signal projectisnin networks includes joint source-channel
communication in sensor networks [29], random projectiong gossip framework [30], and distributed

compressed sensing [31].

B. Summary of Main Results

We cast the network compression-estimation problem aststital signal processing and constrained
optimization problem. For most networks, the optimizatismon-convex. Therefore, our main results are
divided into two categories: (i) Iterative solutions fondiar transform coding over acyclic networks; (ii)
Cut-set bounds based on convex relaxations and cut-setdbdaased on information theory.

« Section[Ill reviews linear signal processing in networksct®n[IM outlines an iterative optimization

for compression-estimation matrices in ideal networkseurallocal convergence criterion.

« SectiorlY analyzes an iterative optimization method inwgjvconstrained quadratic programs for noisy
networks with power allocation over subspaces.

« SectionV] introduces cut-set lower bounds to benchmarknti@dmum mean square error (MSE) for
linear coding based on convex relaxations such as a semitdgfirogram (SDP) relaxation.

« Sectior VI-F describes cut-set lower bounds for any codtrategy in networks based on information-
theoretic principles of source-channel separation. Thetdounds are plotted for a distributed noisy
network.

« Sectiong IV:V] provide examples illustrating the tradeodffetween compression and estimation; upper
and lower bounds are illustrated for an aggregation (tredyvork, butterfly network, and distributed

noisy network.

C. Notation

Boldface upper case letters denote matrices, boldfacerloase letters denote column vectors, and

calligraphic upper case letters denote sets./Fhgorm of a vector € R" is defined agz||> = /> i, |=i]2.

(2

The weighted/?-norm ||z||\v = |[Wz||, where W is a positive semi-definite matrix (writteW > 0).
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(a) LINEAR TRANSFORMNETWORK (b) SIGNAL FLOW ON GRAPH

Fig. 1. (a)Linear Transform NetworkAn LTN model with source node$v:,v2} and receiver§vs, vs }. Source nodes observe
vector signals{z1,z2}. All encoding nodes linearly process received signalsgusiriransformL;;. Receiversvs and vs compute
LLSE estimated's and# of desired signalss andrs. (b) Signal Flow Graph:Linear processing of source signgls:,z2} results

in signals transmitted along edges of the graph.

Let ()7, ()%, and t(-) denote matrix transpose, inverse, and trace respectivetyA ® B denote the
Kronecker matrix product of two matrices. The matfixdenotes the x ¢ identity. For¢ > k, the notation
Ty 2 Ty Ty - Ty denotes the product ¢f — k + 1) matrices. A matrixX € R™*" is written in vector
form veqX) € R™" by stacking its columns; i.e. v€X) = [xq;x2; ... ;x,] Wherez; is the j-th column
of X. For random vectorsi[-] denotes the expectation, ait} = E[zz”] denotes the covariance matrix of

the zero-mean random vecter

Il. PROBLEM STATEMENT

Fig.[d serves as an extended example of an LTN graph. The dete@omprised of two sources, two
relays, and two receiver nodes.

Definition 1 (Relay Network)Consider a relay network modeled by a directed acyclic g{&#G) G =
(V,€) and a set of weight§. The setV = {v1,vs,...,v)y|} is the vertex/node set C {1,...,[V|} x
{1,...,]V|} is the edge set, an@ = {¢;; € Z" : (i,7) € £} is the set of weights. Each edg& j) € £

represents a communication link with integer bandwigHfrom nodev; to v;. The in-degree and out-degree
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of a nodev; are computed as

di_: Z Cqis (1)

q:(g;1)€€
d;- = Z Cil. (2)
L:(i,0)€E
As an example, the graph in Fig. 1 consists of nodes {vi, vy, ..., vs}. Integer bandwidths;; for each

communication link(é, j) are marked.

Definition 2 (Source and Receiver Node§iven a relay networks = (V, £), the set of source hodésC
Vis defined ass = {v; € V | d; = 0}. We assume a labeling of nodeslirso thatS = {vy,va,...,vi5}, i.€.
the first|S| nodes are source nodes. The set of receiver nGdes) is defined ag = {v; € V | d; = 0}
Let x £ [V| — |T]. We assume a labeling of nodeslinso that7 = {v.11,vxt2,- .-, vy}, i-€. the lastT]
nodes are receiver nodes.

In Fig.[1, S = {v1,v2} and T = {ws, v}

A. Source Model

Definition 3 (Basic Source Model)Given a relay networky = (V, £) with source/receiver nodés, 7 ),
the source nodes = {vi}ﬁ‘l observe random signaly’ = {mi}L‘ill. The random vectors; € R™ are
assumed zero-mean with covariaitg, and cross-covariancés; € R"*". Letn = >, n;. The distributed
network sources may be grouped intosaimensional random vectar = [z1;z2; ... ;%|s] with known

second-order statistics,, € R"*"™,

S B9 ... X
5. — -21 .22 2-|S| (3)
L Zisp Hisiz - Xysyis)

More generally, each source nodec S emits independent and identically distributéd..) source vectors
{z;[t] }+>0 for ¢ a discrete time index; however, in the analysis of zeroydbteear coding, we do not write
the time indices explicitly.

Remark 1: A common linear signal-plus-noise model for sensor netwaskof the formz; = H;x + n;;
however, neither a linear source model nor the specificildigion of z; is assumed herd priori knowledge

of second-order statistics may be obtained during a trgipimase via sample estimation.

For networks of interest in this paper, an arbitrary DAGmMay be augmented with auxiliary nodes to ensure that sourdesn

have in-degreel; = 0 and receiver nodes have out-degtge= 0.
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In Fig.[1, two source nodeS = {v1, v} observe the corresponding random signalstia= {z1,z-}.

B. Communication Model

Definition 4 (Communication Model)Given a relay networlG = (V, ) with weight-setC, each edge
(i,5) € € represents a communication link of bandwidth from v; to v;. The bandwidth is the dimension
of the vector channel. We denote signals exitinge V along edge(i, j) € £ by x;; € R% and signals
entering nodey; along edgg(i, j) € £ by y;; € R, If communication is noiselesg,;; = x;;. For all relay
nodes and receiver nodes, we further defjne R% to be the concatenation of all signajlg incident to
nodev; along edgesi, j) € £.

A noisy communication link(i, j) € £ is modeled asy;; = x;; + z;;. The channel noise;; € R is
a Gaussian random vector with zero-mean and covariahce The channel input is power constrained so
that E[||z;;]/3] < Pi;. The power constraints for a network are given by Bet {P;; € RT : (i,5) € £}.

The signal-to-noise ratio (SNR) along a link is

B3]
M= E {sz’jllg] | ?

Fig.[d(b) illustrates the signal flow of an LTN graph.

C. Linear Encoding over Graply

Source and relay nodes encode random vector signals byiagpgduced-dimension linear transforms.

Definition 5 (Linear Encoding)Given a relay networlG = (V, &), weight-setC, source/receiver nodes
(S,T), sourcesY, and the communication model of Definitibh 4, the linear eticg matrices forG' are
denoted by sels = {L;; : (i,j) € £}. EachL;; represents the linear transform applied by negén
communication with node;. Forv; € S, transformL;; is of sizec;; x n; and represents the encoding
z;; = L;jz;. For a relayv;, transformL;; is of sizec;; x d;, andz;; = L;;y;. The compression ratialong

edge(i,j) € £ is

i ity e, (5a)

n;

Q5 = ..
’ ZLj if v; € V\S. (5b)

)

In Fig.[1, the linear encoding matrices for source nodandvy are{Lj5, L13} and{Log, Lo3} respectively.

The linear encoding matrices for the relays &rg, Lys, Lyg. The output signals of source node are
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z15 = L5271 andzi3 = Lysz,. Similarly, the output signal of relay; is

Y13
z34 = Lays = L3y . (6)

Y23

D. Linear Estimation overy

Definition 6 (Linear Estimation):Given relay networkG = (V, ), weight-setC, source/receiver nodes
(S,T), sourcest, and the communication model of Dél. 4, the set of linear de@pmatrices is denoted
Ba = {B;}i.v,e7- Each receivep; € T estimates a (zero-mean) random veatoe R™ which is correlated
with the sources in¥. We assume that the second-order statistigs, X, , are known. Receiver; € T
applies a linear estimator given by matiix € R™*% to estimater; given its observations and computes

#; = Byy;. The linear least squares estimate (LLSE)pfs denoted byf;.
In Fig. [, receivervs reconstructs s while receivervg reconstructas. The LLSE signalg’s and#¢ are

computed as

o Y15

75 = Bsys = Bs ; 7)
i Y5 ]

R Yo

1‘6 = B6y6 = B6 . (8)
| Y46 |

Definition 7 (Distortion Metric): Let z andy be two real vectors of the same dimension. The MSE

distortion metric is defined as

dmse(T,y) 2 [lz —y])5 . 9)

E. Compression-Estimation in Networks

Definition 8 (Linear Transform Network/): An LTN model A/ is a communication network modeled by
DAG G = (V, &), weight-seC, source/receiver nodés, 7), sourcesY, setsLq, andB¢ from Definitiond 1-
[6. Second-order source statistics are giverdhy(Definition[3). The operational meaning of compression-
estimation matrices iff; andBg is in terms of signal flows o7 (Definition[4). The desired reconstruction
vectors{r;};.,,cr have known second-order statisti®s, and X, . The set{#;};.,,e7 denotes the LLSE
estimates formed at receivers (Definition 6). For noisy oeka, noise variables along link, j) € £ have
known covarianceX,, . Power constraints are given by setin Definition[4.

Given an LTN graphV/, the task is to designretwork transform codéhe compression-estimation matrices

in L& andB¢ to minimize the end-to-end weighted MSE distortion. Letitis weights{w; };.,.c7 represent



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

the relative importance of reconstructing a signal at serei; ¢ 7. Using indexing termk = |V| — |T]|
for receiver nodes, we concatenate vectorasr = [r,ﬁl;r,ﬁg; ?’"IVI] and LLSE estimate$; as

# = [Fus1iPrs2; ... ;Fy)]. The average weighted MSE written via a weightéehorm is

A
Dysew = FE

Z dmse(\/wiri;\/w_ifi)] )

i, €T
= B||Ir -7l (10)

where W contains diagonal blocksV; = /w; I.

Remark 2:The distortionDy;sg w is a function of the compression matricesdg: and the estimation
matrices inBg. In most network topologies, the weighted MSE distortioman-convex over the set of
feasible matrices. Even in the particular case of distebutompression_[5], currently the optimal linear

transforms are not solvable in closed form.

[1l. LINEAR SIGNAL PROCESSING INNETWORKS

The linear processing and filtering of source signals by aN gfaphA is modeled compactly as a linear
system with inputs, outputs, and memory elements. At eawh step, LTN nodes transmit random signals

through edges/channels of the graph.

A. Linear System

Consider edgdi,j) € £ as a memory element storing random veggr. Let ¢ = (Z(ij)eg ¢ij) and
d= (X iw.e7 d; )- The network\ is modeled as a linear system with the following signalsinf@ut sources
{z:}iv,es concatenated as global source veatar R™; (ii) input noise variablegz;; }(; j)cc COncatenated as
global noise vectoe € R¢; (iii) memory elementgy;; }; j)ec CONcatenated as global state veqifhf € R*
at timet; (iv) output vectors{y; }:...c7 concatenated ag c R

1) State-space Equationsthe linear systeH1 is described by the following state-space equations for
i:v, €T,

ult + 1] = Fult] + Bx[t] + Ez[t], (11)
yilt] = Ciplt] + Diz[t] + D;z[t]. (12)
The matrixF € R°*¢ is the state-evolution matrix common to all receivdiss R“*" is the source-network

connectivity matrix, andE € Rx¢ is the noise-to-network connectivity matrix. The matri€@s < R xe

2When discussing zero-delay linear coding, the time indaresectorse, z, andy; are omitted for greater clarity of presentation.
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D, € R% *xn andf)i € Ré: xe represent how each receiver’s output is related to the, ®atece, and noise
vectors respectively. For networks considered in this pdpe= 0 and D, = 0.
2) Linear Transfer Function:A standard result in linear system theory yields the tran$fi@ction

(assuming a unity indeterminate delay operator) for eachiverv; € T,
yi=C;1-F)"' (Ez + Ez), (13)
= Gz + Gz, (14)

whereG; 2 C;(I-F) 'E andG; 2 C; (I- F) ' E. For acyclic graphsF is a nilpotent matrix and
(I— F)_1 =1+ 3")_, F7 for finite integery. Using indexing terms, the observation vectors collected by

receivers are concatenatedifs: [y.11; Yur2; .- ; Y| Let
T £ [Get1; Gry2i oo 5 Gyl (15)

and letT be defined similarly with respect to matricés. Then the complete linear transfer function of the
network N is y = Tz + Tz. Analog processing of signals without error control impligoise propagation;

the additive noise is also linearly filtered by the network Via.

Example 1:Fig. [2 is the LTN graph of a noisy relay network. Let state= [y12; y13; Yo23], 2 =

[212; z13; 223], and outpulys = [y13; y23]. The linear system representation is given as follows,

0O 0O Lo
plt+1]=10 0 0 |p[t+ |Lys|zift] + L2l

Los 0 O 0
0 I

y3[t] = plt]
0O 0 I

By evaluating Eqn.[{(14),

L3 0O I o

yslt] = z[t] + z[t]
LosLi2 Los 0 1

Dropping the time indices and writing = 2, in addition toy = y3, the linear transfer function of the noisy

relay network is of the following formy = Tz + T=z.

B. Layered Networks

Definition 9 (Layered DAG Network)A layering of a DAGG = (V, &) is a partition ofV into disjoint
subsetsV;, Vs, ..., Vy41 such that if directed edgéu,v) € £, whereu € V; andv € V, thenj > k. A

DAG layering (non-unique) is polynomial-time computak®2].
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212

é\y%
y13

Fig. 2. The LTN graph of a noisy relay network with= {v:} and7 = {vs}. The linear processing of the network is modeled

as a linear system with input; and outputys = [y13; y23].

Given a layered partitiori[w}5};1 of an LTN graph, source nodes € S with in-degreed; = 0 may be
placed in partitionV,.. Similarly, receivers; € T with out-degreel;” = 0 may be placed in partition;.

The transfer functioriT" in Eqn. [1%) may be factored into a product of matrices,
T=T, =TTy T, (16)

whereT, for 1 < ¢ < p is the linear transformation of signals between nodes iritjpar V,.; and V,
(note the reverse ordering of thE, with respect to the partition¥,). If an edge exists between nodes in
non-consecutive partitions, an identity transform is itesttto replicate signals between multiple layers. Due
to the linearity of transforms, for any layered partltu{)h’g}]‘”r1 of V, the layered transform§T,}/_, can

be constructed. Th¢T,},_, are structured matrices comprised of sub-bloEks identity matrices, and/or

zero matrices. The block structure is determined by the otwopology.

Example 2:For the multiple unicast network of Figl 1, a valid layeredtiian of V is V; = {vs, vs},
Vo = {vs}, V3 = {v3}, andV, = {v1,ve}. Letx = [x1; x2], ¥y = [Y5; Y6 = [Y15; Y455 Ya6; Y26), @nd
let Ly, be partitioned adsy = [L5, L¥,]. According to the layering, the transfer matfix is factored in

product formT = T T>Ts3,

I 0 O Lis O
L I O 0 O L
0 Lys O 13 0
T= 0 Ly Li O
0 Lyg O 0 Lo
0 O 0 I
0O 0 I 0 L26

Example 3:Consider the setting of Exampﬂé 1 for the relay network shtuwﬁlg [@. A valid layered
partition of V is V; = {v3}, V2 = {v2}, V3 = {v1}. According to the layering, the transfer matfix may



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

be written in product fornil' = T T,

T I 0 Lis

0 Lo L2

IV. OPTIMIZING COMPRESSIONESTIMATION MATRICES

Our optimization method proceeds iteratively over netwaskers. To simplify the optimization, we first
assume ideal channels (high-SNR communication) for whyigh= z;;. Then the linear operation of the
network A/ is y = Tz with z = 0. Linear transform coding is constrained according to badtw

compression ratiog;;.
A. MSE Distortion at Receivers

According to the linear system equations, Eqbsl] (L1)-(24ph receiver; € T receives filtered source
observationg; = G;z. Receivery; applies a linear estimatdB; to estimate signat;. The MSE cost of

estimation is
= tr(Zy,)—2tr(B;G; Xy, ) +1r(B;G; 2, G/ B ). 17)

Setting the matrix derivative with respectB) in Eqn. [IT) to zero yields:-2%, .G’ +2B,;G;2,G! = 0.

For a fixed transfer functiots;, the optimal LLSE matrixprt is
B” — %, ,G! [G,%,GT] . (18)

If G; in Egn. [18) is singular, the inverse may be replaced witheu@s-inverse operation to compt%pt.

Let B denote a block diagonal global matrix containing individdacoding matriceg B, };.,,c7 on the
diagonal. For an LTN graptV with encoding transfer functioT = T.,, we write the linear decoding
operation of all receivers a& = By wherey = T.,x are the observations received. The weighted MSE

cost in Eqn.[(ID) for reconstructing signdls; },..,c7 at all receivers is written as
Dysgw =FE “”" - "A'”%v}
= B[Ir - BT1,0ly
=tr (WE,W') —2tr (WBT;,3;,,W")
+1r (WBT, 2, T{, BTWT) . (19)

By construction of the weighting matriW, the MSE in Eqn.[{(19) is a weighted sum of individual distomis

at receivers, i.eDysew = D ., e Wi Di.
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B. Computing Encoding Transfornig;

The optimization of the network transfer functidh = T;., is more complex due to block constraints
imposed by the network topology on matric¥;}._,. In order to solve for a particular linear transform
T;, we assume all linear transforn®;, j # i and the receivers’ decoding transfod are fixed. Then
the optimalT; is the solution to a constrained quadratic program. To detfivs, we utilize the following
identities in whichz = vedX):

tr(ATX) = veqA) 'z, (20)
tr(XTA1XA,) =27 (Ay ® Ay)z. (21)

We write the network’s linear transfer function &= T;.,, = T;,-1T;T;;1,, and define the following

matrices
J; & Ti+1:pzerTWBT12i—17 (22)
J; é (lei_l)TBTWTWBTI:i—la (23)
J7 2 Tis1pBa(Tit1p)" - (24)

To write Dysse,w in terms of the matrix variabl&';, we also define the following,

pi = tr(WE,W7), (25)
p; & —2vec(J]), (26)
P, 23/ ®J, (27)

wherep;, p;, andP; are a scalar, vector, and positive semi-definite matrixeetgely. The following lemma
expressed rspw as a function of the unknown matrix varialg.

Lemma 1:Let transformsT;, j # 4, andB be fixed. LetJ;, J;, J” be defined in Eqns[(22)-(P4), and
pi,» Pi, andP; be defined in Eqns[(25)-(R7). Then the weighted MSE distori) ;s w of Eqn. [19) is a

quadratic function ot; = veqT;),
4T T
Dysew =t; Pit; +p; t; + p;. (28)

Proof: Substituting the expressions faf, J;, J7 in Eqns. [22){(24) into Eqn[(19) produces the inter-
mediate equationD;sp,w = tr(T7 J;T;J/)—2tr(J,T;)+p;. Directly applying the vector-matrix identities
of Egns. [2D){(2l1) results in Eqri_(28). [ |
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Fig. 3. (@) Block diagram of the “hybrid network” exampleb)(The end-to-end distortion vs. compression for varyingdvadth
¢ = c13 = c23. The network operates in one of three modes (distributedridhyor point-to-point) as described in Example d) (

Convergence oD s (n) for five different initializations of the iterative algohiin for the operating point = 6, ¢34 = 11.

C. Quadratic Program with Convex Constraints

Due to Lemmall, the weighted MSE is a quadratic functiot) ef veq'T;) if all other network matrices are
fixed. The optimall'; must satisfy block constraints determined by network toggl The block constraints
arelinear equality constraintef the form®,t; = ¢;. For example, ifT; contains an identity sub-block, this

is enforced by setting entries #3 to zero and one accordingly, via linear equality constgint

Theorem 1 (Optimal Encoding)-et encoding matrice¥';, j # 7 and decoding matriB be fixed. Let
t; = ved'T;). The optimal encoding transforiy is given by the following constrained quadratic program
(QP) [33, Def. 4.34]

arg Intin tZ-TPZ-tZ- + pl-Tti + p; (29)

i

s.t. &t = ¢i;

where(®;, ¢;) represent linear equality constraints on elementF 0fThe solution to the above optimization

for t; is obtained by solving a corresponding linear system

2P; 7 L —Pi
= . (30)
If the constraints determined by the pésb;,¢;) are feasible, the linear system of Eqn.1(30) is guaranteed

to have either one or infinitely many solutions.
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Algorithm 1 IDEAL-COMPRESSIONESTIMATION(AN, W, €)
1: Identify compression matricegT;}!_, and corresponding linear equaliti¢®;, ¢;}_, for network \.

Identify estimation matrice$B,; };.,.c7. [Sec.ll, Sec[IV-C]

2: Initialize {TZ(.O) P_, randomly to feasible matrices.

3: Setn =1, Dyse,w(0) = oo.

4: repeat

5: Compute{BZ(.") Yiw,eT given {T,g"—”}g:l. [Eqgn. [18)]

6: fori=1:pdo

7. ComputeT'™ given {®;, ¢}, {B{" }rveer {TV 10, {TV V)2, . [Theoren(l]
8: end for

9:  ComputeDsg,w(n). [Eqn. [19)]

10:  SetApyspw = Dysew(n) — Dysew(n — 1).
11. Setn=n+1.

12: until Ayrspw < € 0rn > Nygg.

13: return {T 3, (B} e

Proof: The QP of Eqn.[(29) follows from Lemnia 1 with additional linesuality constraints placed on
t;. The closed form solution to the QP is derived using Lagrashggd multipliers for the linear constraints,
and the Karush-Kuhn-Tucker (KKT) conditions. Lé¢(t;,\) represent the Lagrangian formed with dual

vector variable\ for the constraints,

fti,N) =tIPit; +plti +pi + AT (@it — @), (31)
Vi, f(ti,A) = 2Pit; +p; + BTN, (32)
Viafti, A) = ®it; — ¢;. (33)

SettingVy, f(t;,A) = 0 andV, f(t;,A) = 0 yields the linear system of Eqr._(30), the solutions to wtdoh
t; and dual vectol. Since the MSE distortion is bounded by a minimum of zeroretiee linear system
has a unique solution iP; is full rank, or infinitely many solutions of equivalent obj&e value ifP; is
singular. [ |
Remark 3:Beyond linear constraints, several other convex consggraim matrix variables could be applied
within the quadratic program. For example, thenorm of a vector € R" defined by||z|; £ 3, |z;| is

often used in compressed sensing to enfaparsity
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TABLE |
A “HYBRID” L INEAR TRANSFORMNETWORK

Network Modes Bandwidth
Distributed c< |
Huybrid [4t] <c<caa
Point to Point c3e <c

D. An Iterative Algorithm

Algorithm[1 defines an iterative method to optimize all eringdnatrices{T;}?_; and the global decoding
matrix B for an LTN graph. The iterative algorithm begins with the dam initialization of the encoding
matrices{T;}!_, subject to size specifications and linear equality conssajiven by{®;}”_, and{¢;}"_;.
The iterative method proceeds by solving for the optiBairansform first. Similarly, withT';, j # < and B
fixed, the optimalT; is computed using Theorelm 1. The iterative method procemds £ N, iterations

or until the difference in errol ,,sg w is less than a prescribed tolerance

E. Convergence to Stationary Points

A key property of AlgorithnTll is the convergence to a statigr@aoint (either local minimum or saddle-
point) of the weighted MSE.

Theorem 2 (Local Convergencepenote the network’s linear transfer function after tih outer-loop
iteration in Algorithmd byT(, and the block-diagonal global decoding transformB#{}) which contains

matrices{B\"},.,,c7 on the diagonal. Let(") = BTz denote the estimate of desired signallhen

E {Hr _ ) iv] >E {Hr —f<"+1>HiV] , (34)

i.e., the weighted MSE distortion is a nonincreasing fuorctf the iteration numbet.

Proof: In Step[% of AlgorithnlL, with matrice@T,g"_l) P_, fixed, the optimal transforiB(™ is deter-
mined to minimizeD ;s w. The current transforiB (™1 is feasible within the optimization space which
implies that the MSE distortion cannot increase. In $lep thefinner loop, with matriceB (™), {Tlg") ,(j:_f),
and{T,g"_l) %—;+1 fixed, Theoreni]l computes the optimal transfdﬂﬁﬁ) to minimize Dy/se,w. A similar
argument shows that the error term cannot increase. Thartilist sequenc€D sk w(n)} is nonincreasing
and nonnegative; henden,, ... Dysp,w(n) = inf{Dyspw(n)} by monotone convergence. [ |

Remark 4: The local convergence in Theorém 2 is affected by severdifac(i) The covariance structure

3. of the source; (ii) The DAG structure @F; (iii) The schedule of iterative optimization of local miats
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and factorization of into the'T;; (iv) The random initialization of T;}?_;. In practice, multiple executions

of Algorithm [1 increase the probability of converging to @lggl minimum.

F. Example: A Multi-Hop Network

Consider the noiseless multi-hop network of [Fig. 3 in whigklay aggregates, compresses and/or forwards
its observations to a receiver. The network is a hybrid cowafion of a distributed and point-to-point network.
Example 4 (“Hybrid Network”): High-dimensional, correlated signals € R™ andz, € R™ are ob-
served at nodes; and vy wheren; = ne = 15 dimensions. The covariancg, of the global source
x = [x1; x2] was generated as follows for the experiment, ensukipg- 0. The diagonal entriesi, ) of
3, were selected as5 + 2U;;, and off-diagonal entrie§, j) for j > i were selected as+ 2U;; whereUj;
andU;; arei.i.d. uniform random variables over the interal 1].
The linear transfer function is factored in the foffh= T T, whereT; = L3, and
Liz O
0 Loas

To =

The target reconstruction a, is the entire signary, = z. The bandwidthcgys = 11, while bandwidth
¢ = c13 = co3 IS varied for the experiment. Depending on the amount of ditti ¢, the network operates
in one of the modes given in Talle I. Fig. 3(b) plots the suntodi®n vs. compression performance, and

Fig.[3(c) plots the convergence of AlgoritHm 1 for the op@@ipointc = 6, ¢34 = 11.

V. NoIsy NETWORKS

We now analyze communication for networks with non-idearatelsy;; = x;; +2;;. Edges(s, j) repre-
sent vector Gaussian channels. Network communicatiomiseld according to both bandwidth compression
ratios o;; and signal-to-noise ratioSN R;;. We simplify optimization of subspaces by restricting atien
to single-layer multi-source, multi-receiver networks fehich V = S U 7. In this case, the linear transfer

function isy = Tz + 2, i.e. the noise is additive but not filtered over multiplewertk layers.

A. MSE Distortion at Receivers

Each receivep; € T receives observations = G;x + z; wherez; is the noise ta;. The MSE distortion

for reconstructing-; at receivery; is given by,
D; = tr(Z,)—2tr(B;G; 24, ) +1r(B;%,, B )

+1r(B;G;2,G; B}). (35)
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Setting the matrix derivative with respect By in Eqgn. [35) to zero yields the optimal linear transfoBn

(cf. Egn. [I8)),
-1
qupt = ZrmGZT {GlzzG? + Zzi : (36)

Combining the LLSE estimates &s= By, wherey = Tz + z, the weighted MSE for all receivers is given

by

vl

= E[|Ir - B(Tz +2)[|3 ]

DMSE,W = E[H’I‘ -7

=tr(WBTZ, T"B"W7) —2tr(WBTX,, W)
+tr(WE,WT)+tr( WBX,B"W7'). (37)

By construction of the weighting matriwv, the MSE in Eqn.[(37) is a weighted sum of individual distams

at receivers, i.eDyspw = >.; w; D;.

B. Computing Encoding Transforffi
For noisy networks, power constraints on channel input# line amount of amplification of transmitted

signals. For single-layer networks, letc S be a source node with observed sigmal A power constraint

on the input to channédl, j) € £ is given by
El|lzi;]3] = El|Lijz:l3] = tr(LijSa, L) < Pyj. (38)

The power constraint in Eqri. (38) is a quadratic functiorheféntries of the global linear transfoffh More
precisely, let¢;; = veqL;;) andt = veqT). Sincet contains all variables of;;, we may writel;; = J;;t
whereJ;; selects variables froth Using the matrix-vector identities of Eqi._{21), the powenstraint in
Eqgn. [38) can be written as
tr (Li; e, L)) = €], (3, @ 1) ;5
=t"J] (8g, ® 1) Jj5t. (39)
Letting T;; = JiTj (2z, ® I) J;;, the quadratic constraint € T';;t < P,;. The matrixI';; is a symmetric,

positive semi-definite matrix. Thus a power constraint isuadratic, convex constraint.
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Algorithm 2 NoIsY-COMPRESSIONESTIMATION(AN, W, ¢)
1: Identify compression matriT and corresponding linear equality constraift¥s ¢), and quadratic power

constraints{(L';;, P;;) } i,)ce- |dentify estimation matrice$B; };.,,e7- [Sec.[Ill, Sec[V-B]

. Initialize T(® randomly to a feasible matrix.

N

3: Setn =1, [)MSE,W(O) = 00.

4: repeat

5. Compute{B!"},.,.c7 given T~V [Eqn. [36)]

6. ComputeT™ given {B"},...c7, (®,6), {(Tij, Pij)}(ij)ce- [Theoren(B]
7. ComputeDysp.w(n). [Eqn. (37)]

8 SetAyspw = Dusew(n) — Dysew(n —1).

9. Setn=n+1.

10: until Ayrspw < € 0rn > Ny

11: return T and {B™ 1,7

C. Quadratic Program with Convex Constraints

As in Sectior IV-B, we use the vector fortn= veqT) to enforce linear equality constraindst = ¢. For
noisy networks, we include power constraintd;;t < P;; for each channeli, j) € £. For a fixed global
decoding transfornB, the distortionDMSE,W of Eqn. [37) is again a quadratic function bfUsing the

compact notation

p 2 tr(WE,W?)+tr(WBE,B"W7'), (40)
p = —2vec(BTWIWE,,), (41)
P23, o BTWIWB, (42)

a derivation identical to that of Lemnid 1 yieIdéMSE,W = t"Pt + p”t + p. The optimal encoding
transformT for single-layer noisy networks is solvable via a quadraticgram with quadratic constraints
(QCQP), following the development of Eqnk.{40)i(42), ahe power constraints given in Eqnk.](38)4(39);
cf. Theorent1L.

Theorem 3 (Optimal Encodind@ for Noisy LTN): Let N be a single-layer LTNB be the fixed decoding

transform, and = veq'T) be the encoding transform. The optimal encodigthe solution to the following
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Fig. 4. A block diagram of a distributed, noise/power limitETN. Each source node transmits signal projections of dovec

z; € R? to a decoder over a vector arbitrary white Gaussian noiseGA)channel.

guadratic program with quadratic constraints (QCQP):
arg min t"Pt +pTt+p (43)
s.t. ®t =9,
t'Tit <Py, (i,)) €€,

where (®, ¢) represent linear equality constraints (dictated by nekwopology), and{(T';;, P;;)} (i j)ee
represent quadratic power constraints on variable® .of

Remark 5:A quadratic program with linear and convex quadratic camsts is solvable efficiently via
standard convex program solvers; the time complexity dépegpolynomially on the number of matrix

variables and constraints.

D. lterative Algorithm and Convergence

Algorithm [ defines an iterative algorithm for single-layaoise/power limited networks. In addition to
subspace selection, the amount of power per subspace isiliete iteratively. The iterative method alternates
between optimizing the global decoding transfoBnand the global encoding transfori, ensuring that
network topology and power constraints are satisfied. Asheofem 2, the weighted MSE distortion is a
nonincreasing function of the iteration number, il}gws];,w(n) > BJ\/]SE,W(” + 1). While convergence to
a stationary point is guaranteed, the optimization spabigldly complex— a globally optimal solution is not

guaranteed.
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Power-Compression-Distortion Tradeoffs

= =0.25
—-—a =0.5
o =0.75
——a=1.0

3 4 5 6 7
+logy(1 + SNR)

(a) COMPRESSIONESTIMATION TRADEOFFS

Information-Theoretic Cut-Set Bounds

—=Linear Coding (a = 0.25)
——Linear Coding (a = 1.0)
- - Cut-Set Bound (a = 0.25)
---Cut-Set Bound (a = 1.0)

3 4 5
3 logy(1 + SNR)
(b) CuT-SET LOWERBOUNDS (INFORMATION THEORY)

Fig. 5. (@ Power-compression-distortion “spectra” of the netwaok Yarying compression ratios and SN R levels. The (red,
unmarked) dashed lines represent cut-set lower boundshievable MSE distortions for linear coding based on conwaxations
discussed in Sectidn VIIEb) For « € {0.25, 1.0}, the performance of linear coding is compared with infoinratheoretic cut-set
bounds (described in Sectibn VJ-F). In the high-SNR settinfprmation-theoretic coding strategies are capableevb-distortion;
however, in the low-SNR setting, linear coding achieves mmetitive MSE performance while maintaining zero-delayl dow-

complexity.

E. Example: A Distributed Noisy Network

Fig.[4 diagrams a classic example of a distributed netwotk miultiple source (sensor) nodes transmitting
signal projections to a central decoder. Each source nqu@asr constrained and must transmit a compressed

description of its observed signal over a noisy vector ckeann
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Example 5 (Distributed LTN)In Fig. [4, the global source = [z;; zo; z3] is chosen to be gointly
Gaussianvector withn = 12 dimensions, and; = 4 for each of|S| = 3 source nodes. Here, we specify
the exact distribution of in order to provide information-theoretic lower bounds. ¥é the covariance of

z to be Gauss-Markov with = 0.8,

1 p P o1l

p 1 p p'
Se=1| p* p 1 P’

Pl 1]

The network structure is specified by bandwidths = co4 = ¢34 = ¢. The global encoding transforfi

is block-diagonal with matricek4, Los, andLs, on the diagonal. The compression ratio is varied equally
for each source nodey = ni wheren; = 4. The noise variables;; arei.i.d. Gaussian random vectors
with zero-mean and identity covariances. The power coimssrare set a®; = P» = P; = ¢(SNR), where
SNR;; = SNR for all links. The goal of destination, is to reconstruct the entire souree = z. Fig.[5(a)
plots the performance of LTN optimization for varyimgand SN R ratios as well as cut-set lower bounds
for linear coding based on convex relaxations. Cut-set tdweeinds for linear coding for this example are
explained further in Section_VIIE. Fid.] 5(b) plots cut-se&tubds based on information theory which are
explained further in Sectioris VIFF and VIFG.

Remark 6 (Comparison with [5][6]):For this example, as th6 N R — oo, the errorD,,sx approaches
the error associated to the distributed KLT [5] where chhmoése was not considered. Inl [6], the authors
model the effects of channel noise; however, they do notigeoeut-set lower bounds. In addition, the
iterative optimization of the present paper optimizes alnpression matrices simultaneously per iteration
and allows arbitrary convex constraints, as opposed to ¢themses in both[[5],[[6] which optimize the

encoding matrix of each user separately per iteration.

VI. CUT-SET LOWERBOUNDS

In this section, we derive lower bounds on the minimum MSEodi®n possible for linear compression
and estimation of correlated signals in the LTN model. OQuinntechnique is to relax an arbitrary acyclic
graph along all possible graph cuts to point-to-point neksowvith side information. The cut-set bounds

provide a performance benchmark for the iterative methdd3eationd TVEV.
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A. Point-to-Point Network with Side Information

Consider the point-to-point network of Figl 6. Source nagecompresses source € R" via a linear
transformLys. The signalzi2 € R*2 is transmitted where, = L2 and E[||m12\|§] < P. Receivervy
computes a linear estimate of desired signa R" using observationg,, = x12 + z and side information

s € R*® as follows,

R Y12 Y12
=B = [Bll BIZ} . (44)
s s

The decoding transform is here partitioned into two sub-matricBs; andB2. We will find it convenient
to define the following random vectors,
5 é T — 21:323_157 (45)
vir—3x.,3 s (46)

Signals¢ andv are innovation vectors. For exampfeis the difference betweenand the linear least squares

estimate ofr givens which is equivalent ta2,,>; 's.

B. Case I: Ideal Vector Channel

In the ideal caseP = oo or z = 0. The weighted, linear minimum MSE distortion of the poiotgoint

network with side information is obtained by solving

;kdeal = E}il,lB E[H [ }7
= le%i]?,B]z E[HT‘ — (B11L12$ + B123)H37V] . (47)

The following theorem specifies the solution to Edn.] (47).

Theorem 4 (Ideal Network Relaxation)et 2 € R, s € R®, andr € R” be zero-mean random vectors
with given full-rank covariance matrices,, s, X, and cross-covariances,,, X,s, 2.s. Let £ andv be
the innovations defined in Eqh_(45) and Eqn.] (46) respegtidédie solution to the minimization of Eqi._(47)

over matriced. s € Re2*" By; € R™ 2 andBi, € R"** is obtained in closed form as

Ci12

| =tr(S,WIW) - ZAJ, (48)

*
idea

where{);}52, are thec;, largest eigenvalues of the mathyézé‘lzé,,WT.
Proof: The optimization in Eqgn.[(47) is simplified by first deternmigi the LMMSE optimalB1,
transform in terms ofB;; and L;s: B?Q’t = 33,1 — B;1L1xX.3, . Plugging BOpt into Eqn. (47)



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING 24

Fig. 6. A point-to-point network with side informatios at the receiver. In the case of additive noisethe input to the channel

is power-constrained so thé[||z12]|3] < P.

yields a minimization oveB1; andL» only. By grouping and rearranging variables in terms of iratmn

vectors§ andv,

Digeat = i E[Hu _ BllngngN] (49)

7B11

The optimization of Eqn[(49) is that of an equivalent pdo¥point network with input signa§ and desired
reconstructionv, without side information. Eqn[(49) is in standard form aswmlvable using canonical
correlation analysis as detailed in_[34, p. 368]. The optiwadue D7, , is given in Eqn.[(4B) in terms of

the eigenvalues OW X, 3, ' %, W ]

C. Case ll: Additive Noise and Power Constraints

In the case of additive noise (here with assumed covarian&, = I for compactness) and a power-

constrained input to the vector channel, the weightedalimeinimum MSE distortion is obtained by solving

Diioy =y, min B[ [r — (Bu(Luse + 2) + Buas) .

st LY. LL] < P. (50)

Again, by solving for the optimal LMMSE matriB,», and grouping terms in the resulting optimization

according to innovation vecto&sandv,

*

NOiSy = LIETEU E|:HV o (Bll(L12£ + z))Hi;Vi| ’

st L3, L] < P. (51)

Remark 7: The exact solution to Eqn[_(b1) involves handling a quadrptiwer constraint and a rank
constraint due to the reduced-dimensionalityIof. In [6, Theorem 4], a related optimization problem

was solved via a Lagrangian relaxation. For our problem, ake & simpler approach using a semi-definite
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programming (SDP) relaxation. We first note t3},, . > Dy

= ideal"

In the high-SNR regime, the two distortion
values are asymptotically equivalent. Therefore, we cdmpugood approximation for the distortidw, .,

in the low-SNR regime via the following SDP relaxation.

Theorem 5 (SDP RelaxationConsider random vectons s, r, €, v, and matriced.,,, B1; as defined in
Theoreni#. In addition, let random vectethave zero-mean and covariangg = I. Let & £ szng and
® < R™™" be an arbitrary positive semi-definite matrix wherés the dimension of random vector The

following lower bound applies,

noisy = i tr[®] + r[W[%, — e S |WT,

noisy =
st (S, ¥]<P, ¥ro0,

® WS = 0. (52)

B, W B+ W
The proof of Theoreml5 is based on a rank relaxation as détailédhe Appendix. The power constraint
is still enforced in Eqn.[(B2). In the low-SNR regime, pow#oeation over subspaces dominates the error
performance. If we denote the solution to the SDP of Thedréas 7, , we arrive at the following
characterization,

" > maX{D;deala D:dp}' (53)

noisy —

D. Cut-Set Lower Bounds for Linear Coding

Consider an LTN graptV with source nodes§ C V and receiver§y C V. We assume tha§ N7 = 0,
i.e. the set of sources and receivers are disjoint. The betatlwidth and total power acrosscat 7 C V
are defined respectively as

CF)= > e (54)

jkee
jeF, keFe

P(F)y= > Py, (55)
jkeE
JEF, keFe

where the edge set and bandwidths:;;, were defined in Sectionlll. The edges of the graph are dirgcted
hence the bandwidth across a cut accounts forcth@nly for those edges directed from nodgto v;. In
the following theorem, the notatian- denotes the concatenation of vectors v; € F. The setF¢ denotes

the complement ofF in V.
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Definition 10: D*

ideal

[z,7|s;c, W] represents the distortio®}, ., computed with the weighted norm
via W for the ideal point-to-point network with input, bandwidthe, reconstruction vector, and side

information to receivers. Similarly, D [a:,r|s;c, P, W] represents the distortio®* for a noisy

noisy noisy
point-to-point network with channel-input power congtita? and noise vectaz with zero-mean with identity
covariance.

Theorem 6 (Cut-Set Lower Boundgd)et ' be an arbitrary LTN graph with source nodgsnd receivers

T. Let F C V be a cut of the graph. For ideal channel communication,

L2 X
In the case of noisy channel communication over netwbfkwith additive channel noise;; (assumed

zero-mean, identity covariance),

E[HT‘]_‘C —'IA‘]:c iV}

> D;;oisy |:$]:,’I']:c mffac(f)>P(‘7:)7W:| . (57)

Proof: The LTN graph is partitioned into two sefsand.F¢. The source nodes € F are merged as one
source “super” node, and the receivefss F¢ are merged into one receiver “super” node. The maximum
bandwidth and maximum power between the source and recareef'(F) and P(F) respectively. The
random vector - represents those signals with channels to the receiver suigake, not accounted for in
the cutF; hence, this information is given as side information (axation) to the receiver. The relaxed
network after the merging process is the point-to-pointvoeit of Fig.[6 with noisez of dimension equal
W

at receivers; € F¢. [ |

to the bandwidthC'(F) of the cut, and provides a lower bound on the MSE distormb{rﬂr;c — T re

Remark 8: The total number of distinct cut& separating sources and receivergds’! — 1)(2/71 — 1).
For a particular cut, there exists a continuum of lower bauiwd multi-receiver networks depending on the

choice of weightingW.

E. Example: Cut-Set Lower Bounds for Linear Coding

In Fig.[B(a), cut-set lower bounds for linear coding aresiltated based on Theordr 6 for a distributed
noisy network. The bounds are depicted for the cut that ségsall sources from the receiver. Due to our
approximation method in Eqrl.(53) based on the SDP relaxati® lower bounds show tight agreement in
the low-SNR and high-SNR asymptotic regimes.
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Fig. 7. (a) Block diagram of a multi-source, multi-destinatideal network. Bandwidths;; of all links are labeled. Although the
graph is symmetric, the source covariance matrix given in.§63) includes cross-correlations which cause the distoplots to
appear asymmetric. (b) The distortion region assumingrbeewvs reconstruct:, and nodevs reconstructs.. The cut-set lower
bounds are drawn as dotted lines, and the shaded regionsiépécachievable points. (¢c) The distortion region assgrttiat node

vs reconstructses, and nodevg reconstructse; .

F. Cut-Set Lower Bound From Information Theory

For the point-to-point communication scenario illustcate Fig.[8, the information-theoretically optimal
performance can be determined precisely. Considef-lemgth sequencé (z[t], s[t])}¢_, of jointly i.i.d.
random vectors. The source nodehas access to the source sequefadé }¢_,. We will assume throughout
thatr (respectivelyr|t]) is a deterministic function ofz,s) (respectively(z[t], s[t])). The goal of receiver
vy IS to minimize theaverageMSE distortionD, = E [% Zle ||l [t] —f[t]H%} where the reconstruction
sequencd#[t]}¢_, is generated based on access to side informgdt}¢_, and the sequence of channel
output vectors. We study the performance in the limi¥as co and denoteD £ D..

1) Source-Channel SeparatiohVe establish a lower bound by combining the data processmguiality
with the definitions of Wyner-Ziv rate-distortion functicemd channel capacity. Specifically, by straight-
forward extension of[[35], the minimum ratB(D) required to reconstrucfr(t|};2, at distortion D is
given by R(D) = min I (z;uls) where the minimization is over all “auxiliary” random vecsa: for which

p(u,z,8) = p(u|z)p(z,s) and for whichE[||r — E[r|u, s]||3] < D. Furthermore, by definition of the channel
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capacityC(P) betweenv; and vy, C(P) = maXp(z,,): 5[z |2]<P I($12;y12)H Source-channel separation

applies to the scenario of Figl 6, and in a nearly identicabpas detailed in[[36, Thm. 1.10],
R(D) < C(P). (58)

2) R(D) for Jointly Gaussian Sourcedf {(r[t],z[t],s[t])} form ani.i.d. sequence of jointly Gaussian

random vectors, the®(D) is equal to the conditional rate-distortion function [5, pgmdix 1],

R.(D) = I(z;7)s). (59)

min
p(Flz,s):E[||[r—7(|3]<D
3) Capacity of the Vector AWGN Channef:the channel noise is a Gaussian random vector with zero
mean and covarianc®, = I, the capacity of the channel in Fig. 6 with bandwidih and power constraint
Pis
P
OP) = L 1og, [1 + —} : (60)
2 C12

4) Cut-set Bound:We utilize Egn. [(5B) to obtain an information-theoretic Emwbound to the distortion
achievable in any network of the type considered in this pajpe arbitrary graph is reduced via graph cuts

to point-to-point networks. The following theorem collethe known information-theoretic results discussed.

Theorem 7 (Cut-Set Bounds: Info. Theoryet A/ be an arbitrary LTN graph with vector AWGN chan-
nels. Consider a cuF C V separating the graph into a point-to-point network with dwaidth C(F) and
power P(F). Let R(D},,) be the rate-distortion function for the soureg with side informationz - and

reconstructior’r;cg Then

C(F)
2

g 1+ 53] (61)

R(D?

opt) S

G. Example: Cut-Set Lower Bound From Information Theory

For the noisy network in Examplé 5, consider &ut= {v;, v2,v3}. The source signalr = « = [z1; z2; 23]
is jointly Gaussian, the side information is absent, ard = . Denote the eigenvalues of the sounce
as {\z;}" . Evaluating Eqn.[(39) as in_[5, Appendix Il], optimal sourceding corresponds to reverse

water-filling over the eigenvalues (see alsol[37, Chap.,10])

3The notation in information theory vs. signal processinffieds. The terml(z12;412) denotes the mutual information between

random vectors whereas the teprfi12) indicates a probability distribution.

“We assume thatr- is a deterministic function of the global sourge



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING 29

- 1 Aei
RC(D:pt) = Zmax {5 10g2 57 70} )
i=1 g

0 if 0<Ag;
whereD; = {

and wheref is chosen such thdt; | D; = D;,,. The lower bound of Eqn[(61) is plotted in Fig. 5(b) for

two different bandwidth compression ratios.

H. Example: Multi-Source, Multi-Receiver Network

Example 6 (Multiple Unicast)in Fig.[q, the global source = [z;; z2] wherez; € R* andz, € R™.

The correlation structure af is given by the following matrices,

(2.4 1.1 0.4 0.0:0.1 0.1 0.0
1.1 1.7 0.8 0.4:0.0 0.2 0.2 0.1

’ 0.1

0.1

03060505 1101 0500 ©3)

The network structure is specified by bandwidif)sas labeled in Fig.17(a). The factorization of the global
linear transformT was given in Examplg]2 of SectionlIV.

The distortion region for the network in the case when nodestimates; = z1, and nodevs estimates
r¢ = xo IS given in Fig.[T(b). A direct link exists from each sourcerexeiver. However, if the desired
reconstruction at the receivers is switched as in[Big. 7€) ,channel from3 to v, must be shared fully and
becomes a bottleneck. The cut-set bounds of interest arensimdotted lines. The shaded region depicts
the points achievable via the iterative method of SedfidnIiVFig.[4(c), the upper and lower bounds are
not tight everywhere—even if one receiver is completelyoigal, the resulting problem is still a distributed
compression problem for which tight bounds are not knowre &bhievable curve was generated by taking
the convex hull of32 points corresponding to weighting ratigs € [Wlo, 100].

In Table[dl, we compare the results of linear transform desitethods for the minimum sum distortion
point (weighting ratio= = 1).

« Random Projections Each entry for all compression matrices is selected froenstandard normal
distribution. The sum distortio®s + Dg is averaged ovet0? random compression matrices selected
for all nodes.

« Routing and Network Coding (Ad-Hec)or the scenario in Fid.l 7(b), nodes and v, project their

signal onto the principal eigenvectors Bf; and X5, respectively. Routing permits each receiver to
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TABLE I
COMPARISON OFREDUCED-DIMENSION LINEAR TRANSFORMS

Fig.5(b) Fig.5(c)

Design Method Ds +Ds Ds+ Dg
Random Projections 4.3170 6.3471
Routing and Network Coding 2.7029 3.8170
Iterative QP Optimization 2.3258 2.6165
(Lower Bound) 2.3243 2.3243

receive the best two eigenvector projections from its gmoading source, as well as an extra projection
from the other source. For Figl 7(c), using a simple “netwooking” strategy of adding signals af,
one receiver is able to receive its best two eigenvectoeptigins, but the other receiver can only receive
one best eigenvector projection.

« Iterative QP Optimization Linear transforms are designed using the iterative metidgection 1V.

« Lower Bounéd The minimum sum distortion possible due to the cut-set tdveeind of Theorerh]6.

VIlI. CONCLUSION

The linear transform network (LTN) was proposed to modelabgregation, compression, and estimation
of correlated random signals in directed, acyclic graptws. both noiseless and noisy LTN graphs, a new
iterative algorithm was introduced for the joint optimipet of reduced-dimension network matrices. Cut-set
lower bounds were introduced for zero-delay linear codiaggll on convex relaxations. Cut-set lower bounds
for optimal coding were introduced based on informatiosetietic principles. The compression-estimation
tradeoffs were analyzed for several example networks. Aréuthallenge remains to compute tighter lower
bounds and relaxations for non-convex network optimizaimblems. Reduced-dimension linear transforms
have potential applications in data fusion and sensor rr&svd he idea of exploiting correlations between
network signals to reduce data transmission, and the idepmiximate reconstruction as opposed to exact

recovery at receivers may lead to further advances in n&tagr
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APPENDIX

Starting from the optimization in Eqri_{51), the LLSE optimaatrix B} = X,¢L1,(L123L, + 1)},
assumingX®, = I. Substituting this expression and simplifying the objeztiunction in Eqn.[(51),

noisy = 10T (W=, W]

noisy
1 (WL, [LiSe LT, +1) ' Ly B, W7
st tr[LipX,LL,] < P. (64)

Applying the Woodbury (matrix-inversion) identity [B3, £3] to the objective function and simplifying

terms,

D*

noisy

= min 1 [WE,W'] 1 (W=, 5, W |

1
Ftr [qugzgl [zgl + L’{QLH] zglz@WT]

st tr[Lp3,Li,] < P. (65)

Introducing a positive semi-definite matri& such that® > Wz,,fzgl [Zgl + L{Qng]_lxglxg,,WT,
written equivalently in Schur-complement form [33, A.5.8hd settingl = L1, L;, € R™*" as a ranke;s

matrix,

roisy = MU0 [P] + 10 [W ()~ 2,5 5] WT] ,

st tr[3;P] <P, ¥>x0, rank[¥] = c2,
-1
P WE,e3,
DY) VRAVANED Y
Dropping the rank constraint yields the relaxation of EG®)(

= 0. (66)
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