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Compressive Imaging using Approximate Message
Passing and a Markov-Tree Prior

Subhojit Som∗ and Philip Schniter†

Abstract—We propose a novel algorithm for compressive
imaging that exploits both the sparsity and persistence across
scales found in the 2D wavelet transform coefficients of natural
images. Like other recent works, we model wavelet structure
using a hidden Markov tree (HMT) but, unlike other works, our s
is based on loopy belief propagation (LBP). For LBP, we adopta
recently proposed “turbo” message passing schedule that alter-
nates between exploitation of HMT structure and exploitation of
compressive-measurement structure. For the latter, we leverage
Donoho, Maleki, and Montanari’s recently proposed approximate
message passing (AMP) algorithm. Experiments with a large im-
age database suggest that, relative to existing schemes, our turbo
LBP approach yields state-of-the-art reconstruction performance
with substantial reduction in complexity.

I. I NTRODUCTION

In compressive imaging [1], we aim to estimate an image
x ∈ R

N from M ≤ N noisy linear observationsy ∈ R
M ,

y = Φx+w = ΦΨθ +w, (1)

assuming that the image has a representationθ ∈ R
N in some

wavelet basisΨ (i.e., x = Ψθ) containing only a few (K)
large coefficients (i.e.,K ≪ N ). In (1), Φ ∈ R

M×N is a
known measurement matrix andw ∼ N (0, σ2I) is additive
white Gaussian noise. ThoughM < N makes the problem
ill-posed, it has been shown thatx can be recovered from
y whenK is adequately small andΦ is incoherent withΨ
[1]. The wavelet coefficients of natural images are known to
have an additional structure known aspersistence across scales
(PAS) [2], which we now describe. For 2D images, the wavelet
coefficients are naturally organized into quad-trees, where each
coefficient at levelj acts as a parent for four child coefficients
at level j+1. The PAS property says that, if a parent is very
small, then all of its children are likely to be very small;
similarly, if a parent is large, then it is likely that some (but
not necessarily all) of its children will also be large.

Several authors have exploited the PAS property for com-
pressive imaging [3]–[6]. The so-called “model-based” ap-
proach [3] is a deterministic incarnation of PAS that leverages

∗Dr. Subhojit Som is with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, 75 Fifth St NW, Atlanta, GA 30308,
email: subhojit@gatech.edu, phone 404.894.2901, fax 404.894.8363.
†Prof. Philip Schniter is with the Department of Electrical and Computer

Engineering, The Ohio State University, 2015 Neil Ave., Columbus, OH
43202, email: schniter@ece.osu.edu, phone 614.247.6488,fax 614.292.7596.

This work was supported in part by NSF grant CCF-1018368, AFOSR grant
FA9550-06-1-0324, DARPA/ONR grant N66001-10-1-4090, andan allocation
of computing time from the Ohio Supercomputer Center.

This work was presented in part at the 2010 Asilomar Conference on
Signals, Systems, and Computers [27].

Please direct all correspondence to Philip Schniter at the above address.

a restricted union-of-subspaces and manifests as a modified
CoSaMP [7] algorithm. Most approaches are Bayesian in
nature, exploiting the fact that PAS is readily modeled by
a hidden Markov tree(HMT) [8]. The first work in this
direction appears to be [4], where an iteratively re-weighted
ℓ1 algorithm, generating an estimate ofx, was alternated with
a Viterbi algorithm, generating an estimate of the HMT states.
More recently, HMT-based compressive imaging has been
attacked using modern Bayesian tools [9]. For example, [5]
used Markov-chain Monte-Carlo (MCMC), which is known
to yield correct posteriors after convergence. For practical
image sizes, however, convergence takes an impractically long
time, and so MCMC must be terminated early, at which
point its performance may suffer. Variational Bayes (VB)
can sometimes offer a better performance/complexity tradeoff,
motivating the approach in [6]. Our experiments indicate
that, while [6] indeed offers a good performance/complexity
tradeoff, it is possible to do significantly better.

In this paper, we propose a novel approach to HMT-based
compressive imaging based on loopy belief propagation [10].
For this, we model the coefficients inθ as conditionally
Gaussian with variances that depend on the values of HMT
states, and we propagate beliefs (about both coefficients and
states) on the corresponding factor graph. A recently proposed
“turbo” messaging schedule [11] suggests to iterate between
exploitation of HMT structure and exploitation of observa-
tion structure from (1). For the former we use the standard
sum-product algorithm [12], [13], and for the latter we use
the recently proposedapproximate message passing(AMP)
approach [14]. The remarkable properties of AMP are 1) a
rigorous analysis (asM,N → ∞ with M/N fixed, under i.i.d
GaussianΦ) [15] establishing that its solutions are governed
by a state-evolution whose fixed points—when unique—yield
the true posterior means, and 2) very low implementational
complexity (e.g., AMP requires one forward and one inverse
fast-wavelet-transform per iteration, and very few iterations).

We consider two types of conditional-Gaussian coefficient
models: a Bernoulli-Gaussian (BG) model and a two-state
Gaussian-mixture (GM) model. The BG model assumes that
the coefficients are either generated from a large-variance
Gaussian distribution or are exactly zero (i.e., the coefficients
are exactly sparse), whereas the GM model assumes that the
coefficients are generated from either a large-variance or a
small-variance Gaussian distribution. Both models have been
previously applied for imaging, e.g., the BG model was used
in [5], [6], whereas the GM model was used in [4], [8].

Although our models for the coefficientsθ and the cor-
responding HMT states involve statistical parameters like
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Fig. 1. Left: The camera-man image. Center: The corresponding transform
coefficients, demonstrating PAS. Right: An illustration ofquad-tree structure.

variance and transition probability, we learn those parameters
directly from the data. To do so, we take a hierarchical
Bayesian approach—similar to [5], [6]—where these statis-
tical parameters are treated as random variables with suitable
hyperpriors. Experiments on a large image database show that
our turbo-AMP approach yields state-of-the-art reconstruction
performance with substantial reduction in complexity.

The remainder of the paper is organized as follows. Sec-
tion II describes the signal model, SectionIII describes the
proposed algorithm, SectionIV gives numerical results and
comparisons with other algorithms, and SectionV concludes.

Notation: Above and in the sequel, we use lowercase bold-
face quantities to denote vectors, uppercase boldface quantities
to denote matrices,I to denote the identity matrix,(·)T to
denote transpose, and‖x‖2 ,

√
xTx. We usepΘ|S(θ | s)

to denote the probability density1 function (pdf) of random
variableΘ given the eventS = s, where often the subscript
“Θ|S” is omitted when there is no danger of confusion. We
useN (x;m,Σ) to denote theN -dimensional Gaussian pdf
with argumentx, meanm, and covariance matrixΣ, and we
write x ∼ N (m,Σ) to indicate that random vectorx has
this pdf. We useE{·} to denote expectation,Pr{E} to denote
the probability of eventE , andδ(·) to denote the Dirac delta.
Finally, we use∝ to denote equality up to a multiplicative
constant.

II. SIGNAL MODEL

Throughout, we assume thatΨ represents a 2D wavelet
transform [2], so that the transform coefficientsθ =
[θ1, . . . , θN ]T can be partitioned into so-called “wavelet” coef-
ficients (at indicesn ∈ W) and “approximation” coefficients
(at indicesn ∈ A). The wavelet coefficients can be further
partitioned into several quad-trees, each withJ ≥ 1 levels
(see Fig.1). We denote the indices of all coefficients at level
j ∈ {0, . . . , J−1} of these wavelet trees byWj , wherej = 0
refers to the root. In the interest of brevity, and with a slight
abuse of notation, we refer to the approximation coefficients
as level “−1” of the wavelet tree (i.e.,A = W−1).

As discussed earlier, two coefficient models are considered
in this paper: Bernoulli-Gaussian (BG) and two-state Gaussian
mixture (GM). For ease of exposition, we focus on the BG
model until SectionIII-E, at which point the GM case is
detailed. In the BG model, each transform coefficientθn is
modeled using the (conditionally independent) prior pdf

p(θn | sn) = snN (θn; 0, σ
2
n) + (1 − sn)δ(θn), (2)

1 or the probability mass function (pmf), as will be clear fromthe context.
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Fig. 2. Factor graph representation of the signal model. Thevariabless1 and
s6 are wavelet states at the roots of two different Markov trees. The variable
s5 is an approximation state and hence is not part of any Markov tree. The
remainingsn are wavelet states at levelsj > 0. For visual simplicity, a binary-
tree is shown instead of a quad-tree, and the nodes representing the statistical
parametersρ, π1

−1, π
1
0, {ρj , π

11
j , π00

j }, as well as those representing their
hyperpriors, are not shown.

wheresn ∈ {0, 1} is a hidden binary state. The approximation
states{sn}n∈W

−1 are assigned the apriori activity rateπ1
−1 ,

Pr{sn = 1 |n ∈ W−1}, which is discussed further below.
Meanwhile, the root wavelet states{sn}n∈W0 are assigned
π1
0 , Pr{sn=1 |n ∈ W0}. Within each quad-tree, the states

have a Markov structure. In particular, the activity of a state
at levelj+1 is determined by its parent’s activity (at levelj)
and the transition probabilities{π00

j , π11
j }, whereπ00

j denotes
the probability that the child’s state equals0 given that his
parent’s state also equals0, andπ11

j denotes the probability
that the child’s state equals1 given given that his parent’s
state also equals1. The corresponding factor graph is shown
in Fig. 2.

We take a hierarchical Bayesian approach, modeling the
statistical parametersσ2, {σ2

n}Nn=1, π
1
−1, π

1
0 , {π11

j , π00
j }J−2

j=0 as
random variables and assigning them appropriate hyperpriors.
Rather than working directly with variances, we find it more
convenient to work with precisions (i.e., inverse-variances)
such asρ , σ−2. We then assume that all coefficients at
the same level have the same precision, so thatρj = σ−2

n for
all n ∈ Wj . To these precisions, we assign conjugate priors
[16], which in this case take the form

ρ ∼ Gamma(a, b) (3)

ρj ∼ Gamma(aj , bj), (4)

whereGamma(ρ; a, b) , 1
Γ(a)b

aρa−1 exp(−bρ) for ρ ≥ 0,

and wherea, b, {aj, bj}J−1
j=−1 are hyperparameters. (Recall that

the mean and variance ofGamma(a, b) are given bya/b and
a/b2, respectively [16].) For the activity rates and transition
parameters, we assume

π1
0 ∼ Beta(c, d) (5)

π1
−1 ∼ Beta(c, d) (6)

π11
j ∼ Beta(cj , dj) (7)

π00
j ∼ Beta(cj , dj), (8)
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where Beta(p; c, d) ,
Γ(c+d)
Γ(c)Γ(d)p

c−1(1 − p)d−1, and where

c, d, c, d, {cj, dj , cj , dj}J−1
j=1 are hyperparameters. (Recall that

the mean and variance ofBeta(c, d) are given by c
c+d

and
cd

(c+d)2(c+d+1) , respectively [16].) Our hyperparameter choices
are detailed in SectionIV.

III. I MAGE RECONSTRUCTION

To infer the wavelet coefficientsθ, we would ideally like
to compute the posterior pdf

p(θ |y) ∝
∑

s

p(y | θ, s)p(θ, s) (9)

=
∑

s

p(s)
︸︷︷︸

, h(s)

N∏

n=1

p(θn | sn)
︸ ︷︷ ︸

, fn(θn, sn)

M∏

m=1

p(ym | θ)
︸ ︷︷ ︸

, gm(θ)

, (10)

where ∝ denotes equality up to a multiplicative constant.
For the BG coefficient model,fn(θn, sn) is specified by
(2). Due to the white Gaussian noise model (1), we have
gm(θ) = N (ym;aT

mθ, σ2), whereaT
m denotes themth row

of the matrixA , ΦΨ.

A. Loopy Belief Propagation

While exact computation ofp(θ |y) is computationally pro-
hibitive, the marginal posteriors{p(θn |y)} can be efficiently
approximated usingloopy belief propagation(LBP) [10] on
the factor graph of Fig.2, which uses round nodes to denote
variables and square nodes to denote the factors in (10). In do-
ing so, we also obtain the marginal posteriors{p(sn |y)}. For
now, we treat statistical parametersρ, π1

−1, π
1
0 , {ρj , π11

j , π00
j },

as if they were fixed and known, and we detail the procedure
by which they are learned in SectionIII-D .

In LBP, messages are exchanged between the nodes of the
factor graph until they converge. Messages take the form of
pdfs (or pmfs), and the message flowing to/from a variable
node can be interpreted as a local belief about that variable.
According to thesum-product algorithm[12], [13] the mes-
sage emitted by a variable node along a given edge is (an
appropriate scaling of) the product of the incoming messages
on all other edges. Meanwhile, the message emitted by a
function node along a given edge is (an appropriate scaling of)
the integral (or sum) of the product of the node’s constraint
function and the incoming messages on all other edges, where
the integration (or summation) is performed over all variables
other than the one directly connected to the edge along which
the message travels. When the factor graph has no loops,
exact marginal posteriors result from two (i.e., forward and
backward) passes of the sum-product algorithm [12], [13].
When the factor graph has loops, however, exact inference
is known to be NP hard [17] and so LBP is not guaranteed to
produce correct posteriors. Still, LBP has shown state-of-the-
art performance in many applications, such as inference on
Markov random fields [18], turbo decoding [19], LDPC de-
coding [20], multiuser detection [21], and compressive sensing
[14], [15], [22], [23].
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Fig. 3. The turbo approach yields a decoupled factor graph.

B. Message Scheduling: The Turbo Approach

With loopy belief propagation, there exists some freedom
in how messages are scheduled. In this work, we adopt the
“turbo” approach recently proposed in [11]. For this, we split
the factor graph in Fig.2 along the dashed line and obtain the
two decoupled subgraphs in Fig.3. We then alternate between
belief propagation on each of these two subgraphs, treating
the likelihoods on{sn} generated from belief propagation on
one subgraph as priors for subsequent belief propagation on
the other subgraph. We now give a more precise description of
this turbo scheme, referring to one full round of alternation as
a “turbo iteration.” In the sequel, we useν(t)

A→B(.) to denote
the message passed from nodeA to nodeB during thetth

turbo iteration.
The procedure starts att = 1 by setting the “prior”

pmfs {h(1)
n (.)} in accordance with the apriori activity rates

Pr{sn = 1} described in SectionII . LBP is then iterated (to
convergence) on the left subgraph in Fig.3, finally yielding the
messages{ν(1)

fn→sn
(.)}. We note that the messageν(1)

fn→sn
(sn)

can be interpreted as the current estimate of the likelihood2

on sn, i.e., p(y | sn) as a function ofsn. These likelihoods
are then treated as priors for belief propagation on the right
subgraph, as facilitated by the assignmentd(1)

n (.) = ν(1)

fn→sn
(.)

for eachn. Due to the tree structure of HMT, there are no loops
in right subgraph (i.e., inside the “h” super-node in Fig.3), and
thus it suffices to perform only one forward-backward pass of
the sum-product algorithm [12], [13]. The resulting leftward
messagesν(1)h→sn

(.) are subsequently treated as priors for belief
propagation on the left subgraph at the next turbo iteration, as
facilitated by the assignmenth(2)

n (.) = ν
(1)
h→sn

(.). The process
then continues for turbo iterationst = 2, 3, 4, . . . , until the
likelihoods converge or a maximum number of turbo iterations
has elapsed. Formally, the turbo schedule is summarized by

d(t)n (sn) = ν
(t)
fn→sn

(sn) (11)

h(t+1)
n (sn) = ν

(t)
h→sn

(sn). (12)

In the sequel, we refer to inference of{sn} using
compressive-measurement structure (i.e., inference on the left
subgraph of Fig.3) as soft support-recovery(SSR) and in-
ference of{sn} using HMT structure (i.e., inference on the

2 In turbo decoding parlance, the likelihoodν(t)

fn→sn
(sn) would be referred

to as the “extrinsic” information aboutsn produced by the left “decoder”,
since it does not directly involve the corresponding priorh

(t)
n (sn). Similarly,

the messageν(t)
h→sn

(sn) would be referred to as the extrinsic information
aboutsn produced by the right decoder.



4

right subgraph of Fig.3) assoft support-decoding(SSD). SSR
details are described in the next subsection.

C. Soft Support-Recovery via AMP

We now discuss our implementation of SSR during a
single turbo iterationt. Because the operations are invariant
to t, we suppress thet-notation. As described above, SSR
performs several iterations of loopy belief propagation per
turbo iteration using the fixed priorsλn , hn(sn = 1).
This implies that, over SSR’s LBP iterations, the message
νfn→θn(.) is fixed at

νfn→θn(θn) = λnN (θn; 0, σ
2
n) + (1 − λn)δ(θn). (13)

The dashed box in Fig.3 shows the region of the factor
graph on which messages are updated during SSR’s LBP
iterations. This subgraph can be recognized as the one that
Donoho, Maleki, and Montanari used to derive their so-called
approximate message passing(AMP) algorithm [14]. While
[14] assumed an i.i.d Laplacian prior forθ, the approach for
generic i.i.d priors was outlined in [23]. Below, we extend
the approach of [23] to independentnon-identical priors (as
analyzed in [24]) and we detail the Bernoulli-Gaussian case.
In the sequel, we use a superscript-i to index SSR’s LBP
iterations.

According to the sum-product algorithm, the fact that
νfn→θn(.) is non-Gaussian implies thatνiθn→gm

(.) is also
non-Gaussian, which complicates the exact calculation of
the subsequent messagesνigm→θn

(.) as defined by the sum-
product algorithm. However, for largeN , the combined effect
of {νiθn→gm

(.)}Nn=1 at thegm nodes can be approximated as
Gaussian using central-limit theorem (CLT) arguments, after
which it becomes sufficient to parameterize each message
νiθn→gm

(.) by only its mean and variance:

µi
mn ,

∫

θn
θn ν

i
θn→gm

(θn) (14)

vimn ,
∫

θn
(θn − µi

mn)
2 νiθn→gm

(θn). (15)

Combining

∏

q

N (θ;µq , vq) ∝ N
(

θ;

∑

q µq/vq
∑

q 1/vq
,

1
∑

q 1/vq

)

(16)

with gm(θ) = N (ym;aT
mθ, σ2), the CLT then implies that

νigm→θn
(θn) ≈ N

(

θn;
zimn

Amn

,
cimn

A2
mn

)

(17)

zimn , ym −∑q 6=n Amqµ
i
qm (18)

cimn , σ2 +
∑

q 6=n A2
mqv

i
qm. (19)

The updatesµi+1
mn andvi+1

mn can then be calculated from

νi+1
θn→gm

(θn) ∝ νfn→θn(θn)
∏

l 6=m νigl→θn
(θn), (20)

where, using (16), the product term in (20) is

∝ N
(

θn;

∑

l 6=m Alnz
i
ln/c

i
ln

∑

l 6=m A2
lnz

i
ln/c

i
ln

,
1

∑

l 6=m A2
ln/c

i
ln

)

. (21)

Assuming that the valuesA2
ln satisfy

∑

l 6=m

A2
ln ≈

M∑

l=1

A2
ln ≈ 1, (22)

which occurs, e.g., whenM is large and{Aln} are generated
i.i.d with variance1/M , we haveciln ≈ cin , 1

M

∑M

m=1 c
i
mn,

and thus (20) is well approximated by

νi+1
θn→gm

(θn) ∝
(
λnN (θn; 0, σ

2
n) + (1− λn)δ(θn)

)

×N (θn; ξ
i
nm, cin) (23)

ξinm ,
∑

l 6=m Alnz
i
ln. (24)

In this case, the mean and variance ofνi+1
θn→gm

(.) become

µi+1
nm = αn(c

i
n)ξ

i
nm/(1 + γi

nm) (25)

vi+1
nm = γi

nm(µi+1
nm )2 + µi+1

nm cin/ξ
i
nm (26)

γi
nm , βn(c

i
n) exp(−ζn(c

i
n)(ξ

i
nm)2), (27)

where

αn(c) , (c/σ2
n + 1)−1

βn(c) , (−1 + 1/λn)
√

1 + σ2
n/c

ζn(c) , (2c(1 + c/σ2
n))

−1.

According to the sum-product algorithm,̂pi+1(θn |y), the
posterior onθn after SSR’sith-LBP iteration, obeys

p̂i+1(θn |y) ∝ νfn→θn(θn)
∏M

l=1 ν
i
gl→θn

(θn), (28)

whose mean and variance determine theith-iteration MMSE
estimate ofθn and its variance, respectively. Noting that the
difference between (28) and (20) is only the inclusion of the
mth product term, these MMSE quantities become

µi+1
n = αn(c

i
n)ξ

i
n/(1 + γi

n) (29)

vi+1
n = γi

n(µ
i+1
n )2 + µi+1

n cin/ξ
i
n (30)

ξin ,
∑M

l=1 Alnz
i
ln (31)

γi
n , βn(c

i
n) exp(−ζn(c

i
n)(ξ

i
n)

2). (32)

Similarly, the posterior onsn after theith iteration obeys

p̂i+1(sn |y) ∝ νifn→sn
(sn)νhn→sn(sn), (33)

where
νifn→sn

(sn) ∝
∫

θn

fn(θn, sn)

M∏

l=1

νigl→θn
(θn). (34)

Sincefn(θn, sn) = snN (θn; 0, σ
2
n)+ (1− sn)δ(θn), it can be

seen that the corresponding log-likelihood ratio (LLR) is

Li+1
n , ln

νifn→sn
(sn=1)

νifn→sn
(sn=0)

= ln
1− λi

n

γi
nλ

i
n

. (35)

Clearly, the LLRLi+1
n and the likelihood functionνifn→sn

(.)
express the same information, but in different ways.

The procedure described thus far updatesO(MN) variables
per LBP iteration, which is impractical sinceMN can be very
large. In [23], Donoho, Maleki, and Montanari proposed, for
the i.i.d case, further approximations that yield a “first-order”
approximate message passing (AMP) algorithm that allows
the update of onlyO(N) variables per LBP iteration, essen-
tially by approximating thedifferencesamong the outgoing
means/variances of thegm(·) nodes (i.e.,zimn and cimn) as
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well as the differences among the outgoing means/variances
of the θn nodes (i.e.,µi

n and vin). These resulting algorithm
was then rigorously analyzed by Bayati and Montanari in [15].
We now summarize a straightforward extension of the i.i.d
AMP algorithm from [23] to the case of an independent but
non-identical Bernoulli-Gaussian prior (13):

ξin =
∑M

m=1 Amnz
i
m + µi

n (36)

µi+1
n = Fn(ξ

i
n; c

i) (37)

vi+1
n = Gn(ξ

i
n; c

i) (38)

zi+1
m = ym −∑N

n=1 Amnµ
i
n +

zi
m

M

∑N

n=1 F
′
n(ξ

i
n; c

i) (39)

ci+1 = σ2 + 1
M

∑N

n=1 v
i+1
n , (40)

whereFn(.; .), Gn(.; .) andF ′
n(.; .) are defined as

Fn(ξ; c) =
αn(c)

1 + τn(ξ; c)
ξ (41)

Gn(ξ; c) = τn(ξ; c)Fn(ξ; c)
2 + c ξ−1Fn(ξ; c) (42)

F ′
n(ξ; c) =

αn(c)
[
1 + τn(ξ; c)

(
1 + 2ζ(cn)ξ

2
)]

[1 + τn(ξ; c)]2
(43)

τn(ξ; c) = βn(c) exp(−ζn(c)ξ
2). (44)

For the first turbo iteration (i.e.,t = 1), we initialize
AMP using zi=1

m = ym, µi=1
n = 0, and ci=1

n ≫ σ2
n for

all m,n. For subsequent turbo iterations (i.e.,t > 1), we
initialize AMP by settingzi=1

m , µi=1
n , ci=1

n equal to the final
values ofzim, µi

n, c
i
n generated by AMP at thepreviousturbo

iteration. We terminate the AMP iterations as soon as either
‖µi − µi−1‖2 < 10−5 or a maximum of10 AMP iterations
have elapsed. Similarly, we terminate the turbo iterationsas
soon as either‖µ(t)−µ(t−1)‖2 < 10−5 a maximum of10 turbo
iterations have elapsed. The final value ofµ = [µ1, . . . , µN ]T

is output at the signal estimatêθ.

D. Learning the Statistical Parameters

We now describe how the precisions{ρj} are learned. First,
we recall thatρj describes the apriori precision on the active
coefficients at thejth level, i.e., on{θn}n∈Sj

, where the
corresponding index setSj , {n ∈ Wj : sn = 1} is of
sizeKj , |Sj |. Furthermore, we recall that the prior onρj
was chosen as in (4). Thus,if we had access to the true values
{θn}n∈Sj

, then (2) implies that

p(θn |n ∈ Sj) = N (θn; 0, ρj), (45)

which implies3 that the posterior onρj would take the form
of Gamma(âj , b̂j) where âj = aj + 1

2Kj and b̂j = bj +
1
2

∑

n∈Sj
θ2n. In practice, we don’t have access to the true

values{θn}n∈Sj
nor to the setSj , and thus we propose to

build surrogates from the SSR outputs. In particular, to update
ρj after thetth turbo iteration, we employ

S(t)

j , {n ∈ Wj : L
(t)

n > 0} (46)

K(t)

j , |S(t)

j |, (47)

3 This posterior results because the chosen prior is conjugate [16] for the
likelihood in (45).

and{µ(t)
n }

n∈S
(t)
j

, whereL(t)
n andµ(t)

n denote the final LLR on

sn and the final MMSE estimate ofθn, respectively, at thetth

turbo iteration. These choices imply the hyperparameters

â(t+1)

j = aj +
1
2K

(t)

j (48)

b̂(t+1)

j = bj +
1
2

∑

n∈S
(t)
j

(µ(t)
n )2. (49)

Finally, to perform SSR at turbo iterationt + 1, we set the
variances{σ2

n}n∈Wj
equal to the inverse of the expected

precisions, i.e.,1/E{ρj} = b̂(t+1)

j /â(t+1)

j . The noise variance
σ2 is learned similarly from the SSR-estimated residual.

Next, we describe how the transition probabilities{π11
j } are

learned. First, we recall thatπ11
j describes the probability that

a child at levelj+1 is active (i.e.,sn = 1) given that his parent
(at levelj) is active. Furthermore, we recall that the prior on
π11
j was chosen as in (7). Thusif we knew that there wereKj

active coefficients at levelj, of whichCj had active children,
then4 the posterior onπ11

j would take the form ofBeta(ĉj , d̂j),
whereĉj = cj + Cj and d̂j = dj +Kj − Cj . In practice, we
don’t have access to the true values ofKj andCj , and thus we
build surrogates from the SSR outputs. In particular, to update
π11
j after thetth turbo iteration, we approximatesn = 1 by

the eventL(t)
n > 0, and based on this approximation setK(t)

j

(as in (47)) andC(t)

j . The corresponding hyperparameters are
then updated as

ĉ(t+1)

j = cj + C(t)

j (50)

d̂(t+1)

j = dj +K(t)

j − C(t)

j . (51)

Finally, to perform SSR at turbo iterationt + 1, we set
the transition probabilitiesπ11

j equal to the expected value
ĉ(t+1)

j /(ĉ(t+1)

j + d̂(t+1)

j ). The parametersπ1
0 , π1

−1, and {π00
j }

are learned similarly.

E. The Two-State Gaussian-Mixture Model

Until now, we have focused on the Bernoulli-Gaussian (BG)
signal model (2). In this section, we describe the modifications
needed to handle the Gaussian mixture (GM) model

p(θn | sn) = snN (θn; 0, σ
2
n,L) + (1− sn)N (θn; 0, σ

2
n,S),

(52)

whereσ2
n,L denotes the variance of “large” coefficients and

σ2
n,S denotes the variance of “small” ones. For either the BG

or GM prior, AMP is performed using the steps (36)-(40).
For the BG case, the functionsFn(.; .), Gn(.; .), F ′

n(.; .), and
τn(.; .) are given in (41)–(44), whereas for the GM case, they

4 This posterior results because the chosen prior is conjugate to the
Bernoulli likelihood [16].
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take the form

Fn(ξ; c) =
ᾱn,L(c) + ᾱn,S(c)τ̄n(ξ, c)

1 + τ̄n(ξ, c)
ξ (53)

Gn(ξ; c) =
τ̄n(ξ, c)ξ

2[ᾱn,L(c)− ᾱn,S(c)]
2

[1 + τ̄n(ξ, c)]2
+ c ξ−1Fn(ξ; c)

(54)
F ′
n(ξ; c) =

τ̄n(ξ; c)ᾱn,L(c)(1 + τ̄n(ξ; c)− 2ξ2ζ̄n(c))

[1 + τ̄n(ξ; c)]2

+
ᾱn,S(c)(1 + τ̄n(ξ; c) + 2ξ2ζ̄n(c)τ̄n(ξ; c))

[1 + τ̄n(ξ; c)]2
(55)

τ̄n(ξ, c) = β̄n(c) exp(−ζ̄n(c)ξ
2), (56)

where

ᾱn,L(c) ,
σ2
n,L

c+ σ2
n,L

(57)

ᾱn,S(c) ,
σ2
n,S

c+ σ2
n,S

(58)

β̄n(c) ,
1− λn

λn

√

c+ σ2
n,L

c+ σ2
n,S

(59)

ζ̄n(c) ,
σ2
n,L − σ2

n,S

2(c+ σ2
n,L)(c+ σ2

n,S)
. (60)

Likewise, for the BG case, the extrinsic LLR is given by (35),
whereas for the GM case, it becomes

Li+1
n , ln

νifn→sn
(sn=1)

νifn→sn
(sn=0)

= ln
1− λi

n

τ̄n(ξin; c
i
n)λ

i
n

. (61)

IV. N UMERICAL RESULTS

A. Setup

The proposed turbo5 approach to compressive imaging was
compared to several other tree-sparse reconstruction algo-
rithms: ModelCS [3], HMT+IRWL1 [4], MCMC [5], varia-
tional Bayes (VB) [6]; and to several simple-sparse recon-
struction algorithms: CoSaMP [7], SPGL1 [25], and Bernoulli-
Gaussian (BG) AMP. All numerical experiments were per-
formed on 128× 128 (i.e., N = 16384) grayscale images
using aJ = 4-level 2D Haar wavelet decomposition, yielding
82=64 approximation coefficients and3×82=192 individual
Markov trees. In all cases, the measurement matrixΦ had
i.i.d Gaussian entries. Unless otherwise specified,M = 5000
noiseless measurements were used. We used normalized mean
squared error (NMSE)‖x − x̂‖22/‖x‖22 as the performance
metric.

We now describe how the hyperparameters were chosen for
the proposed Turbo schemes. Below, we useNj to denote
the total number of wavelet coefficients at levelj, andN−1

to denote the total number of approximation coefficients.
For both Turbo-BG and Turbo-GM, the Beta hyperparam-
eters were chosen so thatc+ d = N0, c+ d = N−1 and
cj +dj = Nj ∀j with E{p10} = 1/N , E{p1−1} = 1 − 10−6,
E{p00j } = 1/N ∀j, andE{p11j } = 0.5 ∀j. These informative
hyperparameters are similar to the “universal” recommenda-
tions in [26] and, in fact, identical to the ones suggested in

5An implementation of our algorithm can be downloaded from
http://www.ece.osu.edu/∼schniter/ turboAMPimaging

the MCMC work [5]. For Turbo-BG, the hyperparameters for
the signal precisions{σ−2

n }n∈Wj
were set toaj = 1 ∀j and

[b−1, . . . , b3] = [10, 1, 1, 0.1, 0.1]. This choice is motivated
by the fact that wavelet coefficient magnitudes are known
to decay exponentially with scalej (e.g., [26]). Meanwhile,
the hyperparameters for the noise precisionσ−2 were set
to (a, b) = (1, 10−6). Although the measurements were
noiseless, we allow Turbo-BG a nonzero noise variance in
order to make up for the fact that the wavelet coefficients
are not exactly sparse, as assumed by the BG signal model.
(We note that the same was done in the BG-based work
[5], [6].) For Turbo-GM, the hyperparameters(aj,L, bj,L) for
the signal precisions{σ−2

n,L}n∈Wj
were set at the values of

(aj , bj) for the BG case, while the hyperparameters(aj,S, bj,S)
for {σ−2

n,S}n∈Wj
were set asaj,S = 1 and bj,S = 10−6bj,L.

Meanwhile, the noise varianceσ2 was assumed to be exactly
zero, because the GM signal prior is capable of modeling non-
sparse wavelet coefficients.

For MCMC [5], the hyperparameters were set in accordance
with the values described in [5]; the values ofc, d, {cj, dj}
are same as the ones used for the proposed Turbo-BG
scheme, whilea = aj = b = bj = 10−6 ∀j. For VB,
the same hyperparameters as MCMC were used except for
aj = 2×109 andbj = 1010 ∀j, which were the default values
of hyperparameters used in the publicly available code.6 We
experimented with the values for both MCMC and VB and
found that the default values indeed seem to work best. For
example, if one swaps the(aj , bj) hyperparameters between
VB and MCMC, then the average performance of VB and
MCMC degrade by1.69dB and1.55dB, respectively, relative
to the values reported in TableI.

For both the CoSaMP and ModelCS algorithms, the prin-
cipal tuning parameter is the assumed number of non-zero
coefficients. For both ModelCS (which is based on CoSaMP)
and CoSaMP itself, we used the Rice University codes,7 which
include a genie-aided mechanism to compute the number of
active coefficients from the original image. However, since
we observed that the algorithms perform somewhat poorly
under that tuning mechanism, we instead ran (for each image)
multiple reconstructions with the number of active coefficients
varying from 200 to 2000 in steps of100, and reported the
result with the best NMSE. The number of active coefficients
chosen in this manner was usually much smaller than that
chosen by the genie-aided mechanism.

To implement BG-AMP, we used the AMP scheme de-
scribed in SectionIII-C with the hyperparameter learning
scheme described in SectionIII-D ; HMT structure was not
exploited. For this, we assumed that the priors on variance
σ2
n and activityλn were identical over the coefficient index

n, and assigned Gamma and Beta hyperpriors of(a, b) =
(10−10, 10−10) and (c, d) = (0.1N, 0.9N), respectively.

For HMT+IRWL1, we ran code provided by the authors
with default settings. For SPGL1,8 the residual variance was
set to0, and all parameters were set at their defaults.

6http://people.ee.duke.edu/∼ lcarin/BCS.html
7http://dsp.rice.edu/software/model-based-compressive-sensing-toolbox
8http://www.cs.ubc.ca/ labs/scl/spgl1/ index.html

http://www.ece.osu.edu/~schniter/turboAMPimaging
http://people.ee.duke.edu/~lcarin/BCS.html
http://dsp.rice.edu/software/model-based-compressive-sensing-toolbox
http://www.cs.ubc.ca/labs/scl/spgl1/index.html
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Fig. 4. Reconstruction fromM = 5000 observations of a128× 128 (i.e., N = 16384) section of the cameraman image using i.i.d GaussianΦ.

Fig. 5. A sample image from each of the 20 types in the Microsoft database.
Image statistics were found to vary significantly from one type to another.

Algorithm NMSE (dB) Computation Time (sec)

HMT+IRWL1 -14.37 363
CoSaMP -16.90 25
ModelCS -17.45 117
BG-AMP -17.84 68
SPGL1 -18.06 536

VB -19.04 107
MCMC -20.10 742

Turbo-BG -20.49 51
Turbo-GM -20.74 51

TABLE I
NMSE AND RUNTIME AVERAGED OVER 591 IMAGES.

B. Results

Fig. 4 shows a128×128 section of the “cameraman” image
along with the images recovered by the various algorithms.
Qualitatively, we see that CoSaMP, which leverages only
simple sparsity, and ModelCS, which models persistence-
across-scales (PAS) through a deterministic tree structure,
both perform relatively poorly. HMT+IRWL1 also performs
relatively poorly, due to (we believe) the ad-hoc manner in
which the HMT structure was exploited via iteratively re-
weightedℓ1. The BG-AMP and SPGL1 algorithms, neither
of which attempt to exploit PAS, perform better. The HMT-
based schemes (VB, MCMC, Turbo-GM, and Turbo-GM) all
perform significantly better, with the Turbo schemes perform-
ing best.

For a quantitative comparison, we measured average perfor-
mance over a suite of images in aMicrosoft Research Object
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Fig. 6. Average NMSE for each image type.

Class Recognitiondatabase9 that contains20 types of images
(see Fig.5) with roughly30 images of each type. In particular,
we computed the average NMSE and average runtime on a
2.5 GHz PC, for each image type. These results are reported
in Figures 6 and 7, and the global averages (over all591
images) are reported in TableI. From the table, we observe
that the proposed Turbo algorithms outperform all the other
tested algorithms in terms of reconstruction NMSE, but are
beaten only by CoSaMP in speed.10 Between the two Turbo
algorithms, we observe that Turbo-GM slightly outperforms
Turbo-BG in terms of reconstruction NMSE, while taking the

9 We used 128 × 128 images extracted from
the “Pixel-wise labelled image database v2” at
http:// research.microsoft.com/en-us/projects/objectclassrecognition. What
we refer to as an “image type” is a “row” in this database.

10 The CoSaMP runtimes must be interpreted with caution, because the
reported runtimes correspond to a single reconstruction, whereas in practice
multiple reconstructions may be needed to determined the best value of the
tuning parameter.

http://research.microsoft.com/en-us/projects/objectclassrecognition
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Fig. 8. Average NMSE for images of type 1.

same runtime. In terms of NMSE performance, the closest
competitor to the Turbo schemes is MCMC,11 whose NMSE
is 0.39dB worse than Turbo-BG and0.65dB worse than Turbo-
GM. The good NMSE performance of MCMC comes at the
cost of complexity, though: MCMC is15 times slower than
the Turbo schemes. The second closest NMSE-competitor
is VB, showing performance1.5 dB worse than Turbo-BG
and 1.7dB worse than Turbo-GM. Even with this sacrifice
in performance, VB is still twice as slow as the Turbo
schemes. Among the algorithms that do not exploit PAS,
we see that SPGL1 offers the best NMSE performance, but
is by far the slowest (e.g.,20 times slower than CoSaMP).
Meanwhile, CoSaMP is the fastest, but shows the worst NMSE
performance (e.g.,1.16dB worse than SPGL1). BG-AMP
strikes an excellent balance between the two: its NMSE is
only 0.22dB away from SPGL1, whereas it takes only2.7
times as long as CoSaMP. However, by combining the AMP
algorithm with HMT structure via the turbo approach, it is

11 The MCMC results reported here are for the defaults settings: 100
MCMC iterations and 200 burn-in iterations. Using 500 MCMC iterations
and 200 burn-in iterations, we obtained an average NMSE of−20.22dB (i.e.,
0.12dB better) at an average runtime of1958 sec (i.e.,2.6× slower).
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Fig. 9. Average runtime for images of type 1.

possible to significantly improve NMSE while simultaneously
decreasing the runtime. The reason for the complexity decrease
is twofold. First, the HMT structure helps the AMP and
parameter-learning iterations to converge faster. Second, the
HMT steps are computationally negligible relative to the AMP
steps: when, e.g.,M = 5000, the AMP portion of the turbo
iteration takes approximately6 sec while the HMT portion
takes0.02 sec.

We also studied NMSE and compute time as a function of
the number of measurements,M . For this study, we examined
images of Type 1 atM = 2500, 5000, 7500, 10000, 12500. In
Figure 8, we see that Turbo-GM offers the uniformly best
NMSE performance acrossM . However, asM decreases,
there is little difference between the NMSEs of Turbo-GM,
Turbo-CS, and MCMC. AsM increases, though, we see that
the NMSEs of MCMC and VB converge, but that they are
significantly outperformed by Turbo-GM, Turbo-CS, and—
somewhat surprisingly—SPGL1. In fact, atM = 12500,
SPGL1 outperforms Turbo-BG, but not Turbo-GM. However,
the excellent performance of SPGL1 at theseM comes at the
cost of very high complexity, as evident in Figure9.

V. CONCLUSION

We proposed a new approach to HMT-based compressive
imaging based on loopy belief propagation, leveraging a turbo
message passing schedule and the AMP algorithm of Donoho,
Maleki, and Montanari. We then tested our algorithm on a suite
of 591 natural images and found that it outperformed the state-
of-the-art approach (i.e., variational Bayes) while halving its
runtime.
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