Abstract:
A factor analysis model based on multitask learning (MTL) is developed to characterize the FFT-magnitude feature of complex high-resolution range profile (HRRP), motivate...Show MoreMetadata
Abstract:
A factor analysis model based on multitask learning (MTL) is developed to characterize the FFT-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition (RATR). The MTL mechanism makes it possible to appropriately share the information among samples from different target-aspects and learn the aspect-dependent parameters collectively, thus offering the potential to improve the overall recognition performance with small training data size. In addition, since the noise level of a test sample is usually different from those of the training samples in the real application, another contribution is that the proposed framework can update the noise level parameter in the FA model to adaptively match that of the received test sample. Efficient inference is performed via variational Bayesian (VB) for the proposed hierarchical Bayesian model, and encouraging results are reported on the measured HRRP dataset with small training data size and under the test condition of low signal-to-noise ratio (SNR).
Published in: IEEE Transactions on Signal Processing ( Volume: 60, Issue: 7, July 2012)