
1

Recursive `1,∞ Group lasso
Yilun Chen, Student Member, IEEE, and Alfred O. Hero, III, Fellow, IEEE

Abstract—We introduce a recursive adaptive group lasso al-
gorithm for real-time penalized least squares prediction that
produces a time sequence of optimal sparse predictor coefficient
vectors. At each time index the proposed algorithm computes an
exact update of the optimal `1,∞-penalized recursive least squares
(RLS) predictor. Each update minimizes a convex but non-
differentiable function optimization problem. We develop an on-
line homotopy method to reduce the computational complexity.
Numerical simulations demonstrate that the proposed algorithm
outperforms the `1 regularized RLS algorithm for a group sparse
system identification problem and has lower implementation
complexity than direct group lasso solvers.

Index Terms—RLS, group sparsity, mixed norm, homotopy,
group lasso, system identification

I. INTRODUCTION

Recursive Least Squares (RLS) is a widely used method for
adaptive filtering and prediction in signal processing and re-
lated fields. Its applications include: acoustic echo cancelation;
wireless channel equalization; interference cancelation and
data streaming predictors. In these applications a measurement
stream is recursively fitted to a linear model, described by
the coefficients of an FIR prediction filter, in such a way to
minimize a weighted average of squared residual prediction
errors. Compared to other adaptive filtering algorithms such
as Least Mean Square (LMS) filters, RLS is popular because
of its fast convergence and low steady-state error.

In many applications it is natural to constrain the predictor
coefficients to be sparse. In such cases the adaptive FIR
prediction filter is a sparse system: only a few of the impulse
response coefficients are non-zero. Sparse systems can be
divided into general sparse systems and group sparse systems
[1], [2]. Unlike a general sparse system, whose impulse re-
sponse can have arbitrary sparse structure, a group sparse sys-
tem has impulse response composed of a few distinct clusters
of non-zero coefficients. Examples of group sparse systems
include specular multipath acoustic and wireless channels [3],
[4] and compressive spectrum sensing of narrowband sources
[5].

The exploitation of sparsity to improve prediction perfor-
mance has attracted considerable interest. For general sparse
systems, the `1 norm has been recognized as an effective
promotor of sparsity [6], [7]. In particular, `1 regularized LMS
[2], [8] and RLS [9], [10] algorithms have been proposed for
for sparsification of adaptive filters. For group sparse systems,
mixed norms such as the `1,2 norm and the `1,∞ norm have

Y. Chen and A. O. Hero are with the Department of Electrical Engi-
neering and Computer Science, University of Michigan, Ann Arbor, MI
48109, USA. Tel: 1-734-763-0564. Fax: 1-734-763-8041. Emails: {yilun,
hero}@umich.edu.

This work was partially supported by AFOSR, grant number FA9550-06-
1-0324.

been applied to promote sparsity in statistical regression [11]–
[13], commonly referred to as the group lasso, and sparse
signal recovery in signal processing and communications [1],
[14]. However, most of the proposed estimation algorithms
operate in the offline mode and are not designed for time
varying systems and online prediction. This is the motivation
of our work.

In this paper, we propose a RLS method penalized by the
`1,∞ norm to promote group sparsity, called the recursive `1,∞
group lasso. Our recursive group lasso algorithm is suitable for
online applications where data is acquired sequentially. The
algorithm is based on the homotopy approach to solving the
lasso problem and is an extension of [15]–[17] to group sparse
systems.

The paper is organized as follows. Section II formulates
the problem. In Section III we develop the homotopy based
algorithm to solve the recursive `1,∞ group lasso in an online
recursive manner. Section IV provides numerical simulation
results and Section V summarizes our principal conclusions.
The proofs of theorems and some details of the proposed
algorithm are provided in Appendix.

Notations: In the following, matrices and vectors are de-
noted by boldface upper case letters and boldface lower case
letters, respectively; (·)T denotes the transpose operator, and
‖ · ‖1 and ‖ · ‖∞ denote the `1 and `∞ norm of a vector,
respectively; for a set A, |A| denotes its cardinality and φ
denotes the empty set; xA denotes the sub-vector of x from
the index set A and RAB denotes the sub-matrix of R formed
from the row index set A and column index set B.

II. PROBLEM FORMULATION

A. Recursive Least Squares
Let w be a p-dimensional coefficient vector. Let y be an

n-dimensional vector comprised of observations {yj}nj=1. Let
{xj}nj=1 be a sequence of p-dimensional predictor variables.
In standard adaptive filtering terminology, yj , xj and w are
the primary signal, the reference signal, and the adaptive filter
weights. The RLS algorithm solves the following quadratic
minimization problem recursively over time n = p, p+ 1, . . .:

ŵn = argmin
w

n∑
j=1

γn−j(yj −wTxj)
2, (1)

where γ ∈ (0, 1] is the forgetting factor controlling the trade-
off between transient and steady-state behaviors.

To serve as a template for the sparse RLS extensions
described below we briefly review the RLS update algorithm.
Define Rn and rn as

Rn =

n∑
j=1

γn−jxjx
T
j (2)

ar
X

iv
:1

10
1.

57
34

v1
 [

st
at

.M
E

]
 2

9
Ja

n
20

11

2

0 100 200 300 400 500
−0.2

0

0.2

(b)

0 100 200 300 400 500
−2

0

2

(a)

Fig. 1. Examples of (a) a general sparse system and (b) a group-sparse
system.

and

rn =

n∑
j=1

γn−jxjyj . (3)

The solution ŵn to (1) can be then expressed as

ŵn = R−1n rn. (4)

The matrix Rn and the vector rn are updated as

Rn = γRn−1 + xnx
T
n ,

and
rn = γrn−1 + xny

T
n .

Applying the Sherman-Morrison-Woodbury formula [18],

R−1n = γ−1R−1n−1 − γ−1αngng
T
n , (5)

where
gn = R−1n−1xn (6)

and

αn =
1

γ + xT
ngn

. (7)

Substituting (5) into (4), we obtain the weight update [19]

ŵn = ŵn−1 + αngnen, (8)

where
en = yn − ŵT

n−1xn. (9)

Equations (5)-(9) define the RLS algorithm which has com-
putational complexity of order O(p2).

B. Non-recursive `1,∞ group lasso

The `1,∞ group lasso is a regularized least squares approach
which uses the `1,∞ mixed norm to promote group-wise sparse
pattern on the predictor coefficient vector. The `1,∞ norm of
a vector w is defined as

‖w‖1,∞ =

M∑
m=1

‖wGm‖∞,

where {Gm}Mm=1 is a group partition of the index set G =
{1, . . . , p}, i.e.,

M⋃
m=1

Gm = G, Gm ∩ Gm′ = φ if m 6= m′,

and wGm is a sub-vector of w indexed by Gm. The `1,∞ norm
is a mixed norm: it encourages correlation among coefficients
inside each group via the `∞ norm within each group and
promotes sparsity across each group using the `1 norm. The
mixed norm ‖w‖1,∞ is convex in w and reduces to ‖w‖1
when each group contains only one coefficient, i.e., |G1| =
|G2| = · · · = |GM | = 1.

The `1,∞ group lasso solves the following penalized least
squares problem:

ŵn = argmin
w

1

2

n∑
j=1

γn−j(yj −wTxj)
2 + λ‖w‖1,∞, (10)

where λ is a regularization parameter. Eq. (10) is a convex
problem and can be solved by standard convex optimizers
or path tracing algorithms [12]. Direct solution of (10) has
computational complexity of O(p3).

C. Recursive `1,∞ group lasso

In this subsection we obtain a recursive solution for (10)
that gives an update ŵn from ŵn−1. The approach taken is
a group-wise generalization of recent works [15], [16] that
uses the homotopy approach to sequentially solve the lasso
problem. Using the definitions (2) and (3), the problem (10)
is equivalent to

ŵn = argmin
w

1

2
wTRnw −wT rn + λ‖w‖1,∞

= argmin
w

1

2
wT

(
γRn−1 + xT

nxn

)
w

−wT (γrn−1 + xnyn) + λ‖w‖1,∞.

(11)

Let f(β, λ) be the solution to the following parameterized
problem

f(β, λ) = argmin
w

1

2
wT

(
γRn−1 + βxnx

T
n

)
w

−wT (γrn−1 + βxnyn) + λ‖w‖1,∞
(12)

where β is a constant between 0 and 1. ŵn and ŵn−1 of
problem (11) can be expressed as

ŵn−1 = f(0, γλ),

and
ŵn = f(1, λ).

Our proposed method computes ŵn from ŵn−1 in the follow-
ing two steps:
Step 1. Fix β = 0 and calculate f(0, λ) from f(0, γλ). This
is accomplished by computing the regularization path between
γλ and λ using homotopy methods introduced for the non-
recursive `1,∞ group lasso. The solution path is piecewise
linear and the algorithm is described in [12].
Step 2. Fix λ and calculate the solution path between f(0, λ)
and f(1, λ). This is the key problem addressed in this paper.

3

BA C

G1 G2 G3 G4 G5

P Q
Fig. 2. Illustration of the partitioning of a 20 element coefficient vector w
into 5 groups of 4 indices. The sets P and Q contain the active groups and
the inactive groups, respectively. Within each of the two active groups the
maximal coefficients are denoted by the dark red color.

To ease the notations we denote xn and yn by x and y,
respectively, and define the following variables:

R(β) = γRn−1 + βxxT (13)

r(β) = γrn−1 + βxy. (14)

Problem (12) is then

f(β, λ) = argmin
w

1

2
wTR(β)w−wT r(β)+λ‖w‖1,∞. (15)

In Section III we will show how to propagate f(0, λ) to f(1, λ)
using the homotopy approach applied to (15).

III. ONLINE HOMOTOPY UPDATE

A. Set notation

We begin by introducing a series of set definitions. Figure
2 provides an example. We divide the entire group index set
into P and Q, respectively, where P contains active groups
and Q is its complement. For each active group m ∈ P , we
partition the group into two parts: the maximal values, with
indices Am, and the rest of the values, with indices Bm:

Am = arg max
i∈Gm

|wi|,m ∈ P,

and
Bm = Gm −Am.

The set A and B are defined as the union of the Am and Bm
sets, respectively:

A =
⋃

m∈P
Am, B =

⋃
m∈P

Bm.

Finally, we define

C =
⋃

m∈Q
Gm.

and
Cm = Gm ∩ C.

B. Optimality condition

The objective function in (15) is convex but non-smooth
as the `1,∞ norm is non-differentiable. Therefore, problem
(15) reaches its global minimum at w if and only if the sub-
differential of the objective function contains the zero vector.
Let ∂‖w‖1,∞ denote the sub-differential of the `1,∞ norm at
w. A vector z ∈ ∂‖w‖1,∞ only if z satisfies the following
conditions [12], [14]:

‖zAm
‖1 = 1,m ∈ P, (16)

sgn (zAm
) = sgn (wAm

) ,m ∈ P, (17)
zB = 0, (18)
‖zCm‖1 ≤ 1,m ∈ Q, (19)

where A,B, C,P and Q are β-dependent sets defined on w
as defined in Section III-A.

For notational convenience we drop β in R(β) and r(β)
leaving the β-dependency implicit. The optimality condition
is then written as

Rw − r+ λz = 0, z ∈ ∂‖w‖1,∞. (20)

As wC = 0 and zB = 0, (20) implies the three conditions

RAAwA +RABwB − rA + λzA = 0, (21)
RBAwA +RBBwB − rB = 0, (22)
RCAwA +RCBwB − rC + λzC = 0. (23)

The vector wA lies in a low dimensional subspace. Indeed,
by definition of Am, if |Am| > 1

|wi| = |wi′ |, i, i′ ∈ Am.

Therefore, for any active group m ∈ P ,

wAm = sAmαm (24)

where
αm = ‖wGm‖∞,

and
sA = sgn (wA) .

Using matrix notation, we represent (24) as

wA = Sa. (25)

where

S =

 sA1

. . .
sA|P |

 (26)

is a |A| × |P| sign matrix and the vector a is comprised of
αm,m ∈ P .

The solution to (15) can be determined in closed form if the
sign matrix S and sets (A,B, C,P,Q) are available. Indeed,
from (16) and (17)

ST zA = 1, (27)

where 1 is a |P| × 1 vector comprised of 1’s. With (25) and
(27), (21) and (22) are equivalent to

STRAASa+ STRABwB − ST rA + λ1 = 0,

RBASa+RBBwB − rB = 0.
(28)

4

Therefore, by defining the (a.s. invertible) matrix

H =

(
STRAAS STRAB
RBAS RBB

)
, (29)

and

b =

(
ST rA
rB

)
,v =

(
a
wB

)
, (30)

(28) is equivalent to Hv = b− λe, where e = (1T ,0T)T , so
that

v = H−1(b− λe). (31)

As wA = Sa, the solution vector w can be directly obtained
from v via (30). For the sub-gradient vector, it can be shown
that

λzA = rA − (RAAS RAB)v, (32)

zB = 0 (33)

and
λzC = rC − (RCAS RCB)v. (34)

C. Online update

Now we consider (15) using the results in III-B. Let β0 and
β1 be two constants such that β1 > β0. For a given value of
β ∈ [β0, β1] define the class of sets S = (A,B, C,P,Q) and
make β explicit by writing S(β). Recall that S(β) is specified
by the solution f(β, λ) defined in (19). Assume that S(β) does
not change for β ∈ [β0, β1]. The following theorem propagates
f(β0, λ) to f(β1, λ) via a simple algebraic relation.

Theorem 1. Let β0 and β1 be two constants such that β1 > β0
and for any β ∈ [β0, β1] the solutions to (15) share the same
sets S = (A,B, C,P,Q). Let v′ and v be vectors defined as
f(β1, λ) and f(β0, λ), respectively. Then

v′ = v +
β1 − β0
1 + σ2

Hβ1
(y − ŷ)g, (35)

and the corresponding sub-gradient vector has the explicit
update

λz′A = λzA +
β1 − β0
1 + σ2

Hβ1
(y − ŷ) {xA − (RAAS RAB)g}

(36)
and

λz′C = λzC +
β1 − β0
1 + σ2

Hβ1
(y − ŷ) {xC − (RCAS RCB)g} ,

(37)
where R = R(0) as defined in (13), (x, y) is the new sample
as defined in (13) and (14), the sign matrix S is obtained from
the solution at β = β0, H0 is calculated from (29) using S
and R(0), and d, u, ŷ and σ2

H are defined by

d =

(
STxA
xB

)
, (38)

g = H−10 d, (39)

ŷ = dTv, (40)

σ2
H = dTg. (41)

The proof of Theorem 1 is provided in Appendix A.
Theorem 1 provides the closed form update for the solution
path f(β0, λ) → f(β1, λ), under the assumption that the
associated sets S(β) remain unaltered over the path.

Next, we partition the range β ∈ [0, 1] into contiguous
segments over which S(β) is piecewise constant. Within each
segment we can use Theorem 1 to propagate the solution from
left endpoint to right endpoint. Below we specify an algorithm
for finding the endpoints of each of these segments.

Fix an endpoint β0 of one of these segments. We seek a
critical point β1 that is defined as the maximum β1 ensuring
S(β) remains unchanged within [β0, β1]. By increasing β1
from β0, the sets S(β) will not change until at least one of
the following conditions are met:
Condition 1. There exists i ∈ A such that z′i = 0;
Condition 2. There exists i ∈ Bm such that |w′i| = α′m;
Condition 3. There exists m ∈ P such that α′m = 0;
Condition 4. There exists m ∈ Q such that ‖z′Cm‖1 = 1.
Condition 1 is from (17) and (18), Condition 2 and 3 are based
on definitions of A and P , respectively, and Condition 4 comes
from (16) and (19). Following [12], [20], the four conditions
can be assumed to be mutually exclusive. The actions with
respect to Conditions 1-4 are given by
Action 1. Move the entry i from A to B:

A ← A− {i},B ← B ∪ {i};
Action 2. Move the entry i from B to A:

A ← A∪ {i},B ← B − {i};
Action 3. Remove group m from the active group list

P ← P − {m},Q ← Q∪ {m},
and update the related sets

A ← A−Am, C ← C ∪ Am;

Action 4. Select group m

P ← P ∪ {m},Q ← Q− {m},
and update the related sets

A ← A∪ Cm, C ← C − Cm.
By Theorem 1, the solution update from β0 to β1 is in

closed form. The critical point of β1 can be determined in a
straightforward manner (details are provided in Appendix B).
Let β(k)

1 , k = 1, ..., 4 be the minimum value that is greater
than β0 and meets Condition 1-4, respectively. The critical
point β1 is then

β1 = min
k=1,...,4

β
(k)
1 .

D. Homotopy algorithm implementation

We now have all the ingredients for the homotopy update
algorithm and the pseudo code is given in Algorithm 1.

Next we analyze the computational cost of Algorithm 1. The
complexity to compute each critical point is summarized in
Table I, where N is the dimension of H0. As N = |P|+|B| ≤
|A|+ |B|, N is upper bounded by the number of non-zeros in

5

Algorithm 1: Homotopy update from f(0, λ) to f(1, λ).
Input : f(0, λ),R(0),x,y
output: f(1, λ)

Initialize β0 = 0, β1 = 0, R = R(0);
Calculate (A,B, C,P,Q) and (v, λzA, λzC) from
f(0, λ);
while β0 < 1 do

Calculate the environmental variables
(S,H0,d,g, ŷ, σ

2
H) from f(β0, λ) and R;

Calculate {β(k)
1 }4k=1 that meets Condition 1-4,

respectively;
Calculate the critical point β1 that meets Condition
k∗: k∗ = argmink β

(k)
1 and β1 = β

(k∗)
1 ;

if β1 ≤ 1 then
Update (v, λzA, λzC) using (35), (36) and (37);
Update (A,B, C,P,Q) by Action k∗;
β0 = β1;

else
break;

end
end
β1 = 1;
Update (v, λzA, λzC) using (35);
Calculate f(1, λ) from v.

the solution vector. The vector g can be computed in O(N2)
time using the matrix-inverse lemma [18] and the fact that,
for each action, H0 is at most perturbed by a rank-two matrix.
This implies that the computation complexity per critical point
is O(pmax{N, log p}) and the total complexity of the online
update is O(k2 · pmax{N, log p}), where k2 is the number
of critical points of β in the solution path f(0, λ)→ f(1, λ).
This is the computational cost required for Step 2 in Section
II-C.

A similar analysis can be performed for the complexity of
Step 1, which requires O(k1 · pmax{N, log p}) where k1 is
the number of critical points in the solution path f(0, γλ)→
f(0, λ). Therefore, the overall computation complexity of the
recursive `1,∞ group lasso is O(k · pmax{N, log p}), where
k = k1 + k2, i.e., the total number of critical points in the
solution path f(0, γλ)→ f(0, λ)→ f(1, λ).

An instructive benchmark is to directly solve the n-samples
problem (12) from the solution path f(1,∞) (i.e., a zero
vector) → f(1, λ) [12], without using the previous solution
ŵn−1. This algorithm, called iCap in [12], requires O(k′ ·
pmax{N, log p}), where k′ is the number of critical points in
f(1,∞)→ f(1, λ). Empirical comparisons between k and k′,
provided in the following section, indicate that iCap requires
significantly more computation than our proposed Algorithm
1.

IV. NUMERICAL SIMULATIONS

In this section we demonstrate our proposed recursive `1,∞
group lasso algorithm by numerical simulation. We simulated
the model yj = wT

∗ xj + vj , j = 1, . . . , 400, where vj is a

g = H−1
0 d O(N2)

xA − (RAAS RAB)g O(|A|N)
xC − (RCAS RCB)g O(|C|N)

β
(1)
1 O(|A|)
β
(2)
1 O(|B|)
β
(3)
1 O(|P|)
β
(4)
1 O(|C| log |C|)

TABLE I
COMPUTATION COSTS OF ONLINE HOMOTOPY UPDATE FOR EACH

CRITICAL POINT.

0 20 40 60 80 100
−0.5

0

0.5

(a)

0 20 40 60 80 100
−0.5

0

0.5

(b)

Fig. 3. Responses of the time varying system. (a): Initial response. (b):
Response after the 200th iteration. The groups for Algorithm 1 were chosen
as 20 equal size contiguous groups of coefficients partitioning the range
1, . . . , 100.

zero mean Gaussian noise and w∗ is a sparse p = 100 element
vector containing only 14 non-zero coefficients clustered be-
tween indices 29 and 42. See Fig. 3 (a). After 200 time units,
the locations of the non-zero coefficients of w∗ is shifted to
the right, as indicated in Fig. 3 (b).

The input vectors were generated as independent identically
distributed Gaussian random vectors with zero mean and iden-
tity covariance matrix, and the variance of observation noise
vj is 0.01. We created the groups in the recursive `1,∞ group
lasso as follows. We divide the 100 RLS filter coefficients
w into 20 groups with group boundaries 1, 5, 10, . . ., where
each group contains 5 coefficients. The forgetting factor γ
and the regularization parameter λ were set to 0.9 and 0.1,
respectively. We repeated the simulation 100 times and the
averaged mean squared errors of the RLS, sparse RLS and
proposed RLS shown in Fig. 4. We implemented the standard
RLS and sparse RLS using the `1 regularization, where the
forgetting factors are also set to 0.9. We implemented sparse
RLS [15] by choosing the regularization parameter λ which
achieves the lowest steady-state error, resulting in λ = 0.05.

It can be seen from Fig. 4 that our proposed sparse RLS
method outperforms standard RLS and sparse RLS in both
convergence rate and steady-state MSE. This demonstrates
the power of our group sparsity penalty. At the change point
of 200 iterations, both the proposed method and sparse RLS
of [15] show superior tracking performances as compared to
the standard RLS. We also observe that the proposed method
achieves even smaller MSE after the change point occurs. This

6

0 100 200 300 400
−15

−10

−5

0

5

10

Time

M
S

E
 (

d
B

)

Proposed

RLS

Recursive Lasso

Fig. 4. Averaged MSE of the proposed algorithm, RLS and recursive lasso.

0 100 200 300 400
0

20

40

60

80

100

Time

A
v
e
ra

g
e
d
 N

u
m

b
e
r

o
f
C

ri
ti
c
a
l
P

o
in

ts

Homotopy on β and λ

Homotopy on λ

Fig. 5. Averaged number of critical points for the proposed recursive method
of implementing `1,∞ lasso and the iCap [12] non-recursive method of
implementation.

is due to the fact that the active cluster spans across group
boundaries in the initial system (Fig. 3 (a)), while the active
clusters in the shifted system overlap with fewer groups.

Fig. 5 shows the average number of critical points (ac-
counting for both trajectories in β and λ) of the proposed
algorithm, i.e., the number k as defined in Section III-D.
As a comparison, we implement the iCap method of [12],
a homotopy based algorithm that traces the solution path only
over λ. The average number of critical points for iCap is
plotted in Fig. 5, which is the number k′ in Section III-D. Both
the proposed algorithm and iCap yield the same solution but
have different computational complexities proportional to k
and k′, respectively. It can be seen that the proposed algorithm
saves as much as 75% of the computation costs for equivalent
performance.

V. CONCLUSION

In this paper we proposed a `1,∞ regularized RLS algorithm
for online sparse linear prediction. We developed a homotopy
based method to sequentially update the solution vector as new
measurements are acquired. Our proposed algorithm uses the
previous estimate as a “warm-start”, from which we compute
the homotopy update to the current solution. The proposed
algorithm can process streaming measurements with time

varying predictors and is computationally efficient compared
to non-recursive group lasso solvers. Numerical simulations
demonstrated that the proposed method outperformed the
standard and `1 regularized RLS for identifying an unknown
group sparse system, in terms of both tracking and steady-state
mean squared error.

The work presented here assumed non-overlapping group
partitions. In the future, we will investigate overlapping groups
and other flexible partitions [21].

VI. APPENDIX

A. Proof of Theorem 1

We begin by deriving (35). According to (31),

v′ = H′−1(b′ − λe′). (42)

As S and (A,B, C,P,Q) remain constant within [β0, β1],

e′ = e, (43)

b′ = b+ δdy, (44)

and
H′ = H+ δddT ,

where
δ = β1 − β0,

H and b are calculated using S within [β0, β1] and R(β0) and
r(β0), respectively. We emphasize that H is based on R(β)
and is different from H0 defined in Theorem 1. According to
the Sherman-Morrison-Woodbury formula,

H′−1 = H−1 − δ

1 + σ2δ
(H−1d)(H−1d)T , (45)

where σ2 = dTH−1d. Substituting (43), (44) and (45) into
(42), after simplification we obtain

v′ =

(
H−1 − δ

1 + σ2δ
(H−1d)(H−1d)T

)
(b+ δdy − λe)

= H−1(b− λe) +H−1δdy

− δ

1 + σ2δ
H−1ddTH−1(b− λe)− σ2δ2

1 + σ2δ
H−1dy

= v +
δ

1 + σ2δ
(y − dTv)H−1d

= v +
δ

1 + σ2δ
(y − ŷ)H−1d,

(46)
where ŷ = dTv as defined in (40).

Note that H is defined in terms of R(β0) rather than R(0)
and

H = H0 + β0dd
T ,

so that
H−1 = H−10 −

β0
1 + σ2

Hβ0
ggT , (47)

where g and σ2
H are defined by (39) and (41), respectively.

As σ2
H = dTg,

H−1d = H−10 d− σ2
Hβ0

1 + σ2
Hβ0

g. (48)

7

Accordingly,

σ2 = dTH−1d = σ2
H −

σ2
Hβ0

1 + σ2
Hβ0

σ2
H =

σ2
H

1 + σ2
Hβ0

. (49)

Substituting (48) and (49) to (46), we finally obtain

v′ = v +
δ

1 + σ2
Hβ1

(y − ŷ)g = v +
β1 − β0
1 + σ2

Hβ1
(y − ŷ)g.

Equations (36) and (37) can be established by direct sub-
stitutions of (35) into their definitions (32) and (34) and thus
the proof of Theorem 1 is complete.

B. Computation of critical points

For ease of notation we work with ρ, defined by

ρ =
β1 − β0
1 + σ2

Hβ1
. (50)

It is easy to see that over the range β1 > β0, ρ is monotonically
increasing in (0, 1/σ2

H). Therefore, (50) can be inverted by

β1 =
ρ+ β0
1− σ2

Hρ
, (51)

where ρ ∈ (0, 1/σ2
H) to ensure β1 > β0.

Suppose we have obtained ρ(k), k = 1, ..., 4, β(k)
1 can be

calculated using (51) and the critical point β1 is then

β1 = min
k=1,...,4

β
(k)
1 .

We now calculate the critical value of ρ for each condition
one by one.

1) Critical point for Condition 1: Define the temporary
vector

tA = (y − ŷ) {xA − (RAAS RAB)g} .
According to (36),

λz′A = λzA + ρtA.

Condition 1 is met for any ρ = ρ
(1)
i such that

ρ
(1)
i = −λzi

ti
, i ∈ A.

Therefore, the critical value of ρ that satisfies Condition 1 is

ρ(1) = min
{
ρ
(1)
i

∣∣∣i ∈ A, ρ(1)i ∈ (0, 1/σ2
H)
}
.

2) Critical point for Condition 2: By the definition (30), v
is a concatenation of αm and wBm

,m ∈ P:

vT =
(
(αm)m∈P ,w

T
B1
, ...,wT

B|P|

)
, (52)

where (αm)m∈P denotes the vector comprised of αm,m ∈ P .
Now we partition the vector g in the same manner as (52) and
denote τm and um as the counter part of αm and wBm

in g,
i.e.,

gT =
(
(τm)m∈P ,u

T
1 , ...,u

T
|P|

)
.

Eq. (35) is then equivalent to

α′m = αm + ρτm, (53)

and
w′Bm,i = wBm,i + ρum,i,

where um.i is the i-th element of the vector um. Condition 2
indicates that

α′m = ±w′Bm,i,

and is satisfied if ρ = ρ
(2+)
m,i or ρ = ρ

(2−)
m,i , where

ρ
(2+)
m,i =

αm − wBm,i

um,i − τm
, ρ

(2−)
m,i = −αm + wBm,i

um,i + τm
.

Therefore, the critical value of ρ for Condition 2 is

ρ(2) = min
{
ρ
(2±)
m,i

∣∣∣m ∈ P, i = 1, ..., |Bm|, ρ(2±)m,i ∈ (0, 1/σ2
H)
}
.

3) Critical point for Condition 3: According to (53), α′m =

0 yields ρ = ρ
(3)
i determined by

ρ(3)m = −αm

τm
,m ∈ P,

and the critical value for ρ(3) is

ρ(3) = min
{
ρ(3)m

∣∣∣,m ∈ P, ρ(3)m ∈ (0, 1/σ2
H)
}
.

4) Critical point for Condition 4: Define

tC = (y − ŷ) {xC − (RCAS RCB)g} .
Eq. (37) is then

λz′Cm = λzCm + ρtCm ,

and Condition 4 is equivalent to∑
i∈Cm

|ρti + λzi| = λ. (54)

To solve (54) we develop a fast method that requires complex-
ity of O(N logN), where N = |Cm|. The algorithm is given
in Appendix C. For each m ∈ Q, let ρ(4)m be the minimum
positive solution to (54). The critical value of ρ for Condition
4 is then

ρ(4) = min
{
ρ(4)m

∣∣∣m ∈ Q, ρ(4)m ∈ (0, 1/σ2
H)
}
.

C. Fast algorithm for critical condition 4

Here we develop an algorithm to solve problem (54).
Consider solving the more general problem:

N∑
i=1

ai|x− xi| = y, (55)

where ai and xi are constants and ai > 0. Please note that
the notations here have no connections to those in previous
sections. Define the following function

h(x) =

N∑
i=1

ai|x− xi|.

The problem is then equivalent to finding h−1(y), if it exists.
An illustration of the function h(x) is shown in Fig. 6,

where ki denotes the slope of the ith segment. It can be shown
that h(x) is piecewise linear and convex in x. Therefore, the
equation (55) generally has two solutions if they exist, denoted

8

x1 x2 x3 x4 x5

h(x1)

h(x2)

h(x3)
h(x4)

y

k0

k1

k2
k3

k4

k5

Fig. 6. An illustration of the fast algorithm for critical condition 4.

as xmin and xmax. Based on piecewise linearity we propose a
search algorithm to solve (55). The pseudo code is shown in
Algorithm 2 and its computation complexity is dominated by
the sorting operation which requires O(N logN).

Algorithm 2: Solve x from
∑N

i=1 ai|x− xi| = y.

Input : {ai, xi}Ni=1, y
output: xmin, xmax

Sort {xi}Ni=1 in the ascending order: x1 ≤ x2 ≤ ... ≤ xN ;
Re-order {ai}Ni=1 such that ai corresponds to xi;
Set k0 = −∑N

i=1 ai;
for i = 1, ..., N do

ki = ki−1 + 2ai;
end
Calculate h1 =

∑N
i=2 ai|x1 − xi|;

for i = 2, ..., N do
hi = hi−1 + ki−1(xi − xi−1)

end
if mini ki > y then

No solution;
Exit;

else
if y > h1 then

xmin = x1 + (y − h1)/k0;
else

Seek j such that y ∈ [hj , hj−1];
xmin = xj + (y − hj)/kj−1;

end
if y > hN then

xmax = xN + (y − hN)/kN ;
else

Seek j such that y ∈ [hj−1, hj];
xmax = xj−1 + (y − hj−1)/kj−1;

end
end

REFERENCES

[1] Y.C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals:
Uncertainty relations and efficient recovery,” Signal Processing, IEEE
Transactions on, vol. 58, no. 6, pp. 3042–3054, 2010.

[2] Y. Chen, Y. Gu, and A.O. Hero, “Regularized Least-Mean-Square
Algorithms,” Arxiv preprint arXiv:1012.5066, 2010.

[3] W.F. Schreiber, “Advanced television systems for terrestrial broadcast-
ing: Some problems and some proposed solutions,” Proceedings of the
IEEE, vol. 83, no. 6, pp. 958–981, 1995.

[4] Y. Gu, J. Jin, and S. Mei, “`0 Norm Constraint LMS Algorithm for
Sparse System Identification,” IEEE Signal Processing Letters, vol. 16,
pp. 774–777, 2009.

[5] M. Mishali and Y.C. Eldar, “From theory to practice: Sub-Nyquist
sampling of sparse wideband analog signals,” Selected Topics in Signal
Processing, IEEE Journal of, vol. 4, no. 2, pp. 375–391, 2010.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Royal. Statist. Soc B., vol. 58, pp. 267–288, 1996.

[7] E. Candès, “Compressive sampling,” Int. Congress of Mathematics, vol.
3, pp. 1433–1452, 2006.

[8] Y. Chen, Y. Gu, and A.O. Hero, “Sparse LMS for system identification,”
in Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on. IEEE, 2009, pp. 3125–3128.

[9] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The sparse RLS
algorithm,” Signal Processing, IEEE Transactions on, vol. 58, no. 8, pp.
4013–4025, 2010.

[10] D. Angelosante, J.A. Bazerque, and G.B. Giannakis, “Online Adaptive
Estimation of Sparse Signals: Where RLS Meets the `1 norm,” Signal
Processing, IEEE Transactions on, vol. 58, no. 7, pp. 3436–3447, 2010.

[11] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.

[12] P. Zhao, G. Rocha, and B. Yu, “The composite absolute penalties family
for grouped and hierarchical variable selection,” Annals of Statistics, vol.
37, no. 6A, pp. 3468–3497, 2009.

[13] F.R. Bach, “Consistency of the group Lasso and multiple kernel
learning,” The Journal of Machine Learning Research, vol. 9, pp. 1179–
1225, 2008.

[14] S. Negahban and M.J. Wainwright, “Joint support recovery under
high-dimensional scaling: Benefits and perils of `1,∞-regularization,”
Advances in Neural Information Processing Systems, pp. 1161–1168,
2008.

[15] P.J. Garrigues and E.L. Ghaoui, “An homotopy algorithm for the Lasso
with online observations,” in Neural Information Processing Systems
(NIPS), 2008, vol. 21.

[16] S. Asif and J. Romberg, “Dynamic Updating for `1 Minimization,”
Selected Topics in Signal Processing, IEEE Journal of, vol. 4, no. 2, pp.
421–434, 2010.

[17] D.M. Malioutov, S.R. Sanghavi, and A.S. Willsky, “Sequential com-
pressed sensing,” Selected Topics in Signal Processing, IEEE Journal
of, vol. 4, no. 2, pp. 435–444, 2010.

[18] W.W. Hager, “Updating the inverse of a matrix,” SIAM review, vol. 31,
no. 2, pp. 221–239, 1989.

[19] B. Widrow and S.D. Stearns, Adaptive Signal Processing, New Jersey:
Prentice Hall, 1985.

[20] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of statistics, vol. 32, no. 2, pp. 407–451, 2004.

[21] R. Jenatton, J.Y. Audibert, and F. Bach, “Structured Variable Selection
with Sparsity-Inducing Norms,” Arxiv preprint arXiv:0904.3523, 2009.

	I Introduction
	II Problem formulation
	II-A Recursive Least Squares
	II-B Non-recursive 1, group lasso
	II-C Recursive 1, group lasso

	III Online homotopy update
	III-A Set notation
	III-B Optimality condition
	III-C Online update
	III-D Homotopy algorithm implementation

	IV Numerical simulations
	V Conclusion
	VI Appendix
	VI-A Proof of Theorem ??
	VI-B Computation of critical points
	VI-B1 Critical point for Condition 1
	VI-B2 Critical point for Condition 2
	VI-B3 Critical point for Condition 3
	VI-B4 Critical point for Condition 4

	VI-C Fast algorithm for critical condition 4

	References

