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Analysis and Power Diversity Based

Cancellation of Nonlinear Distortions in

OFDM Systems
C. Alexandre R. Fernandes, João C. M. Mota and Gérard Favier

Abstract

One of the main drawbacks of orthogonal frequency division multiplexing (OFDM) systems is the

high peak-to-average power ratio (PAPR) of the transmitted signals, which can cause the introduction of

inter-carrier interference (ICI) due to the presence of nonlinear power amplifiers (PAs). In this paper, a

theoretical analysis of the ICI in nonlinear OFDM systems with polynomial PAs is made. Contrary to

other works, this analysis provides an exact description of the nonlinear ICI. Moreover, three receivers

for channel estimation and ICI cancellation in OFDM systems with polynomial PAs are proposed, based

on the concept of power diversity that consists in re-transmitting the information symbols several times

with a different transmission power each time. The transmission powers that minimize the sum of the

residual mean square errors (MSEs) provided by the proposed receivers are derived in the case of a third-

degree polynomial PA. An important advantage of the proposed receivers is that the optimal transmission

powers do not depend on the channel nor the PA coefficients.
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I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has many applications in the area of wireless

communications [1]–[4]. One of the main drawbacks of OFDM is that the transmitted signals are

characterized by a high peak-to-average power ratio (PAPR) [1], [2]. Due to the presence of nonlinear

devices such as power amplifiers (PAs), a high PAPR causes the introduction of nonlinear inter-carrier

interference (ICI) in the received signals if a high input back-off (IBO) is not used, which can significantly

deteriorate the recovery of the information symbols. The IBO is defined as the ratio between the PA

saturation power, i.e. the input power corresponding to the maximum output power, and the average PA

input power. A high IBO results in a low-power efficiency of the PA and a low signal to noise ratio

(SNR) at the receiver.

In this paper, the PA is modeled as a polynomial with complex-valued frequency-independent coef-

ficients. This model, also called a quasi-memoryless polynomial model, is widely used in the literature

to characterize PA amplitude and phase distortions (AM/AM and AM/PM conversions) when the PA

memory is short compared to the time variations of the input signal envelope [5]–[12]. In fact, the

present work can be extended to the case where the PA is modeled as a Hammerstein system [8], as

long as the cyclic prefix has an appropriate length. That is due to the fact that the linear filter of the PA

can be combined with the impulse response of the wireless channel. Moreover, the receivers proposed

in this work can be extended to the case of PAs with frequency-dependent coefficients. However, due to

simplicity reasons, we will assume that the PA coefficients are frequency-independent.

The first contribution of this paper consists in an exact characterization of the ICI in an OFDM system

with a polynomial PA. Theoretical analysis of OFDM systems with nonlinear memoryless PAs has been

the subject of several studies in the literature [3], [4], [7], [11]–[14]. However, most of these works

approximate the probability density function of the transmitted signal by a complex Gaussian function.

This approximation holds when the number of sub-carriers is large. Contrary to previous works, our

analysis gives an exact characterization of nonlinear ICI. The original contributions of this analysis are

the following. We first derive a new exact closed-form expression for the nonlinear ICI in terms of the

frequency-domain data symbols. Then, we obtain new expressions for the variance of the third-order ICI

and for the cross-correlation between one data symbol and the third-order ICI corresponding to the same

subcarrier. The main motivation for deriving these second-order statistics of the nonlinear ICI is that they

are used by the receivers proposed in this paper. Moreover, these statistics provide important information

about the statistical behavior of the nonlinear OFDM system. It should be highlighted that third-degree
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polynomials have been widely used to model nonlinear PAs [8], [15]–[17]. The ICIs considered in [3],

[4], [7], [11]–[14] are not the same as in our manuscript and, as a consequence, the ICI variances and

the cross-correlations between data symbols and ICIs are different as well.

The second contribution of the paper is the proposition of one receiver for ICI cancellation and

two receivers for joint ICI cancellation and wireless channel frequency response (CFR) estimation in

OFDM systems with polynomial PAs. These receivers are based on three different scenarios regarding

the availability of channel state information (CSI) at the receiver. In the first scenario, it is assumed

that CSI is available at the receiver, that is, the receiver a priori knows the wireless CFR and the PA

coefficients. In the second scenario, it is assumed that the receiver does not have CSI, while in a third

scenario, it is assumed that the receiver has a partial CSI, that is, the receiver a priori knows the PA

coefficients, but not the CFR. This last case is justified by the fact that the PA coefficients can be estimated

by the transmitter and this information can be sent to the receiver through a control channel during the

system initialization [18]. In these three scenarios, it is assumed that the transmitter does not know the

wireless CFR.

The proposed receivers are based on the concept of power diversity, which consists in re-transmitting

the information symbols several times with a different transmission power each time. The power diversity

induces a multi-channel representation, allowing a perfect recovery of the information symbols in the

noiseless case. The main drawback of this approach is that the transmission rate is divided by the repetition

factor, i.e. the number of times that every symbol is transmitted. However, in the case of a third-order

PA, which is the case of main interest, we can use a repetition factor equal to 2.

Signal pre-distortion [8], [15], [16], [19], [20] and PAPR reduction [21], [22] are other popular methods

used to reduce the effects of PA nonlinearities in communication systems. Compared with these methods,

our approach of compensating the nonlinear distortions at the receiver has the advantage of taking other

channel nonlinearities into account, contrary to pre-distortion and PAPR reduction schemes that generally

compensate the nonlinear distortions of a single nonlinear block. Moreover, some authors have found that

better ICI mitigation results are attained when we focus our efforts on the reception [23]. It should be

highlighted that ICI cancellation techniques at the receiver can be used concurrently with pre-distortion

and PAPR reduction methods.

Techniques for nonlinear ICI rejection at the receiver based on iterative methods [24]–[27], statistical

approaches [28], [29] and nonlinear adaptive filtering [30] have been proposed. An iterative receiver

for nonlinear space-division multiple access (SDMA) OFDM systems consisting in the estimation and

cancellation of nonlinear distortions at the receiver was proposed in [18], [31], based on an iterative
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technique for maximum likelihood detection of nonlinearly distorted symbols [32].

Another contribution of the present paper is the determination of optimal transmission powers that

minimize the residual mean square error (MSE) provided by the proposed receivers, in the case of a

third-degree polynomial PA and a repetition factor equal to 2. An important property of the proposed

receivers is that the optimal transmission powers are constant, that is, they do not depend on channel

and noise conditions, which is not the case when no ICI cancellation is made at the receiver [33], [34].

The rest of the paper is organized as follows. Section II describes the system model considered in

this work. In Section III, the nonlinear ICI analysis is made. Section IV presents the power diversity

based transmission scheme and three receivers are derived. In Section V, optimal transmission powers

are established. Section VI evaluates the performance of the proposed receivers by means of computer

simulations and some conclusions and perspectives are drawn in Section VII.

Notation: lower-case letters (x) denote scalar variables, bold lower-case letters (x) denote column

vectors and bold upper-case letters (X) denote matrices. Overlined variables correspond to frequency-

domain variables. [x]i represents the ith element of x, [X]i,j is the (i, j)th element of X, diag [x] denotes

the diagonal matrix built from the vector x and [X]i,· represents the ith row of X. Moreover, X† and X∗

denote the Moore-Penrose pseudo-inverse and the complex conjugate of X, respectively. The function

cir(x,N), for −N+1 ≤ x ≤ N is defined as follows: cir(x,N) = x if 1 ≤ x ≤ N and cir(x,N) = x+N

if −N + 1 ≤ x ≤ 0.

II. SYSTEM MODEL

A simplified scheme of the discrete-time equivalent baseband OFDM system used in this work is

shown in Fig. 1. Let us denote by N the number of subcarriers, s̄i,n the frequency-domain data symbol

at the nth subcarrier and ith symbol period, for 1 ≤ n ≤ N and 1 ≤ i ≤ I , I being the number of

symbol periods, and s̄(i) = [s̄i,1 · · · s̄i,N ]T ∈ CN×1 the vector containing the N data symbols of the ith

symbol period. The frequency-domain data symbols s̄i,n are assumed to be independent and identically

distributed (i.i.d.), with a uniform distribution over a quadrature amplitude modulation (QAM) or a phase-

shift keying (PSK) alphabet. Moreover, it is assumed that the transmitter does not have CSI. Thus, we

consider that all the subcarriers have the same transmission power.

The ith time-domain OFDM symbol is obtained by taking the Inverse Discrete Fourier Transform

(IDFT) of frequency-domain data symbols, that is:

si,n′ =
1√
N

N∑
n=1

eȷ2π(n−1)(n
′−1)/N s̄i,n, (1)
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Fig. 1. Discrete-time equivalent baseband OFDM system.

for 1 ≤ n
′ ≤ N , which can be written in matrix form as: s(i) = F s̄(i), where s(i) = [si,1 · · · si,N ]T ∈

CN×1 is the ith time-domain symbol vector and F ∈ CN×N is the IDFT matrix of order N , with

[F]p,q = 1√
N
eȷ2π(p−1)(q−1)/N , for 1 ≤ p, q ≤ N . After the IDFT block, a cyclic prefix (CP) of length

Mcp is inserted in order to avoid intersymbol interference (ISI). The time-domain symbol vector with the

cyclic prefix is given by s(cp)(i) = [si,(N−Mcp+1) · · · si,N s(i)T ]T ∈ C(N+Mcp)×1. When the PA is linear,

the cyclic prefix can avoid ISI and ICI, ensuring the orthogonality between the subcarriers. However, as

shown in the sequel, for a nonlinear PA, some ICI is introduced in the received signals, even when a

cyclic prefix is used.

The time-domain symbols with the CP are then amplified by a PA that is modeled as a polynomial

of degree 2K + 1 [5], [8], [9], K + 1 being the number of polynomial coefficients. Denoting by ui,n′

(1 ≤ n
′ ≤ N ) the output of the PA, we have:

ui,n′ =

K∑
k=0

c2k+1|si,n′ |2ksi,n′

=

K∑
k=0

c2k+1ψ2k+1(si,n′ ), (2)

where c2k+1, for 0 ≤ k ≤ K, are the equivalent baseband polynomial coefficients and the operator

ψ2k+1(·) is defined as ψ2k+1(a) = |a|2ka. Note that, as the PA model is memoryless, the PA output also

has a cyclic prefix. The equivalent baseband polynomial model (2) includes only odd-order power terms

with one more non-conjugated term than conjugated terms because the other products of input signals

correspond to spectral components lying outside the channel bandwidth, and can therefore be eliminated

by passband filtering [35]. Besides, as earlier mentioned, the receivers proposed in this work can be

extended to the case of PAs with frequency-dependent coefficients. However, we will use the model (2)
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through this work for simplicity reasons.

The PA output is transmitted through a frequency-selective fading wireless channel with impulse

response denoted by hm, for m = 0, 1, ...,M , where M is the wireless channel delay spread, and an

additive white Gaussian noise (AWGN) of variance σ2 is assumed at the channel output. At the receiver,

the CP is removed from the time-domain received signal xi,n′ (1 ≤ n
′ ≤ N +Mcp). Thus, assuming

that the length of the cyclic prefix is greater than or equal to the channel delay spread (Mcp ≥M ), the

wireless channel can be represented by a circular convolution:

xi,(n′+Mcp) =

M∑
m=0

hmui,cir(n′−m,N) + vi,(n′+Mcp), (3)

for 1 ≤ n
′ ≤ N , where vi,(n′+Mcp) is the AWGN component. Equation (3) can also be expressed in

matrix form as:

x(i) = Hu(i) + v(i), (4)

where x(i) = [xi,(Mcp+1) · · ·xi,(Mcp+N)]
T ∈ CN×1, u(i) = [ui,1 · · ·ui,N ]T ∈ CN×1, v(i) = [vi,(Mcp+1) · · ·

vi,(N+Mcp)]
T ∈ CN×1 and H ∈ CN×N is the circulant matrix constructed from the channel impulse

response hm (0 ≤ m ≤ M ), with [H]i,j = hi−j if 0 ≤ i − j ≤ M , [H]i,j = hi−j+N if i − j ≤ M −N

and [H]i,j = 0 otherwise, for 1 ≤ i, j ≤ N .

The DFT of the received signals is then calculated as:

x̄(i) = F∗x(i) = F∗HFū(i) + v̄(i). (5)

where x̄(i) ∈ CN×1 is the vector of frequency-domain received signals at the ith symbol period, ū(i) =

F∗u(i) is the frequency-domain version of u(i) and v̄(i) = F∗v(i) ∈ CN×1 is the frequency-domain

noise vector, which is also white and Gaussian with the same covariance σ2IN as v(i), IN being the

identity matrix of order N .

It is well known that a circulant matrix is diagonalized by a IDFT matrix. Thus, we can write: Λ =

F∗HF, where Λ ∈ CN×N is a diagonal matrix containing the eigenvalues of H [36] and the nth eigenvalue

of H, denoted by λn = [Λ]n,n, represents the CFR at the nth subcarrier. By defining: ψ2k+1(a) =

[ψ2k+1(a1) · · ·ψ2k+1(aN )]T ∈ CN×1, for a = [a1 · · · aN ]T ∈ CN×1, and using (2), we can rewrite (5)

as:

x̄(i) = Λ

K∑
k=0

c2k+1F∗ψ2k+1(s(i)) + v̄(i). (6)
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Defining ψ̄2k+1(s(i)) = F∗ψ2k+1(s(i)) ∈ CN×1 as the frequency-domain version of ψ2k+1(s(i)),

ξ̄2k+1(i, n) = [ψ̄2k+1(s(i))]n and ϕ̄i,n = [s̄i,n ξ̄3(i, n) · · · ξ̄2K+1(i, n)]
T ∈ C(K+1)×1, the frequency-

domain received signal x̄i,n = [x̄(i)]n can be expressed as:

x̄i,n = λncT ϕ̄i,n + v̄i,n, (7)

where c = [c1 c3 · · · c2K+1]
T ∈ C(K+1)×1 and v̄i,n is the corresponding noise component in the

frequency domain.

Equation (7) shows that the frequency-domain received signal x̄i,n equals a scaled version of the

frequency-domain data symbol λnc1s̄i,n plus weighted nonlinear ICI terms
∑K

k=1 λnc2k+1ξ̄2k+1(i, n),

plus a noise term, with ξ̄2k+1(i, n) representing the (2k + 1)th-order ICI at the nth subcarrier and ith

symbol period. Moreover, we can note that x̄i,n is not corrupted by interferences from other symbol

periods. In the sequel, we develop a closed-form expression and a statistical characterization of the

nonlinear ICI ξ̄2k+1(i, n) and, then, several techniques for eliminating the nonlinear ICI and removing

the scalar factor λnc1 are presented. The proposed receivers, called power diversity receivers (PDRs), are

carried out after the DFT operation.

Moreover, without loss of generality, we can assume that c1 = 1, as the linear PA coefficient c1 can be

absorbed by the CFR λn and the other PA coefficients c3, . . . , c2K+1 can be normalized by c1 without

changing the value of x̄i,n in (7).

III. NONLINEAR ICI ANALYSIS

In this section, an analytical expression of the nonlinear ICI in an OFDM system with a polynomial

PA is developed. This expression, contrary to the ones presented in previous works [3], [4], [11], [13],

[14], corresponds to an exact description of the nonlinear ICI. After deriving a closed-form expression

for the nonlinear ICI in terms of the frequency-domain data symbols, we obtain new expressions for the

variance of the third-order ICI and for the correlation between one data symbol and the third-order ICI

corresponding to the same subcarrier. These second-order statistics of the nonlinear ICI provide important

information about the statistical behavior of the nonlinear OFDM system and are used by some of the

ICI cancellation techniques proposed in Section IV.
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A. Closed-Form Expression for the Nonlinear ICI

From (1), we may write:

ψ2k+1(si,n′ ) = |si,n′ |2ksi,n′ =
1

N
2k+1

2

N∑
n1=1

N∑
n2=1

· · ·
N∑

n2k+1=1

eȷ2π(−
∑k

j=1 nj+
∑2k+1

j=k+1 nj−1)(n
′−1)/N

k∏
j=1

s̄∗i,nj

2k+1∏
j=k+1

s̄i,nj
. (8)

The (2k + 1)th order ICI ξ̄2k+1(i, n) is calculated by taking the DFT of (8) in the following way:

ξ̄2k+1(i, n) =
1

Nk+1

N∑
n′=1

N∑
n1=1

· · ·
N∑

n2k+1=1

e−ȷ2π(n
′−1)(n−1)/N

eȷ2π(−
∑k

j=1 nj+
∑2k+1

j=k+1 nj−1)(n
′−1)/N

k∏
j=1

s̄∗i,nj

2k+1∏
j=k+1

s̄i,nj
, (9)

which leads to:

ξ̄2k+1(i, n) =
1

Nk+1

N∑
n1=1

· · ·
N∑

n2k+1=1

(
N∑

n′=1

eȷ2π(n
′−1)(−

∑k
j=1 nj+

∑2k+1
j=k+1 nj−n)/N

)
k∏

j=1

s̄∗i,nj

2k+1∏
j=k+1

s̄i,nj
. (10)

Using the following result:

N∑
n′=1

eȷ2π(n
′−1)(−

∑k
j=1 nj+

∑2k+1
j=k+1 nj−n)/N =


0, if −

∑k
j=1 nj +

∑2k+1
j=k+1 nj − n ̸= Np,

N, if −
∑k

j=1 nj +
∑2k+1

j=k+1 nj − n = Np,

(11)

for p ∈ Z, we can reexpress the (2k + 1)th order ICI on the nth subcarrier as:

ξ̄2k+1(i, n) =
1

Nk

N∑
n1=1

· · ·
N∑

n2k=1

 k∏
j=1

s̄∗i,nj

 2k∏
j=k+1

s̄i,nj

 s̄i,cir(n+Σk
j=1nj−Σ2k

j=k+1nj ,N). (12)

In particular, the third-order ICI is given by:

ξ̄3(i, n) =
1

N

N∑
n1=1

N∑
n2=1

s̄∗i,n1
s̄i,n2

s̄i,cir(n+n1−n2,N). (13)

Eqs. (12) and (13) are exact closed-form expressions for the nonlinear ICI that only depend on the

number of subcarriers and the data symbols. Besides, it should be remarked that the nonlinear ICI of the

nth subcarrier depends on the information symbols of all the other subcarriers, which means that each

subcarrier interferes on all the other subcarriers. This phenomenon can be viewed as a consequence of

the spectral broadening caused by the nonlinearity. Note also that, eq. (12) reduces to ξ̄1(i, n) = s̄i,n for

k = 0.
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B. Second-Order Statistics of the Nonlinear ICI

In this subsection, we develop expressions for second-order statistics of the nonlinear ICI based on the

relationships established in Subsection III-A. These statistics provide us important information about the

nonlinear ICI and are used by some of the techniques proposed in Section IV. However, due to the high

complexity of these expressions and to the fact that we are mainly interested in third-order modeling of

the PA, as currently considered in the literature [8], [15]–[17], the expressions developed in the sequel

concern only third-order ICI. Specifically, we derive the expressions for the variance of the third-order

ICI and the cross-correlation between one data symbol and the third-order ICI corresponding to the same

subcarrier.

Let us denote the correlation between two nonlinear ICIs associated with the nth subcarrier as:

rn(k1, k2) = E[ξ̄2k1+1(i, n)ξ̄
∗
2k2+1(i, n)], for 0 ≤ k1, k2 ≤ K. By defining µj = E

[
|s̄i,n|j

]
, ϱj = E

[
s̄ji,n

]
and ϱl,j = E

[
s̄li,n[s̄

∗
i,n]

j
]
, we have ϱ1 = 0, ϱ3 = 0 and ϱ2,1 = 0 for uniform i.i.d. Q-QAM and Q-PSK

inputs, and rn(0, 0) = E[|s̄i,n|2] = µ2. Using (13) gives:

rn(1, 0) = E
[
ξ̄3(i, n)s̄

∗
i,n

]
=

1

N

N∑
n1=1

N∑
n2=1

E
[
s̄∗i,n1

s̄i,n2
s̄i,cir(n−n2+n1,N)s̄

∗
i,n

]
. (14)

where

E
[
s̄∗i,n1

s̄i,n2
s̄i,cir(n−n2+n1,N)s̄

∗
i,n

]
=



µ4, if n1 = n2 = n,

µ22, if n1 = n2 ̸= n or n2 = n ̸= n1,

ϱ22, if n1 = n and n2 = cir(n+N/2, N),

0, otherwise.

(15)

This allows us to rewrite (14) as:

rn(1, 0) =
1

N

[
µ4 + 2(N − 1)µ22 + ϱ22

]
= rn(0, 1). (16)

It can then be concluded that the third-order ICI is correlated with the data-symbol associated with the

same subcarrier.

Assuming that N is even, the variance of ξ̄3(i, n), defined as:

rn(1, 1) = E
[
ξ̄3(i, n)ξ̄

∗
3(i, n)

]
=

1

N2

N∑
n1=1

N∑
n2=1

N∑
n3=1

N∑
n4=1

E
[
s̄∗i,n1

s̄i,n2
s̄i,cir(n−n2+n1,N)s̄i,n3

s̄∗i,n4
s̄∗i,cir(n−n4+n3,N)

]
, (17)
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is given by:

rn(1, 1) =
1

N2

[
µ6 + 9(N − 1)µ22µ4 + 6(N − 1)(N − 2)µ32 + 9(N − 2)ϱ22µ2 + 6ϱ2ϱ31

]
. (18)

The derivation of (18) is omitted due to a lack of space. Note that rn(0, 0), rn(1, 0) and rn(1, 1) are

independent of the subcarrier number, which allows us to omit the index n in these correlations.

When N is large, eqs. (16) and (18) can be approximated respectively by:

r(1, 0) ∼= 2µ22 and r(1, 1) ∼= 6µ32. (19)

That corresponds to the values of r(1, 0) and r(1, 1) when the time-domain signals si,n are circular

symmetric complex Gaussian variables. The expressions (19) can then be viewed as a particular case of

(16) and (18) that holds only when the number of subcarriers is high.

We claim that (16) and (18) can be used to derive theoretical symbol error probability expressions for

OFDM systems with third-degree polynomial PAs, when N is not large. This issue will be considered

in a future work.

In [3], [4], [7], [11]–[14], the ICI expressions are not the same as those obtained in the present work,

which explains why the ICI variances and the cross-correlation between one data symbol and the ICI are

also different from the ones above presented.

IV. POWER DIVERSITY-BASED RECEIVERS (PDRS)

In subsection IV-A, we first introduce the concept of power diversity by presenting a transmission

scheme that consists in re-transmitting the information symbols several times with different transmission

powers. Then, three receivers based on the proposed power diversity transmission scheme are presented

considering three different scenarios. In Subsection IV-B, it is assumed that the CSI is available at the

receiver, that is, the wireless CFR and PA coefficients are known at the receiver. In Subsection IV-C, the

receiver does not have CSI, that is, the wireless CFR and the PA coefficients are unknown at the receiver,

and in Subsection IV-D, it is assumed that partial CSI (PCSI) is available at the receiver, that is, the PA

coefficients are known at the receiver, but the wireless CFR is unknown.

A. Transmission Scheme

The ith frequency-domain information symbol s̄i,n at the nth subcarrier (1 ≤ n ≤ N , 1 ≤ i ≤ I) is

transmitted L times with transmission power factors P1, ..., PL, as follows:

s̄
(pd)
((i−1)L+l),n =

√
Pl s̄i,n, for 1 ≤ l ≤ L, (20)
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where s̄(pd)((i−1)L+l),n is the transmitted frequency-domain symbol associated with the nth subcarrier and

((i− 1)L+ l)th symbol period. Note that the transmission power factors P1, ..., PL are the same for all

the subcarriers.

For each subcarrier, one frequency-domain information symbol s̄i,n generates a set of L frequency-

domain transmitted symbols s̄(pd)((i−1)L+l),n, for 1 ≤ l ≤ L, and, hence, a set of L frequency-domain

received signals, denoted by x̄(pd)((i−1)L+l),n, for 1 ≤ l ≤ L. Thus, denoting by:

x̄(pd)i,n = [x̄
(pd)
((i−1)L+1),n x̄

(pd)
((i−1)L+2),n · · · x̄

(pd)
iL,n]

T ∈ CL×1 (21)

the vector containing the L frequency-domain received signals at the nth subcarrier associated with

the frequency domain information symbol s̄i,n, and assuming that the CFR λn (1 ≤ n ≤ N ) and PA

coefficients c2k+1 (0 ≤ k ≤ K) are time-invariant over L symbol periods, we obtain from (7) and (20):

x̄(pd)i,n = λnWϕ̄i,n + v̄(pd)i,n , (22)

where v̄(pd)i,n ∈ CL×1 is the noise vector and W = P diag [ c ] ∈ CL×(K+1), with:

P =


P

1

2

1 · · · P
2K+1

2

1

...
. . .

...

P
1

2

L · · · P
2K+1

2

L

 ∈ CL×(K+1). (23)

From (22), it can be concluded that the proposed transmission scheme induces L subchannels, each

subchannel being associated with one transmission power. The matrix W can be expressed as W =

diag[P 1/2
1 · · · P 1/2

L ]PV diag [ c ], where PV is a L × (K + 1) Vandermonde matrix with generators

P1, P2, ..., PL. The matrix PV is full rank if it has distinct generators [37], that is, if Pi ̸= Pj , for

1 ≤ i ̸= j ≤ L. As Pi ̸= 0, for i = 1, ..., L, the matrix diag[P 1/2
1 · · · P 1/2

L ] is full rank as well.

Moreover, if c2k+1 ̸= 0 for 0 ≤ k ≤ K, the matrix diag [ c ] is also full rank. Thus, if Pi ̸= Pj , for

1 ≤ i ̸= j ≤ L and c2k+1 ̸= 0 for 0 ≤ k ≤ K, the matrix W is full rank. If, in addition, L ≥ (K + 1),

the induced multi-channel representation allows a perfect recovery of s̄i,n in the noiseless case.

The main drawback of this approach is that the transmission rate is divided by L. However, if the PA

is modeled by a third-order polynomial (K = 1) we can use L = 2, which minimizes the transmission

rate decrease.

B. PDR with Channel State Information (PDR-CSI)

In this subsection, we propose a technique for nonlinear ICI cancellation, called PDR with Channel

State Information (PDR-CSI), assuming that the wireless CFR and PA coefficients are known at the
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receiver. Each frequency-domain information symbol is estimated as a linear combination of the received

signals, in the following form:

ˆ̄si,n = g(mmse)
n

T
x̄(pd)i,n , (24)

for 1 ≤ n ≤ N , where the vector g(mmse)
n ∈ CL×1 containing the coefficients of the PDR is calculated

by minimizing the mean square error (MSE) cost function:

Jn = E
[∣∣∣s̄i,n − gTn x̄(pd)i,n

∣∣∣2] , (25)

which leads to:

g(mmse)
n =

[
λ∗nrHϕ̄s̄W

H
(
WRϕ̄WH |λn|2 + ILσ2

)−1
]T
, (26)

where Rϕ̄ = E[ϕ̄i,nϕ̄
H
i,n] ∈ C(K+1)×(K+1) is the covariance matrix of the vector ϕ̄i,n ∈ C(K+1)×1,

rϕ̄s̄ = E[ϕ̄i,ns̄
∗
i,n] ∈ C(K+1)×1 is the cross-correlation vector of the information symbol with the vector

ϕ̄i,n. Moreover, we have [Rϕ̄]k1+1,k2+1 = rn(k1, k2) and [rϕ̄s̄]k1+1 = rn(k1, 0), for 0 ≤ k1, k2 ≤ K. The

elements of Rϕ̄ and rϕ̄s̄ are given by (16) and (18) for K = 1, with rn(0, 0) = µ2.

C. PDR with No Channel State Information (PDR-NCSI)

The technique for nonlinear ICI cancellation presented in the sequel, called PDR with No Channel State

Information (PDR-NCSI), assumes that the wireless CFR and PA coefficients are unknown at the receiver.

As the MMSE receiver (26) requires the knowledge of the CFR and PA coefficients, the proposed PDR-

NCSI is based on a zero-forcing (ZF) strategy that allows to jointly estimate the information symbols

and the wireless CFR, by using pilot symbols allocated to subcarriers regularly spaced in the channel

passband.

Noting that s̄i,n = [ϕ̄i,n]1, the ZF receiver, obtained by solving (22) in the least squares (LS) sense,

gives ˆ̄si,n = g(zf)n

T
x̄(pd)i,n , with:

g(zf)n = λ−1
n w̃ ∈ CL×1, (27)

where w̃ = [W†]T1,· ∈ CL×1. Using the fact that W = P diag [c], the ZF solution (27) can be written as:

g(zf)n =
[P†]T1,·
λnc1

. (28)

The PDR-NCSI is summarized in Table I, ˆ̄zi,n being the estimate of z̄i,n = s̄i,nλn. Without loss of

generality, we assume that c1 = 1. Moreover, it is assumed that pilot symbols are allocated to a set of D

subcarriers, denoted by N = {n1, · · · , nD}, regularly spaced in the channel passband. Step 1 amounts

to a channel linearization, as it separates the data symbols from the nonlinear ICI, without removing
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TABLE I

PDR WITH NO CHANNEL STATE INFORMATION (PDR-NCSI)

1) For 1 ≤ n ≤ N , calculate: ˆ̄zi,n = [P†]1,· x̄(pd)i,n .

2) Estimate the CFR coefficients associated with the pilot subcarriers as:

λ̂n =
ˆ̄zi,n
s̄i,n

,

for n ∈ N .

3) Calculate the CFR coefficients associated with the other subcarriers (λ̂n for n /∈ N )

by interpolating the CFR coefficients of the pilot subcarriers (λ̂n for n ∈ N ) obtained in

Step 2.

4) Estimate the data symbols as:

ˆ̄si,n =
ˆ̄zi,n

λ̂n
,

for n /∈ N .

the multiplicative factor λn. Step 2 provides the estimation of the CFR coefficients associated with the

pilot subcarriers, while Step 3 interpolates the wireless CFR coefficients of the other sub-carriers from

the estimated channel coefficients of the pilot sub-carriers. Several interpolation methods can be used.

In our simulations, we applied a DFT interpolation algorithm [38]. Finally, in Step 4, the factor λn is

removed from ˆ̄zi,n. Steps 2, 3 and 4 correspond to a standard method for estimating and canceling the

CFR coefficients from the received signals using a 1-tap receiver to get an estimate of the data symbols.

Remarks:

1) The PDR-NCSI does not need knowledge of the PA coefficients nor the noise variance.

2) For stationary channels, that is, assuming that the CFR and PA coefficients are time-invariant over

IL symbol periods, Steps 2 and 3 of the PDR-NCSI can be skipped for i = 2, . . . , I , since the

CFR is estimated during the first L symbol periods (i = 1, .., L). In this case, pilot subcarriers are

used only during the initialization.

3) In the case where K + 1 = L = 2, the PDR-NCSI technique needs the computation of only one

inverse matrix of dimensions 2× 2.

4) After some manipulations, it can be shown that the MMSE and ZF solutions (26) and (27) are

equivalent when σ2 = 0 and P is a non-singular matrix. However, when the noise variance is high,
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the ZF receiver provides a worst performance with respect to the MMSE receiver due to noise

amplification.

D. PDR with Partial CSI (PDR-PCSI)

The last proposed receiver, called PDR with Partial CSI (PDR-PCSI), assumes that the wireless CFR is

unknown at the receiver, but the PA coefficients are known. In this case, the PA coefficients are estimated

by the transmitter and this information is sent to the receiver through a control channel. The transmission

of these parameters must be included in the system initialization. This scheme was used by other authors

for OFDM systems [18].

The PDR-PCSI exploits the knowledge of the PA coefficients to improve the performance of the PDR-

NCSI. The PDR-PCSI uses an initial estimate of the wireless CFR λ̂
(0)
n (1 ≤ n ≤ N ) calculated by

means of the PDR-NCSI and, then, it iteratively re-estimates the wireless CFR and information symbols

by using the MMSE solution. The PDR-PCSI is summarized in Table II. In Step 2, the data symbols

are estimated by means of the MMSE method. Step 3 projects the estimated data symbols onto the

symbol alphabet to obtain estimates of the nonlinear ICI, which are used in Step 4 to re-estimate the

CFR coefficients associated with the pilot subcarriers by means of the LS solution of (22), where ϕ̄i,n

is replaced by its estimate ˆ̄ϕ
(it)
i,n . In Step 5, the CFR coefficients of the other sub-carriers are estimated

by interpolating the channel coefficients of the pilot sub-carriers. Finally, Step 6 checks the algorithm

convergence.

As the PDR-PCSI is based on the MMSE solution, it should outperform the PDR-NCSI when the

noise power is high. However, the PDR-PCSI is more computationally complex than the PDR-NCSI. In

our simulations, the PDR-PCSI converges after a few iterations (less than 5 iterations in the most part

of the simulations).

V. POWER FACTORS OPTIMIZATION

In this section, the power factors P1, P2, ..., PL are optimized by minimizing the sum of the residual

MSE provided by the proposed PDRs. For simplicity reasons, we consider the case where K+1 = L = 2.

The problem then consists in finding the values of P1 and P2 that minimize:
∑N

n=1 Jn, with Jn defined

in (25) and K = 1, gn being given either by the MMSE solution (26), or by the ZF solution (27), and

0 < P1, P2 ≤ Psat, Psat being the input saturation power.

Substituting (26) into (25), we can write the sum of the residual MSE provided by the MMSE receiver

December 23, 2011 DRAFT



JOURNAL OF FILES, VOL. 6, NO. 1, JANUARY 2007 15

TABLE II

PDR WITH PARTIAL CHANNEL STATE INFORMATION (PDR-PCSI)

- Initialization (it = 0): Estimate λ̂(0)n , for 1 ≤ n ≤ N , using Steps 1, 2 and 3 of the PDR-NCSI.

- Iterations:

1) it = it+ 1.

2) For 1 ≤ n ≤ N , estimate ˆ̄s
(it)
i,n from (24) and (26), using λ̂(it−1)

n .

3) For 1 ≤ n ≤ N , project ˆ̄s(it)i,n onto the symbol alphabet and construct:

ˆ̄ϕ
(it)
i,n =

[
ˆ̄s
(it)
i,n [ψ̄3(F

∗ˆ̄s(it)(i))]n · · · [ψ̄2K+1(F
∗ˆ̄s(it)(i))]n

]T
,

using the projected symbols.

4) Estimate the CFR coefficients associated with the pilot subcarriers as:

λ̂(it)n =
[
[û(it)

i,n ]H x̄(pd)i,n

] 1

[û(it)
i,n ]H û(it)

i,n

, (29)

for n ∈ N , where û(it)
i,n = Wˆ̄ϕ

(it)
i,n .

5) Calculate the CFR of the other subcarriers (λ̂n for n /∈ N ) by interpolating the CFR of the pilot

subcarriers (λ̂n for n ∈ N ) obtained in Step 4.

6) If
∑N

n=1 |λ̂
(it)
n − λ̂

(it−1)
n |2/

∑N
n=1 |λ̂

(it−1)
n |2 < ϵ, stop. Otherwise, go to Step 1.

as:

J (mmse)(P1, P2) =

N∑
n=1

J (mmse)
n (P1, P2) =

N∑
n=1

(
µ2 − rHx̄s̄,nR−1

x̄,nrx̄s̄,n
)
, (30)

where Rx̄,n = E
[
x̄(pd)i,n (x̄(pd)i,n )H

]
∈ CL×L and rx̄s̄,n = E[x̄(pd)i,n s̄∗i,n] ∈ CL×1. In Appendix A, it is

demonstrated that, for a high SNR, the absolute minima of (30) in 0 < P1, P2 ≤ Psat are given by: P1 =

Psat, P2 =

(
3

√
1+

√
3

4 +
3

√
1−

√
3

4

)
Psat

∼= 0.313Psat and P1 =

(
3

√
1+

√
3

4 +
3

√
1−

√
3

4

)
Psat

∼= 0.313Psat,

P2 = Psat.

On the other hand, substituting (27) into (25), we get for the ZF receiver:

J (zf)(P1, P2) =

N∑
n=1

J (zf)
n (P1, P2) =

N∑
n=1

E
[∣∣∣s̄i,n − w̃TWϕ̄i,n − λ−1

n w̃T v̄(pd)i,n

∣∣∣2] , (31)

When P1 ̸= P2, we have w̃TW = [1 0 . . . 0] ∈ R1×(K+1), which leads to:

J (zf)(P1, P2) = ∥w̃∥2
N∑

n=1

σ2

|λn|2
, (32)

where ∥ · ∥ is the Euclidean norm. In Appendix B, it is demonstrated that the absolute minima of (32)

in 0 < P1, P2 ≤ Psat are the same as for the MMSE case.
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An important conclusion that can be drawn from the above results is that the optimal transmission

powers for the proposed PDRs are constant, i.e. they do not depend on the CFR, nor the PA coefficients

and noise variance. On the other hand, if no ICI cancellation is done, the optimal transmission powers

depend on the channel and noise conditions [33], [34]. This property constitutes a remarkable advantage

of the proposed receivers, as we assumed that the CSI is not available at the transmitter.

VI. SIMULATION RESULTS

In this section, the proposed receivers are evaluated by means of computer simulations. An OFDM

system with a third-degree polynomial PA whose coefficients are equal to c1 = 0.9798 − 0.2887ȷ and

c3 = −0.2901 + 0.4350ȷ [11], and a wireless link with frequency selective Rayleigh fading due to

multipath propagation has been considered for the simulations. The channel impulse response has 4

independent taps and the length of the cyclic prefix is equal to 3 sampling periods (Mcp =M = 3). The

results were obtained with N = 64 subcarriers, 16 of them being allocated to pilot symbols, and, when

not stated otherwise, with BPSK (binary phase shift keying) transmitted signals. The results represent an

average over a large number of independent channel and noise realizations.

In all the simulations, a repetition factor L = 2 was used, with the transmission powers obtained in

Section V, and, for a given SNR, the noise variance is the same for all the tested techniques. In the

figures, the displayed SNR corresponds to the mean SNR at the channel output considering a linear PA,

that is, with c1 = 0.9798 − 0.2887ȷ and c3 = 0, and a transmission power equivalent to IBO = 10dB

in the nonlinear PA.

A. Channel Estimation

The next two figures illustrate the channel estimation results, the receivers performance being evaluated

by means of the normalized mean square error (NMSE) of the estimated wireless CFR, defined as

NMSE = 1
NR

∑NR

i=1 ∥ Λ − Λ̂
(i) ∥2F / ∥ Λ ∥2F , where Λ̂

(i) ∈ CN×N represents the estimate of Λ at

the ith Monte Carlo simulation, ∥ · ∥F is the Frobenius norm, and NR is the number of Monte Carlo

simulations.

Fig. 2 shows the CFR NMSE versus SNR provided by the proposed PDR-NCSI and a technique

denoted by 1TapRec-NCSI, which corresponds to Steps 2, 3 and 4 of the PDR-NCSI in Table I. This

receiver is a standard method for OFDM systems with linear PAs that estimates and cancels the CFR

coefficient λn from the received signals using a 1-tap receiver. We have tested the 1TapRec-NCSI for

several values of IBO. Fig. 2 also shows the CFR NMSE provided by the 1TapRec-NCSI in the case
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Fig. 2. CFR NMSE versus SNR provided by the PDR-NCSI and 1TapRec-NCSI, for several IBO values.

of a linear PA, that is, with c1 = 0.9798 − 0.2887ȷ and c3 = 0. It can be concluded that the proposed

receiver provides smaller NMSEs than the 1TapRec-NCSI, with no steady floor on the NMSE for high

SNRs. This is due to the fact that the optimal transmission powers of the PDRs do not depend on the

channel nor the PA coefficients. Moreover, as expected, when the PA is linear, the NMSE is lower than

the one obtained with the nonlinear PA. Note also that the NMSE curve of the PDR-NCSI has the same

slope than the one obtained with the linear PA.

We have also compared the performance of the PDR-PCSI with that of the technique presented in [18],

[32], called power amplifier nonlinearity cancellation (PANC), with frequency domain channel estimation.

This technique assumes that the receiver has a PCSI knowledge. Fig. 3 shows the CFR NMSE versus

SNR provided by the proposed PDR-PCSI and the PANC-PCSI, the last one being tested with several

values of IBO. From these simulation results, we can conclude that the proposed receiver provides better

performance, specially for high SNRs.

B. Data Symbol Estimation

In the next five figures, the data symbol estimation precision obtained with the proposed receivers

is evaluated by means of the bit-error-rate (BER). Fig. 4 shows the BER versus SNR provided by the

proposed PDR-NCSI and the 1TapRec-NCSI, the case of a linear PA being also considered. Fig. 5 shows

the BER versus SNR provided by the PDR-PCSI and the PANC-PCSI. The 1TapRec-NCSI and PANC-

PCSI techniques were tested with several values of IBO. It can be concluded that the PDRs provide lower

BERs than the 1TapRec-NCSI and PANC-PCSI techniques. As for the channel estimation results, there

is no saturation on the BER for high SNRs for the proposed receivers, contrary to the 1TapRec-NCSI
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Fig. 3. CFR NMSE versus SNR provided by the PDR-PCSI and PANC-PCSI, for several IBO values.

0 5 10 15 20 25 30 35 40 45

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

PDR−NCSI
1TapRec−NCSI, IBO=0dB
1TapRec−NCSI, IBO=5dB
1TapRec−NCSI, IBO=10dB
1TapRec−NCSI, IBO=15dB
Linear PA

Fig. 4. BER versus SNR provided by the PDR-NCSI and 1TapRec-NCSI.

and PANC-PCSI for IBO = 0dB, 5dB and 10dB. Once again, this is due to the fact that the optimal

transmission powers of the PDRs do not depend on the channel nor the PA coefficients. Note also that

the BER curves of the PDR-NCSI and linear PA have the same slope.

In Figs. 6 and 7, it is considered that the receiver has CSI. Fig. 6 shows the BER versus SNR provided

by the PDR-CSI and the 1TapRec-CSI, while Fig. 7 shows the BER versus SNR provided by the PDR-

CSI and the PANC assuming CSI, the 1TapRec-CSI and PANC-CSI being tested with several values of

IBO. Fig. 6 also shows the BER provided by the 1TapRec-CSI in the case of a linear PA. Once again,

the proposed receiver provides lower BERs than the other two receivers. However, in this case, the BER

gains of the PDR-CSI with respect to the two other techniques are higher than the one of Figs. 4 and 5.

Besides, the SNR loss of the PDR-CSI with respect to the linear PA case is smaller than in Fig. 4.
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Fig. 5. BER versus SNR provided by the PDR-PCSI and PANC-PCSI.
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Fig. 6. BER versus SNR provided by the PDR-CSI and 1TapRec-CSI.

Fig. 8 compares the BER provided by the proposed PDRs assuming NCSI, PCSI and CSI, for several

Q-QAM constellations. It can be viewed that all the curves have approximately the same slope for high

SNRs. Besides, for a BER = 10−3 and 2-QAM (BPSK) input, the PDR-CSI has SNR gains of 3.3dB and

7.9dB with respect to the PDR-PCSI and the PDR-NCSI, respectively. For 16-QAM and 64-QAM, the

SNR gains of the PDR-CSI with respect to the PDR-PCSI and PDR-NCSI are higher than with 2-QAM.

Moreover, for a BER = 10−3, the PDR-CSI with 2-QAM has SNR gains of 14.6dB and 20.6dB with

respect to the cases of 16-QAM and 64-QAM, respectively.
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Fig. 7. BER versus SNR provided by the PDR-CSI and PANC-CSI.
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Fig. 8. BER versus SNR provided by the PDR-NCSI, PDR-PCSI and PDR-CSI, for several Q-QAM constellations.

VII. CONCLUSION

The first contribution of this paper is the theoretical analysis of ICI in nonlinear OFDM systems with

polynomial PAs. Contrary to previous works, this analysis provides an exact description of the nonlinear

ICI.

The second contribution of the paper is the proposition of three new receivers for ICI cancellation

in OFDM systems with polynomial PAs. These receivers consider three different scenarios regarding

the CSI at the receiver and are based on the concept of power diversity that consists in re-transmitting

the information symbols several times with different transmission powers. Optimal power factors that

minimize the sum of the residual MSE provided by the proposed receivers have also been derived in the
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case of a third-degree polynomial PA and a repetition factor equal to 2. An important advantage of the

proposed receivers is that the optimal transmission powers are constant, i.e. they do not depend on the

CFR, nor the PA coefficients and noise variance.

The proposed receivers were tested by means of computer simulations. The simulation results show that

the proposed receivers improve the channel estimation and symbol recovery with respect to a standard

OFDM receiver and to another technique proposed in the literature. The simulation results also show that

the fact that the optimal PDR transmission powers are constant is an important feature of the proposed

techniques that leads to a non-saturation on the BER and NMSE for high SNRs. We can then conclude

that the proposed PDRs improve the transmission robustness of nonlinear OFDM systems with respect

to the tested techniques, at the cost of a reduced spectral efficiency.

The PDR-NCSI can be easily extended to the case of multiple-input multiple-output (MIMO) OFDM

systems and to the case of more general PA models, as well as to OFDM systems with cooperative

diversity. These extensions will constitute the topics for future works, as well as the power factors

optimization for L > 2.

APPENDIX A

POWER FACTORS OPTIMIZATION FOR THE MMSE RECEIVER

In this section, we consider the case K = 1 and L = 2. Let us define: pl = [P]Tl,· = [P
1

2

l P
3

2

l ]
T ∈ R2×1,

for l = 1, 2, ūi,n = diag [ c ] ϕ̄i,n ∈ C2×1 and Rū = E[ūi,nūH
i,n] = diag [ c ]Rϕ̄ diag [ c∗ ] ∈ C2×2, with:

Rϕ̄ = E[ϕ̄i,nϕ̄
H
i,n] =

 µ2 r(0, 1)

r(0, 1) r(1, 1)

 ∈ C2×2, (33)

with r(0, 1) and r(1, 1) given in (16) and (18), respectively.

From (22), we can express Rx̄,n = E
[
x̄(pd)i,n (x̄(pd)i,n )H

]
∈ C2×2 and rx̄s̄,n = E[x̄(pd)i,n s̄∗i,n] ∈ C2×1 as:

Rx̄,n = |λn|2

 pT
1 Rūp1 +

σ2

|λn|2 pT
1 Rūp2

pT
2 Rūp1 pT

2 Rūp2 +
σ2

|λn|2

 (34)

and

rx̄s̄,n = λn

 pT
1

pT
2

 rūs̄, (35)

with rūs̄ = diag [ c ] rϕ̄s̄ ∈ C2×1 and rϕ̄s̄ = E[ϕ̄i,ns̄
∗
i,n] = [µ2 r(0, 1)]T ∈ C2×1.
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Moreover, from (34), we have:

R−1
x̄,n =

|λn|2

det [Rx̄,n]

 pT
2 Rūp2 +

σ2

|λn|2 −pT
1 Rūp2

−pT
2 Rūp1 pT

1 Rūp1 +
σ2

|λn|2

 (36)

where

det [Rx̄,n] = |λn|4
[(

pT
1 Rūp1 +

σ2

|λn|2

)(
pT
2 Rūp2 +

σ2

|λn|2

)
−
(
pT
1 Rūp2

) (
pT
2 Rūp1

)]
. (37)

Let us recall that the residual MSE of the nth subcarrier for the MMSE receiver is given by: J (mmse)
n (P1, P2) =

µ2 − rHx̄s̄,nR−1
x̄,nrx̄s̄,n. Using (36), J (mmse)

n (P1, P2) can be rewritten as:

J (mmse)
n (P1, P2) = µ2 −

[
rHūs̄p1pT

2 Rūp2rTūs̄p1 + rHūs̄p1rTūs̄p1

σ2

|λn|2
− rHūs̄p2pT

2 Rūp1rTūs̄p1

− rHūs̄p1pT
1 Rūp2rTūs̄p2 + rHūs̄p2pT

1 Rūp1rTūs̄p2 + rHūs̄p2rTūs̄p2

σ2

|λn|2

]
|λn|4

det [Rx̄,n]
. (38)

On the other hand, by defining Γ1 = rHūs̄p1pT
2 Rūp2rTūs̄p1 − rHūs̄p2pT

2 Rūp1rTūs̄p1, we have:

Γ1 = P
1

2

1 P
1

2

2 (P1 − P2)rHūs̄

 0 −1

1 0

RT
ū p2rTūs̄p1

= αP1P
2
2 (P1 − P2)

[
µ2 +

c3
c1
r(0, 1)P1

]
, (39)

where α = |c1c3|2[r2(0, 1)− µ2r(1, 1)].

Similarly, defining Γ2 = −rHūs̄p1pT
1 Rūp2rTūs̄p2 + rHūs̄p2pT

1 Rūp1rTūs̄p2 and Γ3 = rHūs̄p1rTūs̄p1
σ2

|λn|2 +

rHūs̄p2rTūs̄p2
σ2

|λn|2 , we can write:

Γ2 = rHūs̄
(
p2pT

1 − p1pT
2

)
RT

ū p1rTūs̄p2 = −αP 2
1P2(P1 − P2)

[
µ2 +

c3
c1
r(0, 1)P2

]
(40)

and

Γ3 = rHūs̄
(
p1pT

1 + p2pT
2

)
rūs̄

σ2

|λn|2

=

[∣∣∣c1µ2P 1

2

1 + c3r(0, 1)P
3

2

1

∣∣∣2 + ∣∣∣c1µ2P 1

2

2 + c3r(0, 1)P
3

2

2

∣∣∣2] σ2

|λn|2
(41)

where Re[·] denotes the real part of the argument.
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Moreover, we have:

det [Rx̄,n]

|λn|4
= P

1

2

1 P
1

2

2 (P1 − P2)pT
1 Rū

 0 −1

1 0

RT
ū p2 +

(
pT
1 Rūp1 + pT

2 Rūp2

) σ2

|λn|2
+

σ4

|λn|4

= −αP1P2(P1 − P2)
2 +

[
(P1 + P2)|c1|2µ2 + 2(P 2

1 + P 2
2 )Re[c∗1c3]r(0, 1)

+ (P 3
1 + P 3

2 )|c3|2r(1, 1)
] σ2

|λn|2
+

σ4

|λn|4
. (42)

Thus, substituting (39), (40), (41) and (42) into (38), we get:

J (mmse)
n (P1, P2) = µ2 −

Θn(P1, P2)
Θn(P1,P2)

µ2
− α

|c1|2µ2
(P 3

1 + P 3
2 )

σ2

|λn|2 + σ4

|λn|4
, (43)

with

Θn(P1, P2) = −αP1P2(P1 − P2)
2µ2 +

[∣∣∣c1µ2P 1

2

1 + c3r(0, 1)P
3

2

1

∣∣∣2
+
∣∣∣c1µ2P 1

2

2 + c3r(0, 1)P
3

2

2

∣∣∣2] σ2

|λn|2
. (44)

Assuming that Θn(P1, P2) ̸= 0, we can then express J (mmse)
n (P1, P2) as:

J (mmse)
n (P1, P2) = µ2 −

1

1
µ2

+
− α

|c1|2µ2
(P 3

1 +P 3
2 )

σ2

|λn|2 +
σ4

|λn|4

Θn(P1,P2)

. (45)

Minimizing (45) is equivalent to minimizing:

J̃ (mmse)
n (P1, P2) =

− α
|c1|2µ2

(P 3
1 + P 3

2 )
σ2

|λn|2 + σ4

|λn|4

Θn(P1, P2)
. (46)

There is no analytical solution for this minimization problem. However, the cost function (46) can be

simplified when the SNR γn = µ2|λn|2/σ2 is high. In this case, (46) can be approximated by:

J̃ (mmse)
n (P1, P2) ∼=

σ2(P 3
1 + P 3

2 )

|λn|2|c1|2r2(0, 0)P1P2(P1 − P2)2
, (47)

whose absolute minimum is given by P1 = Psat and P2 = (
3

√
1+

√
3

4 +
3

√
1−

√
3

4 )Psat ≃ 0.313Psat (or

vice-versa). The proof is given in the Lemma of Appendix C. Note that this solution does not depend

on the subcarrier number n, which means that it is also the absolute minimum of J (mmse)(P1, P2) =∑N
n=1 J

(mmse)
n (P1, P2) when the SNR γn is high.

It should be remarked that (47) is not a good approximation of (46) if P1
∼= P2. However, we have

observed in computer simulations that, when the SNR is high, the cost function (46) exhibits very high

values when P1
∼= P2. Indeed, we can deduce from (44) that Θn(P1, P1) ∼= 0 when σ2/|λn|2 is low.

This means that, when the SNR is high, (47) is a good approximation of (46) at the neighborhoods of

the minima points.
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APPENDIX B

POWER FACTORS OPTIMIZATION FOR THE ZF RECEIVER

In this section, we consider the case K = 1 and L = 2, with P1 ̸= P2. Recalling that w̃ ∈ C2×1 is

the transpose of the first row of the matrix W† ∈ C2×2, where W = P diag [ c ] ∈ C2×2, we then have:

w̃ =
1

P
1

2

1 P
1

2

2 (P2 − P1)c1

 P
3

2

2

−P
3

2

1

 . (48)

From (48) and (32), the sum of the residual MSE provided by the ZF receiver can be written as:

J (zf)(P1, P2) =
(P 3

1 + P 3
2 )

P1P2(P2 − P1)2|c1|2
N∑

n=1

σ2

|λn|2
, (49)

which is proportional to J̃ (mmse)(P1, P2) defined in (47). This means that the absolute minimum of

J (zf)(P1, P2) is given by P1 = Psat and P2 =

(
3

√
1+

√
3

4 +
3

√
1−

√
3

4

)
Psat

∼= 0.313Psat (or vice-versa).

APPENDIX C

LEMMA

Let us consider the function f(x, y) = x3+y3

xy(x−y)2
, with x, y ∈ R. The absolute minimum of f(x, y)

with 0 < y < x ≤ Xmax, is given by:

(x, y) =

Xmax, Xmax

3

√
1 +

√
3

4
+

3

√
1−

√
3

4

 . (50)

Proof:

The partial derivative of f(x, y) with respect to x is given by:

∂f(x, y)

∂x
=

−2x3 − 3xy2 + y3

x2 (x− y)3
. (51)

As x > y, we have −2x3 + y2(−3x + y) < 0, x2 (x− y)3 > 0 and, hence, ∂f(x,y)
∂x < 0, which means

that for x > y, f(x, y) is a decreasing function with respect to x. Thus, the minima of f(x, y) with

0 < y < x ≤ Xmax are located on the plane x = Xmax. Similarly:

df(Xmax, y)

dy
=

−2y3 − 3yX2
max +X3

max

y2 (y −Xmax)
3 . (52)

By making df(Xmax, y)/dy = 0, we get: −2y3 − 3X2
maxy +X3

max = 0. This equation has only one real

root, given by:

ŷ = Xmax

3

√
1 +

√
3

4
+

3

√
1−

√
3

4

 . (53)
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Moreover, after some calculations, it can be verified that d2f(Xmax,y)
dy2

∣∣∣
y=ŷ

> 0, which proves that (Xmax, ŷ)

is the absolute minimum of f(x, y) in 0 < y < x ≤ Xmax.

�
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