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Convergence Analysis for Initial Condition

Estimation in Coupled Map Lattice Systems
Lanxin Lin, Minfen Shen, H. C. So and C. Q. Chang

Abstract

In this paper, we focus on studying the problem of initial condition estimation for chaotic signals

within the coupled map lattice (CML) systems. To investigate the effectiveness of a CML initial condition

estimation method with different maps and coupling coefficients, the convergence and divergence

properties of the inverse CML systems are analyzed. Inverselargest Lyapunov exponent (ILLE) is

proposed to investigate the strength of convergence and divergence in the inverse CML systems, and

it can determine if the CML initial condition estimation method is effective. Computer simulations are

included to verify the relationship between the effectiveness of the CML initial condition estimation

method and its corresponding ILLE.

Index Terms

Coupled map lattice; Symbolic dynamic; Initial condition estimation; Largest Lyapunov exponent;

Signal processing.

I. INTRODUCTION

Many research works indicate that chaos is the most common phenomenon in the nature [1]. Being a

kind of deterministic signals, chaos draws great attentionfor its characteristics of internal randomness,

meaning that chaotic signals are deterministic but their behavior appears to be random [2]. In the presence

of additive disturbance, we can extract the deterministic chaos from the random noise by using the initial

condition, if the dynamic of the system is knowna priori [3]–[7]. As a result, the problem of initial

condition estimation of chaotic signals is an important research topic.

For one-dimensional (1-D) temporal chaotic map, it has beenproved in [6] that there is a one-to-one

correspondence between the set of global orbits in the 1-D temporal chaotic dynamical system and the set
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of its corresponding admissible symbolic sequence. An 1-D temporal initial condition estimation method

based on the symbolic dynamics has been proposed in [7]. Thismethod first symbolizes the chaotic

signal in the presence of noise, and then estimates the initial condition from the symbolic sequence. This

symbolic dynamics based method is effective for 1-D temporal chaotic signals, and its estimation error

converges exponentially with its Lyapunov exponent [7].

However, there exist many spatiotemporal chaotic signals in real physical systems in fields as diverse

as communication, chemistry, biology, engineering and ecology [8], [9]. Coupled map lattice (CML),

which reproduces the essential features of spatiotemporalphenomena, has been of great interest in the

chaos research [10]. Knowing the initial condition can facilitate the analysis of the internal dynamics of

the spatiotemporal signals. Moreover, the sea clutter, radar echoes from a sea surface, is a spatiotemporal

signal and can be modeled by CML system [11]. When the initialcondition is effectively estimated, we

are able to reconstruct the noise-free chaotic signals, indicating that more robust detectors [11] for them

can be devised. In order to estimate initial condition in CMLsystems, the first idea is to simplify the

CML into a temporal chaotic map without considering the effect of spatial coupling [12]. An improvement

using time-varying temporal chaotic map model has been proposed [13] to recover the initial condition

when the coupling is very weak in CML systems. Since [12], [13] are mainly based on the idea of

temporal initial condition estimation, they can only imprecisely recover the initial condition from the

weak coupled CML systems, and the estimation errors may be unacceptable for strongly coupled chaotic

systems. Consequently, it is necessary to investigate a more accurate method to estimate initial condition

in CML systems.

The relationship between symbolic dynamics and CML dynamical system has been investigated in

[14]. It is proved that the symbolic description is a complete and effective representation for studying

pattern formation in CML systems. Based on this work, a CML initial condition estimation method is

proposed in [8], [15] by introducing its symbolic dynamic and it is proved that any point in the state

space will converge to its initial condition with respect tosufficient backward iterations when the inverse

function of the CML is a contraction map. As a matter of fact, the contraction mapping theorem only

provides a sufficient condition of convergence [16], [17]. This means that contraction map just produces

one of the sufficient conditions to support the existence of afixed point that leads to the convergence.

In [16], [17], we have proved that the inverse function of a CML system with logistic map is not a

contraction map even when the coupling coefficient is significant small. We also claim that this CML

initial condition estimation method still works when the inverse system is fully convergent. That is to say,

the convergence strength is larger than its divergence strength in backward iterative procedure. However,

there is still no investigation on measuring the convergence and divergence strength. In this work, we

further study the convergence and divergence properties ofinverse CML systems and then provide the
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necessary and sufficient condition for effective initial condition estimation.

The rest of this paper is organized as follows. The background and technique of the initial condition

estimation problem based on symbolic dynamics are presented in Section II. In Section III, the

convergence and divergence properties of inverse CML systems with different maps and coupling

coefficients are investigated by the inverse largest Lyapunov exponent (ILLE). The necessary and sufficient

condition for effective initial condition estimation is also given. The Cramér-Rao lower bound (CRLB)

of the estimated initial conditions in uncorrelated Gaussian noise is derived in Section IV. Simulation

results are included in Section V to confirm the proposed necessary and sufficient condition. Finally,

conclusions are drawn in Section VI.

II. CML I NITIAL CONDITION ESTIMATION METHOD

The initial condition estimation technique has been proposed in [15] to estimate a spatiotemporal

chaotic signalxn generated byh in additive random noisewn. Let yn be its noisy observation, that is

yn = xn +wn, (1)

xn = h(xn−1), n = 0, 1, · · · , N − 1 (2)

whereyn = [y1n y2n · · · yMn ]T , xn = [x1n x2n · · · xMn ]T andwn = [w1
n w2

n · · · wM
n ]T . Here,M is the

number of channels andN is the sequence length. The spatiotemporal chaotic maph is the nonlinear and

noninvertible map which is modeled by a CML system. If the initial condition, namely,x0, is perfectly

estimated from{yn}N−1
0 , the noise-free{xn}N−1

0 can be obtained according to (2), where{an}N−1
0

represents{an|n = 0, 1, · · · , N − 1}.

Considering the typical diffusive CML [10] withM sites labeledm , xmn is modeled as

xmn+1 = (1− ǫ)f(xmn ) + ǫ/2
[
f(xm−1

n ) + f(xm+1
n )

]
, m = 1, 2, · · · ,M (3)

along with rules for periodic boundary condition, that is, whenm = 1 andm = M , we havex1n+1 =

(1 − ǫ)f(x1n) + ǫ/2[f(xMn ) + f(x2n)] andxMn+1 = (1 − ǫ)f(xMn ) + ǫ/2[f(xM−1
n ) + f(x1n)], respectively.

The ǫ denotes the coupling coefficient andf is the chaotic map. The vector form of (3) is

xn+1 = h(xn) = Af(xn) (4)

wheref(xn) =
[
f(x1n) f(x

2
n) · · · f(xMn )

]T
andA is theM ×M Toeplitz coupling matrix with the first

columna and the first rowaT , a = [1− ǫ ǫ/2 0 · · · 0︸ ︷︷ ︸
M−3

ǫ/2]T .

Here we assume that the coupling coefficientǫ and dynamics of the local mapf are known. Sincef

is a nonlinear and many-to-one function, its inverse function does not exist within its whole phase space.

Therefore, the symbolic dynamic, which is a coarse-graineddescription of dynamics [14], [18], has been
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introduced to makef invertible within one partition of the phase space. The ideaof symbolic dynamics

is that we firstly divide the phase space into a finite number ofpartitions and label each partition by a

number. Here, the mapf in each partition is monotonic. Then we record the alternation of the numbers

instead of the accurate values of the signal points. In this paper, we focus on the maps that their symbolic

dynamics are completely developed. LetP
m = {Pm

0 , Pm
1 , ..., Pm

q−1} be a finite disjoint partition of the

mth phase space in the CML system, that is,
⋃q−1

k=0 P
m
k = I, Pm

k

⋂
Pm
l = φ for k 6= l. We assume that at

time n, the phase pointxmn lies in thekth element of the partitionPm
k , and we assign a symbolsmn = k,

wherek ∈ {0, 1, . . . , q − 1}. If the ergodicity is preserved by the coupling, that is, thebehavior of a

dynamical system averaged over time is the same as averaged over space, then any orbit in phase space

IM of the CML system can be encoded as a semi-infinite symbolic vector sequence{s0, s1, . . . , sn, . . . }
wheresn = [s1n s2n · · · sMn ]T [14].

WhenA is nonsingular, we getf(xn) = A−1xn+1, whereA−1 is the inverse matrix ofA. With the

introduction of the symbolic vectorsn, the mapsf are monotonic functions in each disjoint partition.

The inverse function of CML [8], [14] can then be generalizedas

xn = h−1
sn

(xn+1) = f−1
sn

(
A−1xn+1

)
(5)

whereh−1
sn

= f−1
sn

◦A−1, f−1
sn

(xn) = [f−1
s1n

(x1n) f
−1
s2n

(x2n) · · · f−1
sMn

(xMn )]T and◦ denotes the composition

operator. In fact, we useyn+1 instead ofxn+1 in (5) sincexn+1 is unknown. It is well known that

some tiny errors will generate large errors via iterations when the system diverges. Therefore, we need

to investigate the convergence and divergence properties of inverse CML systems with different maps

and coupling coefficients to evaluate that the estimated initial condition is effective or not.

It is proved [8] that when the inverse function of CMLh−1
sn

is the contraction map and the symbolic

vector sequence{sn}N−1
0 is known, then we have

lim
N→∞

h
−(N−1)

{sn}
N−1
0

(η) = x0 (6)

whereh−(N−1)

{sn}
N−1
0

(η) = h−1
s0

(
h−1
s1

· · ·h−1
sN−1

(η)
)

andη is randomly selected within the phase spaceIM .

However, the contraction mapping theorem only provides a sufficient condition for convergence. In

this paper, we focus on finding a sufficient and necessary condition for convergence.

III. T HE CONVERGENCEPROPERTIES

A. Largest Lyapunov Exponent

Lyapunov exponent (LE), which gives the rate of exponentialseparation or convergence of two

infinitesimally close initial conditions in phase space, isa very important character in the spatially

extended system [19]. For CML systems, since its dimension is larger than one, there exists a set of
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Lyapunov exponents called Lyapunov spectrum, in which the largest of them is the most important

character to describe the development of a small deviation [20], [21]. For time series produced by

dynamical systems, the presence of a positive LE indicates orbital divergence and chaos, while a negative

or zero-valued LE is a characteristic for regular behavior.Therefore, the largest LE in an inverse CML

system, which is referred to as the ILLE, is utilized to studythe convergence and divergence properties

for the inverse CML systems.

It is well known that ifλ is the largest LE of a deterministic map :zn+1 = g (zn), wherez,g ∈ RK ,

n = 0, 1, · · · andRK denotes the set ofK-dimensional real vector, we have [20], [21]

‖gn(z0)− gn(z0 + ξ)‖2 ≈ ‖ξ‖2exp(λn) (7)

whereξ is the uncertainty in the initial condition. In the inverse CML system of (5), the ILLE, denoted

by βmax(f, ǫ), approximately satisfies the following equation
∥∥x0 − x̂0|N−1

∥∥
2
= ‖δ(x(N−1))‖2 exp (βmax(f, ǫ)(N − 1)) (8)

where‖δ(xN−1)‖2 is the uncertainty inxN−1 andx̂0|N−1 denotes the estimated value ofx0 with (N−1)

iterative steps.

Dividing (8) by ‖δ(xN−1)‖2 and taking the limit as‖δ(xN−1)‖2 → 0 gives

exp (βmax(f, ǫ)(N − 1)) = ‖J
h

−(N−1)

{sn}
N−1
0

(xN−1)
‖2 (9)

whereJ
h

−(N−1)

{sn}
N−1
0

(xN−1)
is the Jacobian matrix of functionx0 = h

−(N−1)

{sn}
N−1
0

(xN−1). That is

J
h

−(N−1)

{sn}
N−1
0

(xN−1)
=

∂x0

∂xT
N−1

=
∂x0

∂xT
1

∂x1

∂xT
2

· · · ∂xN−2

∂xT
N−1

=

N−2∏

n=0

J
f
−1
sn (x̄n+1)

A−1 (10)

wherex̄n = A−1xn andJ
f
−1
sn (x̄n+1)

is the Jacobian matrix of inverse chaotic mapf−1
sn

(x̄n+1).

Noting that the spectral radius of a symmetric matrixJ
h

−(N−1)

{sn}
N−1
0

(xN−1)
, denoted byρ, is equal to its

matrix 2-norm and taking the limitN → ∞ on the both sides of (9), we obtain

βmax(f, ǫ) = lim
N→∞

1

N − 1
ln (ρ) = lim

N→∞

1

N − 1
ln

(
max

1≤m≤M
(|rm|)

)
(11)

wherer1, · · · , rM are the eigenvalues of the matrixJ
h

−(N−1)

{sn}
N−1
0

(xN−1)
. Hence the ILLE can be determined

when the map and coupling coefficient are known.

Since a positive largest LE indicates chaos, and a negative largest LE indicates temporal periodic

behavior and spatially invariant structure with time [19],we have the following lemma.

Lemma. Given a CML system with a known map and coupling coefficient, and if {sn} is correct, the

initial condition can be perfectly obtained as

lim
N→∞

x̂0|(N−1) = lim
N→∞

h
−(N−1)

{sn}
N−1
0

(η) = x0 (12)

DRAFT



6

if and only if the ILLE of the CML system is negative for arbitrary η ∈ IM . In addition, the convergence

rate of the backward iterative approximation error is exponentially proportional to the ILLE according

to (8). Otherwise, we cannot estimate the initial conditionin the CML systems.

Proof: According to (8),
∥∥x0 − x̂0|N−1

∥∥
2
= ‖δ(x(N−1))‖2 exp (βmax(f, ǫ)(N − 1)), take the limit

(N−1) → ∞ on both sides, we havelim
N→∞

x̂0|(N−1) = x0 when the ILLE of the CML system,βmax(f, ǫ),

is negative.

B. Examples

In order to show the calculations of the inverse functionh−1
sn

and Jacobian matrixJ
f
−1
sn (x̄n+1)

, without

loss of generality, we use the CML systems with logistic map (CML-logistic) and tent map (CML-tent)

as illustrations. Their vector forms, denoted byfL(xn) and fT (xn), respectively, are

fL(xn) = µL. ∗ xn. ∗ (1M×1 − xn) (13)

fT (xn) = µT . ∗ (1M×1 − 2|xn − 0.51M×1|) (14)

wherea. ∗ b is the element-wise multiplication ofa by b and1M×1 denotes theM × 1 vector with all

elements 1. TheµL = [µ1
L µ2

L · · ·µM
L ]T andµT = [µ1

T µ2
T · · · µM

T ]T are the parameters that dramatically

affect the behavior of the map.

The inverse functions of CML-logistic and CML-tent systems, denoted byh−1
L,sn

andh−1
T,sn

, respectively,

are

xn = h−1
L,sn

(xn+1) = f−1
L,sn

(A−1xn+1) = 0.51M×1 + 0.5(2sn − 1M×1). ∗
√

1M×1 − 4x̄n+1./µL (15)

xn = h−1
T,sn

(xn+1) = f−1
T,sn

(A−1xn+1) = 0.51M×1 + 0.5(2sn − 1M×1). ∗ (1M×1 − x̄n+1./µT ) (16)

wherea./b represents element-wise division ofa by b,
√
a is the element-wise square root ofa, and

smn =




0, xmn < 0.5

1, xmn ≥ 0.5.
(17)

The Jacobian matrix of the inverse logistic mapf−1
L,sn

(x̄n+1) and that of the inverse tent map

f−1
T,sn

(x̄n+1), denoted byJ
f
−1
L,sn

(x̄n+1)
andJ

f
−1
T,sn

(x̄n+1)
, respectively, are

J
f
−1
L,sn

(x̄n+1)
= diag

(
− (2sn − 1M×1) ./

(
µL. ∗

√
1M×1 − 4x̄n+1/µL

))
(18)

J
f
−1
T,sn

(x̄n+1)
= diag(−0.5 (2sn − 1M×1) ./µT ) (19)

where diag represents the diagonal operator. According to (10) and (11), the ILLEs for the CML-logistic

and CML-tent systems are obtained.
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IV. CRAMÉR-RAO LOWER BOUND

The CRLB gives a lower bound on variance attainable by any unbiased estimators using the same

data, and thus it can be served as an important benchmark to compare with the mean square error (MSE)

of the initial condition estimation method. Therefore, in this section, the CRLB based on the model of

(1) subject to (4) is derived. For simplicity but without loss of generality, here we assume uncorrelated

zero-mean Gaussian noise with variance{σ2
m}. Our task is to estimatex0 from {yn}N−1

0 . We first have

[22]:

yn ∼ N (Af(xn−1),C) (20)

That is,yn is Gaussian distributed with meanAf(xn−1) and covarianceC = diag(
[
σ2
1 σ2

2 · · · σ2
M

]
).

Its probability density function (PDF) is

p
(
{yn}N−1

0 ;x0

)
=

1

(2π)N/2det1/2[C]
exp

[
−1

2

N−1∑

n=0

(yn − xn)
T
C−1 (yn − xn)

]
(21)

where det represents matrix determinant.

The Fisher information matrix (FIM) forx0 estimated from{yn}N−1
0 , denoted by FIM(x0|N−1), is

FIM(x0|N−1) =

N−1∑

n=0

BT
nC

−1Bn (22)

where
Bn =

∂xn

∂xT
0

=




IM×M , if n = 0

∏0
i=n−1AJf(xi), if n > 0

with IM×M being theM ×M identity matrix. TheJf(xn) is the Jacobian matrix of chaotic mapf(xn),

which has the form

Jf(xn) =
∂f(xn)

∂xT
n

= diag
(
[f ′(x1n) f

′(x2n) · · · f ′(xMn )]T
)

(23)

wheref ′(xmn ) denotes the derivative off(xmn ). For example, the Jacobian matrix of logistic mapfL(xn)

and tent mapfT (xn), denoted byJfL(xn) andJfT (xn), respectively, are

JfL(xn) =
∂fL(xn)

∂xT
n

= diag(2µL. ∗ (1M×1 − 2xn)) (24)

JfT (xn) =
∂fT (xn)

∂xT
n

= diag(−2µT . ∗ (2sn − 1M×1) . ∗ xn) (25)

Since the diagonal elements of the FIM inverse are the minimum achievable variance values, the CRLB

of xm0 estimated from{y}N−1
0 , denoted by CRLB(xm0|N−1), is

CRLB(xm0|N−1) =
[(

FIM(x0|N−1)
)−1
]
m,m

(26)

where[A]m,m is the (m,m) entry ofA.
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V. SIMULATION RESULTS

Simulation results are carried out to confirm the effectiveness of the CML initial condition estimation

method of (5) in CML-logistic and CML-tent systems with different system parameters. Here, the number

of lattices isM = 5 and initial condition isx0 = [0.2 0.4 0.6 0.8 0.9]T . Moreover, the CML-logistic

and CML-tent systems are with identical map parameters ofµm
L = µL andµm

T = µT , respectively.

A. ILLE in CML systems

The ILLEs of the CML-logistic and CML-tent systems are plotted in Figs. 1 (a) and (b), respectively.

The coupling coefficient for both maps varies from 0 to 0.5,µL ∈ [3.57 4] andµT ∈ [0.5 1]. The black

area corresponds to a negative ILLE while the gray area represents the positive ILLE. We observe that the

ILLEs for the CML-tent system are smoother than those for theCML-logistic system, because the chaotic

characteristics between logistic map and tent map are different. That is, the logistic map experiences a

more complex procedure which includes chaotic and oscillation alternately whenµL varies from 3.57

to 4, while the tent map transits from regular to chaotic whenµT varies from 0.5 to 1. Furthermore,

the area of negative ILLE for the CML-tent system is larger than that for CML-logistic system, which

means that the initial condition estimation method can be applied more widely in CML-tent system. For

example, whenǫ = 0.2, µL = 4 andµT = 1, the ILLE for CML-tent system is negative while that for

CML-logistic system is positive.

B. Initial condition estimation in CML systems

The estimation performance is evaluated by MSE. Here, the MSE for each backward iterative stepi,

denoted by MSE(i), is defined as

MSE(i) =
1

L

L∑

j=1

‖xN−1−i − x̂
(j)
N−1−i‖22, i = 0, 1, · · · , N − 1 (27)

whereL is the number of independent runs, andx̂
(j)
n is the estimated value ofxn in the jth independent

run. The MSE, convergence rate (CR), and CRLB in dB are definedas follows:

MSE(i)dB = 10 log10(MSE(i)) (28)

CR(i)dB ≈ 20 log10 (‖δ(xN−1)‖2 exp (βmax(f, ǫ)i)) (29)

CRLB(x0|N−1)dB = 10 log10

(
M∑

m=1

CRLB(xm0|N−1)

)
(30)

where the CR which exposes the convergence rate of two close points whenβmax(f, ǫ) < 0 is just the

approximation form according to (8). All simulation results are averages ofL = 500 independent runs.
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Firstly, the effectiveness of the initial condition estimation method in CML-logistic system withµL = 4

is tested with the correct symbolic vector sequence and the results are plotted in Fig. 2. In each independent

run, we randomly selectη within the phase spaceIM as the estimated value of the(N − 1)th time step.

According to Fig. 2 (a), the MSEs roughly align with its corresponding CR curve whenǫ = 0.01, 0.05, 0.1,

here‖δ(xN−1)‖2 =
√
M‖η − xN−1‖2. In fact, in these cases, their corresponding systems are all with

negative ILLEs which illustrate the effectiveness of the initial condition estimation method. The CML-

logistic systems withǫ = 0.01 andǫ = 0.1 reach the floating point relative accuracy in MATLAB around

i = 60 and i = 120, respectively, which indicate that (i) the estimated result achieves the real value that

represented by (12), and (ii) the smaller the negative ILLE is, the faster the convergence rate is. On the

other hand, the MSEs withǫ = 0.35, 0.4 are very large and cannot converge to the real value since their

corresponding ILLEs are positive as shown in Fig. 2 (b).

Secondly, the above test is repeated in CML-tent system withµT = 1. As seen in Fig. 3 (a), the MSEs

for CML-tent system align quite well with their corresponding CR curves because the inverse CML-tent

system is a contraction map in these cases, while the inverseCML-logistic system is not [16], [17].

Furthermore, the MSEs diverge when the ILLE is larger than zero as described in Fig. 3 (b).

Finally, the signal estimation from noisy measurements{yn}N−1
0 is investigated. Here, we consider

the signal model of (1) subject to (4) with logistic map of (13) and tent map of (14), and investigate three

types of noises{wn}N−1
0 , namely, Gaussian, exponential and Rayleigh noises, respectively. All noises are

assigned same variance ofσ2
i = σ2 and their mean values are0, σ and

√
(πσ2)/(4 − π), respectively. The

estimated symbolic vector sequence{ŝn}N−1
0 is obtained using{yn}N−1

0 , that is,ŝmn = { 0, ym
n <0.5

1, ym
n ≥0.5 . The

sequence length isN = 10, and the MSEs with(N−1) iterative steps, denoted by MSE(N−1)dB, versus

different noise powerσ2 whenǫ = 0.1 andǫ = 0.4 are shown in Figs. 4 and 5, respectively. The MSEs

for CML-logistic and CML-tent systems with Gaussian noisescan approach CRLB atσ2 ≤ −35dB

and σ2 ≤ −55dB when ǫ = 0.1 as can be seen in Figs. 4 (a) and (b), respectively, while theyboth

cannot attain CRLB whenǫ = 0.4 with the same initial condition estimation method as shown in Fig. 5.

Furthermore, the performance under these three noise distributions is comparable, that is, the estimation

method works properly in Gaussian and non-Gaussian noises when the ILLE is negative. It is worth

noting that the estimation method does not require the values of noise variance and mean.

VI. CONCLUSION

In this paper, the effectiveness of initial condition estimation method for coupled map lattice (CML)

systems with different coupled coefficients and maps are fully investigated based on the convergence

and divergence properties of their inverse systems. The reason which leads to invalid estimation is

investigated and the inverse largest Lyapunov exponent (ILLE) for CML systems, is utilized to determine
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the effectiveness of the CML initial condition estimation method. Theoretical and experimental results

show that the CML initial condition estimation method is effective if and only if the ILLE is negative.

Otherwise, it is an invalid estimation method.

ACKNOWLEDGEMENT

This work was partly supported by the Natural Science Foundation of China (No. 61072037) and

Natural Science Foundation of Guangdong.

REFERENCES

[1] G. W. Frank, T. Lookman, M. A. H. Nerenberg, C. Essex, J. Lemieux, and W. Blume, “Chaotic time series analyses of

epileptic seizures,”Physica D: Nonlinear Phenomena, vol. 46, no. 3, pp. 427–438, 1990.

[2] G. P. Williams,Chaos Theory Tamed. Joseph Henry Press, 1997.

[3] S. Kay and V. Nagesha, “Methods for chaotic signal estimation,” IEEE Transactions on Signal Processing, vol. 43, no. 8,

pp. 2013–2016, 1995.

[4] H. C. Papadopoulos and G. W. Wornell, “Maximum-likelihood estimation of a class of chaotic signals,”IEEE Transactions

on Information Theory, vol. 41, no. 1, pp. 312–317, Jan. 1995.

[5] S. Kay, “Asymptotic maximum likelihood estimator performance for chaotic signals in noise,”IEEE Transactions on Signal

Processing, vol. 43, no. 4, pp. 1009–1012, April 1995.

[6] V. M. Alekseev and M. V. Yakobson, “Symbolic dynamics andhyperbolic dynamic systems,”Physics Reports, vol. 75,

no. 5, pp. 287–325, 1981.

[7] C. Ling, X. F. Wu, and S. G. Sun, “A general efficient methodfor chaotic signal estimation,”IEEE Transactions on Signal

Processing, vol. 47, no. 5, pp. 1424–1428, May 1999.

[8] K. Wang, W. J. Pei, S. P. Wang, Y. M. Cheung, and Z. Y. He, “Symbolic vector dynamics approach to initial condition and

control parameters estimation of coupled map lattices,”IEEE Transactions on Circuits Systems I: Regular Papers, vol. 55,

no. 4, pp. 1116–1124, May 2008.

[9] D. Coca and S. A. Billings, “Identification of coupled maplattice models of complex spatio-temporal patterns,”Physics

Letters A, pp. 65–73, Aug. 2001, 287.

[10] K. Kaneko, “Spatio-temporal intermittency in coupledmap lattices,”Progress of Theoretical Physics, vol. 74, pp. 1033–

1044, 1985.

[11] H. Leung, G. Hennessey, and A. Drosopoulos, “Signal detection using the radial basis function coupled map lattice,” IEEE

Transactions on Neural Networks, vol. 11, no. 5, Sept. 2000.

[12] Y. C. Zeng and Q. Y. Tong, “A statistical property to recover coarsely initial conditions from coupled map lattices,” Acta

Physica Sinica, vol. 52, pp. 285–291, 2003.

[13] Y. Liu, M. F. Shen, and H. Y. Chen, “Recovery of statistical property of initial conditions based on time-varying parameter

from coupled map lattices,”Acta Physica Sinica, pp. 564–571, 2006.

[14] S. D. Pethel, N. J. Corron, and E. Bollt, “Symbolic dynamics of coupled map lattices,”Physical Review Letters, vol. 96,

2006, 034105.

[15] K. Wang, W. J. Pei, Z. Y. He, and Y. M. Cheung, “Estimatinginitial conditions in coupled map lattices from noisy time

series using symbolic vector dynamics,”Physics Letters A, vol. 367, no. 4-5, pp. 316–321, 2007.

[16] M. F. Shen, L. X. Lin, X. Y. Li, and C. Q. Chang, “Initial condition estimate from coupled map lattices system based on

symbolic dynamics,”Acta Physica Sinica, vol. 58, pp. 47–55, 2009.

DRAFT



11

[17] L. S. Sun, X. Y. Kang, and L. X. Lin, “Analysis of convergence for initial condition estimation of coupled map lattices

based on symbolic dynamics,”Chinese Physics B, vol. 19, no. 11, 2010, 110507.

[18] B.-L. Hao, “Applied symbolic dynamics,”Chinese Journal of Physics, vol. 36, no. 6, pp. 753–757, 1998.

[19] K. Kaneko, “Lyapunov analysis and information flow in coupled map lattices,”Physica D, vol. 23, pp. 436–447, 1986.

[20] J. P. Eckmann and D. Ruelle, “Ergodic theory of chaos andstrange attractors,”Reviews of Modern Physics, vol. 57, no. 3,

pp. 617–656, July 1985.

[21] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest Lyapunov exponents from

small data sets,”Physica D, vol. 65, pp. 117–134, 1993.

[22] S. M. Kay,Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

0
0.1

0.2
0.3

0.4
0.5

3.4

3.6

3.8

4
−1

−0.5

0

0.5

1

1.5

2

2.5

 

εµ
L

 

IL
LE

(a)

0
0.1

0.2
0.3

0.4
0.5

0.4

0.6

0.8

1
−1

−0.5

0

0.5

1

1.5

2

2.5

 

εµ
T

 

IL
LE

(b)

Fig. 1. ILLE in CML system with different system parameters;(a) CML-logistic system withµL ∈ [3.57 4], ǫ ∈ [0 0.5]; (b)

CML-tent system withµT ∈ [0.5 1], ǫ ∈ [0 0.5].
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Fig. 2. MSE versus iterative step with differenceǫ in CML-logistic system whenµL = 4; (a) ǫ = 0.01, 0.05, 0.1; (b)

ǫ = 0.35, 0.4.
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Fig. 3. MSE versus iterative step with differenceǫ in CML-tent system whenµT = 1; (a) ǫ = 0.01, 0.05, 0.1; (b) ǫ = 0.35, 0.4.
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Fig. 4. MSE versusσ2 with ǫ = 0.1, N = 10 when the noises follow Gaussian, exponential and Rayleigh distribution,

respectively; (a) CML-logistic system; (b) CML-tent system.
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Fig. 5. MSE versusσ2 with ǫ = 0.4, N = 10 when the noises follow Gaussian, exponential and Rayleigh distribution,

respectively; (a) CML-logistic system; (b) CML-tent system.
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