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Abstract

In this paper, we focus on studying the problem of initial dibion estimation for chaotic signals
within the coupled map lattice (CML) systems. To investigiie effectiveness of a CML initial condition
estimation method with different maps and coupling coedfits, the convergence and divergence
properties of the inverse CML systems are analyzed. Invienggest Lyapunov exponent (ILLE) is
proposed to investigate the strength of convergence arefgiimce in the inverse CML systems, and
it can determine if the CML initial condition estimation rhet is effective. Computer simulations are
included to verify the relationship between the effecte®sn of the CML initial condition estimation
method and its corresponding ILLE.

Index Terms

Coupled map lattice; Symbolic dynamic; Initial conditiogtiation; Largest Lyapunov exponent;
Signal processing.

. INTRODUCTION

Many research works indicate that chaos is the most commengwhenon in the nature [1]. Being a
kind of deterministic signals, chaos draws great attentasrits characteristics of internal randomness,
meaning that chaotic signals are deterministic but thdiak®r appears to be random [2]. In the presence
of additive disturbance, we can extract the determinidigmos from the random noise by using the initial
condition, if the dynamic of the system is knownpriori [3]-[7]. As a result, the problem of initial
condition estimation of chaotic signals is an importaneegsh topic.

For one-dimensional (1-D) temporal chaotic map, it has lemed in [6] that there is a one-to-one

correspondence between the set of global orbits in the I¥ipaeal chaotic dynamical system and the set
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of its corresponding admissible symbolic sequence. An &fbporal initial condition estimation method
based on the symbolic dynamics has been proposed in [7]. mbikod first symbolizes the chaotic
signal in the presence of noise, and then estimates thaliogndition from the symbolic sequence. This
symbolic dynamics based method is effective for 1-D temipcinaotic signals, and its estimation error
converges exponentially with its Lyapunov exponent [7].

However, there exist many spatiotemporal chaotic sigmalgeal physical systems in fields as diverse
as communication, chemistry, biology, engineering andaggo[8], [9]. Coupled map lattice (CML),
which reproduces the essential features of spatiotempi@homena, has been of great interest in the
chaos research [10]. Knowing the initial condition can lfeate the analysis of the internal dynamics of
the spatiotemporal signals. Moreover, the sea cluttegrradhoes from a sea surface, is a spatiotemporal
signal and can be modeled by CML system [11]. When the indtiaddition is effectively estimated, we
are able to reconstruct the noise-free chaotic signalg;atidg that more robust detectors [11] for them
can be devised. In order to estimate initial condition in CBlstems, the first idea is to simplify the
CML into a temporal chaotic map without considering the effef spatial coupling [12]. An improvement
using time-varying temporal chaotic map model has beenqseg [13] to recover the initial condition
when the coupling is very weak in CML systems. Since [12],][&B mainly based on the idea of
temporal initial condition estimation, they can only imgisely recover the initial condition from the
weak coupled CML systems, and the estimation errors may becaptable for strongly coupled chaotic
systems. Consequently, it is necessary to investigate a ammurate method to estimate initial condition
in CML systems.

The relationship between symbolic dynamics and CML dynaimsystem has been investigated in
[14]. It is proved that the symbolic description is a comglend effective representation for studying
pattern formation in CML systems. Based on this work, a CMitidhcondition estimation method is
proposed in [8], [15] by introducing its symbolic dynamicdait is proved that any point in the state
space will converge to its initial condition with respectsiafficient backward iterations when the inverse
function of the CML is a contraction map. As a matter of fabg tontraction mapping theorem only
provides a sufficient condition of convergence [16], [17hiSTmeans that contraction map just produces
one of the sufficient conditions to support the existence tked point that leads to the convergence.
In [16], [17], we have proved that the inverse function of a ICBlystem with logistic map is not a
contraction map even when the coupling coefficient is sigaift small. We also claim that this CML
initial condition estimation method still works when therémse system is fully convergent. That is to say,
the convergence strength is larger than its divergencagittéen backward iterative procedure. However,
there is still no investigation on measuring the convergeaied divergence strength. In this work, we

further study the convergence and divergence propertiegvefse CML systems and then provide the
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necessary and sufficient condition for effective initiahddgion estimation.

The rest of this paper is organized as follows. The backgiamd technique of the initial condition
estimation problem based on symbolic dynamics are predeinteSection Il. In Section lll, the
convergence and divergence properties of inverse CML systeith different maps and coupling
coefficients are investigated by the inverse largest Lyape@xponent (ILLE). The necessary and sufficient
condition for effective initial condition estimation issal given. The Cramér-Rao lower bound (CRLB)
of the estimated initial conditions in uncorrelated Gaassioise is derived in Section IV. Simulation
results are included in Section V to confirm the proposed sesg and sufficient condition. Finally,

conclusions are drawn in Section VI.

II. CML INITIAL CONDITION ESTIMATION METHOD

The initial condition estimation technique has been prepom [15] to estimate a spatiotemporal

chaotic signalx,, generated byh in additive random noisev,,. Lety,, be its noisy observation, that is

Yn =Xp + Wp, 1)
xp, = h(xp—1), n=0,1,--- ,N -1 (2)
wherey, = [yt v2 - yM|T, x, = [z} 22 .- 2M]T andw,, = [w) w2 --- wM]T. Here, M is the

number of channels anl is the sequence length. The spatiotemporal chaoticlniaghe nonlinear and
noninvertible map which is modeled by a CML system. If thdi@hicondition, namelyxg, is perfectly
estimated from{y,, })' !, the noise-free{x,,}}' ' can be obtained according to (2), whefre,})'
representda,|n =0,1,--- ,N — 1}.

Considering the typical diffusive CML [10] witld/ sites labeledn , z]' is modeled as
) = (I—¢)f(z)) +€/2 [f(x?_l) + f(:cnm+1)] ,m=1,2--- M (3)

along with rules for periodic boundary condition, that ishemm = 1 andm = M, we havex}lﬂ =

(1 =) f(zp) +e/2[f (@) + f(a3)] andaply = (1= o) f (@) + ¢/2[f (@)71) + f ()], respectively.
The e denotes the coupling coefficient arfdis the chaotic map. The vector form of (3) is

Xpe1 = h(x,) = Af(x,) (4)

wheref (x,,) = [f(z}) f(22) - f(xM)]T andA is the M x M Toeplitz coupling matrix with the first

n n n

columna and the first rona”, a=[1—€c¢/2 0 --- 0 ¢/2]T.
~—

M-3
Here we assume that the coupling coefficiemtnd dynamics of the local map are known. Sincef

is a nonlinear and many-to-one function, its inverse functloes not exist within its whole phase space.

Therefore, the symbolic dynamic, which is a coarse-gratestription of dynamics [14], [18], has been
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introduced to make invertible within one partition of the phase space. The ideaymbolic dynamics
is that we firstly divide the phase space into a finite numbepaotitions and label each partition by a
number. Here, the map in each partition is monotonic. Then we record the alteomatf the numbers
instead of the accurate values of the signal points. In thpep we focus on the maps that their symbolic
dynamics are completely developed. Bt = {F}", P/", ...,Pq”il} be a finite disjoint partition of the
mth phase space in the CML system, thatﬁ;é P =1, P"NP" = ¢fork # . We assume that at
time n, the phase point;’ lies in thekth element of the partitiod, and we assign a symbs}' = &,
wherek € {0,1,...,q — 1}. If the ergodicity is preserved by the coupling, that is, thehavior of a
dynamical system averaged over time is the same as averagedpmace, then any orbit in phase space
IM of the CML system can be encoded as a semi-infinite symbotitovsequencésg, sy, ...,Sy,... }
wheres,, = [s} s2 .. sM|T [14].

When A is nonsingular, we gef(x,) = A~'x,.1, where A~! is the inverse matrix ofA. With the
introduction of the symbolic vectas,,, the mapsf are monotonic functions in each disjoint partition.
The inverse function of CML [8], [14] can then be generalized

xn, = hy ' (xn41) = £5 (A7 %041) (5)

wherehg! = £, 1o AL £ (x,,) = [t (2) fo' (22) -

1
Sy n

f&}(m%)]T ando denotes the composition
operator. In fact, we usg,; instead ofx,; in (5) sincex, 1 is unknown. It is well known that
some tiny errors will generate large errors via iteratiolemwthe system diverges. Therefore, we need
to investigate the convergence and divergence properfi@gsverse CML systems with different maps
and coupling coefficients to evaluate that the estimatdthirdondition is effective or not.

It is proved [8] that when the inverse function of CMi;! is the contraction map and the symbolic

vector sequencés,, {}”1 is known, then we have

lim hf(N;pl (n) = xo (6)

Nooo {sn}o
_(N
{sn}
However, the contraction mapping theorem only provides fiicent condition for convergence. In

whereh; V1) (n) =hg! (hg!---hg! (n)) andn is randomly selected within the phase spdéte

SN-—1
this paper, we focus on finding a sufficient and necessaryitomdor convergence.

[1l. THE CONVERGENCEPROPERTIES
A. Largest Lyapunov Exponent

Lyapunov exponent (LE), which gives the rate of exponersiparation or convergence of two
infinitesimally close initial conditions in phase space,aisvery important character in the spatially

extended system [19]. For CML systems, since its dimensolarger than one, there exists a set of
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Lyapunov exponents called Lyapunov spectrum, in which #rgest of them is the most important
character to describe the development of a small deviat®j, [[21]. For time series produced by
dynamical systems, the presence of a positive LE indicata@tabdivergence and chaos, while a negative
or zero-valued LE is a characteristic for regular behavitverefore, the largest LE in an inverse CML
system, which is referred to as the ILLE, is utilized to studg convergence and divergence properties
for the inverse CML systems.

It is well known that if \ is the largest LE of a deterministic mag,;,1 = g (z,,), wherez, g € R,

n=0,1,--- andR¥ denotes the set ok -dimensional real vector, we have [20], [21]

18" (z0) — &" (20 + &) |2 ~ [[€]l2€XP(An) (7)
where is the uncertainty in the initial condition. In the invers®IC system of (5), the ILLE, denoted
by Gmax(f, €), approximately satisfies the following equation

|0 = Xoiv—1 |, = 16Gcv—1)) |2 €xP (Bmax(f, €)(N — 1)) (8)

where||d(xx-1)||2 is the uncertainty incy 1 andxy_; denotes the estimated valuesaf with (N —1)
iterative steps.
Dividing (8) by ||0(xn—1)]|2 and taking the limit agdé(xy_1)[2 — 0 gives

exp (Bmax(f; €)(N — 1)) = HJh{*<1"};}jl(xN71)H2 ©)
whereJ, — -1 ) is the Jacobian matrix of functiogy = h{*s(]g;})l (xny—1). That is
{Sn}é\]71 N-1 nJo
N-2
aXO aXO 8X1 8XN72 -1
J —vea = = = Jeoio (A 10
h{s(n}évll(xjvil) 6X%—1 ax,{ 3Xg aX%_l g fsn (xn+1) ( )

wherex,, = A~ 1x, andesfl(xM) is the Jacobian matrix of inverse chaotic n@(inﬂ).

Noting that the spectral radius of a symmetric matFix v, (xx_1)? denoted byp, is equal to its
sp )y 1N _
matrix 2-norm and taking the limilv — oo on the both sides of (9), we obtain

. 1
frad1.0) = i () = it (L () (11)
wherery, - -- ,ry are the eigenvalues of the matdy - v X 1)" Hence the ILLE can be determined

{snl}g B

when the map and coupling coefficient are known.
Since a positive largest LE indicates chaos, and a negadigedt LE indicates temporal periodic

behavior and spatially invariant structure with time [18} have the following lemma.

Lemma. Given a CML system with a known map and coupling coefficient,it{s, } is correct, the

initial condition can be perfectly obtained as

lim Kov_1) = lim h A7 (n) = x (12)

N—o00 N—ooo 1iSn}o

DRAFT



if and only if the ILLE of the CML system is negative for arfigrn € IM. In addition, the convergence
rate of the backward iterative approximation error is expatially proportional to the ILLE according

to (8). Otherwise, we cannot estimate the initial conditinrthe CML systems.

Proof: According to (8),

X0 — iolN_1H2 = H(S(X(N_l))HQ exp (,Bmax(f, E)(N — 1)), take the limit

(N —1) — oo on both sides, we hangim Xo|(N—1) = X0 When the ILLE of the CML systenfimax(f, €),
—00

is negative. [ |

B. Examples

In order to show the calculations of the inverse funcfign and Jacobian matrid ;- , Without

Ll (’szrl)

loss of generality, we use the CML systems with logistic m@ML-logistic) and tent map (CML-tent)

as illustrations. Their vector forms, denoted f3)(x,,) and fr(x,,), respectively, are

fr(xn) = pp. *Xpn. % (Lars1 — Xp) (13)
fT(Xn) = K. * (]—M><1 — Q‘Xn — 0-51M><1‘) (14)

wherea. x b is the element-wise multiplication af by b and1,,.; denotes thel/ x 1 vector with all
elements 1. Theu, = [pt p2 - M7 andpp = [ty - )T are the parameters that dramatically
affect the behavior of the map.

The inverse functions of CML-logistic and CML-tent systemienoted b)hg}sn andh;}sn, respectively,
are

Xy = h]:lsn (Xn+1) = f]:; (Ailxn_i_l) =0.51p%x1 + 05(2Sn — 1M><1)- * \/1M><1 — 4in+1-//"'L (15)

n

Xy = hilsn (Xn—l—l) = fiin(A_lxn-i-l) =0.51p%x1 + 05(2Sn — 1M><1)- * (]—M><1 — in-l—l-//"/T) (16)
wherea./b represents element-wise division @fby b, \/a is the element-wise square root @f and

0, m < 0.5
M= n (17)
1, 2™ >0.5.

The Jacobian matrix of the inverse logistic mﬁpéﬂ(;‘cnﬂ) and that of the inverse tent map

frs, (Xn+1), denoted byl (o ) andJg: ( ), respectively, are

,S

L

Jet (=) = diag (‘ (28n — 1nrx1) -/ </J'L- v/ 1arx1 — 45<n+1/NL)) (18)

Je-

1=
T,sn (Xn+1

= diag(—0.5 (28, — Larx1) ./ i) (19)

where diag represents the diagonal operator. According@pdnd (11), the ILLEs for the CML-logistic

and CML-tent systems are obtained.
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IV. CRAMER-RAO LOWER BOUND

The CRLB gives a lower bound on variance attainable by anyasel estimators using the same
data, and thus it can be served as an important benchmarkpace with the mean square error (MSE)
of the initial condition estimation method. Therefore, mstsection, the CRLB based on the model of
(1) subject to (4) is derived. For simplicity but without $osf generality, here we assume uncorrelated
zero-mean Gaussian noise with variarfeg,}. Our task is to estimatg, from {y, }5'~'. We first have
[22]:

yn ~ N (Af(x,,-1),C) (20)

That is,y, is Gaussian distributed with meahf (x,_;) and covarianc&C = diag [0 o5 --- o3/]).

Its probability density function (PDF) is

N
p <{Yn}év_1' XO) = exp _% Z (Yn - Xn)T c! (Yn - Xn) (21)

(2m)N/2det/?[C]
where det represents matrix determinant.

The Fisher information matrix (FIM) fox, estimated from{yn}évfl, denoted by FIMxgy_1), is

N-1
FM o) = 3 BICTB, @)
n=0
where B — Ox, | Inrxar if n=0
tooxt 0 :
0 Hi:n—l AJf(xI)a if n>0

with I/« being theM x M identity matrix. TheJg(, ) is the Jacobian matrix of chaotic mdfx,, ),
which has the form

e,y = Tt = diag(f'(ah) fad) -+ Fa]T) (29

where f/(x!"") denotes the derivative gf(z"*). For example, the Jacobian matrix of logistic nfagx,,)

and tent magfr(x,), denoted byly, () andJg, (), respectively, are

ofr (x, .

JfL(xn) = 6L)((T ) = dlag(Q[,l,L. * (1M><1 — 2Xn)) (24)
ofr(x, .

Jtr(x,) = g)((T ) = diag(—2p7. * (28, — Larx1) - * Xp) (25)

Since the diagonal elements of the FIM inverse are the mimirachievable variance values, the CRLB
of 27" estimated from{y};"!, denoted by CRLB{!y ), is
m —1
CRLB(zly_1) = | (FIM(xon—1) '] (26)

where[A], . is the (m,m) entry of A.
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V. SIMULATION RESULTS

Simulation results are carried out to confirm the effectaemof the CML initial condition estimation
method of (5) in CML-logistic and CML-tent systems with @ifent system parameters. Here, the number
of lattices isM = 5 and initial condition isxq = [0.2 0.4 0.6 0.8 0.9]7. Moreover, the CML-logistic
and CML-tent systems are with identical map parametergjot= n and ' = pur, respectively.

A. ILLE in CML systems

The ILLEs of the CML-logistic and CML-tent systems are pdottin Figs. 1 (a) and (b), respectively.
The coupling coefficient for both maps varies from 0 to Qup,€ [3.57 4] and u7 € [0.5 1]. The black
area corresponds to a negative ILLE while the gray area septs the positive ILLE. We observe that the
ILLEs for the CML-tent system are smoother than those for@ML-logistic system, because the chaotic
characteristics between logistic map and tent map areréifte That is, the logistic map experiences a
more complex procedure which includes chaotic and osoiliaalternately when.; varies from 3.57
to 4, while the tent map transits from regular to chaotic whgnvaries from 0.5 to 1. Furthermore,
the area of negative ILLE for the CML-tent system is largearthhat for CML-logistic system, which
means that the initial condition estimation method can kq@iegh more widely in CML-tent system. For
example, where = 0.2, u; = 4 andur = 1, the ILLE for CML-tent system is negative while that for

CML-logistic system is positive.

B. Initial condition estimation in CML systems

The estimation performance is evaluated by MSE. Here, th& K6% each backward iterative stép
denoted by MSE), is defined as

L
‘ 1 ~(j .
MSE(Z) = E Z HXN—l—i - Xg\]/)flfngv 1= 07 17 o 7N -1 (27)
j=1

where L is the number of independent runs, a?tﬁél) is the estimated value of,, in the jth independent
run. The MSE, convergence rate (CR), and CRLB in dB are defasefbllows:

MSE(i)gg = 101og;,(MSE(3)) (28)

CR(i)as ~ 201ogyg ([[6(xn-1)l|2 exp (Bmax(f, €)7)) (29)
M

CRLB(xo|n_1)ds = 10logy (Z CRLB(xg”Nl)> (30)
m=1

where the CR which exposes the convergence rate of two cloisgspvhenSmax(f,€) < 0 is just the

approximation form according to (8). All simulation resulire averages df = 500 independent runs.
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Firstly, the effectiveness of the initial condition estiima method in CML-logistic system with;, = 4
is tested with the correct symbolic vector sequence andethdts are plotted in Fig. 2. In each independent
run, we randomly seleaj within the phase spacE” as the estimated value of tii&/ — 1)th time step.
According to Fig. 2 (a), the MSEs roughly align with its capending CR curve when= 0.01, 0.05, 0.1,
here||6(xny_1)|l2 = VM|n — xn_1]]2. In fact, in these cases, their corresponding systems bveithl
negative ILLEs which illustrate the effectiveness of thédiah condition estimation method. The CML-
logistic systems witkk = 0.01 ande = 0.1 reach the floating point relative accuracy in MATLAB around
1 =60 andi = 120, respectively, which indicate that (i) the estimated reachieves the real value that
represented by (12), and (ii) the smaller the negative IL§Rhe faster the convergence rate is. On the
other hand, the MSEs with= 0.35, 0.4 are very large and cannot converge to the real value sinde the
corresponding ILLEs are positive as shown in Fig. 2 (b).

Secondly, the above test is repeated in CML-tent system pyith- 1. As seen in Fig. 3 (a), the MSEs
for CML-tent system align quite well with their correspondiCR curves because the inverse CML-tent
system is a contraction map in these cases, while the in@kke-logistic system is not [16], [17].
Furthermore, the MSEs diverge when the ILLE is larger thaw 2 described in Fig. 3 (b).

Finally, the signal estimation from noisy measureme[@tg}é\"1 is investigated. Here, we consider
the signal model of (1) subject to (4) with logistic map of YE&d tent map of (14), and investigate three
types of noises{wn}év‘l, namely, Gaussian, exponential and Rayleigh noises, cégply. All noises are
assigned same varianceaf = ¢ and their mean values abec and./(ro?)/(4 — =), respectively. The
estimated symbolic vector sequer(@ }) " is obtained usindy, }) ', thatis,s7 = { | ¥.502. The
sequence length & = 10, and the MSEs witi{ N — 1) iterative steps, denoted by M&F — 1)4g, versus
different noise powet? whene = 0.1 ande = 0.4 are shown in Figs. 4 and 5, respectively. The MSEs
for CML-logistic and CML-tent systems with Gaussian noises approach CRLB at? < —35dB
ando? < —55dB whene = 0.1 as can be seen in Figs. 4 (a) and (b), respectively, while Hugl
cannot attain CRLB when = 0.4 with the same initial condition estimation method as showFig. 5.
Furthermore, the performance under these three noisébditns is comparable, that is, the estimation
method works properly in Gaussian and non-Gaussian noibes the ILLE is negative. It is worth

noting that the estimation method does not require the sabfieoise variance and mean.

VI. CONCLUSION

In this paper, the effectiveness of initial condition estiran method for coupled map lattice (CML)
systems with different coupled coefficients and maps any falestigated based on the convergence
and divergence properties of their inverse systems. Theoreavhich leads to invalid estimation is
investigated and the inverse largest Lyapunov exponeh&)lfor CML systems, is utilized to determine
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the effectiveness of the CML initial condition estimatioretimod. Theoretical and experimental results
show that the CML initial condition estimation method isegffive if and only if the ILLE is negative.

Otherwise, it is an invalid estimation method.
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