
1

Diffusion Adaptation Strategies for Distributed

Optimization and Learning over Networks
Jianshu Chen, Student Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract

We propose an adaptive diffusion mechanism to optimize a global cost function in a distributed

manner over a network of nodes. The cost function is assumed to consist of a collection of individual

components. Diffusion adaptation allows the nodes to cooperate and diffuse information in real-time; it

also helps alleviate the effects of stochastic gradient noise and measurement noise through a continu-

ous learning process. We analyze the mean-square-error performance of the algorithm in some detail,

including its transient and steady-state behavior. We also apply the diffusion algorithm to two problems:

distributed estimation with sparse parameters and distributed localization. Compared to well-studied

incremental methods, diffusion methods do not require the use of a cyclic path over the nodes and

are robust to node and link failure. Diffusion methods also endow networks with adaptation abilities

that enable the individual nodes to continue learning even when the cost function changes with time.

Examples involving such dynamic cost functions with moving targets are common in the context of

biological networks.

Index Terms

Distributed optimization, diffusion adaptation, incremental techniques, learning, energy conservation,

biological networks, mean-square performance, convergence, stability.

I. INTRODUCTION

We consider the problem of optimizing a global cost function in a distributed manner. The cost function

is assumed to consist of the sum of individual components, and spatially distributed nodes are used to

Manuscript received October 30, 2011; revised March 15, 2012. This work was supported in part by NSF grants CCF-1011918

and CCF-0942936. Preliminary results related to this work are reported in the conference presentations [1] and [2].

The authors are with Department of Electrical Engineering, University of California, Los Angeles, CA 90095. Email: {jshchen,

sayed}@ee.ucla.edu.

May 15, 2012 DRAFT

ar
X

iv
:1

11
1.

00
34

v3
 [

m
at

h.
O

C
]

 1
2

M
ay

 2
01

2

2

seek the common minimizer (or maximizer) through local interactions. Such problems abound in the

context of biological networks, where agents collaborate with each other via local interactions for a

common objective, such as locating food sources or evading predators [3]. Similar problems are common

in distributed resource allocation applications and in online machine learning procedures. In the latter

case, data that are generated by the same underlying distribution are processed in a distributed manner

over a network of learners in order to recover the model parameters (e.g., [4], [5]).

There are already a few of useful techniques for the solution of optimization problems in a distributed

manner [6]–[24]. Most notable among these methods is the incremental approach [6]–[9] and the con-

sensus approach [10]–[23]. In the incremental approach, a cyclic path is defined over the nodes and

data are processed in a cyclic manner through the network until optimization is achieved. However,

determining a cyclic path that covers all nodes is known to be an NP-hard problem [25] and, in addition,

cyclic trajectories are prone to link and node failures. When any of the edges along the path fails, the

sharing of data through the cyclic trajectory is interrupted and the algorithm stops performing. In the

consensus approach, vanishing step-sizes are used to ensure that nodes reach consensus and converge

to the same optimizer in steady-state. However, in time-varying environments, diminishing step-sizes

prevent the network from continuous learning and optimization; when the step-sizes die out, the network

stops learning. In earlier publications [26]–[35], and motivated by our work on adaptation and learning

over networks, we introduced the concept of diffusion adaptation and showed how this technique can be

used to solve global minimum mean-square-error estimation problems efficiently both in real-time and

in a distributed manner. In the diffusion approach, information is processed locally and simultaneously

at all nodes and the processed data are diffused through a real-time sharing mechanism that ripples

through the network continuously. Diffusion adaptation was applied to model complex patterns of behavior

encountered in biological networks, such as bird flight formations [36] and fish schooling [3]. Diffusion

adaptation was also applied to solve dynamic resource allocation problems in cognitive radios [37],

to perform robust system identification [38], and to implement distributed online learning in pattern

recognition applications [5].

This paper generalizes the diffusive learning process and applies it to the distributed optimization

of a wide class of cost functions. The diffusion approach will be shown to alleviate the effect of

gradient noise on convergence. Most other studies on distributed optimization tend to focus on the

almost-sure convergence of the algorithms under diminishing step-size conditions [6], [7], [39]–[43], or

on convergence under deterministic conditions on the data [6]–[8], [15]. In this article we instead examine

the distributed algorithms from a mean-square-error perspective at constant step-sizes. This is because

May 15, 2012 DRAFT

3

constant step-sizes are necessary for continuous adaptation, learning, and tracking, which in turn enable

the resulting algorithms to perform well even under data that exhibit statistical variations, measurement

noise, and gradient noise.

This paper is organized as follows. In Sec. II, we introduce the global cost function and approximate

it by a distributed optimization problem through the use of a second-order Taylor series expansion. In

Sec. III, we show that optimizing the localized alternative cost at each node k leads naturally to diffusion

adaptation strategies. In Sec. IV, we analyze the mean-square performance of the diffusion algorithms

under statistical perturbations when stochastic gradients are used. In Sec. V, we apply the diffusion

algorithms to two application problems: sparse distributed estimation and distributed localization. Finally,

in Sec. VI, we conclude the paper.

Notation. Throughout the paper, all vectors are column vectors except for the regressors {uk,i}, which

are taken to be row vectors for simplicity of notation. We use boldface letters to denote random quantities

(such as uk,i) and regular font letters to denote their realizations or deterministic variables (such as uk,i).

We write E to denote the expectation operator. We use diag{x1, . . . , xN} to denote a diagonal matrix

consisting of diagonal entries x1, . . . , xN , and use col{x1, . . . , xN} to denote a column vector formed

by stacking x1, . . . , xN on top of each other. For symmetric matrices X and Y , the notation X ≤ Y

denotes Y −X ≥ 0, namely, that the matrix difference Y −X is positive semi-definite.

II. PROBLEM FORMULATION

The objective is to determine, in a collaborative and distributed manner, the M×1 column vector wo

that minimizes a global cost of the form:

Jglob(w) =

N∑
l=1

Jl(w) (1)

where Jl(w), l = 1, 2, . . . , N , are individual real-valued functions, defined over w ∈ RM and assumed to

be differentiable and strictly convex. Then, Jglob(w) in (1) is also strictly convex so that the minimizer

wo is unique [44]. In this article we study the important case where the component functions {Jl(w)} are

minimized at the same wo. This case is common in practice; situations abound where nodes in a network

need to work cooperatively to attain a common objective (such as tracking a target, locating the source

of chemical leak, estimating a physical model, or identifying a statistical distribution). This scenario is

also frequent in the context of biological networks. For example, during the foraging behavior of an

animal group, each agent in the group is interested in determining the same vector wo that corresponds

to the location of the food source or the location of the predator [3]. This scenario is equally common

May 15, 2012 DRAFT

4

in online distributed machine learning problems, where data samples are often generated from the same

underlying distribution and they are processed in a distributed manner by different nodes (e.g., [4], [5]).

The case where the {Jl(w)} have different individual minimizers is studied in [45]; this situation is more

challenging to study. Nevertheless, it is shown in [45] that the same diffusion strategies (18)–(19) of this

paper are still applicable and nodes would converge instead to a Pareto-optimal solution.

Our strategy to optimize the global cost Jglob(w) in a distributed manner is based on three steps.

First, using a second-order Taylor series expansion, we argue that Jglob(w) can be approximated by an

alternative localized cost that is amenable to distributed optimization — see (11). Second, each individual

node optimizes this alternative cost via a steepest-descent procedure that relies solely on interactions

within the neighborhood of the node. Finally, the local estimates for wo are spatially combined by each

node and the procedure repeats itself in real-time.

To motivate the approach, we start by introducing a set of nonnegative coefficients {cl,k} that satisfy:

N∑
k=1

cl,k = 1, cl,k = 0 if l /∈ Nk, l = 1, 2, . . . , N (2)

where Nk denotes the neighborhood of node k (including node k itself); the neighbors of node k consist

of all nodes with which node k can share information. Each cl,k represents a weight value that node

k assigns to information arriving from its neighbor l. Condition (2) states that the sum of all weights

leaving each node l should be one. Using the coefficients {cl,k}, we can express Jglob(w) from (1) as

Jglob(w) = J loc
k (w) +

N∑
l 6=k

J loc
l (w) (3)

where

J loc
k (w) ,

∑
l∈Nk

cl,kJl(w) (4)

In other words, for each node k, we are introducing a new local cost function, J loc
k (w), which corresponds

to a weighted combination of the costs of its neighbors. Since the {cl,k} are all nonnegative and each

Jl(w) is convex, then J loc
k (w) is also a convex function (actually, the J loc

k (w) will be guaranteed to be

strongly convex in our treatment in view of Assumption 1 further ahead).

Now, each J loc
l (w) in the second term of (3) can be approximated via a second-order Taylor series

expansion as:

J loc
l (w) ≈ J loc

l (wo) + ‖w − wo‖2Γl
(5)

May 15, 2012 DRAFT

5

1

2

4

8

7

k

5

9

3

6

NkNk

ak;1

ck;1

Jk (w)

J1(w)

J2(w)

J3(w)

J5(w) J6(w)

J4(w)
J7(w)

J9(w)

J8(w)

a1;k

c1;k

Fig. 1. A network with N nodes; a cost function Jk(w) is associated with each node k. The set of neighbors of node k is

denoted by Nk; this set consists of all nodes with which node k can share information.

where Γl =
1
2∇

2
wJ

loc
l (wo) is the (scaled) Hessian matrix relative to w and evaluated at w=wo, and the

notation ‖a‖2Σ denotes aTΣa for any weighting matrix Σ. The analysis in the subsequent sections will

show that the second-order approximation (5) is sufficient to ensure mean-square convergence of the

resulting diffusion algorithm. Now, substituting (5) into the right-hand side of (3) gives:

Jglob(w) ≈ J loc
k (w)+

∑
l 6=k
‖w−wo‖2Γl

+
∑
l 6=k

J loc
l (wo) (6)

The last term in the above expression does not depend on the unknown w. Therefore, we can ignore it

so that optimizing Jglob(w) is approximately equivalent to optimizing the following alternative cost:

Jglob′(w) , J loc
k (w) +

∑
l 6=k
‖w − wo‖2Γl

(7)

III. ITERATIVE DIFFUSION SOLUTION

Expression (7) relates the original global cost (1) to the newly-defined local cost function J loc
k (w).

The relation is through the second term on the right-hand side of (7), which corresponds to a sum of

quadratic terms involving the minimizer wo. Obviously, wo is not available at node k since the nodes wish

to estimate wo. Likewise, not all Hessian matrices Γl are available to node k. Nevertheless, expression (7)

suggests a useful approximation that leads to a powerful distributed solution, as we proceed to explain.

Our first step is to replace the global cost Jglob′(w) by a reasonable localized approximation for it at

every node k. Thus, initially we limit the summation on the right-hand side of (7) to the neighbors of

node k and introduce the cost function:

Jglob′

k (w) , J loc
k (w) +

∑
l∈Nk\{k}

‖w − wo‖2Γl
(8)

May 15, 2012 DRAFT

6

Compared with (7), the last term in (8) involves only quantities that are available in the neighborhood of

node k. The argument involving steps (5)–(8) therefore shows us one way by which we can adjust the

earlier local cost function J loc
k (w) defined in (4) by adding to it the last term that appears in (8). Doing

so, we end up replacing J loc
k (w) by Jglob′

k (w), and this new localized cost function preserves the second

term in (3) up to a second-order approximation. This correction will help lead to a diffusion step (see

(14)–(15)).

Now, observe that the cost in (8) includes the quantities {Γl}, which belong to the neighbors of node k.

These quantities may or may not be available. If they are known, then we can proceed with (8) and rely

on the use of the Hessian matrices Γl in the subsequent development. Nevertheless, the more interesting

situation in practice is when these Hessian matrices are not known beforehand (especially since they

depend on the unknown wo). For this reason, in this article, we approximate each Γl in (8) by a multiple

of the identity matrix, say,

Γl ≈ bl,kIM (9)

for some nonnegative coefficients {bl,k}; observe that we are allowing the coefficient bl,k to vary with

the node index k. Such approximations are common in stochastic approximation theory and help reduce

the complexity of the resulting algorithms — see [44, pp.20–28] and [46, pp.142–147]. Approximation

(9) is reasonable since, in view of the Rayleigh-Ritz characterization of eigenvalues [47], we can always

bound the weighted squared norm ‖w − wo‖2Γl
by the unweighted squared norm as follows

λmin(Γl) · ‖w−wo‖2 ≤ ‖w−wo‖2Γl
≤ λmax(Γl) · ‖w−wo‖2

Thus, we replace (8) by

Jglob′′

k (w) , J loc
k (w) +

∑
l∈Nk\{k}

bl,k‖w − wo‖2 (10)

As the derivation will show, we do not need to worry at this stage about how the scalars {bl,k} are

selected; they will be embedded into other combination weights that the designer selects. If we replace

J loc
k (w) by its definition (4), we can rewrite (10) as

Jglob′′

k (w) =
∑
l∈Nk

cl,kJl(w) +
∑

l∈Nk\{k}

bl,k‖w−wo‖2 (11)

Observe that cost (11) is different for different nodes; this is because the choices of the weighting scalars

{cl,k, bl,k} vary across nodes k; moreover, the neighborhoods vary with k. Nevertheless, these localized

cost functions now constitute the important starting point for the development of diffusion strategies for

the online and distributed optimization of (1).

May 15, 2012 DRAFT

7

Each node k can apply a steepest-descent iteration to minimize Jglob′′

k (w) by moving along the negative

direction of the gradient (column) vector of the cost function, namely,

wk,i = wk,i−1 − µk
∑
l∈Nk

cl,k∇wJl(wk,i−1)

− µk
∑

l∈Nk\{k}

2bl,k(wk,i−1 − wo), i ≥ 0 (12)

where wk,i denotes the estimate for wo at node k at time i, and µk denotes a small constant positive

step-size parameter. While vanishing step-sizes, such as µk(i) = 1/i, can be used in (12), we consider in

this paper the case of constant step-sizes. This is because we are interested in distributed strategies that

are able to continue adapting and learning. An important question to address therefore is how close each

of the wk,i gets to the optimal solution wo; we answer this question later in the paper by means of a

mean-square-error convergence analysis (see expression (88)). It will be seen then that the mean-square-

error (MSE) of the algorithm will be of the order of the step-size; hence, sufficiently small step-sizes

will lead to sufficiently small MSEs.

Expression (12) adds two correction terms to the previous estimate, wk,i−1, in order to update it to

wk,i. The correction terms can be added one at a time in a succession of two steps, for example, as:

ψk,i = wk,i−1 − µk
∑
l∈Nk

cl,k∇wJl(wk,i−1) (13)

wk,i = ψk,i − µk
∑

l∈Nk\{k}

2bl,k(wk,i−1 − wo) (14)

Step (13) updates wk,i−1 to an intermediate value ψk,i by using a combination of local gradient vectors.

Step (14) further updates ψk,i to wk,i by using a combination of local estimates. However, two issues

arise while examining (14):

(a) First, iteration (14) requires knowledge of the optimizer wo. However, all nodes are running similar

updates to estimate the wo. By the time node k wishes to apply (14), each of its neighbors would

have performed its own update similar to (13) and would have available their intermediate estimates,

{ψl,i}. Therefore, we replace wo in (14) by ψl,i. This step helps diffuse information over the network

and brings into node k information that exists beyond its immediate neighborhood; this is because

each ψl,i is influenced by data from the neighbors of node l. We observe that this diffusive term

arises from the quadratic approximation (5) we have made to the second term in (3).

(b) Second, the intermediate value ψk,i in (13) is generally a better estimate for wo than wk,i−1

since it is obtained by incorporating information from the neighbors through (13). Therefore, we

May 15, 2012 DRAFT

8

further replace wk,i−1 in (14) by ψk,i. This step is reminiscent of incremental-type approaches to

optimization, which have been widely studied in the literature [6]–[9].

Performing the substitutions described in items (a) and (b) into (14), we obtain:

wk,i = ψk,i − µk
∑

l∈Nk\{k}

2bl,k(ψk,i − ψl,i) (15)

Now introduce the coefficients

al,k , 2µkbl,k (l 6=k), ak,k , 1−µk
∑

l∈Nk\{k}

2bl,k (16)

Note that the {al,k} are nonnegative for l 6= k and ak,k ≥ 0 for sufficiently small step-sizes. Moreover,

the coefficients {al,k} satisfy
N∑
l=1

al,k = 1, al,k = 0 if l /∈ Nk (17)

Using (16) in (15), we arrive at the following Adapt-then-Combine (ATC) diffusion strategy (whose

structure is the same as the ATC algorithm originally proposed in [29]–[31] for mean-square-error

estimation):

ψk,i = wk,i−1 − µk
∑
l∈Nk

cl,k∇wJl(wk,i−1)

wk,i =
∑
l∈Nk

al,kψl,i
(18)

To run algorithm (18), we only need to select combination coefficients {al,k, cl,k} satisfying (2) and (17),

respectively; there is no need to worry about the intermediate coefficients {bl,k} any more, since they

have been blended into the {al,k}. The ATC algorithm (18) involves two steps. In the first step, node k

receives gradient vector information from its neighbors and uses it to update its estimate wk,i−1 to an

intermediate value ψk,i. All other nodes in the network are performing a similar step and generating their

intermediate estimate ψl,i. In the second step, node k aggregates the estimates {ψl,i} of its neighbors and

generates wk,i. Again, all other nodes are performing a similar step. Similarly, if we reverse the order of

steps (13) and (14) to implement (12), we can motivate the following alternative Combine-then-Adapt

(CTA) diffusion strategy (whose structure is similar to the CTA algorithm originally proposed in [26]–[32]

for mean-square-error estimation):

ψk,i−1 =
∑
l∈Nk

al,kwl,i−1

wk,i = ψk,i−1 − µk
∑
l∈Nk

cl,k∇wJl(ψk,i−1)
(19)

May 15, 2012 DRAFT

9

Adaptive diffusion strategies of the above ATC and CTA types were first proposed and extended in [26]–

[34] for the solution of distributed mean-square-error, least-squares, and state-space estimation problems

over networks. The special form of ATC strategy (18) for minimum-mean-square-error estimation is listed

further ahead as Eq. (57) in Example 3; the same strategy as (57) also appeared in [48] albeit with a

vanishing step-size sequence to ensure convergence towards consensus. A special case of the diffusion

strategy (19) (corresponding to choosing cl,k = 0 for l 6= k and ck,k = 1, i.e., without sharing gradient

information) was used in the works [39], [40], [43] to solve distributed optimization problems that require

all nodes to reach agreement about wo by relying on step-sizes that decay to zero with time. Diffusion

recursions of the forms (18) and (19) are more general than these earlier investigations in a couple of

respects. First, they do not only diffuse the local estimates, but they can also diffuse the local gradient

vectors. In other words, two sets of combination coefficients {al,k, cl,k} are used. Second, the combination

weights {al,k} are not required to be doubly stochastic (which would require both the rows and columns

of the weighting matrix A = [al,k] to add up to one; as seen from (17), we only require the entries on

the columns of A to add up to one). Finally, and most importantly, the step-size parameters {µk} in (18)

and (19) are not required to depend on the time index i and are not required to vanish as i→∞. Instead,

they can assume constant values, which is critical to endow the network with continuous adaptation and

learning abilities (otherwise, when step-sizes die out, the network stops learning). Constant step-sizes

also endow networks with tracking abilities, in which case the algorithms can track time changes in the

optimal wo.

Constant step-sizes will be shown further ahead to be sufficient to guarantee agreement among the

nodes when there is no noise in the data. However, when measurement noise and gradient noise are

present, using constant step-sizes does not force the nodes to attain agreement about wo (i.e., to converge

to the same wo). Instead, the nodes will be shown to tend to individual estimates for wo that are within

a small mean-square-error (MSE) bound from the optimal solution; the bound will be proportional to the

step-size so that sufficiently small step-sizes lead to small MSE values. Multi-agent systems in nature

behave in this manner; they do not require exact agreement among their agents but allow for fluctuations

due to individual noise levels (see [3], [36]). Giving individual nodes this flexibility, rather than forcing

them to operate in agreement with the remaining nodes, ends up leading to nodes with enhanced learning

abilities.

Before proceeding to a detailed analysis of the performance of the diffusion algorithms (18)–(19), we

note that these strategies differ in important ways from traditional consensus-based distributed solutions,

May 15, 2012 DRAFT

10

which are of the following form [10], [14], [15], [18]:

wk,i =
∑
l∈Nk

al,kwk,i−1 − µk(i) · ∇wJl(wk,i−1) (20)

usually with a time-variant step-size sequence, µk(i), that decays to zero. For example, if we set C ,

[cl,k] = I in the CTA algorithm (19) and substitute the combination step into the adaptation step, we

obtain:

wk,i =
∑
l∈Nk

al,kwk,i−1 − µk∇wJl

(∑
l∈Nk

al,kwk,i−1

)
(21)

Thus, note that the gradient vector in (21) is evaluated at ψk,i−1, while in (20) it is evaluated at wk,i−1.

Since ψk,i−1 already incorporates information from neighbors, we would expect the diffusion algorithm

to perform better. Actually, it is shown in [49] that, for mean-square-error estimation problems, diffusion

strategies achieve higher convergence rate and lower mean-square-error than consensus strategies due to

these differences in the dynamics of the algorithms.

IV. MEAN-SQUARE PERFORMANCE ANALYSIS

The diffusion algorithms (18) and (19) depend on sharing local gradient vectors ∇wJl(·). In many

cases of practical relevance, the exact gradient vectors are not available and approximations are instead

used. We model the inaccuracy in the gradient vectors as some random additive noise component, say,

of the form:

∇̂wJl(w) = ∇wJl(w) + vl,i(w) (22)

where vl,i(·) denotes the perturbation and is often referred to as gradient noise. Note that we are using

a boldface symbol v to refer to the gradient noise since it is generally stochastic in nature.

Example 1. Assume the individual cost Jl(w) at node l can be expressed as the expected value of a

certain loss function Ql(·, ·), i.e., Jl(w) = E{Ql(w,xl,i)}, where the expectation is with respect to the

randomness in the data samples {xl,i} that are collected at node l at time i. Then, if we replace the true

gradient ∇wJl(w) with its stochastic gradient approximation ∇̂wJl(w) = ∇wQl(w,xl,i), we find that

the gradient noise in this case can be expressed as

vl,i(w) = ∇wQl(w,xl,i)−∇wE{Ql(w,xl,i)} (23)

May 15, 2012 DRAFT

11

Using the perturbed gradient vectors (22), the diffusion algorithms (18)–(19) become the following:

(ATC)

ψk,i = wk,i−1−µk
∑
l∈Nk

cl,k∇̂wJl(wk,i−1)

wk,i =
∑
l∈Nk

al,kψl,i
(24)

(CTA)

ψk,i−1 =
∑
l∈Nk

al,kwl,i−1

wk,i = ψk,i−1−µk
∑
l∈Nk

cl,k∇̂wJl(ψk,i−1)
(25)

Observe that, starting with (24)–(25), we will be using boldface letters to refer to the various estimate

quantities in order to highlight the fact that they are also stochastic in nature due to the presence of the

gradient noise.

Given the above algorithms, it is necessary to examine their performance in light of the approximation

steps (6)–(15) that were employed to arrive at them, and in light of the gradient noise (22) that seeps

into the recursions. A convenient framework to carry out this analysis is mean-square analysis. In this

framework, we assess how close the individual estimates wk,i get to the minimizer wo in the mean-square-

error (MSE) sense. In practice, it is not necessary to force the individual agents to reach agreement and

to converge to the same wo using diminishing step-sizes. It is sufficient for the nodes to converge within

acceptable MSE bounds from wo. This flexibility is beneficial and is common in biological networks; it

allows nodes to learn and adapt in time-varying environments without the forced requirement of having

to agree with neighbors.

The main results that we derive in this section are summarized as follows. First, we derive conditions on

the constant step-sizes to ensure boundedness and convergence of the mean-square-error for sufficiently

small step-sizes — see (80) and (106) further ahead. Second, despite the fact that nodes influence each

other’s behavior, we are able to quantify the performance of every node in the network and to derive

closed-form expressions for the mean-square performance at small step-sizes — see (106)–(108). Finally,

as a special case, we are able to show that constant step-sizes can still ensure that the estimates across

all nodes converge to the optimal wo and reach agreement in the absence of noise — see Theorem 2.

Motivated by [31], we address the mean-square-error performance of the adaptive ATC and CTA

diffusion strategies (24)–(25) by treating them as special cases of a general diffusion structure of the

May 15, 2012 DRAFT

12

following form:

φk,i−1 =

N∑
l=1

p1,l,kwl,i−1 (26)

ψk,i = φk,i−1 − µk
N∑
l=1

sl,k

[
∇wJl(φk,i−1) + vl,i(φk,i−1)

]
(27)

wk,i =

N∑
l=1

p2,l,kψl,i (28)

The coefficients {p1,l,k}, {sl,k}, and {p2,l,k} are nonnegative real coefficients corresponding to the {l, k}-

th entries of three matrices P1, S, and P2, respectively. Different choices for {P1, P2, S} correspond to

different cooperation modes. For example, the choice P1 = I , P2 = I and S = I corresponds to the

non-cooperative case where nodes do not interact. On the other hand, the choice P1 = I , P2 = A = [al,k]

and S = C = [cl,k] corresponds to ATC [29]–[31], while the choice P1 = A, P2 = I and S = C

corresponds to CTA [26]–[31]. We can also set S = I in ATC and CTA to derive simplified versions

that have no gradient exchange [29]. Furthermore, if in CTA (P2 = I), we enforce P1 = A to be doubly

stochastic, set S = I , and use a time-decaying step-size parameter (µk(i) → 0), then we obtain the

unconstrained version used by [39], [43]. The matrices {P1, P2, S} are required to satisfy:

P T1 1 = 1, P T2 1 = 1, S1 = 1 (29)

where the notation 1 denotes a vector whose entries are all equal to one.

A. Error Recursions

We first derive the error recursions corresponding to the general diffusion formulation in (26)–(28).

Introduce the error vectors:

φ̃k,i , wo−φk,i, ψ̃k,i , wo−ψk,i, w̃k,i , wo−wk,i (30)

Then, subtracting both sides of (26)–(28) from wo gives:

φ̃k,i−1 =

N∑
l=1

p1,l,kw̃l,i−1 (31)

ψ̃k,i = φ̃k,i−1 + µk

N∑
l=1

sl,k

[
∇wJl(φk,i−1) + vl,i(φk,i−1)

]
(32)

w̃k,i =

N∑
l=1

p2,l,kψ̃l,i (33)

May 15, 2012 DRAFT

13

Expression (32) still includes terms that depend on φk,i−1 and not on the error quantity, φ̃k,i−1. We

can find a relation in terms of φ̃k,i−1 by calling upon the following result from [44, p.24] for any

twice-differentiable function f(·):

∇f(y) = ∇f(x) +

[∫ 1

0
∇2f

(
x+t(y−x)

)
dt

]
(y − x) (34)

where ∇2f(·) denotes the Hessian matrix of f(·) and is symmetric. Now, since each component function

Jl(w) has a minimizer at wo, then, ∇wJl(wo) = 0 for l = 1, 2, . . . , N . Applying (34) to Jl(w) using

x = wo and y = φk,i−1, we get

∇wJl(φk,i−1)

= ∇wJl(wo)−
[∫ 1

0
∇2
wJl

(
wo − tφ̃k,i−1

)
dt

]
φ̃k,i−1

, −Hl,k,i−1φ̃k,i−1 (35)

where we are introducing the symmetric random matrix

Hl,k,i−1 ,
∫ 1

0
∇2
wJl

(
wo − tφ̃k,i−1

)
dt (36)

Observe that one such matrix is associated with every edge linking two nodes (l, k); observe further that

this matrix changes with time since it depends on the estimate at node k. Substituting (35)–(36) into (32)

leads to:

ψ̃k,i =

[
IM − µk

N∑
l=1

sl,kHl,k,i−1

]
φ̃k,i−1

+ µk

N∑
l=1

sl,kvl,i(φk,i−1) (37)

We introduce the network error vectors, which collect the error quantities across all nodes:

φ̃i ,


φ̃1,i

...

φ̃N,i

 , ψ̃i ,


ψ̃1,i

...

ψ̃N,i

 , w̃i ,


w̃1,i

...

w̃N,i

 (38)

May 15, 2012 DRAFT

14

and the following block matrices:

P1 = P1 ⊗ IM , P2 = P2 ⊗ IM (39)

S = S ⊗ IM , M = Ω⊗ IM (40)

Ω = diag {µ1, . . . , µN} (41)

Di−1 =

N∑
l=1

diag
{
sl,1Hl,1,i−1, · · · , sl,NHl,N,i−1

}
(42)

gi =

N∑
l=1

col
{
sl,1vl,i(φ1,i−1), · · · ,sl,Nvl,i(φN,i−1)

}
(43)

where the symbol ⊗ denotes Kronecker products [50]. Then, recursions (31), (37) and (33) lead to:

w̃i = PT2 [IMN −MDi−1]PT1 w̃i−1 + PT2Mgi (44)

To proceed with the analysis, we introduce the following assumption on the cost functions and gradient

noise, followed by a lemma on Hl,k,i−1.

Assumption 1 (Bounded Hessian). Each component cost function Jl(w) has a bounded Hessian matrix,

i.e., there exist nonnegative real numbers λl,min and λl,max such that λl,min ≤ λl,max and that for all w:

λl,minIM ≤ ∇2
wJl(w) ≤ λl,maxIM (45)

Furthermore, the {λl,min}Nl=1 satisfy

N∑
l=1

sl,kλl,min > 0, k = 1, 2, . . . , N (46)

Condition (46) ensures that the local cost functions {J loc
k (w)} defined earlier in (4) are strongly convex

and, hence, have a unique minimizer at wo.

Assumption 2 (Gradient noise). There exist α ≥ 0 and σ2
v ≥ 0 such that, for all w ∈ Fi−1 and for all

i, l:

E {vl,i(w) | Fi−1} = 0 (47)

E
{
‖vl,i(w)‖2

}
≤ αE‖wo −w‖2 + σ2

v (48)

where Fi−1 denotes the past history (σ−field) of estimates {wk,j} for j ≤ i− 1 and all k.

May 15, 2012 DRAFT

15

Lemma 1 (Bound onHl,k,i−1). Under Assumption 1, the matrixHl,k,i−1 defined in (36) is a nonnegative-

definite matrix that satisfies:

λl,minIM ≤Hl,k,i−1 ≤ λl,maxIM (49)

Proof: It suffices to prove that λl,min ≤ xTHl,k,i−1x ≤ λl,max for arbitrary M × 1 unit Euclidean norm

vectors x. By (36) and (45), we have

xTHl,k,i−1x =

∫ 1

0
xT∇2

wJl

(
wo − tφ̃k,i−1

)
x dt

≤
∫ 1

0
λl,maxdt = λl,max

In a similar way, we can verify that xTHl,k,i−1x ≥ λl,min.

In distributed subgradient methods (e.g., [15], [39], [43]), the norms of the subgradients are usually

required to be uniformly bounded. Such assumption is restrictive in the unconstrained optimization of

differentiable functions. Assumption 1 is more relaxed in that it allows the gradient vector ∇wJl(w)

to have unbounded norm (e.g., quadratic costs). Furthermore, condition (48) allows the variance of the

gradient noise to grow no faster than E‖wo−w‖2. This condition is also more general than the uniform

bounded assumption used in [39] (Assumptions 5.1 and 6.1), which requires instead:

E‖vl,i(w)‖2≤σ2
v , E

{
‖vl,i(w)‖2|Fi−1

}
≤σ2

v (50)

Furthermore, condition (48) is similar to condition (4.3) in [51, p.635]:

E
{
‖vl,i(w)‖2|Fi−1

}
≤ α

[
‖∇wJl(w)‖2 + 1

]
(51)

which is a combination of the “relative random noise” and the “absolute random noise” conditions defined

in [44, pp.100–102]. Indeed, we can derive (48) by substituting (35) into (51), taking expectation with

respect to Fi−1, and then using (49).

Example 2. Such a mix of “relative random noise” and “absolute random noise” is of practical impor-

tance. For instance, consider an example in which the loss function at node l is chosen to be of the

following quadratic form:

Ql(w, {ul,i,dl(i)}) = |dl(i)− ul,iw|2

for some scalars {dl(i)} and 1×M regression vectors {ul,i}. The corresponding cost function is then:

Jl(w) = E|dl(i)− ul,iw|2 (52)

May 15, 2012 DRAFT

16

Assume further that the data {ul,i,dl(i)} satisfy the linear regression model

dl(i) = ul,iw
o + zl(i) (53)

where the regressors {ul,i} are zero mean and independent over time with covariance matrix Ru,l =

E{uTl,iul,i}, and the noise sequence {zk(j)} is also zero mean, white, with variance σ2
z,k, and independent

of the regressors {ul,i} for all l, k, i, j. Then, using (53) and (23), the gradient noise in this case can be

expressed as:

vl,i(w) = 2(Ru,l − uTl,iul,i)(wo −w)− 2uTl,izl(i) (54)

It can easily be verified that this noise satisfies both conditions stated in Assumption 2, namely, (47) and

also:

E
{
‖vl,i(w)‖2

}
≤ 4E‖Ru,l−uTl,iul,i‖2 · E‖wo−w‖2+4σ2

z,lTr(Ru,l) (55)

for all w ∈ Fi−1. Note that both relative random noise and absolute random noise components appear in

(55) and are necessary to model the statistical gradient perturbation even for quadratic costs. Such costs,

and linear regression models of the form (53), arise frequently in the context of adaptive filters — see,

e.g., [9], [26]–[33], [36], [46], [52]–[55].

Example 3. Quadratic costs of the form (52) are common in mean-square-error estimation for linear

regression models of the type (53). If we use the instantaneous approximations as is common in the context

of stochastic approximation and adaptive filtering [44], [46], [52], then the actual gradient ∇wJl(w) can

be approximated by

∇̂wJl(w) = ∇wQl(w, {ul,i,dl(i)})

= −2uTl,i[dl(i)− ul,iw] (56)

Substituting into (24)–(25), and assuming C = I for illustration purposes only, we arrive at the following

ATC and CTA diffusion strategies originally proposed and extended in [26]–[31] for the solution of

distributed mean-square-error estimation problems:

(ATC)

ψk,i = wk,i−1+2µku
T
k,i[dk(i)−uk,iwk,i−1]

wk,i =
∑
l∈Nk

al,kψl,i
(57)

May 15, 2012 DRAFT

17

(CTA)
ψk,i−1 =

∑
l∈Nk

al,kwl,i−1

wk,i = ψk,i−1+2µku
T
k,i[dk(i)−uk,iψk,i−1]

(58)

B. Variance Relations

The purpose of the mean-square analysis in the sequel is to answer two questions in the presence

of gradient perturbations. First, how small the mean-square error, E‖w̃k,i‖2, gets as i → ∞ for any

of the nodes k. Second, how fast this error variance tends towards its steady-state value. The first

question pertains to steady-state performance and the second question pertains to transient/convergence

rate performance. Answering such questions for a distributed algorithm over a network is a challenging

task largely because the nodes influence each other’s behavior: performance at one node diffuses through

the network to the other nodes as a result of the topological constraints linking the nodes. The approach

we take to examine the mean-square performance of the diffusion algorithms is by studying how the

variance E‖w̃k,i‖2, or a weighted version of it, evolves over time. As the derivation will show, the

evolution of this variance satisfies a nonlinear relation. Under some reasonable assumptions on the noise

profile, and the local cost functions, we will be able to bound these error variances as well as estimate

their steady-state values for sufficiently small step-sizes. We will also derive closed-form expressions that

characterize the network performance. The details are as follows.

Equating the squared weighted Euclidean norm of both sides of (44), applying the expectation operator

and using using (47), we can show that the following variance relation holds:

E‖w̃i‖2Σ = E
{
‖w̃i−1‖2Σ′

}
+ E‖PT2Mgi‖2Σ

Σ′ = P1[IMN−MDi−1]P2ΣPT2 [IMN−MDi−1]PT1
(59)

where Σ is a positive semi-definite weighting matrix that we are free to choose. The variance expression

(59) shows how the quantity E‖w̃i‖2Σ evolves with time. Observe, however, that the weighting matrix

on w̃i−1 on the right-hand side of (59) is a different matrix, denoted by Σ′, and this matrix is actually

random in nature (while Σ is deterministic). As such, result (59) is not truly a recursion. Nevertheless,

it is possible, under a small step-size approximation, to rework variance relations such as (59) into a

recursion by following certain steps that are characteristic of the energy conservation approach to mean-

square analysis [46].

The first step in this regard would be to replace Σ′ by its mean EΣ′. However, the matrix Σ′ depends on

the {Hl,k,i−1} via Di−1 (see (42)). It follows from the definition of Hl,k,i−1 in (36) that Σ′ is dependent

May 15, 2012 DRAFT

18

on φ̃k,i−1 as well, which in turn is a linear combination of the {w̃l,i−1}. Therefore, the main challenge to

continue from (59) is that Σ′ depends on w̃i−1. For this reason, we cannot apply directly the traditional

step of replacing Σ′ in the first equation of (59) by EΣ′ as is typically done in the study of stand-alone

adaptive filters to analyze their transient behavior [46, p.345]; in the case of conventional adaptive filters,

the matrix Σ′ is independent of w̃i−1. To address this difficulty, we shall adjust the argument to rely

on a set of inequality recursions that will enable us to bound the steady-state mean-square-error at each

node — see Theorem 1 further ahead.

The procedure is as follows. First, we note that ‖x‖2 is a convex function of x, and that expressions

(31) and (33) are convex combinations of {w̃l,i−1} and {ψ̃l,i}, respectively. Then, by Jensen’s inequality

[56, p.77] and taking expectations, we obtain

E‖φ̃k,i−1‖2 ≤
N∑
l=1

p1,l,kE‖w̃l,i−1‖2 (60)

E‖w̃k,i‖2 ≤
N∑
l=1

p2,l,kE‖ψ̃l,i‖2 (61)

for k = 1, . . . , N . Next, we derive a variance relation for (37). Equating the squared Euclidean norms of

both sides of (37), applying the expectation operator, and using (47) from Assumption 2, we get

E‖ψ̃k,i‖2 = E
{
‖φ̃k,i−1‖2Σk,i−1

}
+µ2

kE

∥∥∥∥∥
N∑
l=1

sl,kvl,i(φk,i−1)

∥∥∥∥∥
2

(62)

where

Σk,i−1 =

[
IM−µk

N∑
l=1

sl,kHl,k,i−1

]2

(63)

We call upon the following two lemmas to bound (62).

Lemma 2 (Bound on Σk,i−1). The weighting matrix Σk,i−1 defined in (63) is a symmetric, positive

semi-definite matrix, and satisfies:

0 ≤ Σk,i−1 ≤ γ2
kIM (64)

where

γk , max

{∣∣∣∣∣1−µk
N∑
l=1

sl,kλl,max

∣∣∣∣∣,
∣∣∣∣∣1−µk

N∑
l=1

sl,kλl,min

∣∣∣∣∣
}

(65)

May 15, 2012 DRAFT

19

Proof: By definition (63) and the fact that Hl,k,i−1 is symmetric — see definition (36), the matrix

IM−µk
∑N

l=1 sl,kHl,k,i−1 is also symmetric. Hence, its square, Σk,i−1, is symmetric and also nonnegative-

definite. To establish (64), we first use (49) to note that:

IM−µk
N∑
l=1

sl,kHl,k,i−1 ≥

(
1−µk

N∑
l=1

sl,kλl,max

)
IM (66)

IM−µk
N∑
l=1

sl,kHl,k,i−1 ≤

(
1−µk

N∑
l=1

sl,kλl,min

)
IM (67)

The matrix IM − µk
∑N

l=1 sl,kHl,k,i−1 may not be positive semi-definite because we have not specified

a range for µk yet; the expressions on the right-hand side of (66)–(67) may still be negative. However,

inequalities (66)–(67) imply that the eigenvalues of IM − µk
∑N

l=1 sl,kHl,k,i−1 are bounded as:

λ

(
IM − µk

N∑
l=1

sl,kHl,k,i−1

)
≥ 1− µk

N∑
l=1

sl,kλl,max (68)

λ

(
IM − µk

N∑
l=1

sl,kHl,k,i−1

)
≤ 1− µk

N∑
l=1

sl,kλl,min (69)

By definition (63), Σk,i−1 is the square of the symmetric matrix IM−µk
∑N

l=1 sl,kHl,k,i−1, meaning that

λ (Σk,i−1) =

[
λ

(
IM − µk

N∑
l=1

sl,kHl,k,i−1

)]2

≥ 0 (70)

Substituting (68)–(69) into (70) leads to

λ (Σk,i−1)

≤ max

{∣∣∣∣∣1− µk
N∑
l=1

sl,kλl,max

∣∣∣∣∣
2

,

∣∣∣∣∣1− µk
N∑
l=1

sl,kλl,min

∣∣∣∣∣
2}

(71)

which is equivalent to (64).

Lemma 3 (Bound on noise combination). The second term on the right-hand-side of (62) satisfies:

E

∥∥∥∥∥
N∑
l=1

sl,kvl,i(φk,i−1)

∥∥∥∥∥
2

≤ ‖S‖21 ·
[
αE‖φ̃k,i−1‖2+σ2

v

]
(72)

where ‖S‖1 denotes the 1-norm of the matrix S (i.e., the maximum absolute column sum).

May 15, 2012 DRAFT

20

Proof: Applying Jensen’s inequality [56, p.77], it holds that

E

∥∥∥∥∥
N∑
l=1

sl,kvl,i(φk,i−1)

∥∥∥∥∥
2

=
(N∑
l=1

sl,k

)2
· E

∥∥∥∥∥
N∑
l=1

sl,k∑N
l=1 sl,k

vl,i(φk,i−1)

∥∥∥∥∥
2

≤
(N∑
l=1

sl,k

)2
·
N∑
l=1

sl,k∑N
l=1 sl,k

E‖vl,i(φk,i−1)‖2

=
(N∑
l=1

sl,k

)
·
N∑
l=1

sl,kE‖vl,i(φk,i−1)‖2

≤
(N∑
l=1

sl,k

)2
·
[
αE‖φ̃k,i−1‖2 + σ2

v

]
(73)

≤ ‖S‖21 ·
[
αE‖φ̃k,i−1‖2 + σ2

v

]
(74)

where inequality (73) follows by substituting (48), and (74) is obtained using the fact that ‖S‖1 is the

maximum absolute column sum and that the entries {sl,k} are nonnegative.

Substituting (64) and (72) into (62), we obtain:

E‖ψ̃k,i‖2 ≤ (γ2
k+µ2

kα‖S‖21)·E‖φ̃k,i−1‖2+µ2
k ‖S‖21 σ2

v (75)

for k = 1, . . . , N . Finally, introduce the following network mean-square-error vectors (compare with

(38)):

Xi =


E‖φ̃1,i‖2

...

E‖φ̃N,i‖2

 , Yi =


E‖ψ̃1,i‖2

...

E‖ψ̃N,i‖2

 , Wi =


E‖w̃1,i‖2

...

E‖w̃N,i‖2


and the matrix

Γ = diag
{
γ2

1 + µ2
1α‖S‖21, . . . , γ2

N + µ2
Nα‖S‖21

}
(76)

Then, (60)–(61) and (75) can be written as

Xi−1 � P T1 Wi−1

Yi � ΓXi−1 + σ2
v‖S‖21Ω21

Wi � P T2 Yi

(77)

May 15, 2012 DRAFT

21

where the notation x � y denotes that the components of vector x are less than or equal to the

corresponding components of vector y. We now recall the following useful fact that for any matrix

F with nonnegative entries,

x � y ⇒ Fx � Fy (78)

This is because each entry of the vector Fy−Fx = F (y−x) is nonnegative. Then, combining all three

inequalities in (77) leads to:

Wi � P T2 ΓP T1 Wi−1 + σ2
v‖S‖21 · P T2 Ω21 (79)

C. Mean-Square Stability

Based on (79), we can now prove that, under certain conditions on the step-size parameters {µk}, the

mean-square-error vector Wi is bounded as i → ∞, and we use this result in the next subsection to

evaluate the steady-state MSE for sufficiently small step-sizes.

Theorem 1 (Mean-Square Stability). If the step-sizes {µk} satisfy the following condition:

0 < µk < min

{
2σk,max

σ2
k,max+α‖S‖21

,
2σk,min

σ2
k,min+α‖S‖21

}
(80)

for k = 1, . . . , N , where σk,max and σk,min are defined as

σk,max ,
N∑
l=1

sl,kλl,max, σk,min ,
N∑
l=1

sl,kλl,min (81)

then, as i→∞,

lim sup
i→∞

‖Wi‖∞ ≤

(
max

1≤k≤N
µ2
k

)
· ‖S‖21σ2

v

1− max
1≤k≤N

(γ2
k + µ2

kα‖S‖21)
(82)

where ‖x‖∞ denotes the maximum absolute entry of vector x.

Proof: See Appendix A.

If we let α=0 and σ2
v=0 in Theorem 1, and examine the arguments leading to it, we conclude the

validity of the following result, which establishes the convergence of the diffusion strategies (24)–(25)

in the absence of gradient noise (i.e., using the true gradient rather than stochastic gradient — see (18)

and (19)).

May 15, 2012 DRAFT

22

Theorem 2 (Convergence in Noise-free Case). If there is no gradient noise, i.e., α = 0 and σ2
v = 0, then

the mean-square-error vector becomes the deterministic vector Wi = col{‖w̃1,i‖2, · · · , ‖w̃N,i‖2}, and its

entries converge to zero if the step-sizes {µk} satisfy the following condition:

0 < µk <
2

σk,max
(83)

for k = 1, . . . , N , where σk,max was defined in (81).

We observe that, in the absence of noise, the deterministic error vectors, w̃k,i, will tend to zero as

i→∞ even with constant (i.e., non-vanishing) step-sizes. This result implies the interesting fact that, in

the noise-free case, the nodes can reach agreement without the need to impose diminishing step-sizes.

D. Steady-State Performance

Expression (80) provides a condition on the step-size parameters {µk} to ensure the mean-square

stability of the diffusion strategies (24)–(25). At the same time, expression (82) gives an upper bound on

how largeWi can be at steady-state. Since the∞-norm of a vector is defined as the largest absolute value

of its entries, then (82) bounds the MSE of the worst-performing node in the network. We can derive

closed-form expressions for MSEs when the step-sizes are assumed to be sufficiently small. Indeed, we

first conclude from (82) that for step-sizes that are sufficiently small, each wk,i will get closer to wo at

steady-state. To verify this fact, assume the step-sizes are small enough so that the nonnegative factor γk

that was defined earlier in (65) becomes

γk = 1− µk
N∑
l=1

sl,kλl,min = 1− µkσk,min (84)

where σk,min was given by (81). Substituting (84) into (82), we obtain:

lim sup
i→∞

‖Wi‖∞

≤

(
max

1≤k≤N
µ2
k

)
· ‖S‖21σ2

v

1− max
1≤k≤N

{
(1−µkσk,min)2+µ2

kα‖S‖21

}

≤

(
max

1≤k≤N
µ2
k

)
· ‖S‖21σ2

v

min
1≤k≤N

{
µk

[
2σk,min − µk(σ2

k,min + α‖S‖21)

]}

May 15, 2012 DRAFT

23

≤ ‖S‖21σ2
v

min
1≤k≤N

{
2σk,min−µk(σ2

k,min+α‖S‖21)

} · µ2
max

µmin
(85)

where

µmax, max
1≤k≤N

µk, µmin, min
1≤k≤N

µk (86)

For sufficiently small step-sizes, the denominator in (85) can be approximated as

2σk,min−µk(σ2
k,min+α‖S‖21) ≈ 2σk,min (87)

Substituting into (85), we get

lim sup
i→∞

‖Wi‖∞ ≤
‖S‖21σ2

v

2 min
1≤k≤N

σk,min
· µ

2
max

µmin
(88)

Therefore, if the step-sizes are sufficiently small, the MSE of each node becomes small as well. This

result is clear when all nodes use the same step-sizes such that µmax = µmin = µ. Then, the right-hand

side of (88) is on the order of O(µ), as indicated. It follows that {w̃k,i} are small in the mean-square-error

sense at small step-sizes, which also means that the mean-square value of φ̃k,i−1 is small because it is

a convex combination of {w̃k,i} (recall (31)). Then, by definition (36), in steady-state (for large enough

i), the matrix Hl,k,i−1 can be approximated by:

Hl,k,i−1 ≈
∫ 1

0
∇2Jl(w

o)dt = ∇2Jl(w
o) (89)

In this case, the matrix Hl,k,i−1 is not random anymore and is not dependent on the error vector φ̃k,,i−1.

Accordingly, in steady-state, the matrix Di−1 that was defined in (42) is not random anymore and it

becomes

Di−1≈D∞,
N∑
l=1

diag
{
sl,1∇2

wJl(w
o), · · · ,sl,N∇2

wJl(w
o)
}

(90)

As a result, in steady-state, the original error recursion (44) can be approximated by

w̃i = PT2 [IMN −MD∞]PT1 w̃i−1 + PT2Mgi (91)

Taking expectations of both sides of (91), we obtain the following mean-error recursion

Ew̃i = PT2 [IMN −MD∞]PT1 · Ew̃i−1, i→∞ (92)

which converges to zero if the matrix

B , PT2 [IMN −MD∞]PT1 (93)

May 15, 2012 DRAFT

24

is stable. The stability of B can be guaranteed when the step-sizes are sufficiently small (or chosen

according to (80)) — see the proof in Appendix C. Therefore, in steady-state, we have

lim
i→∞

Ew̃i = 0 (94)

Next, we determine an expression (rather than a bound) for the MSE. To do this, we need to evaluate the

covariance matrix of the gradient noise vector gi. Recall from (43) that gi depends on {φk,i−1}, which

is close to wo at steady-state for small step-sizes. Therefore, it is sufficient to determine the covariance

matrix of gi at wo. We denote this covariance matrix by:

Rv , E{gigTi }
∣∣∣
φk,i−1=wo

= E


[
N∑
l=1

col
{
sl,1vl,i(w

o), · · · , sl,Nvl,i(wo)
}]

×

[
N∑
l=1

col
{
sl,1vl,i(w

o), · · · , sl,Nvl,i(wo)
}]T (95)

In practice, we can evaluate Rv from the expressions of {vl,i(wo)}. For example, for the case of the

quadratic cost (52), we can substitute (54) into (95) to evaluate Rv.

Returning to the last term in the first equation of (59), we can evaluate it as follows:

E‖PT2Mgi‖2Σ = EgTi MP2ΣPT2Mgi

= Tr
(
ΣPT2ME{gigTi }MP2

)
= Tr

(
ΣPT2MRvMP2

)
(96)

Using (90), the matrix Σ′ in (59) becomes a deterministic quantity as well, and is given by:

Σ′ ≈ P1[IMN −MD∞]P2ΣPT2 [IMN −MD∞]PT1 (97)

Substituting (96) and (97) into (59), an approximate variance relation is obtained for small step-sizes:

E‖w̃i‖2Σ ≈ E‖w̃i−1‖2Σ′ + Tr
(
ΣPT2MRvMP2

)
(98)

Σ′ ≈ P1[IMN−MD∞]P2ΣPT2 [IMN−MD∞]PT1 (99)

Let σ = vec(Σ) denote the vectorization operation that stacks the columns of a matrix Σ on top of each

other. We shall use the notation ‖x‖2σ and ‖x‖2Σ interchangeably to denote the weighted squared Euclidean

norm of a vector. Using the Kronecker product property [57, p.147]: vec(UΣV) = (V T ⊗U)vec(Σ), we

can vectorize Σ′ in (99) and find that its vector form is related to Σ via the following linear relation:

May 15, 2012 DRAFT

25

σ′ , vec(Σ′) ≈ Fσ, where, for sufficiently small steps-sizes (so that higher powers of the step-sizes can

be ignored), the matrix F is given by

F,
(
P1[IMN−MD∞]P2

)
⊗
(
P1[IMN−MD∞]P2

)
(100)

Here, we used the fact thatM and D∞ are block diagonal and symmetric. Furthermore, using the property

Tr(ΣX) = vec(XT)Tσ, we can rewrite (98) as

E‖w̃i‖2σ ≈ E‖w̃i−1‖2Fσ +
[
vec
(
PT2MRvMP2

)]T
σ (101)

It is shown in [46, pp.344–346] that recursion (101) converges to a steady-state value if the matrix F

is stable. This condition is guaranteed when the step-sizes are sufficiently small (or chosen according to

(80)) — see Appendix C. Finally, denoting

E‖w̃∞‖2σ , lim
i→∞

E‖w̃i‖2σ (102)

and letting i→∞, expression (101) becomes

E‖w̃∞‖2σ ≈ E‖w̃∞‖2Fσ +
[
vec
(
PT2MRvMP2

)]T
σ

so that

E‖w̃∞‖2(I−F)σ ≈
[
vec
(
PT2MRvMP2

)]T
σ (103)

Expression (103) is a useful result: it allows us to derive several performance metrics through the proper

selection of the free weighting parameter σ (or Σ). First, to be able to evaluate steady-state performance

metrics from (103), we need (I − F) to be invertible, which is guaranteed by the stability of matrix F

— see Appendix C. Given that (I − F) is a stable matrix, we can now resort to (103) and use it to

evaluate various performance metrics by choosing proper weighting matrices Σ (or σ), as it was done in

[31] for the mean-square-error estimation problem. For example, the MSE of any node k can be obtained

by computing E‖w̃∞‖2T with a block weighting matrix T that has an identity matrix at block (k, k) and

zeros elsewhere:

E‖w̃k,∞‖2 = E‖w̃∞‖2T (104)

Denote the vectorized version of this matrix by tk, i.e.,

tk , vec(diag(ek)⊗ IM) (105)

May 15, 2012 DRAFT

26

where ek is a vector whose kth entry is one and zeros elsewhere. Then, if we select σ in (103) as

σ = (I − F)−1tk, the term on the left-hand side becomes the desired E‖w̃k,∞‖2 and MSE for node k

is therefore given by:

MSEk ≈
[
vec
(
PT2MRvMP2

)]T
(I −F)−1tk (106)

This value for MSEk is actually the kth entry of W∞ defined as

W∞ , lim
i→∞
Wi (107)

Then, we arrive at an expression forW∞ (as opposed to the bound for it in (82), as was explained earlier;

expression (108) is derived under the assumption of sufficiently small step-sizes):

W∞≈
{
IN⊗

([
vec
(
PT2MRvMP2

)]T
(I−F)−1

)}
t (108)

where t = col{t1, . . . , tN}. If we are interested in the network MSE, then the weighting matrix of

E‖w̃∞‖2T should be chosen as T = IMN/N . Let q denote the vectorized version of IMN , i.e.,

q , vec(IMN) (109)

and select σ in (103) as σ = (I−F)−1q/N . The network MSE is then given by

MSE ,
1

N

N∑
k=1

MSEk

≈ 1

N

[
vec
(
PT2MRvMP2

)]T
(I −F)−1q

(110)

The approximate expressions (108) and (110) hold when the step-sizes are small enough so that (90)

holds. In the next section, we will see that they are consistent with the simulation results.

V. SIMULATION RESULTS

In this section we illustrate the performance of the diffusion strategies (24)–(25) by considering two

applications. We consider a randomly generated connected network topology with a cyclic path. There

are a total of N = 10 nodes in the network, and nodes are assumed connected when they are close

enough geographically. In the simulations, we consider two applications: a regularized least-mean-squares

estimation problem with sparse parameters, and a collaborative localization problem.

May 15, 2012 DRAFT

27

A. Distributed Estimation with Sparse Data

Assume each node k has access to data {Uk,i,dk,i}, generated according to the following model:

dk,i = Uk,iw
o + zk,i (111)

where {Uk,i} is a sequence of K ×M i.i.d. Gaussian random matrices. The entries of each Uk,i have

zero mean and unit variance, and zk,i ∼ N (0, σ2
zIK) is the measurement noise that is temporally and

spatially white and is independent of Ul,j for all k, l, i, j. Our objective is to estimate wo from the data

set {Uk,i,dk,i} in a distributed manner. In many applications, the vector wo is sparse such as

wo = [1 0 . . . 0 1]T ∈ RM

One way to search for sparse solutions is to consider a global cost function of the following form [58]:

Jglob(w) =

N∑
l=1

E‖dl,i −Ul,iw‖22 + ρR(w) (112)

where R(w) and ρ are the regularization function and regularization factor, respectively. A popular

choice is R(w) = ‖w‖1, which helps enforce sparsity and is convex [58]–[63]. However, this choice

is non-differentiable, and we would need to apply sub-gradient methods [44, pp.138–144] for a proper

implementation. Instead, we use the following twice-differentiable approximation for ‖w‖1:

R(w) =

M∑
m=1

√
[w]2m + ε2 (113)

where [w]m denotes the m-th entry of w, and ε is a small number. We see that, as ε goes to zero,

R(w) ≈ ‖w‖1. Obviously, R(w) is convex, and we can apply the diffusion algorithms to minimize (112)

in a distributed manner. To do so, we decompose the global cost into a sum of N individual costs:

Jl(w) = E‖dl,i −Ul,iw‖22 +
ρ

N
R(w) (114)

for l = 1, . . . , N . Then, using algorithms (18) and (19), each node k would update its estimate of wo by

using the gradient vectors of {Jl(w)}l∈Nk
, which are given by:

∇wJl(w) = 2E
(
UT
l,iUl,i

)
w − 2E

(
UT
l,idl,i

)
+

ρ

N
∇wR(w) (115)

However, the nodes are assumed to have access to measurements {Ul,i, dl,k} and not to the second-

order moments E
(
UT
l,iUl,i

)
and E

(
UT
l,idl,i

)
. In this case, nodes can use the available measurements to

approximate the gradient vectors in (24) and (25) as:

∇̂wJl(w) = 2UTl,i [Ul,iw−dl,i]+
ρ

N
∇wR(w) (116)

May 15, 2012 DRAFT

28

where

∇wR(w) =

[
[w]1√

[w]21 + ε2
· · · [w]M√

[w]2M + ε2

]T
(117)

In the simulation, we set M = 50, K = 5, σ2
v = 1, and wo = [1 0 . . . 0 1]T . We apply both diffusion and

incremental methods to solve the distributed learning problem, where the incremental approach [6]–[9]

uses the following construction to determine wi:

• Start with ψ0,i = wi−1 at the node at the beginning of the incremental cycle.

• Cycle through the nodes k = 1, . . . , N :

ψk,i = ψk−1,i − µ∇̂wJk(ψk−1,i) (118)

• Set wi ← ψN,i.

• Repeat.

The results are averaged over 100 trials. The step-sizes for ATC, CTA and non-cooperative algorithms are

set to µ = 10−3, and the step-size for the incremental algorithm is set to µ = 10−3/N . This is because the

incremental algorithm cycles through all N nodes every iteration. We therefore need to ensure the same

convergence rate for both algorithms for a fair comparison [35]. For ATC and CTA strategies, we use

simple averaging weights for the combination step, and for ATC and CTA with gradient exchange, we use

Metropolis weights for {cl,k} to combine the gradients (see Table III in [31] for the definitions of averaging

weights and Metropolis weights). We use expression (110) to evaluate the theoretical performance of the

diffusion strategies. As a remark, expression (110) gives the MSE with respect to the minimizer of the

cost Jglob(w) in (112). In this example, the minimizer of the cost (112), denoted as ŵo, is biased away

from the model parameter wo in (111) when the regularization factor γ 6= 0. To evaluate the theoretical

MSE with respect to wo, we use

MSD = lim
i→∞

1

N

N∑
k=1

E‖wo −wk,i‖2

= E‖wo − ŵo‖2 + lim
i→∞

1

N

N∑
k=1

E‖ŵo −wk,i‖2 (119)

where the second term in (119) can be evaluated by expression (110) with wo replaced by ŵo. Moreover,

in the derivation of (119), we used the fact that limi→∞ E(ŵo−wk,i) = 0 to eliminate the cross term, and

this result is due to (94) with wo there replaced by ŵo. Fig. 2(a) shows the learning curves for different

algorithms for γ = 2 and ε = 10−3. We see that the diffusion and incremental schemes have similar

performance, and both of them have about 10 dB gain over the non-cooperation case. To examine the

May 15, 2012 DRAFT

29

0 500 1000 1500 2000
-30

-25

-20

-15

-10

-5

0

5

Number of Iterations

N
e
tw

o
rk

 M
S

E
 (

d
B

)

Incremental

ATC (S=I)

CTA (S=I)

ATC (S=C)

CTA (S=C)

Non-cooperative

(a) Learning curves (γ = 2 and ε = 10−3).

0 2 4 6 8 10 12 14 16 18 20
−25

−20

−15

−10

Regularization factor γ

St
ea

dy
 s

ta
te

 M
SE

 (
dB

)

0 2 4 6 8 10 12 14 16 18 20

−25

−20

−15

−10

Regularization factor γ

St
ea

dy
 s

ta
te

 M
SE

 (
dB

)

Incremental
ATC (S=I)
ATC (S=I), theory
CTA(S=I)
CTA(S=I), theory
ATC (S=C)
ATC (S=C), theory
CTA (S=C)
CTA (S=C), theory

ε = 1

ε = 10−2

(b) Steady-state MSD (µ = 10−3).

Fig. 2. Transient and steady-state performance of distributed estimation with sparse parameters.

impact of the parameter ε and the regularization factor γ, we show the steady-state MSE for different

values of γ and ε in Fig. 2(b). When ε is small (ε = 10−2), adding a reasonable regularization (γ = 1 ∼ 4)

decreases the steady-state MSE. However, when ε is large (ε = 1), expression (113) is no longer a good

approximation for ‖w‖1, and regularization does not improve the MSE.

B. Distributed Collaborative Localization

The previous example deals with a convex cost (112). Now, we consider a localization problem that

has a non-convex cost function and apply the same diffusion strategies to its solution. Assume each node

is interested in locating a common target located at wo = [0 0]T . Each node k knows its position xk and

has a noisy measurement of the squared distance to the target:

dk(i) = ‖wo − xk‖2 + zk(i), k = 1, 2, . . . , N

where zk(i) ∼ N (0, σ2
z,k) is the measurement noise of node k at time i. The component cost function

Jk(w) at node k is chosen as

Jk(w) =
1

4
E
∣∣dk(i)− ‖w − xk‖2∣∣2 (120)

where we multiply by 1/4 here to eliminate a factor of 4 that will otherwise appear in the gradient. If each

node k minimizes Jk(w) individually, it is not possible to solve for wo. Therefore, we use information

from other nodes, and instead seek to minimize the following global cost:

Jglob(w) =
1

4

N∑
k=1

E
∣∣dk(i)− ‖w − xk‖2∣∣2 (121)

May 15, 2012 DRAFT

30

This problem arises, for example, in cellular communication systems, where multiple base-stations are

interested in locating users using the measured distances between themselves and the user. Diffusion

algorithms (18) and (19) can be applied to solve the problem in a distributed manner. Each node k would

update its estimate of wo by using the gradient vectors of {Jl(w)}l∈Nk
, which are given by:

∇wJl(w) = −Edl(i) (w − xl) + ‖w − xl‖2(w − xl) (122)

However, the nodes are assumed to have access to measurements {dl(i), xl} and not to Edl(i). In this

case, nodes can use the available measurements to approximate the gradient vectors in (24) and (25) as:

∇̂wJl(w) = −dl(i)(w − xl) + ‖w − xl‖2(w − xl) (123)

If we do not exchange the local gradients with neighbors, i.e., if we set S = I , then the base-stations

only share the local estimates of the target position wo with their neighbors (no exchange of {xl}l∈Nk
).

We first simulate the stationary case, where the target stays at wo. In Fig. 3(a), we show the MSE curves

for non-cooperative, ATC, CTA, and incremental algorithms. The noise variance is set to σ2
z,k = 1. We

set the step-sizes to µ = 0.0025/N for the incremental algorithm, and µ = 0.0025 for other algorithms.

For ATC and CTA strategies, we use simple averaging for the combination step {al,k}, and for ATC

and CTA with gradient exchange, we use Metropolis weights for {cl,k} to combine the gradients. The

performance of CTA and ATC algorithms are close to each other, and both of them are close to the

incremental scheme. In Fig. 3(b), we show the steady state MSE with respect to different values of µ.

We also use expression (110) to evaluate the theoretical performance of the diffusion strategies. As the

step-size becomes small, the performances of diffusion and incremental algorithms are close, and the

MSE decreases as µ decreases. Furthermore, we see that exchanging only local estimates (S = I) is

enough for localization, compared to the case of exchanging both local estimates and gradients (S = C).

Next, we apply the algorithms to a non-stationary scenario, where the target moves along a trajectory,

as shown in Fig. 3(c). The step-size is set to µ = 0.01 for diffusion algorithms, and to µ = 0.01/N

for the incremental approach. To see the advantage of using a constant step-size for continuous tracking,

we also simulate the vanishing step-size version of the algorithm from [39], [43] (µk,i = 0.01/i). The

diffusion algorithms track well the target but not the non-cooperative algorithm and the algorithm from

[39], [43], because a decaying step-size is not helpful for tracking. The tracking performance is shown

in Fig. 3(d).

May 15, 2012 DRAFT

31

0 500 1000 1500 2000
-30

-25

-20

-15

-10

-5

0

5

Number of Iterations

A
v
e
ra

g
e
 N

e
tw

o
rk

 M
S

E
 (

d
B

)

Incremental

ATC (S=I)

CTA (S=I)

ATC (S=C)

CTA (S=C)

Non-cooperation

0 500 1000 1500 2000
-30

-25

-20

-15

-10

-5

0

5

Number of Iterations

A
v
e
ra

g
e
 N

e
tw

o
rk

 M
S

E
 (

d
B

)

Incremental

ATC (S=I)

CTA (S=I)

ATC (S=C)

CTA (S=C)

Non-cooperation

0 500 1000 1500 2000
-30

-25

-20

-15

-10

-5

0

5

Number of Iterations

N
e
tw

o
rk

 M
S

E
 (

d
B

)

Incremental

ATC (S=I)

CTA (S=I)

ATC (S=C)

CTA (S=C)

Non-cooperation

0 500 1000 1500 2000
-30

-25

-20

-15

-10

-5

0

5

Number of Iterations

N
e
tw

o
rk

 M
S

E
 (

d
B

)

Incremental

ATC (S=I)

CTA (S=I)

ATC (S=C)

CTA (S=C)

Non-cooperative

(a) Learning curves for stationary target (µ = 0.0025).

10
−3

10
−2

−40

−35

−30

−25

−20

−15

−10

−5

0

Step−size µ

S
te

ad
y

st
at

e
N

et
w

or
k

M
S

E
 (

dB
)

Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Non−cooperative
ATC (S=I), theory
CTA (S=I), theory
ATC (S=C), theory
CTA (S=C), theory

(b) Steady-state performance for stationary target.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x (km)

y
(k

m
)

Target Trajectory
Incremental
ATC (S=I)
CTA (S=I)
ATC (S=C)
CTA (S=C)
Approach in [39,43]
Non−cooperative

(c) Tracking a moving-target by node 1 (µ = 0.01).

0 200 400 600 800 1000
-30

-20

-10

0

10

20

Number of Iterations

N
e
tw

o
rk

 M
S

E
 (

d
B

)

Incremental

ATC (S=I)

CTA (S=I)

ATC (S=C)

CTA (S=C)

Approach in [39,43]

Non-cooperative

(d) Learning curves for moving target (µ = 0.01).

Fig. 3. Performance of distributed localization for stationary and moving targets. Diffusion strategies employ constant step-sizes,

which enable continuous adaptation and learning even when the target moves (which corresponds to a changing cost function).

VI. CONCLUSION

This paper proposed diffusion adaptation strategies to optimize global cost functions over a network

of nodes, where the cost consists of several components. Diffusion adaptation allows the nodes to

solve the distributed optimization problem via local interaction and online learning. We used gradient

approximations and constant step-sizes to endow the networks with continuous learning and tracking

abilities. We analyzed the mean-square-error performance of the algorithms in some detail, including

their transient and steady-state behavior. Finally, we applied the scheme to two examples: distributed

sparse parameter estimation and distributed localization. Compared to incremental methods, diffusion

May 15, 2012 DRAFT

32

strategies do not require a cyclic path over the nodes, which makes them more robust to node and link

failure.

APPENDIX A

PROOF OF MEAN-SQUARE STABILITY

Taking the ∞−norm of both sides of (79), we obtain

‖Wi‖∞ ≤ ‖P T2 ΓP T1 ‖∞ ·‖Wi−1‖∞+σ2
v‖S‖21 ·‖P T2 ‖∞ ·‖Ω‖2∞

≤ ‖P T2 ‖∞ · ‖Γ‖∞ · ‖P T1 ‖∞ · ‖Wi−1‖∞

+ σ2
v‖S‖21 · ‖P T2 ‖∞ · ‖Ω‖2∞

= ‖Γ‖∞ ·‖Wi−1‖∞+
(

max
1≤k≤N

µ2
k

)
·σ2
v‖S‖21 (124)

where we used the fact that ‖P T1 ‖∞ = ‖P T2 ‖∞ = 1 because each row of P T1 and P T2 sums up to one.

Moreover, from (76), we have

‖Γ‖∞ = max
1≤k≤N

(γ2
k + µ2

kα‖S‖21) (125)

Iterating (124), we obtain

‖Wi‖∞ ≤ ‖Γ‖i∞ · ‖W0‖∞

+
(

max
1≤k≤N

µ2
k

)
· σ2

v‖S‖21
i−1∑
j=0

‖Γ‖j∞ (126)

We are going to show further ahead that condition (80) guarantees ‖Γ‖∞ < 1. Now, given that ‖Γ‖∞ < 1,

the first term on the right hand side of (126) converges to zero as i → ∞, and the second term on the

right-hand side of (126) converges to:

lim
i→∞

σ2
v‖S‖21

i−1∑
j=0

‖Γ‖j∞ =
σ2
v‖S‖21

1− ‖Γ‖∞
(127)

Therefore, we establish (82) as follows:

lim sup
i→∞

‖Wi‖∞ ≤
(

max
1≤k≤N

µ2
k

)
· σ2

v‖S‖21
1− ‖Γ‖∞

=

(
max

1≤k≤N
µ2
k

)
· ‖S‖21σ2

v

1− max
1≤k≤N

(γ2
k + µ2

kα‖S‖21)
(128)

May 15, 2012 DRAFT

33

The only fact that remains to prove is to show that (80) ensures ‖Γ‖∞ < 1. From (125), we see that

the condition ‖Γ‖∞ < 1 is equivalent to requiring:

γ2
k + µ2

kα‖S‖21 < 1, k = 1, . . . , N. (129)

Then, using (65), this is equivalent to:(
1− µk

N∑
l=1

sl,kλl,max

)2
+ µ2

kα‖S‖21 < 1 (130)

(
1− µk

N∑
l=1

sl,kλl,min

)2
+ µ2

kα‖S‖21 < 1 (131)

for k = 1, . . . , N . Recalling the definitions for σk,max and σk,min in (81) and solving these two quadratic

inequalities with respect to µk, we arrive at:

0 < µk <
2σk,max

σ2
k,max + α‖S‖21

, 0 < µk <
2σk,min

σ2
k,min + α‖S‖21

and we are led to (80).

APPENDIX B

BLOCK MAXIMUM NORM OF A MATRIX

Consider a block matrix X with blocks of size M ×M each. Its block maximum norm is defined as

[35]:

‖X‖b,∞ , max
x 6=0

‖Xx‖b,∞
‖x‖b,∞

(132)

where the block maximum norm of a vector x , col{x1, . . . , xN}, formed by stacking N vectors of size

M each on top of each other, is defined as [35]:

‖x‖b,∞ , max
1≤k≤N

‖xk‖ (133)

where ‖ · ‖ denotes the Euclidean norm of its vector argument.

Lemma 4 (Block maximum norm). If a block diagonal matrix X , diag{X1, . . . , XN} ∈ RNM×NM

consists of N blocks along the diagonal with dimension M ×M each, then the block maximum norm of

X is bounded as

‖X‖b,∞ ≤ max
1≤k≤N

‖Xk‖ (134)

in terms of the 2-induced norms of {Xk} (largest singular values). Moreover, if X is symmetric, then

equality holds in (134).

May 15, 2012 DRAFT

34

Proof: Note that Xx=col{X1x1,. . . ,XNxN}. Evaluating the block maximum norm of vector Xx leads

to

‖Xx‖b,∞ = max
1≤k≤N

‖Xkxk‖

≤ max
1≤k≤N

‖Xk‖ · ‖xk‖

≤ max
1≤k≤N

‖Xk‖ · max
1≤k≤N

‖xk‖ (135)

Substituting (135) and (133) into (132), we establish (134) as

‖X‖b,∞ , max
x 6=0

‖Xx‖b,∞
‖x‖b,∞

≤ max
x 6=0

max1≤k≤N ‖Xk‖ ·max1≤k≤N ‖xk‖
max1≤k≤N ‖xk‖

= max
1≤k≤N

‖Xk‖ (136)

Next, we prove that, if all the diagonal blocks of X are symmetric, then equality should hold in (136).

To do this, we only need to show that there exists an x0 6= 0, such that

‖Xx0‖b,∞
‖x0‖b,∞

= max
1≤k≤N

‖Xk‖ (137)

which would mean that

‖X‖b,∞ , max
x 6=0

‖Xx‖b,∞
‖x‖b,∞

≥
‖Xx0‖b,∞
‖x0‖b,∞

= max
1≤k≤N

‖Xk‖ (138)

Then, combining inequalities (136) and (138), we would obtain desired equality that

‖X‖b,∞ = max
1≤k≤N

‖Xk‖ (139)

when X is block diagonal and symmetric. Thus, without loss of generality, assume the maximum in

(137) is achieved by X1, i.e.,

max
1≤k≤N

‖Xk‖ = ‖X1‖

For a symmetric Xk, its 2-induced norm ‖Xk‖ (defined as the largest singular value of Xk) coincides with

the spectral radius of Xk. Let λ0 denote the eigenvalue of X1 of largest magnitude, with the corresponding

right eigenvector given by z0. Then,

max
1≤k≤N

‖Xk‖ = |λ0|, X1z0 = λ0z0

May 15, 2012 DRAFT

35

We select x0 = col{z0, 0, . . . , 0}. Then, we establish (137) by:

‖Xx0‖b,∞
‖x0‖b,∞

=
‖col{X1z0, 0, . . . , 0}‖b,∞
‖col{z0, 0, . . . , 0}‖b,∞

=
‖X1z0‖
‖z0‖

=
‖λ0z0‖
‖z0‖

= |λ0| = max
1≤k≤N

‖Xk‖

APPENDIX C

STABILITY OF B AND F

Recall the definitions of the matrices B and F from (93) and (100):

B = PT2 [IMN −MD∞]PT1 (140)

F =
(
P1[IMN −MD∞]P2

)
⊗
(
P1[IMN −MD∞]P2

)
= BT ⊗ BT (141)

From (140)–(141), we obtain (see Theorem 13.12 from [57, p.141]):

ρ(F) = ρ(BT ⊗ BT) = [ρ(BT)]2 = [ρ(B)]2 (142)

where ρ(·) denotes the spectral radius of its matrix argument. Therefore, the stability of the matrix F is

equivalent to the stability of the matrix B, and we only need to examine the stability of B. Now note

that the block maximum norm (see the definition in Appendix B) of the matrix B satisfies

‖B‖b,∞ ≤ ‖IMN −MD∞‖b,∞ (143)

since the block maximum norms of P1 and P2 are one (see [35, p.4801]):∥∥PT1 ∥∥b,∞ = 1,
∥∥PT2 ∥∥b,∞ = 1 (144)

Moreover, by noting that the spectral radius of a matrix is upper bounded by any matrix norm (Theorem

5.6.9, [50, p.297]) and that IMN −MD∞ is symmetric and block diagonal, we have

ρ(B) ≤ ‖IMN −MD∞‖b,∞ = ρ(IMN −MD∞) (145)

Therefore, the stability of B is guaranteed by the stability of IMN −MD∞. Next, we call upon the

following lemma to bound ‖IMN−MD∞‖b,∞.

Lemma 5 (Norm of IMN−MD∞). It holds that the matrix D∞ defined in (90) satisfies

‖IMN−MD∞‖b,∞ ≤ max
1≤k≤N

γk (146)

May 15, 2012 DRAFT

36

where γk is defined in (65).

Proof: Since D∞ is block diagonal and symmetric, IMN −MD∞ is also block diagonal with blocks

{IM−µkDk,∞}, where Dk,∞ denotes the kth diagonal block of D∞. Then, from (134) in Lemma 4 in

Appendix B, it holds that

‖IMN−MD∞‖b,∞ = max
1≤k≤N

‖IM−µkDk,∞‖ (147)

By the definition of D∞ in (90), and using condition (45) from Assumption 1, we have(
N∑
l=1

sl,kλl,min

)
· IM ≤ Dk,∞ ≤

(
N∑
l=1

sl,kλl,max

)
· IM

which implies that

IM − µkDk,∞ ≥

(
1− µk

N∑
l=1

sl,kλl,max

)
· IM (148)

IM − µkDk,∞ ≤

(
1− µk

N∑
l=1

sl,kλl,min

)
· IM (149)

Thus, ‖IM−µkDk,∞‖≤γk. Substituting into (147), we get (146).

Substituting (146) into (145), we get:

ρ(B) ≤ max
1≤k≤N

γk (150)

As long as max
1≤k≤N

γk < 1, then all the eigenvalues of B will lie within the unit circle. By the definition

of γk in (65), this is equivalent to requiring

|1− µkσk,max| < 1, |1− µkσk,min| < 1

for k = 1, . . . , N , where σk,max and σk,min are defined in (81). These conditions are satisfied if we

choose µk such that

0 < µk < 2/σk,max, k = 1, . . . , N (151)

which is obviously guaranteed for sufficiently small step-sizes (and also by condition (80)).

REFERENCES

[1] J. Chen, S.-Y. Tu, and A. H. Sayed, “Distributed optimization via diffusion adaptation,” in Proc. IEEE International

Workshop on Comput. Advances Multi-Sensor Adaptive Process. (CAMSAP), Puerto Rico, Dec. 2011, pp. 281–284.

[2] J. Chen and A. H. Sayed, “Performance of diffusion adaptation for collaborative optimization,” in Proc. IEEE International

Conf. Acoustics, Speech and Signal Process. (ICASSP), Kyoto, Japan, March 2012, pp. 1–4.

May 15, 2012 DRAFT

37

[3] S.-Y. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE J. Sel. Topics. Signal Process., vol. 5, no. 4, pp. 649–664,

Aug. 2011.

[4] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online prediction,” in Proc. International Conf.

Machin. Learning (ICML), Bellevue, USA, June 2011, pp. 713–720.

[5] Z. J. Towfic, J. Chen, and A. H. Sayed, “Collaborative learning of mixture models using diffusion adaptation,” in Proc.

IEEE Workshop on Mach. Learning Signal Process. (MLSP), Beijing, China, Sep. 2011, pp. 1–6.

[6] D. P. Bertsekas, “A new class of incremental gradient methods for least squares problems,” SIAM J. Optim., vol. 7, no. 4,

pp. 913–926, 1997.

[7] A. Nedic and D. P. Bertsekas, “Incremental subgradient methods for nondifferentiable optimization,” SIAM J. Optim.,

vol. 12, no. 1, pp. 109–138, 2001.

[8] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed optimization,” IEEE J. Sel. Areas

Commun., vol. 23, no. 4, pp. 798–808, Apr. 2005.

[9] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over distributed networks,” IEEE Trans. Signal Process.,

vol. 55, no. 8, pp. 4064–4077, Aug. 2007.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, 1st edition. Athena

Scientific, Singapore, 1997.

[11] J. N. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement in distributed decision problems,” IEEE Trans.

Autom. Control, vol. 29, no. 1, pp. 42–50, Jan. 1984.

[12] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and stochastic gradient optimization

algorithms,” IEEE Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, Sep. 1986.

[13] S. Barbarossa and G. Scutari, “Bio-inspired sensor network design,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 26–35,

May 2007.

[14] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-agent optimization,” in Convex Optimization in Signal Processing

and Communications, Y. Eldar and D. Palomar, Eds., pp. 340–386, 2009.

[15] ——, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.

48–61, Jan. 2009.

[16] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc WSNs with noisy links—Part I: Distributed estimation

of deterministic signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364, 2008.

[17] S. Kar and J. M. F. Moura, “Sensor networks with random links: Topology design for distributed consensus,” IEEE Trans.

Signal Process., vol. 56, no. 7, pp. 3315–3326, July 2008.

[18] ——, “Convergence rate analysis of distributed gossip (linear parameter) estimation: Fundamental limits and tradeoffs,”

IEEE J. Sel. Topics. Signal Process., vol. 5, no. 4, pp. 674–690, Aug. 2011.

[19] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip algorithms for distributed signal

processing,” Proc. of the IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[20] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,”

IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[21] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast gossip algorithms for consensus,” IEEE Trans.

Signal Process., vol. 57, no. 7, pp. 2748–2761, 2009.

[22] S. Sardellitti, M. Giona, and S. Barbarossa, “Fast distributed average consensus algorithms based on advection-diffusion

processes,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 826–842, Feb. 2010.

May 15, 2012 DRAFT

38

[23] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” in Proc. Int.

Symp. Information Processing Sensor Networks (IPSN), Los Angeles, CA, Apr. 2005, pp. 63–70.

[24] C. Eksin and A. Ribeiro, “Network optimization with heuristic rational agents,” in Proc. Asilomar Conf. on Signals Systems

Computers, Pacific Grove, CA, Nov. 2011, pp. 1–5.

[25] R. M. Karp, “Reducibility among combinational problems,” Complexity of Computer Computations (R. E. Miller and J.

W. Thatcher, Eds.), pp. 85–104, 1972.

[26] C. G. Lopes and A. H. Sayed, “Distributed processing over adaptive networks,” in Proc. Adaptive Sensor Array Processing

Workshop, MIT Lincoln Laboratory, MA, June 2006, pp. 1–5.

[27] C. Lopes and A. Sayed, “Diffusion least-mean squares over adaptive networks,” in IEEE ICASSP, vol. 3, Honolulu, HI,

Apr. 2007, pp. 917–920.

[28] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed networks,” IEICE Trans. Fund. Electron., Commun.

Comput. Sci., vol. E90-A, no. 8, pp. 1504–1510, Aug. 2007.

[29] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks: Formulation and performance

analysis,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3122–3136, July 2008.

[30] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS algorithms with information exchange,” in Proc. Asilomar Conf. Signals,

Syst. Comput., Pacific Grove, CA, Nov. 2008, pp. 251–255.

[31] ——, “Diffusion LMS strategies for distributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1035–1048,

March 2010.

[32] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “A diffusion RLS scheme for distributed estimation over adaptive networks,”

in Proc. IEEE Workshop on Signal Process. Advances Wireless Comm. (SPAWC), Helsinki, Finland, June 2007, pp. 1–5.

[33] ——, “Diffusion recursive least-squares for distributed estimation over adaptive networks,” IEEE Trans. Signal Process.,

vol. 56, no. 5, pp. 1865–1877, May 2008.

[34] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed Kalman filtering and smoothing,” IEEE Trans. Autom.

Control, vol. 55, no. 9, pp. 2069–2084, Sep. 2010.

[35] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion least-mean squares with adaptive combiners: Formulation and

performance analysis,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4795–4810, Sep. 2010.

[36] F. S. Cattivelli and A. H. Sayed, “Modeling bird flight formations using diffusion adaptation,” IEEE Trans. Signal Process.,

vol. 59, no. 5, pp. 2038–2051, May 2011.

[37] P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Bio-inspired swarming for dynamic radio access based on diffusion

adaptation,” in Proc. European Signal Process. Conf. (EUSIPCO), Aug. 2011, pp. 1–6.

[38] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive robust distributed learning in diffusion sensor networks,” IEEE

Trans. Signal Process., vol. 59, no. 10, pp. 4692–4707, 2011.

[39] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic subgradient projection algorithms for convex

optimization,” J. Optim. Theory Appl., vol. 147, no. 3, pp. 516–545, 2010.

[40] P. Bianchi, G. Fort, W. Hachem, and J. Jakubowicz, “Convergence of a distributed parameter estimator for sensor networks

with local averaging of the estimates,” in Proc. IEEE ICASSP, Prague, Czech, May 2011, pp. 3764–3767.

[41] D. P. Bertsekas, “Incremental gradient, subgradient, and proximal methods for convex optimization: A survey,” LIDS

Technical Report, MIT, no. 2848, 2010.

[42] V. S. Borkar and S. P. Meyn, “The ODE method for convergence of stochastic approximation and reinforcement learning,”

SIAM J. Control Optim., vol. 38, no. 2, pp. 447–469, 2000.

May 15, 2012 DRAFT

39

[43] K. Srivastava and A. Nedic, “Distributed asynchronous constrained stochastic optimization,” IEEE J. Sel. Topics. Signal

Process., vol. 5, no. 4, pp. 772–790, Aug. 2011.

[44] B. Polyak, Introduction to Optimization. Optimization Software, NY, 1987.

[45] J. Chen and A. H. Sayed, “Distributed Pareto-optimal solutions via diffusion adaptation,” in Proc. IEEE Statistical Signal

Process. Workshop (SSP), Ann Arbor, MI, Aug. 2012.

[46] A. H. Sayed, Adaptive Filters. Wiley, NJ, 2008.

[47] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Edition). Johns Hopkins University Press, 1996.

[48] S. S. Stankovic, M. S. Stankovic, and D. M. Stipanovic, “Decentralized parameter estimation by consensus based stochastic

approximation,” IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 531–543, Mar. 2011.

[49] S.-Y. Tu and A. H. Sayed, “Diffusion networks outperform consensus networks,” in Proc. IEEE Statistical Signal Processing

Workshop (SSP), Ann Arbor, MI, Aug. 2012.

[50] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1990.

[51] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient methods with errors,” SIAM J. Optim., vol. 10,

no. 3, pp. 627–642, 2000.

[52] S. Haykin, Adaptive Filter Theory, 2nd Edition. Prentice Hall, 2002.

[53] J. Arenas-Garcia, M. Martinez-Ramon, A. Navia-Vazquez, and A. R. Figueiras-Vidal, “Plant identification via adaptive

combination of transversal filters,” Signal Processing, vol. 86, no. 9, pp. 2430–2438, 2006.

[54] M. Silva and V. Nascimento, “Improving the tracking capability of adaptive filters via convex combination,” IEEE Trans.

Signal Process., vol. 56, no. 7, pp. 3137–3149, 2008.

[55] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a world of projections,” IEEE Signal Process. Mag.,

vol. 28, no. 1, pp. 97–123, Jan. 2011.

[56] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[57] A. J. Laub, Matrix Analysis for Scientists and Engineers. Society for Industrial and Applied Mathematics (SIAM), PA,

2005.

[58] P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Sparse diffusion LMS for distributed adaptive estimation,” in Proc. IEEE

ICASSP, Kyoto, Japan, March 2012, pp. 1–4.

[59] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Royal Statist. Soc. B, pp. 267–288, 1996.

[60] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118–121, Mar. 2007.

[61] E. Candes, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted `1 minimization,” J. Fourier Anal. Appl., vol. 14,

no. 5, pp. 877–905, 2008.

[62] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear regression,” IEEE Trans. Signal Process.,

vol. 58, no. 10, pp. 5262–5276, 2010.

[63] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online sparse system identification and signal reconstruction using projections

onto weighted `1 balls,” IEEE Trans. Signal Process., vol. 59, no. 3, pp. 936–952, Mar. 2011.

May 15, 2012 DRAFT

	I Introduction
	II Problem Formulation
	III Iterative Diffusion Solution
	IV Mean-Square Performance Analysis
	IV-A Error Recursions
	IV-B Variance Relations
	IV-C Mean-Square Stability
	IV-D Steady-State Performance

	V Simulation Results
	V-A Distributed Estimation with Sparse Data
	V-B Distributed Collaborative Localization

	VI Conclusion
	Appendix A: Proof of Mean-Square Stability
	Appendix B: Block Maximum Norm of a Matrix
	Appendix C: Stability of B and F
	References

