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Compressed Beamforming in Ultrasound Imaging
Noam Wagner, Yonina C. Eldar and Zvi Friedman

Abstract—Emerging sonography techniques often require in-
creasing the number of transducer elements involved in the
imaging process. Consequently, larger amounts of data mustbe
acquired and processed. The significant growth in the amounts
of data affects both machinery size and power consumption.
Within the classical sampling framework, state of the art systems
reduce processing rates by exploiting the bandpass bandwidth of
the detected signals. It has been recently shown, that a much
more significant sample-rate reduction may be obtained, by
treating ultrasound signals within the Finite Rate of Innovation
framework. These ideas follow the spirit of Xampling, which
combines classic methods from sampling theory with recent
developments in Compressed Sensing. Applying such low-rate
sampling schemes to individual transducer elements, whichdetect
energy reflected from biological tissues, is limited by the noisy
nature of the signals. This often results in erroneous parameter
extraction, bringing forward the need to enhance the SNR of the
low-rate samples. In our work, we achieve SNR enhancement,
by beamforming the sub-Nyquist samples obtained from multiple
elements. We refer to this process as “compressed beamforming”.
Applying it to cardiac ultrasound data, we successfully image
macroscopic perturbations, while achieving a nearly eight-fold
reduction in sample-rate, compared to standard techniques.

Index Terms—Array Processing, Beamforming, Compressed
Sensing (CS), Finite Rate of Innovation (FRI), Ultrasound,
Xampling

I. I NTRODUCTION

Diagnostic sonography allows visualization of body tissues,
by radiating them with acoustic energy pulses, which are
transmitted from an array of transducer elements. The image
typically comprises multiple scanlines, each constructedby
integrating data collected by the transducers, following the
transmission of an energy pulse along a narrow beam. As
the pulse propagates, echoes are scattered by density and
propagation-velocity perturbations in the tissue [1], andde-
tected by the transducer elements. Averaging the detected
signals, after their alignment with appropriate time-varying
delays, allows localization of the scattering structures,while
improving the Signal to Noise Ratio (SNR) [2]. The latter
process is referred to as beamforming. Performed digitally,
beamforming requires that the analog signals, detected by the
transducers, first be sampled. Confined to classic Nyquist-
Shannon sampling theorem [3], the sampling rate must be at
least twice the bandwidth, in order to avoid aliasing.

As imaging techniques develop, the amount of elements
involved in each imaging cycle typically increases. Conse-
quently, the rates of data which need to be transmitted from the
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system front-end, and then processed by the beamformer, grow
significantly. The growth in transmission and processing rates
inevitably effects both machinery size and power consumption.
Consequently, in recent years there has been growing interest
in reducing the amounts of data as close as possible to the
system front-end. In fact, such reduction is already possible
within the classical sampling framework: state of the art
devices digitally downsample the data at the front-end, by
exploiting the fact that the signal is modulated onto a carrier,
so that the spectrum essentially occupies only a portion of
its entire base-band bandwidth. The preliminary sample rate
remains unchanged, since the demodulation is performed in
the digital domain. Nevertheless, a key to significant data
compression lies beyond the classical sampling framework.

Indeed, the emerging Compressive Sensing (CS) frame-
work [4], [5] states, that sparse signals may be accurately
reconstructed from a surprisingly small amount of coefficients.
Complementary ideas rise from the Finite Rate of Innovation
(FRI) framework [6], in which the signal is assumed to
have a finite number of degrees of freedom per unit time.
Many classes of FRI signals can be recovered from samples
taken at the rate of innovation [7]. For a detailed review of
previously proposed FRI methods, the reader is referred to [8].
Combining the latter notions with classical sampling methods,
the developing Xampling framework [9], [10], [11] involves
methods for fully capturing the information carried by an
analog signal, by sampling it far below the Nyquist-rate.

Following the spirit of Xampling, Tur et. al. proposed
in [12], that ultrasound signals be described within the FRI
framework. Explicitly, they assume that these signals, formed
by scattering of a transmitted pulse from multiple reflectors,
may be modeled by a relatively small number of pulses, all
replicas of some known pulse shape. Denoting the number of
reflected pulses byL, and the signal’s finite temporal support
by [0, T ), the detected signal is completely defined by2L de-
grees of freedom, corresponding to the replicas’ unknown time
delays and amplitudes. Based on [6], the authors formulate the
relationship between the signal’s Fourier series coefficients,
calculated with respect to[0, T ), and its unknown parameters,
in the form of a spectral analysis problem. The latter may be
solved using existing techniques, given a subset of Fourier
series coefficients, with a minimal cardinality of2L. The
sampling scheme is thus reduced to the problem of extractinga
small subset of the detected signal’s frequency samples. Two
robust schemes are derived in [12], [13], extracting such a
set of coefficients from samples of the signal, taken at sub-
Nyquist rates. The system presented in [12] employs a single
processing channel, in which the analog signal is filtered
by an appropriate sampling kernel and then sampled with
a standard low-rate analog to digital converter (ADC). The
method of [13] employs multiple processing channels, each
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comprising a modulator and an integrator. These approaches
were shown to be more robust than previous FRI techniques
and also allow for arbitrary pulse shapes.

The initial motivation for our work stems from the need to
translate the ultrasound Xampling scheme proposed in [12],
into one which achieves the final goal of reconstructing a two-
dimensional ultrasound image, by integrating data sampledat
multiple transducer elements. In conventional ultrasoundimag-
ing, such integration is achieved by the beamforming process.
The question is how may we implement beamforming, using
samples of the detected signals taken at sub-Nyquist rates.

A straightforward approach is to replace the Nyquist-rate
sampling mechanism, utilized in each receiver element, by an
FRI Xampling scheme. Having estimated the parametric rep-
resentation of the signal detected in each individual element,
we could reconstruct it digitally. The reconstructed signals
can then be further processed via beamforming. However,
the nature of ultrasound signals reflected from real tissues,
makes such an approach impractical. This is mainly due to
the detected signals’ poor SNR, which results in erroneous
parameter extraction by the Xampling scheme, applied to each
element independently.

Our approach is to generalize the FRI Xampling scheme
proposed in [13], such that it integrates beamforming into
the low-rate sampling process. The result is equivalent to that
obtained by Xampling the beamformed signal, which exhibits
significantly better SNR. Furthermore, beamforming practi-
cally implies that the array of receivers is dynamically focused
along a single scanline. Consequently, the resulting signal
depicts reflections originating in the intersection of the radiated
medium with a vary narrow beam. Such a signal better suits
the FRI model proposed in [12], which assumes the reflections
to be caused by isolated, point-like scatterers. We refer toour
scheme by the term compressed beamforming, as it transforms
the beamforming operator into the compressed domain [14],
[15]. Applied to real cardiac ultrasound data obtained froma
GE breadboard ultrasonic scanner, our approach successfully
images macroscopic perturbations in the tissue while achieving
a nearly eight-fold reduction in sampling rate, compared to
standard imaging techniques.

The paper is organized as follows: in Section II, we sum-
marize the general principles of beamforming in ultrasound
imaging. In Section III we outline the FRI model and its
contribution to sample rate reduction in the ultrasound con-
text. We motivate compressed beamforming in Section IV,
considering the nature of ultrasound signals reflected from
biological tissues. Beamforming and FRI Xampling are com-
bined in Section V, where we propose that the signal obtained
by beamforming may be treated within the FRI framework.
Following this observation, we derive our first compressed
beamforming scheme, which operates on low-rate samples
taken at the individual receivers. This approach is then further
simplified in Section VI. In Section VII we focus on image
reconstruction from the parametric representation obtained by
either Xampling scheme. In this context, we generalize the
signal model proposed in [12], allowing additional unknown
phase shifts of the detected pulses. We then discuss an alterna-
tive recovery approach, based on CS. Simulations comparing

Fig. 1. Imaging setup:M receivers are aligned along thêx axis. The origin
is set at the position of the reference receiver, denotedm0. δm denotes
the distance measured from the reference receiver to themth receiver. The
imaging cycle begins when an acoustic pulse is transmitted at direction θ.
Echoes are then reflected from perturbations in the radiatedmedium.

the performance of several recovery methods are provided in
Section VIII. Finally, experimental results obtained for cardiac
ultrasound data are presented in Section IX.

II. B EAMFORMING IN ULTRASOUND IMAGING

In this section, we describe a typical B-mode imaging cycle,
focusing on the beamforming process, carried out during the
reception phase. The latter constitutes a significant blockin
ultrasound imaging, and plays a major role in our proposed
FRI Xampling scheme.

Consider the array depicted in Fig. 1, comprisingM trans-
ducer elements, aligned along thex̂ axis. Denote byδm the
distance from themth element to the reference receiverm0,
used as the origin, namelyδm0

= 0. The imaging cycle begins
when, at timet = 0, the array transmits acoustic energy into
the tissue. Subsequently, the elements detect echoes, which
originate in density and propagation-velocity perturbations,
characterizing the radiated medium. Denote byϕm (t) the
signal detected by themth receiver. The acoustic reciprocity
theorem [16] suggests, that we may use the signals detected
by multiple transducer elements, in order to probe arbitrary
coordinates for reflected energy. Namely, by combining the
detected signals with appropriate time delays, echoes scattered
from a chosen coordinate will undergo constructive interfer-
ence, whereas those originating off this coordinate will be
attenuated, due to destructive interference.

In practice, the array cannot effectively radiate the entire
medium simultaneously. Instead, a pulse of energy is con-
ducted along a relatively narrow beam, whose central axis
forms an angleθ with the ẑ axis. Focusing the energy pulse
along such a beam is achieved by applying appropriate time
delays to modulated acoustic pulses, transmitted from multiple
array elements. Rather than arbitrarily probing the radiated
tissue, we are now forced to adjust the probed coordinate in
time, in coordination with the propagation of the transmitted
energy. This practically implies that, combining the detected
signals with appropriate time-varying delays, we may obtain a
signal, which depicts the intensity of the energy reflected from
each point along the central transmission axis. Throughout
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the rest of this section, we derive an explicit expression for
creating this beamformed signal.

Assume that the energy pulse, transmitted att = 0,
propagates at velocityc in the directionθ. At time t ≥ 0,
the pulse crosses the coordinate(x, z) = (ct sin θ, ct cos θ).
Consider a potential reflection, originating in this coordinate,
and arriving at themth element. The distance traveled by such
a reflection is:

dm(t; θ) =

√

(ct cos θ)
2
+ (δm − ct sin θ)

2
. (1)

The time in which the reflection crosses this distance is
dm (t; θ) /c, so that it reaches the receiver element at time

τ̂m(t; θ) = t+
dm (t; θ)

c
. (2)

It is readily seen that̂τm0
(t; θ) = 2t. Hence, in order to

align the reflection detected in themth receiver with the one
detected in the reference receiver, we need to apply a delay
to ϕm (t), such that the resulting signal,̂ϕm (t; θ), satisfies
ϕ̂m (2t; θ) = ϕm (τ̂m (t; θ)). Denotingτm (t; θ) = τ̂m (t/2; θ),
and using (1), we obtain the following distorted signal for
t ≥ 0:

ϕ̂m (t; θ) = ϕm (τm (t; θ)) ,

τm (t; θ) =
1

2

(

t+
√

t2 − 4γmt sin θ + 4γ2
m

)

,
(3)

with γm = δm/c. The aligned signals may now be averaged,
resulting in the beamformed signal

Φ (t; θ) =
1

M

M
∑

m=1

ϕ̂m (t; θ), (4)

which exhibits enhanced SNR compared to{ϕ̂m (t; θ)}
M

m=1.
Furthermore, by its construction,Φ (t; θ) represents, for every
t ≥ 0, the intensity which was measured when focusing the
array to p (t) = (ct/2 sin θ, ct/2 cos θ). Therefore, it may
eventually be translated into an intensity pattern, plotted along
the corresponding ray.

Although defined over continuous time, ultrasound systems
perform the process formulated in (3)-(4) in the digital domain,
requiring that the analog signalsϕm (t) first be sampled.
Confined to the classic Nyquist-Shannon sampling theorem,
these systems sample the signals at twice their baseband
bandwidth, in order to avoid aliasing. The detected signals
typically occupy only a portion of their baseband bandwidth.
Exploiting this fact, some state of the art systems manage
to reduce the amount of samples transmitted from the front-
end, by down-sampling the data, after demodulation and low-
pass filtering. However, since such operations are carried out
digitally, the preliminary sampling-rate remains unchanged.

To conclude this section, we evaluate the nominal number of
samples needed to be taken from each active receiver element
in order to obtain a single scanline using standard imaging
techniques. Consider an ultrasound system which images to a
nominal depth ofr = 16cm. The velocity at which the pulse
propagates,c, varies between1446m/sec (fat) to1566m/sec
(spleen) [17]. An average value of1540m/sec is assumed by
scanners for processing purposes, such that the duration ofthe

detected signal isT = 2r/c ≈ 210µsec. The signal’s baseband
bandwidth requires a nominal sampling rate offs = 16Mhz,
resulting in an overall number ofTfs = 3360 real-valued
samples. Assuming that the signal’s passband bandwidth is
only 4MHz, the data sampled at Nyquist-rate may be finally
down-sampled to 1680 real-valued samples. These samples,
taken from all active receivers, are now processed, according
to (3)-(4), in order to construct the beamformed signal. Since
standard imaging devices carry out beamforming by applying
delay and sum operations to the sampled data, the amount of
operations required for generating a single scanline is directly
related to the sample rate.

Regardless of our computational power, physical constraints
imply that the time required for constructing a single scanline
is at leastT . This takes into account the round-trip time re-
quired for the transmitted pulse to penetrate the entire imaging
depth, and for the resulting echoes to cross a similar distance
back to the array. Nevertheless, sufficient computational power
may allow construction of several scanlines, within that same
time interval, increasing the overall imaging rate. By using
compressed beamforming, we aim at capturing significant
information in the imaging plane, while reducing the sampling
rate and consequently the processing rate. This, in turn, may
improve the existing trade-off between imaging rates and both
machinery size and power consumption.

III. SAMPLE RATE REDUCTION USING THE FRI MODEL

In a pioneer attempt to implement Xampling methodology
in the context of ultrasound imaging, [12] suggests that the
signal detected in each receiver element may be sampled at a
rate far below Nyquist, by modeling it as an FRI signal. The
authors propose thatϕm (t), detected in themth element, be
regarded as sum of a relatively small number of pulses, all
replicas of some known pulse shape. Explicitly:

ϕm (t) =

L
∑

l=1

al,mh (t− tl,m). (5)

Here L is the number of scattering elements, distributed
throughout the sector radiated by the transmitted pulse,tl,m
denotes the time in which the reflection from thelth element
arrived at themth receiver, andal,m denotes the reflection’s
amplitude, as detected by themth receiver. Finally,h (t)
denotes the known pulse shape, regarded, in our work, by the
term two-way pulse. The signal in (5) is completely defined
by 2L real-valued parameters,{tl,m, al,m}

L

l=1.
Sampling FRI signals was first treated by Vetterli et. al.

[6]. Their approach involves projecting the FRI signal, char-
acterized by2L degrees of freedom per unit time, onto a2L-
dimensional subspace, corresponding to a subset of its Fourier
series coefficients. Having extracted2L frequency samples of
the signal, spectral analysis techniques (e.g. annihilating fil-
ter [18], matrix pencil [19]) may be applied, in order to extract
the unknown signal parameters. Applying this solution to the
problem formulated in (5), [12] formalizes the relationship
between the ultrasound signal’s Fourier series coefficients to
its unknown parameters, as a spectral analysis problem.
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Let T be the duration ofϕm (t). We can then expandϕm (t)
in a Fourier series, with coefficients

φm [k] =
1

T

∫ T

0

ϕm (t) e−i 2π
T

ktdt

=
1

T

∫ T

0

L
∑

l=1

al,mh (t− tl,m)e−i 2π
T

ktdt

=
1

T
H

(

2π

T
k

) L
∑

l=1

al,me−i 2π
T

ktl,m ,

(6)

whereH (ω) denotes the Continuous Time Fourier Transform
(CTFT) of h (t). Consider the sequence{kj,m}

Km

j=1, compris-
ing Km integers, and define the length-Km vectorΦm with
jth elementφm [kj,m]. Then (6) may be written in matrix
form:

Φm =
1

T
HmVmam, (7)

where Hm is a diagonal matrix with diagonal elements
H
(

2π
T
kj,m

)

, Vm containse−i 2π
T

kjtl,m as its(j, l)th element,
andam is the lengthL vector, with elementsal,m. Choosing
kj,m such thatH

(

2π
T
kj,m

)

6= 0,we can express (7) as:

ym = Vmam, (8)

whereym = TH−1

m Φm. If the valueskj,m are a sequence
of consecutive indices, thenVm takes on a Vandermonde
form, and has full column rank [18] as long asKm ≥ L and
the time-delays are distinct, i.e.,ti,m 6= tj,m, for all i 6= j.
The formulation derived in (8) is a standard spectral analysis
problem. As long asKm ≥ 2L, it may be solved for the
unknown parameters{tl,m, al,m}L

l=1, using methods such as
annihilating filter [18] or matrix pencil [19].

Having obtained (7), the sampling scheme reduces to the
problem of extractingKm frequency samples ofϕm (t), where
Km ≥ 2L. A single-channel Xampling scheme, such as the
one derived in [12], allows robust estimation of such coeffi-
cients from point-wise samples of the signal, after filtering it
with an appropriate kernel. The estimation is performed by
applying a linear transformation top complex-valued samples
(equivalently,2p real-valued samples) of the filtered signal,
requiring thatp ≥ Km. In this context, [12] introduces the
Sum of Sincs kernel, which satisfies the necessary constraints,
and is additionally characterized by a finite temporal support.
Combining the requirements thatKm ≥ 2L andp ≥ Km, the
Xampling scheme proposed in [12] allows reconstruction of
the signal detected in each receiver element from a minimal
number of4L real-valued samples. Considering the nominal
figures derived in the previous section for standard beamform-
ing, we conclude that, as long as4L ≪ 1680, such a Xampling
method may indeed achieve a substantial rate reduction.

IV. W HY COMPRESSEDBEAMFORMING?

Applied to a single receiver element, the Xampling scheme
proposed in [12] achieves good signal reconstruction for an
actual ultrasound signal, reflected from a setup of phantom
targets. In principle, we could apply this approach to each
receiver element individually, resulting in a parametric rep-
resentation for each of the signals{ϕm (t)}

M

m=1. Being able

to digitally reconstruct the detected signals, we could then
proceed with the standard beamforming process, outlined in
Section II, aimed at constructing the corresponding scanline.
Computational effort would have been reduced, by limiting
the beamforming process to the support of the estimated
pulses. In fact, we could possibly bypass the beamforming
stage, by deriving a geometric model which maps the set
of delays, {tl,m}

M

m=1, associated with thelth reflector, to
its two-dimensional positionpl = (xl, zl). However, apply-
ing the proposed FRI Xampling scheme to signals reflected
from biological tissues, we face two fundamental obstacles:
low SNR and proper interpretation of the estimated signal
parameters, considering the profile of the transmitted beam.
These two difficulties may be better understood by examining
Fig. 2, which depicts traces acquired for cardiac images of a
healthy consenting volunteer using a GE breadboard ultrasonic
scanner.

In the left plot (a), are signals detected by 32 of 64 active
array elements, following the transmission of a single pulse.
The pulse was conducted along a narrow beam, forming an
arbitrary angleθ with the ẑ axis. The right plot (b) depicts
the signal obtained by applying beamforming to the detected
signals, as outlined in Section II. Examining the individual
traces, one notices the appearance of strong pulses, possibly
overlapping, characterized by a typical shape, as proposedin
(5). Let us assume that we could indeed extract the delays
and amplitudes of these pulses, by applying the proposed FRI
Xampling scheme to each element. We suggested that beam-
forming could be bypassed, by deriving a geometric model
for estimating the two-dimensional position of a scattering
element, based on the delays of pulses associated with it,
yet estimated in different receivers. In order to apply such
a model, we must first be able to match corresponding pulses
across the detected signals. However, referring to the practical
case depicted in (a), we notice that such a task is not at all
trivial - the individual signals depict reflections, originating
from the entire sector, radiated by the transmitted pulse. These
reflections may, therefore, vary significantly across traces. In
fact, some pulses, visible in several traces, are not at all
apparent in other traces. In contrast, the beamformed signal,
by its construction, depicts intensity of reflections originating
from along the central transmission axis, while attenuating
reflections originating off this axis.

Attempting to apply FRI Xampling to each receiver element
individually, we encounter an even more fundamental obsta-
cle, at the earlier stage of extracting the signal’s parametric
representation from its low-rate samples. The individual traces
contain high levels of noise. The noisy components, especially
noticeable in traces 54 and 64, rise mainly from constructive
and destructive interference of acoustic waves, reflected by
dense, sub-wavelength scatterers in the tissue. The latterare
typically manifested as granular texture in the ultrasoundim-
age, called speckle, after a similar effect in laser optics [2]. The
noisy components inherently induce erroneous results, when
attempting to sample and reconstruct the FRI components
using the Xampling approach. In extreme scenarios, where
the noise masks the FRI component, the extracted parameters
will be meaningless, such that any attempt to cope with errors
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(a) (b)

Fig. 2. (a) Signals detected for cardiac images following the transmission of a single pulse. The vertical alignment of each trace matches the index of the
corresponding receiver element. (b) Beamformed signal obtained by combining the detected signals with appropriate, time-varying time delays. The data is
acquired using a GE breadboard ultrasonic scanner.

in the parametric domain will turn out useless.
The motivation to our approach rises from the observa-

tion, that we may resolve the aforementioned obstacles by
Xampling the beamformed signal,Φ (t; θ), rather than the
individual signalsϕm (t). Whereas beamforming is a funda-
mental process in ultrasound imaging since its early days, our
innovation regards its integration into the Xampling process.
We derive our compressed beamforming approach, beginning
with conceptual Xampling of the beamformed signal, using
the scheme proposed in [13]. We then show that an equivalent
result may be obtained from low-rate samples of the individual
signalsϕm (t).

A necessary condition for implementing our approach is
that Φ (t; θ), generated from{ϕm (t)}

M

m=1 satisfying (5), is
also FRI of similar form. Examining Fig. 2 we notice that
Φ (t; θ) exhibits a structure similar to that of the individual
signals, comprising strong pulses of typical shape, which may
overlap. In this case, there are several obvious advantagesin
Xampling Φ (t; θ). First, since{ϕm (t)}

M

m=1 are averaged in
Φ (t; θ) (after appropriate distortion, derived from the acoustic
reciprocity theorem) it naturally exhibits enhanced SNR with
respect to the individual signals. The attenuation of noisein
the beamformed signal, compared to the individual signals,is
apparent in Fig. 2, especially in the interval50mm− 80mm.
Second,Φ (t; θ) is directly related to an individual scanline.
This means that we are no longer bothered with the ambiguous
problem of matching pulses across signals detected in different
elements. Finally, recall that the signal model derived in (5)
assumes isolated point-reflectors. Such a model is better justi-
fied with respect toΦ (t; θ) since, by narrowing the effective
width of the imaging beam, we may indeed approximate its
intersection with reflecting structures to be point-like. This
effect is noticeable in Fig. 2 where some pulses, visible in
individual traces, appear attenuated in the beamformed signal.
Such pulses correspond to reflectors located off the central
axis of the transmission beam.

In the next section, we focus on justifying the assumption
that Φ (t; θ) may be treated within the FRI framework. An
additional challenge, implied in Section II, regards the fact

that Φ (t; θ) does not exist in the analog domain - standard
ultrasound devices generate it digitally, from samples of the
signals detected in multiple receiver elements, taken at the
Nyquist-rate. Our goal is, therefore, to derive a scheme, which
manages to estimate the necessary samples ofΦ (t; θ), from
low-rate samples of filtered versions of{ϕm (t)}

M

m=1.

V. COMPRESSEDBEAMFORMING

Our approach is based on the assumption that the FRI
scheme, outlined in Section III, may be applied to the beam-
formed signalΦ (t; θ), constructed according to (3)-(4). The
latter exhibits much better SNR than signals detected in
individual receiver elements. Additionally, it depicts reflections
originating from a sector much narrower than the one radiated
by the transmission beam. Its translation into a single scanline
is therefore straightforward. In Section V-A we prove that if
the signalsϕm (t) obey the FRI model (5), thenΦ (t; θ) is
approximately of the form:

Φ (t; θ) =

L
∑

l=1

blh (t− tl), (9)

wheretl denotes the time in which the reflection from thelth
element arrived at the reference receiver, indexedm0. Φ (t; θ)
may thus be sampled using the Xampling schemes derived
in [12], [13]. In practice, we cannot sampleΦ (t; θ) directly,
since it does not exist in the analog domain. In Second V-B
we show how the desired low-rate samples ofΦ (t; θ) can be
determined from samples ofϕm (t).

A. FRI Modeling of the Beamformed Signal

Throughout this section we apply three reasonable assump-
tions. First, we assume that2γm ≤ tl. Practically, such
a constraint may be forced by appropriate apodization, as
often performed in ultrasound imaging. Namely,ϕm (t) is
combined inΦ (t; θ) only for t ≥ 2γm. As an example, for
the breadboard ultrasonic scanner used in our experiments,the
array comprised64 receiver elements, distanced0.29mm apart.
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The proposed apodization implies that the receivers located
farthest from the origin are combined in the beamformed
signal for imaging depth greater than9.1mm. Second, we
assume the two-way pulse,h(t), to be compactly supported on
the interval[0,∆). Finally, we assume that∆ ≪ tl. The last
assumption may also be forced by appropriate apodization. As
an example, the nominal duration of the pulse acquired by the
breadboard ultrasonic scanner used in our experiments was
4µsec. In this case, echoes scattered from depth greater than
3.1cm already satisfytl > 10∆.

Suppose thatϕm (t) can be written as in (5). Applying the
beamforming distortion (3), we get

ϕ̂m(t; θ) =

L
∑

l=1

al,mh (τm (t; θ)− tl,m). (10)

The resulting signal comprisesL pulses, which are distorted
versions of the two-way pulseh (t). Suppose that some of
the pulses originated in reflectors located off the central beam
axis. Beamforming implies that, once averaging the distorted
signals according to (4), such pulses will be attenuated due
to destructive interference. Being interested in the structure of
the beamformed signalΦ (t; θ), we are therefore concerned
only with pulses which originated in reflectors located along
the central beam. For convenience, we assume that all pulses
in (10) satisfy this property (pulses which do not satisfy it,
will vanish in Φ (t; θ)). We may thus useτm (t; θ), defined in
(3), in order to expresstl,m in terms oftl. Substitutingt = tl
into τm (t; θ), we gettl,m = τm (tl; θ), so that (10) becomes

ϕ̂m(t; θ) =

L
∑

l=1

al,mh̃l,m (t; θ), (11)

where we defined̃hl,m (t; θ) = h (τm (t; θ)− τm (tl; θ)).
Applying our second assumption, the support ofh̃l,m (t; θ)

is defined by the requirement that

0 ≤ τm (t; θ)− τm (tl; θ) < ∆. (12)

Using (12) and (3), it is readily seen that̃hl,m (t; θ) is
supported on[tl, tl +∆′), where

∆′ = 2∆

√

t2l − 4γmtl sin θ + 4γ2
m +∆

√

t2l − 4γmtl sin θ + 4γ2
m + 2∆+ tl − 2γm sin θ

.

(13)

Further applying our assumption that2γm ≤ tl, we obtain
∆′ ≤ 2∆.

We have thus proven that̃hl,m (t; θ) = 0 for t /∈
[tl, tl + 2∆). Next, let us write anyt in [tl, tl + 2∆) as
t = tl + η, where0 ≤ η < 2∆. Then

h̃l,m (t; θ) = h (τm (tl + η; θ)− τm (tl; θ)) . (14)

We now rely on our assumption that∆ ≪ tl. Sinceη < 2∆,
we also haveη ≪ tl. The argument ofh (·) in (14) may
therefore be approximated, to first order, as

τm (tl + η; θ)− τm (tl; θ) = σm,l (θ) η + o
(

η2
)

, (15)

where

σm,l (θ) =
1

2

(

1 +
tl − 2γm sin θ

√

t2l − 4γmtl sin θ + 4γ2
m

)

. (16)

Up until this point, we assumed that2γm ≤ tl. Further
assuming thatγm ≪ tl, σm,l (θ) → 1. Replacingη by
η = t− tl, (14) may therefore be written as

h̃l,m (t; θ) ≈ h (t− tl) t ∈ [tl, tl + 2∆) . (17)

Combining (17) with the fact thath (t− tl) is zero outside
[tl, tl + 2∆), (11) may be approximated as

ϕ̂m(t; θ) ≈

L
∑

l=1

al,mh (t− tl). (18)

Averaging the signals{ϕ̂m(t; θ)}
M

m=1 according to (4), we get:

Φ (t; θ) ≈

L
∑

l=1

(

1

M

M
∑

m=1

al,m

)

h (t− tl) =

L
∑

l=1

blh (t− tl),

(19)

which is indeed the FRI form (9). Additionally, assuming
that the support ofϕm (t) is contained in[0, T ), we show
in the Appendix that there existsTB (θ) ≤ T , such that the
support ofΦ (t; θ) is contained in[0, TB (θ)) and, additionally,
τm (TB (θ); θ) ≤ T .

As γm grows towardstl, σm,l (θ) decreases, resulting in
a larger distortion of thelth pulse. Consequently, the ap-
proximation of ϕ̂m(t; θ) as a sum of shifted replicas of the
two-way pulse becomes less accurate. The Xampling schemes
used by [12], [13] rely on the projection of the detected
signal onto a subspace of its Fourier series coefficients. We
therefore examine the dependency of the projection error
on the distortion parameters,γm, tl and θ. In Fig. 3, we
show projection errors calculated numerically, for a signal
comprising a single pulse of duration∆ = 2µsec. The pulse
was simulated by modulating a Gaussian envelope with carrier
frequency3MHz. It was then shifted by multiple time delays,
tl, where 0 ≤ tl ≤ T , and T = 210µsec, corresponding
to an imaging depth of16cm. For each delay, we generated
the signalsϕm (t), assuming that the reflector is positioned
along theẑ axis (θ = 0), and that the receiver elements are
distributed0.29mm apart, along thêx axis. We choseM = 63,
such that the center (reference) receiver was indexedm0 = 32.
The beamforming distortion was then applied to the simulated
signals, based on (3). Finally, the distorted signals were
projected onto a subset ofK = 121 consecutive Fourier series
coefficients, taken within the essential spectrum of the two-
way pulse. The coefficients extracted from themth distorted
signal were arranged into the lengthK vector,Φm. As implied
by (3), no distortion is applied to the signal detected at the
reference receiver. We therefore evaluate the projection error
by calculating the SNR defined as20 log10

‖Φm0
‖2

‖Φm−Φm0
‖2

.
The traces obtained for several values of1 ≤ m < 32

are depicted in the figure. Astl grows,σm,l (θ) approaches
1, and the approximation (18) becomes more valid. As a
result, the projection error decreases. For receivers located
near the origin, such thatδm ≪ 10mm, the error decreases
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Fig. 3. Projection error caused by beamforming distortion with θ = 0 vs.
pulse delay,tl, for several receiver elements. The elements are distributed
0.29mm apart, such thatδ1 = 8.99mm (element farthest from array center)
andδ31 = 0.29mm. Zero error is obtained for the center element,δ32 , since
no distortion is required in this case.

very quickly. For instance, examiningδ31 = 0.29mm, the
SNR grows above25dB for a reflection originating at distance
greater than1/50 of the imaging depth. The SNR improves
more moderately for receivers located farther away from the
origin. Nevertheless, considering the receiver located farthest
away from the origin,δ1 = 8.99mm, the SNR grows above
10dB for a reflection originating at distance greater than1/5
of the imaging depth.

Concluding this section, our empirical results indeed justify
the approximation proposed in (9), where appropriate apodiza-
tion may further improve this approximation. Assuming (9) to
be valid, we may reconstruct the beamformed signal using the
Xampling schemes proposed in [12], [13].

B. Compressed Beamforming with Distorted Analog Kernels

An obvious problem is thatΦ (t; θ) does not exist in the
analog domain, and therefore may not be Xampled directly.
We now propose a modified Xampling scheme, which allows
extraction of its necessary low-rate samples, by sampling
filtered versions ofϕm (t) at sub-Nyquist rates.

Since the support ofΦ (t; θ) is contained in[0, TB (θ)),
whereTB (θ) ≤ T , we may defineΦ (t; θ)’s Fourier series
with respect to the interval[0, T ). Denoting bycj the kj th
Fourier series coefficient ofΦ (t; θ), we have

cj =
1

T

∫ T

0

I[0,TB(θ)) (t)Φ (t; θ) e−i 2π
T

kjtdt, (20)

whereI[a,b) (t) is the indicator function, taking the value 1 for
a ≤ t < b and 0 otherwise. Plugging the indicator function in
(20) may seem unnecessary. However, once transforming (20)
into an operator applied directly to{ϕm (t)}Mm=1, it serves an
important role in zeroing intervals, which are assumed zero
according to (5), but, in any practical implementation, contain
noise. Substituting (4) into (20), we can write

cj =
1

M

M
∑

m=1

cj,m, (21)

Fig. 4. Xampling scheme utilizing distorted exponential kernels.

where, from (3),

cj,m =
1

T

∫ T

0

I[0,TB(θ)) (t)ϕm (τm (t; θ)) e−i 2π
T

kjtdt

=
1

T

∫ T

0

gj,m(t; θ)ϕm (t) dt,

(22)

and

gj,m(t; θ) =qj,m(t; θ)e−i 2π
T

kjt,

qj,m(t; θ) =I[|γm|,Tm(θ)) (t)

(

1 +
γ2
m cos2 θ

(t− γm sin θ)2

)

×

exp

{

i
2π

T
kj

γm − t sin θ

t− γm sin θ
γm

}

,

Tm (θ) =τm (TB (θ); θ) .

(23)

The process defined in (21)-(23) can be translated into
a multi-channel Xampling scheme, such as the one de-
picted in Fig. 4. Each signalϕm (t) is multiplied by
a bank of kernels{gj,m (t; θ)}

K

j=1 defined by (23), and
integrated over [0, T ). This results in a vectorcm =
[

c1,m c2,m ... cK,m

]T
. The vectors{cm}Mm=1 are then

averaged inc =
[

c1 c2 ... cK
]T

, which has the desired
improved SNR property, and provides a basis for extracting
the2L parameters which defineΦ (t; θ). SinceΦ (t; θ) satisfies
(9), we apply a similar derivation to that outlined in Section IV,
yielding

c =
1

T
HVb, (24)

where H is a diagonal matrix withjth diagonal element
H
(

2π
T
kj
)

, V containse−i 2π
T

kjtl as its (j, l)th element, and
b is the lengthL vector, with elementsbl. The matrixV
may be estimated by applying spectral analysis techniques,
allowing for the vector of coefficientsb to be solved by a
least squares approach [19]. Fig. 5 illustrates the shape ofthe
resulting kernelsgj,m (t; θ), settingθ = 0 and choosing two
arbitrary values ofkj . For each choice ofkj we plot the kernels
corresponding to 7 receiver elements, selected from an array
comprising 64 elements, distanced0.49mm apart.
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(a)

(b)

Fig. 5. Real part ofgj,m(t; θ = 0) for T = 210µsec andkj satisfying: (a)
kj = 3, (b) kj=5. We assume an array comprisingM = 64 elements,
distanced0.49mm apart, and plot 7 traces which were obtained for the
elements indexed{m0, m0 + 5,m0 + 10, ...,m0 + 30}.

VI. SIMPLIFIED XAMPLING MECHANISM

In the previous section, we developed a Xampling approach
to extract the Fourier series coefficients ofΦ (t; θ). However,
the complexity of the resulting analog kernels, together with
their dependency onθ, makes hardware implementation of
the scheme depicted in Fig. 4 complex. Here, we take an
additional step, which allows the approximation of{cj,m}

K

j=1,

and consequently{cj}
K

j=1, from low-rate samples ofϕm (t),
obtained in a much more straightforward manner.

We begin by substitutingϕm (t) of (22) by its Fourier series,
calculated with respect to[0, T ). Denoting thenth Fourier
coefficient byφm [n], we get:

cj,m =
∑

n

φm [n]
1

T

∫ T

0

qj,m(t; θ)e−i 2π
T

(kj−n)tdt

=
∑

n

φm [kj − n]Qj,m;θ [n],
(25)

where Qj,m;θ [n] are the Fourier series coefficients of
qj,m(t; θ), also defined on[0, T ). Let us replace the infinite
summation of (25) by its finite approximation:

ĉj,m =

N2
∑

n=N1

φm[kj − n]Qj,m;θ [n]. (26)

The following proposition shows that this approximation can
be made sufficiently tight.

Proposition 1. Assume that
∫∞

−∞ |ϕm (t)|
2
dt < ∞. Then,

for any ǫ > 0, and for any selection(j,m; θ), there
exist finite N1 (ǫ, kj,m; θ) and N2 (ǫ, kj ,m; θ) such that
|cj,m − ĉ

j,m
|2 < ǫ.

Proof: Let l2 be the space of square-summable sequences,
with norm ‖x‖22 =

∑

n |xn|
2. Let a = {φm [kj − n]}

∞
n=−∞

andb =
{

Q∗
j,m;θ [n]

}∞

n=−∞
. Sinceϕm (t) is of finite energy,

a ∈ l2. We may calculate thel2 norm ofb, based on the defini-
tion of qj,m (t; θ) in (23), resulting in‖b‖2 ≈ Tm (θ) /T < ∞.

This implies thatb ∈ l2 as well. Letbt be the truncated
sequenceb for N1 ≤ n ≤ N2 and zero otherwise. We may
then write the approximation error as:

|cj,m − ĉj,m|2 = | 〈a,b− bt〉 |
2 ≤ ‖a‖22‖b− bt‖

2
2, (27)

where〈·, ·〉 is the inner product defined as〈x,y〉 =
∑

n xny
∗
n.

The last transition in (27) is a result of Cauchy-Schwartz
inequality. By definition ofbt andb, it is readily seen that
‖b−bt‖

2
2 = ‖b‖22 − ‖bt‖

2
2. Denotingρ2 = ‖bt‖

2
2/‖b‖

2
2, (27)

becomes

|cj,m − ĉj,m|2 ≤ ‖a‖22‖b‖
2
2

(

1− ρ2
)

. (28)

Since‖b‖2 < ∞, ρ2 can approach1 as close as we desire,
by appropriate selection ofN1 andN2. For anyǫ > 0, there
existsρ2 (ǫ) < 1, such that the right side of (28) is smaller
thanǫ. SelectingN1 andN2 for which ‖bt‖

2
2/‖b‖

2
2 ≥ ρ2 (ǫ),

results in|cj,m− ĉj,m|2 < ǫ, as required. Furthermore, setting
an upper bound on the energy ofϕm (t), and thereby on
‖a‖22, N1 andN2 may be chosen off-line, subject to the decay
properties of the sequence{Qj,m;θ [n]}

∞
n=−∞.

Using Proposition 1, we can computeĉj,m as a good approx-
imation to cj,m. We now show howĉj,m can be obtained
directly from the Fourier series coefficientsφm [n] of each
ϕm (t).

We first evaluateN1 and N2 for a certain choice ofm
and θ, such thatcj,m may be approximated to the desired
accuracy using (26). Equivalently, we obtain the minimal
subset ofϕm (t)’s Fourier series coefficients, required for the
approximation ofcj,m. Performing this for all1 ≤ j ≤ K, we
obtainK such subsets. Denoting the union of these subsets
by κm, we may now simultaneously compute{ĉj,m}

K

j=1 from
{φm [n]}n∈κm

by a linear transformation. Define the length-
Km vectorΦm, with lth elementφm [kl], andkl being thelth
element inκm. Using (26), we may write

ĉm = Am (θ)Φm, (29)

whereĉm is the length-K vector with jth element̂cj,m, and
Am (θ) is aK ×Km matrix with elements

aj,l =

{

Qj,m;θ [kj − kl] N1 (kj) ≤ kj − kl ≤ N2 (kj)
0 otherwise

.

(30)

Notice, that we have omitted the dependency ofN1 andN2 on
ǫ, m andθ, since, unlikekj , these remain constant throughout
the construction ofAm (θ).

The resulting Xampling scheme is depicted in Fig. 6.
Based on [12], we propose a simple mechanism for obtaining
the Fourier coefficients in each individual element: a linear
transformation,Wm, is applied to point-wise samples of the
signal, taken at a sub-Nyquist rate, after filtering it with an
appropriate kernel,s∗m (−t), such as the Sum of Sincs. In this
scheme, while we do need to extract larger number of samples
at the output of each element, asKm > K, we avoid the use
of complicated analog kernels as in Section V-B. Furthermore,
as we show in Section IX, in an actual imaging scenario good
approximation is obtained with just a small sampling overhead.
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Fig. 6. Xampling scheme utilizing Fourier samples ofϕm (t).

VII. S IGNAL RECONSTRUCTION

So far we derived our approach for extracting the param-
eters{tl, bl}

L
l=1 which determineΦ (t; θ) from sub-Nyquist

samples, taken at the individual receiver elements. In this
section we focus on the reconstruction ofΦ (t; θ) from these
parameters. OnceΦ (t; θ) is constructed for multiple values
of θ, a two-dimensional image may be formed, by applying
standard post-processing techniques: first,Φ (t; θ)’s envelope
is extracted using the Hilbert transform [20]; logarithmic
compression is then applied to each envelope, resulting in a
corresponding scanline; finally, all scanlines are interpolated
onto a two-dimensional grid. Having obtained the parametric
representation ofΦ (t; θ), the first two steps may be calculated
only within the support of the recovered signal.

In Section VII-A we describe the reconstruction ofΦ (t; θ)
from its estimated parameters, while generalizing the model
proposed in (9): we assume that the detected signals are
additionally parametrized by unknown carrier phases of the
reflected pulses, and show that the Xampling approach allows
estimation of these unknown phases.

In Section VII-B we propose an alternative approach for
reconstructingΦ (t; θ), using CS methodology.

A. Signal Reconstruction Assuming Unknown Carrier Phase

Consider the signal defined in (5). Modeling a signal of
physical nature, it is obviously real-valued, implying that al,m
are real. Consequently, by (19),bl must also be real-valued.
However, when we apply spectral analysis techniques aimed
at solving the system formulated in (24), there is generallyno
constraint thatb be real-valued. Indeed, solving it for samples
obtained using our proposed Xampling schemes, the resulting
coefficients are complex, with what appears to be random
phases. In fact, a similar phenomenon is observed when solv-
ing (8) for samples taken from the individual signals,ϕm (t),
as proposed in [12]. Below we offer a physical interpretation
of the random phases, by generalizing the model proposed
in (9). The result is a closed-form solution for reconstructing
the estimated signal, using the complex coefficients. When
applied, a significant improvement is observed, comparing the
envelope of the reconstructed signal, with that of the original
signal.

The ultrasonic pulseh (t) may be modeled by a baseband
waveform, g (t), modulated by a carrier at frequencyf0:
h (t) = g (t) cos (ω0t+ β), whereω0 = 2πf0 and β is the
phase of the carrier. The model proposed in (9), just like the
one in (5), assumes the detected pulses to be exact replicas

of h (t). However, a more accurate assumption is that each
reflected pulse undergoes a phase shift, based upon the relative
complex impedances involved in its reflection [21]. We thus
propose to approximate the beamformed signal as:

Φ (t; θ) =

L
∑

l=1

|bl| g (t− tl) cos (ω0 (t− tl) + βl), (31)

βl being an unknown phase. Thejth Fourier series coefficient
of Φ (t; θ) is now given by

cj =
1

T

∫ T

0

L
∑

l=1

|bl| g (t− tl) cos (ω0 (t− tl) + βl)e
−i 2π

T
kjtdt

=
1

2T

L
∑

l=1

|bl|
(

eiβlG (ωj − ω0) + e−iβlG (ωj + ω0)
)

e−iωjtl ,

(32)

whereG (ω) is the CTFT ofg (t) andωj =
2π
T
kj .

Let g (t) be approximated as a Gaussian with varianceσ2

and assume thatkj ≥ 0. It is readily seen that
∣

∣

∣

∣

G (ωj + ω0)

G (ωj − ω0)

∣

∣

∣

∣

= e−2σ2ωjω0 . (33)

We can then choose

kj ≥
5T

4πσ2ω0
, (34)

so that
∣

∣

∣

∣

G (ωj + ω0)

G (ωj − ω0)

∣

∣

∣

∣

< 10−2. (35)

This allows (32) to be approximated as

cj ≈
1

2T
G (ωj − ω0)

L
∑

l=1

|bl|e
iβle−i 2π

T
kj tl , (36)

and additionally

H (ωj) ≈
1

2
eiβG (ωj − ω0) . (37)

Combining (36) and (37), we get

cj ≈
1

T
H

(

2π

T
kj

) L
∑

l=1

ble
−i 2π

T
kjtl , (38)

where we definebl = |bl|e
i(βl−β).

Denoting byc the lengthK vector, withcj as itsjth ele-
ment, the last result may be brought into the exact same matrix
form written in (24). However, now we expect the solution to
extract complex coefficients, of which phases correspond tothe
unknown phase shifts of the reflected pulses,∠bl = βl − β.
Having obtained the complex coefficients, we may now re-
constructΦ (t; θ) according to (31), and then proceed with
standard post-processing techniques. The constraint imposed
in (34) is mild, considering nominal ultrasound parameters.
Assuming, for instance,T = 210µsec, f0 = 3MHz, and
σ = 630nsec, we must choosekj ≥ 12. The requirement that
H of (25) be invertible, already imposes a stronger constraint
onkj , thejth Fourier coefficient, sinceH

(

2π
T
kj
)

drops below
−3dB for |kj − 630| > 44.



10

B. CS Approach for Signal Reconstruction

Throughout the previous sections, we addressed the problem
of ultrasound signal reconstruction, within the FRI framework.
As shown in [6], for various FRI problems, the relationship be-
tween the unknown signal parameters and its subset of Fourier
series coefficients takes the form of a spectral analysis prob-
lem. The latter is then typically solved by applying techniques
such as annihilating filter [18] or matrix pencil [19]. In this
section, we consider an alternative approach for reconstructing
the signal defined in (9), based on CS methodology [4], [5].

Assume that the time delays{tl}
L

l=1 in (31) are quantized
with a ∆s quantization step, such thattl = ql∆s, ql ∈ Z.
Using (38), we may write the Fourier series coefficients of
Φ (t; θ) as:

cj ≈
1

T
H

(

2π

T
kj

) L
∑

l=1

ble
−i 2π

T
∆skjql . (39)

Let N be the ratio⌊T/∆s⌋. Then (39) may be expressed in
the following matrix form:

c ≈
1

T
HV̂x = Ax, (40)

whereH is theK ×K diagonal matrix withH
(

2π
T
kj
)

as its
jth diagonal element, andx is a lengthN vector, whosejth
element equalsbl for j = ql, and0 otherwise. Finally,V̂ is a
K × N matrix, formed by taking the setκ of rows from an
N ×N FFT matrix.

The formulation obtained in (40), is a classic CS problem,
where our goal is to reconstruct theN -dimensional vectorx,
known to beL-sparse, withL ≪ N , based on its projection
onto a subset ofK orthogonal vectors, represented by the rows
of A. This problem may be solved by various CS methods, as
long as the sensing matrixA satisfies desired properties such
as the Restricted Isometry Property (RIP) or coherence.

In our case,A is formed by choosingK rows from the
Fourier basis. Selecting these rows uniformly at random it
may be shown that if

K ≥ CL (logN)
4
, (41)

for some positive constantC, thenA obeys the RIP with large
probability [22]. As readily seen from (41), the resolutionof
the grid, used for evaluating{tl}

L

l=1, directly effects the RIP.
Recall that, by applying spectral analysis methods, one may
reconstructx from a minimal number of2L samples, if it is
indeedL-sparse. However, these samples must be carefully
chosen. Using matrix pencil, for instance, the sensing vectors
must be consecutive. Moreover, in any practical application,
the measured data will be corrupted by noise, forcing us to use
oversampling. In contrast, the bound proposed in (41) regards
random selection of the sensing vectors. Additionally, applying
the CS framework, we may effectively cope with the more
general case, of reconstructingx which is not necessarilyL-
sparse.

VIII. C OMPARISON BETWEENRECOVERY METHODS

In this section, we provide results obtained by applying
three recovery algorithms to ultrasound signals which were

Fig. 7. Field II simulation setup:M = 64 elements are aligned along the
x̂ axis with a0.05mm kerf. The width of each element is0.44mm. Speckle
pattern is simulated by randomly distributing105 point reflectors within the
boxB. Additionally, L = 6 point reflectors are aligned along theẑ axis, also
within the boundaries of the box. The pulse is transmitted along theẑ axis,
and the beamformed signal is constructed along the same line.

simulated using theField II program [23]. The evaluation
was performed based on multiple beamformed signals, each
calculated along thêz axis (θ = 0) for a random phantom
realization. The phantom comprisedL strong reflectors, dis-
tributed along thêz axis, and multiple additional reflectors,
distributed throughout the entire imaging medium. A mea-
surement vector was obtained by projecting the beamformed
signal onto a subset of its Fourier series coefficients. Finally,
each algorithm was evaluated for its success in recovering the
strong reflectors’ positions from the vector of measurements.
The first two algorithms which were evaluated were matrix
pencil [19] and total least-squares approximation, enhanced
by Cadzow’s iterated algorithm [24]. Both algorithms may be
considered spectral analysis techniques. The third algorithm
was Orthogonal Matching Pursuit (OMP) [25], which is a CS
method.

The simulation setup is depicted in Fig. 7. We created
an aperture comprising 64 transducer elements, with cen-
tral frequencyf0 = 3.5MHz. The width of each element,
measured along thêx axis, wasc/f0 = 0.44mm, and the
height, measured along thêy axis, was5mm. The elements
were arranged along thêx axis, with a 0.05mm kerf. The
transmitted pulse was simulated by exciting each element with
two periods of a sinusoid at frequencyf0, where the delays
were adjusted such that the transmission focal point was at
depthr = 70mm. Additionally, Hanning apodization was used
during transmission, by applying an appropriate excitation
power to each element.

In each iteration, we constructed a random phantom, for
which we simulated the beamformed signal. The phantom
was constructed in two stages. We first created a speckle
phantom, by drawing positions of105 point reflectors uni-
formly, at random, within the three-dimensional boxB =
{(x, y, z) : |x| ≤ 25mm, |y| ≤ 5mm, |z − 60| ≤ 30mm}. The
corresponding amplitudes were also drawn randomly, with
zero-mean and unit-variance Normal distribution. We then
generated a signal phantom, by drawing positions ofL = 6
point reflectors,{pl}

L

l=1, with xl = yl = 0 and zl uniformly
distributed in the interval[35mm, 85mm). These reflectors
were assigned identical amplitudes, which were adjusted ac-
cording to the SNR requirement, in the following manner: for
each of the two phantoms, we simulated the beamformed sig-
nal, acquired alongθ = 0 following pulse transmission in the
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Fig. 8. Image obtained by applying standard imaging techniques to an
individual phantom realization. Our goal is to recover theL = 6 strong
reflectors aligned along thêz axis. 105 point reflectors were distributed in
the imaging plain, resulting in echoes which corrupted the detected signals.
In the ultrasound image, these reflections are manifested ina speckle pattern.
The phantom was calibrated such that the SNR of the beamformed signal,
calculated along ˆθ = 0, defined in (42), was15dB.

same direction. Denoting the beamformed signal obtained for
the first (speckle) phantom byn (t; θ = 0) and that obtained
for the second (signal) phantom byΦ (t; θ = 0), we defined

SNR= 10 log10

∫ T

0 |Φ (t; θ = 0)|
2
dt

∫ T

0 |n (t; θ = 0)|
2
dt

. (42)

The amplitudes of the reflectors comprising the second phan-
tom were modified, such that (42) complied with the desired
SNR value. After this calibration, we combined the two phan-
toms into a single one, for which we generated an individual
beamformed signal realization. The detected signals and the
resulting beamformed signal were simulated at sampling rate
fs = 100MHz. Since the spectrum of the detected pulses
decayed to−50dB at ≈ 6MHz, this rate was far beyond
Nyquist. Hanning apodization was used for constructing the
beamformed signal, by applying appropriate weights to the
detected signals. This type of apodization may be easily
implemented with both our Xampling schemes, by replacing
the average in (21) by a weighted one.

Fig. 8 illustrates the method by which we simulated a
realization of the noisy beamformed signal. This image was
obtained by applying standard imaging techniques to an in-
dividual phantom. We are interested in recovering the strong
reflections aligned along thêz axis. The corresponding beam-
formed signal was corrupted by speckles, originating in the
multiple point reflectors scattered throughout the medium.The
phantom was calibrated such that the SNR of the beamformed
signal alongθ = 0, defined in (42), was15dB.

Having generated the beamformed signal, we obtained a
measurement vector, by projecting the signal onto a subset
of its K Fourier series coefficients, whereK = 2⌈ηL⌉ + 1,
andη > 1 is the desired oversampling factor. For the spectral
analysis techniques, we chose the coefficients consecutively,
aroundk0 = ⌈f0T ⌉. OMP was tested using both this se-
lection of coefficients, and a random selection, taken such
thatH

(

2π
T
kj
)

is above−2dB. With this selection, we obtain
samples which are better spread in the frequency domain.
We emphasize, that the coefficients were drawn once, for

Fig. 9. h (t) evaluated from the beamformed signal, calculated for a
single reflector usingField II simulator. The reflector was positioned at the
transmission focal point.

each choice ofη. An additional degree of freedom, using
the OMP method, regards the density of the reconstruction
grid, determined byN . We setN = 1860, complying with a
sampling frequencyfs = 20MHz, of order typically used in
imaging devices.

Recovery was evaluated based on the estimated time delays.
These were compared to the delays associated with the known
reflector positions,tl = 2zl/c. At the ith iteration, we
examined, for each algorithm, all possible matches between
actual delays{tl}

L
l=1, and estimated delays

{

t̂l
}L

l=1
. Of all

possible permutations (a total number ofL!), we selected the
one for which the number of matches, achieving error smaller
than the width ofh (t), was maximal. Denoting this number by
S
(q)
i , q ∈ {1, 2, 3, 4} corresponding to the evaluated method,

we estimate the probability of recovery by theqth method as

P (q) =
1

LI

I
∑

i=1

S
(q)
i , (43)

where I is the total number of iterations, set to 500 in
our simulation. We note that all reconstruction algorithms
require that we first calculateH

(

2π
T
kj
)

. For this purpose, we
simulated the signal beamformed alongθ = 0, for a phantom
which comprised a single reflector at the transmission focal
point (x, y, z) = (0, 0, 70mm). We used the detected signal,
depicted in Fig. 9, for calculatingH

(

2π
T
kj
)

.
The simulation results obtained for multiple combinations

of SNR and oversampling factor are illustrated in Fig. 10.
The calculated recovery probabilities are represented by gray-
levels, where a common color-bar was used for all plots. For
clarity, we plotted a line separating between probabilities lower
than 0.85 and probabilities above 0.85, and a line separating
between probabilities lower than 0.97 and probabilities above
0.97. Of the two spectral analysis techniques, matrix pencil
appears preferable, as it obtains high probability values over
a wider range of SNR and oversampling. Both OMP methods
outperformed the spectral analysis ones, with an obvious
advantage to random OMP.

An additional aspect which should be taken into consider-
ation, when choosing the reconstruction method, regards the
complexity of the Xampling hardware. Using the Xampling
scheme proposed in [12], random selection of Fourier series
coefficients will increase the hardware complexity: in such
case, the sampling kernel, e.g. SoS, must be specifically
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(a) (b) (c) (d)
Fig. 10. Probability of reconstruction vs. SNR and oversampling factor, η, using four methods: (a) Total least-squares, enhanced by Cadzow’s iterated
algorithm, (b) matrix pencil, (c) OMP with consecutive Fourier series coefficients, (d) OMP with Fourier series coefficients randomly distributed, such that
H

(

2π
T

kj
)

is above−2dB, ∀kj ∈ κ. Signals were simulated usingField II program, where SNR is defined in (42).

designed for the choice of coefficients. This is in contrast with
the relatively simple kernel, applied for a consecutive choice
of coefficients. On the other hand, the Xampling scheme
proposed in [13] is practically invariant to the manner in which
the coefficients are selected.

IX. EXPERIMENTS ONCARDIAC ULTRASOUND DATA

In this section, we examine results obtained by applying
our Xampling schemes, illustrated in Figs. 4 and 6, to raw
RF data, acquired and stored for cardiac images of a healthy
consenting volunteer. The acquisition was performed usinga
GE breadboard ultrasonic scanner of 64 acquisition channels.
The transducer employed was a 64-element phased array
probe, with 2.5MHz central frequency, operating in second
harmonic imaging mode: 3 half cycle pulses are transmitted at
1.7MHz, resulting in a signal characterized by a rather narrow
bandpass bandwidth, centered at1.7MHz. The corresponding
second harmonic signal, centered at3.4MHz, is then acquired.
The signal detected in each acquisition channel is amplified
and digitized at a sampling-rate of50MHz. Data from all
channels were acquired along 120 beams, forming a60◦

sector, where imaging to a depth ofz = 16cm, we have
T = 207µsec. The imaging results are illustrated in Fig. 11.

The first image (a) was generated using the standard tech-
nique, applying beamforming to data first sampled at the
Nyquist-rate, and then down-sampled, exploiting its limited
essential bandwidth. For a single scanline, sampling at50MHz,
we acquire10389 real-valued samples from each element,
which are then down-sampled, to1662 real-valued samples,
used for beamforming. The resulting image is used as refer-
ence, where our goal is to reproduce the macroscopic reflectors
observed in this image with our Xampling schemes.

We begin by applying the scheme illustrated in Fig. 4,
utilizing the analog kernels defined in (23). Modulation with
the kernels is simulated digitally. AssumingL = 25 reflectors,
and using two-fold oversampling,κ comprisesK = 100
consecutive indices. With such selection, the corresponding
frequency samples practically cover the essential spectrum of
h (t). Since each sample is complex, we get an eight-fold
reduction in sample-rate. Having estimated the Fourier series
coefficients ofΦ (t; θ), we obtain its parametric representation
by solving (40) using OMP. We then reconstructΦ (t; θ)
according to (31), that is we apply phase shifts to the modu-

lated pulses, based on the extracted coefficients’ phases. The
resulting image (b) depicts the strong perturbations observed
in (a). Moreover, isolated reflectors at the proximity of the
array (z ≈ 6cm) remain in focus.

We next apply the approximated scheme, illustrated in
Fig. 6: for everykj ∈ κ, 1 ≤ m ≤ M and θ, we find
N1 and N2 of (26) such thatρ2 ≈ 0.95. This process is
performed numerically, off-line, based on our imaging setup.
Consequently, we construct{Am}

M

m=1 off-line, according to
(30). Choosing this level of approximation, we end up with a
seven-fold reduction in sample rate, where, for the construction
of a single scanline, an average of116 complex samples
must be taken from each element. We point out that in this
scenario, the maximal number of samples, taken from certain
elements, reaches133 for specific values ofθ. Thus, if a
common rate is to be used for all sensors, for all values ofθ,
we may still achieve a six-fold reduction in sample rate. As
before, we use OMP in order to obtainΦ (t; θ)’s parametric
representation, and reconstruct it based on our generalized FRI
model proposed in (31). The resulting image (c) appears very
similar to (b).

Table I gathers SNR values, calculated for the beamformed
signals estimated using both our Xampling schemes, after
envelope detection with the Hilbert transform. The values were
calculated with respect to the envelopes of the beamformed
signals, obtained by standard imaging. Explicitly, letΦ (t; θi)
denote the beamformed signal obtained by standard beam-
forming along the directionθi, i = 1, 2, ..., I, let Φ̂ (t; θi)
denote the beamformed signal reconstructed from the param-
eters recovered by compressed beamforming along the same
direction, and letH (·) denote the Hilbert transform. For the
set ofI = 120 scanlines, we defined the SNR as

SNR= 10 log10

∑I
i=1

∫ T

0 |H(Φ (t; θi))|
2
dt

∑I

i=1

∫ T

0

∣

∣

∣
H(Φ̂ (t; θi))− H(Φ (t; θi))

∣

∣

∣

2

dt

.

(44)

This calculation was repeated when reconstructing the sig-
nals without the random phase assumption, proposed in Sec-
tion VII-A. For the latter case, reconstruction of a real-valued
Φ̂ (t; θi), given complex coefficients, may be heuristically
achieved by either ignoring the coefficients’ imaginary part, or
by taking their modulus. It may be seen that, weighting over
all 120 beamformed signals, the random phase assumption
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(a) (b) (c)
Fig. 11. Cardiac images generated by Xampling and using traditional methods. (a) standard beamforming applied to data sampled at the Nyquist-rate. (b)
applying the non-approximated Xampling scheme of Fig. 4. (c) applying the final Xampling scheme of Fig. 6.

achieves a relatively minor improvement (0.1-0.15dB) com-
pared to reconstruction using the modulus of the coefficients.
However, when examining individual signals, we observed
that, for certain values ofθi, the improvement exceeded1.5dB.

TABLE I
SNR IN [DB] OFΦ (t; θ) OBTAINED WITH THE PROPOSEDXAMPLING

SCHEMES AND THREE RECONSTRUCTION METHODS

Xampling Method
Reconstruction Method Distorted Kernels

(Fig. 4)
Approximated
Scheme (Fig. 6)

Random Phase 6.47 5.89
Real part of Residues 4.59 4.03
Modulus of Residues 6.32 5.79.

We emphasize, that the calculated SNR values provide
a useful measure for quantitatively comparing the different
Xampling and reconstruction approaches. However, they are
of smaller value when attempting to evaluate the overall
performance of Xampling, compared to standard imaging:
recall that our scheme is aimed at reproducing only strong
pulses, reflected from macroscopic reflectors. The reference
signal, on the other hand, generated by standard technique,
already contains the additional speckle component, caused
by multiple microscopic perturbations. A possible approach
for evaluating the overall performance of either Xampling
scheme, would be to examine its success rate in recovering
strong reflections, detected by standard beamforming. For this
purpose, we tracked theL strongest local maxima in each
beamformed signal. If the Xampling scheme recovered a pulse
within the range of1.2mm from a certain maximum, we say
that this maximum was successfully detected. Certain pulses,
detected by Xampling, may match more than one maximum
in the beamformed signal. In such case, we choose the one-
to-one mapping which achieves smallest MSE. Applying this
evaluation method to signals Xampled using our approximated
scheme, and reconstructed with the random phase assumption,
we conclude that the reconstruction successfully retrieves
70.4% of the significant maxima, with standard deviation of
the error being approximately0.42mm.

X. CONCLUSION

In this work, we generalized the Xampling method proposed
in [12], to a scheme applied to an array of multiple receiv-
ing elements, allowing reconstruction of a two-dimensional

ultrasound image. At the heart of this generalization was the
proposal that the one-dimensional Xampling method derived
in [12] be applied to signals obtained by beamforming. Such
signals exhibit enhanced SNR, compared to the individual
signals detected by the array elements. Moreover, they depict
reflections which originate in a much narrower sector, than
that initially radiated by the transmitted pulse. A second key
observation, which made our approach feasible, regarded the
integration of the beamforming process into the filtering part
of the Xampling scheme.

The first approach we purposed comprised multiple modula-
tion and integration channels, utilizing analog kernels. We next
showed that the parametric representation of the beamformed
signal may be well approximated, from projections of the
detected signals onto appropriate subsets of their Fourierseries
coefficients. The contribution of our schemes regards both
the reduction in sample rate, but additionally, the resulting
reduction in the rate of data transmission from the system
front-end to the processing unit. In particular, our second
approach is significant even when preliminary sampling is
performed at the Nyquist-rate. In such a case, it allows a
reduction in data transmission rate, by a relatively simple
linear transformation, applied to the sampled data.

An additional contribution of our work regards the method
by which we reconstruct the ultrasound signal, assumed to
obey a specific FRI structure, from a subset of its frequency
samples. Rather than using traditional spectral analysis tech-
niques, we formulate the relationship between the signal’s
samples to its unknown parameters as a CS problem. The
latter may be efficiently solved using a greedy algorithm
such as the OMP. We show that, in our scenario, CS is
generally comparable to spectral analysis methods, managing
to achieve similar success rates with sample sets of equal
cardinality. Moreover, working in a noisy regime, CS typically
outperformed spectral analysis methods, provided that thefre-
quency samples were highly spread over the essential spectrum
of the signal. Using actual cardiac data, a relatively large
number of reflectors was assumed. Consequently, by simply
choosing the Fourier series coefficients consecutively, asin
the spectral analysis techniques, we end up with the necessary
wide distribution. However, as shown in our simulations, CS
approach inherently allows a wide distribution of samples,
even when the cardinality of the sample set is small, since
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we are not obliged to unique configurations of samples.
A final observation discussed in our work, regards the

generalization of the signal model proposed in [12], allowing
additional, unknown phase shifts, of the detected pulses.
We show that these shifts may be estimated by appropriate
interpretation of the extracted coefficients, without changing
the recovery method.

Combining the random phase assumption with our proposed
Xampling schemes and the CS recovery method, we construct
two-dimensional ultrasound images, which well depict strong
perturbations in the tissue, while achieving up to seven-
fold reduction of sample rate, compared to standard imaging
techniques.

APPENDIX A
BEAMFORMED SIGNAL SUPPORT

We assumeh (t) to be supported on[0,∆), and that the
support ofϕm (t) is contained in[0, T ). The last assumption
may be justified by the fact that the pulse is transmitted at
t = 0, such that reflections may only be detected fort ≥ 0.
Additionally, the penetration depth of the transmitted pulse
allows us to setT , such that all reflections arriving att ≥ T
are below the noise level.

For all 1 ≤ l ≤ L and1 ≤ m ≤ M :

tl,m +∆ ≤ T, (45)

Applying the relation tl,m = τm (tl; θ), justified in Sec-
tion V-A, and using the fact thatτm (t; θ) is non-decreasing
for t ≥ 0 we conclude that

tl ≤ τ−1
m (T −∆; θ) , (46)

τ−1
m (t; θ) being the inverse ofτm (t; θ). Explicitly:

τ−1
m (t; θ) =

t2−γ2

m

t−γm sin θ
, t ≥ γm. (47)

Assuming that∆ ≪ T , then, since (46) is true for every
1 ≤ m ≤ M , we may write:

tl ≤ min
1≤m≤M

τ−1
m (T ; θ). (48)

This allows us to set the following upper bound on the support
of Φ (t; θ):

TB (θ) = min
1≤m≤M

τ−1
m (T ; θ), (49)

once again, using the assumption that∆ ≪ T . From (47) it
is readily seen thatTB (θ) ≤ T , since we can always findγm
with sign opposite to that ofsin θ, such that:

τ−1
m (T ; θ) =

T 2 − γ2
m

T + |γm sin θ|
≤

T 2 − γ2
m

T
≤ T. (50)

Finally, by construction ofTB (θ) we see that, for all1 ≤
m ≤ M , τm (TB (θ) ; θ) ≤ T .
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