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Abstract

Compressive sensing (CS) exploits the sparsity present in many signals to reduce the number
of measurements needed for digital acquisition. With this reduction would come, in theory,
commensurate reductions in the size, weight, power consumption, and/or monetary cost of both
signal sensors and any associated communication links. This paper examines the use of CS
in the design of a wideband radio receiver in a noisy environment. We formulate the problem
statement for such a receiver and establish a reasonable set of requirements that a receiver
should meet to be practically useful. We then evaluate the performance of a CS-based receiver
in two ways: via a theoretical analysis of its expected performance, with a particular emphasis
on noise and dynamic range, and via simulations that compare the CS receiver against the
performance expected from a conventional implementation. On the one hand, we show that CS-
based systems that aim to reduce the number of acquired measurements are somewhat sensitive
to signal noise, exhibiting a 3dB SNR loss per octave of subsampling, which parallels the classic
noise-folding phenomenon. On the other hand, we demonstrate that since they sample at a lower
rate, CS-based systems can potentially attain a significantly larger dynamic range. Hence, we
conclude that while a CS-based system has inherent limitations that do impose some restrictions
on its potential applications, it also has attributes that make it highly desirable in a number of
important practical settings.

1 Introduction

The recently developed compressive sensing (CS) framework has radically transformed our under-
standing of signal acquisition [2–5]. Rather than sampling signals at twice their bandwidth, CS
liberates us from the yoke of Shannon-Nyquist theory by proposing that signals be sampled at a
rate proportional to their information content. Specifically, CS enables the acquisition of sparse
signals, i.e., those that have only a few non-zero coefficients in some suitable representation.
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Despite the attention that CS has received in recent years, several key facets have remained
unaddressed when it comes to using CS in practice. For example, there is rich analysis for bounded
noise or Gaussian noise on CS measurements; however, in practice noise is typically present in both
the measurements and the signal itself. Moreover, the impact of finite-range amplitude quantization
has been largely ignored.

In this paper we tackle these issues by examining the nuts and bolts of a specific application:
the CS acquisition receiver. We begin with a detailed “engineer’s guide” to CS, emphasizing the
practical requirements. We then rigorously analyze the setting where noise is present not only in
the measurements but also in the signal. In this context we study the impact of noise folding owing
to subsampling in the presence of signal noise. On the negative side, we show that when noise is
added to the input signal, a reduction in the sampling rate by one half induces a 3dB SNR loss
on the final signal estimate [1]. This effect, mainly overlooked in the past, highlights a real cost
associated with the use of CS. We also note that while we focus here primarily on the problem of
using CS to acquire noisy wideband signals, our analysis is general and applies to any potential
application of CS.

To balance the negatives of noise folding, we also study the dynamic range of a CS-based
receiver. On the positive side, we demonstrate that the dynamic range of a CS-based receiver can
be significantly improved compared to a conventional analog-to-digital converter (ADC), primarily
since by sampling at a lower rate we can typically quantize with a higher effective number of bits.
This theoretical analysis is confirmed by simulations that demonstrate that the impact of noise
and finite dynamic range quantization follow our predictions. Empirically, we observe that each
reduction in the sampling rate by one half leads to an SNR gain of approximately 5dB.

This paper is organized as follows. Section 2 formulates the problem statement and establishes
a set of requirements that a receiver should meet to be highly attractive for practical use. Section 3
reviews the CS theory, and Section 4 builds on this theory to analyze the performance of a CS-
based receiver in the presence of signal and measurement noise. Section 5 provides an analysis of the
dynamic range of a CS-based receiver, demonstrating the potential for substantial improvement.
Section 6 presents the results of a set of simulations that compare a CS-based receiver with our
theoretical predictions. These results are further discussed in Section 7. Recommendations for
additional study and investigation appear in Section 8.

2 Putative Requirements

Our objective in this paper is to explore the attributes and capabilities of CS by examining how
it might be applied to meet a specific set of requirements. The particular application addressed
is a wideband radio frequency (RF) signal acquisition receiver, a device commonly used in both
commercial and military systems to monitor a wide band of radio frequencies for the purposes of (i)
detecting the presence of signals, (ii) characterizing them, and, where appropriate, (iii) extracting
a specific signal from the several that might be present within that band. Many types of acquisition
receivers have been designed, built, and sold over the years, but we will choose here a set of putative
requirements for such a receiver to ease comparisons and analysis. The reader is invited to repeat
the comparison for other parameter choices.

The attributes that characterize an acquisition receiver typically fall into two categories: tech-
nical specifications — such as instantaneous bandwidth — and various “costs” — such as size,
weight, and power consumption (SWAP) and monetary cost. In this paper we will address only
the few most important technical specifications:

• Instantaneous bandwidth — the radio frequency (RF) range over which signals will be accepted
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Table 1: A putative set of specifications for an advanced RF signal acquisition receiver.

Instantaneous bandwidth B/2 500 MHz
Instantaneous dynamic range DR 96dB
SNR degradation/noise figure NF 12dB
Maximum signal bandwidth W/2 200 kHz

by the receiver and handled with full fidelity.

• Instantaneous dynamic range — the ratio of the maximum to minimum signal power level
with which received signals can be handled with full fidelity.

• SNR degradation — sometimes termed “noise figure,” a measure of the tendency of the receiver
to lower the input signal-to-noise ratio (SNR) of a received signal, usually measured in dB.
The root cause of this degradation has historically depended on the technology used to build
the receiver.

• Maximum signal bandwidth — the maximum combined bandwidth of the constituent signals
in the acquisition bandwidth of the receiver.

These requirements must be met subject to many constraints, including, at least, SWAP and
monetary cost. There are also typically system-level constraints, such as the bandwidth available
for communicating what the receiver has discovered to other assets or a central processing facility.

Historically RF signal acquisition receivers were first built using purely analog technology, then,
more recently, with analog technology conditioning the signal environment sufficiently to employ
a high-rate ADC followed by digital processing, storage, and/or transmission. If and when it can
be applied, CS offers the promise to (i) increase the instantaneous input bandwidth, (ii) lower all
of the cost attributes of the sensor, and (iii) move the computationally intensive portions of the
acquisition process away from the sensor and toward a central processing facility.

For the purposes of the comparisons to be made in this paper, we will assume a set of require-
ments for an acquisition system that are rather audacious and would at the least stress conven-
tional implementations at the present time. These requirements are listed in Table 1. To meet the
bandwidth and dynamic range requirements, conventional designs would typically be forced to use
techniques based on scanning narrowband receivers across the band. If CS-based systems can be
shown to work in such settings without the need for scanning at the receiver, then they would have
broad application.

In order to apply CS, we must make two last, but important, assumptions:

1. Signal sparsity — In order to meet the first-order assumption of all CS techniques, in this
paper we assume that the input signal is sparse. To be concrete, in Table 1 we assume that
the sum of the bandwidths of all signals present in the full acquisition band is no more than
200 kHz. Note that this is significantly smaller than the instantaneous bandwidth of 500
MHz. Thus we are assuming that the RF input to the receiver is significantly sparse in the
frequency domain (the instantaneous bandwidth is only 1/2500 occupied). Although inputs
with this level of spectral sparsity are not common, they exist often enough to make a solution
useful if it can be found. To test the impact of the sparsity assumption for this application, we
will evaluate the performance, both theoretically and in simulation, for both the case where
the input is noise-free, so that the input signal is truly sparse, and in the more practical case
where the input is contaminated with additive white noise.
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2. Processing asymmetry — Our objective is to minimize all receiver and data link costs, i.e.,
the SWAP and monetary cost of the receiver and the bandwidth required for transmission.
We assume that once data is acquired and transmitted, we are prepared to invest heavily in a
(possibly centralized) system that can do as much processing as needed to detect, characterize,
and/or recover the signal of interest. In other words, we assume that there is no cost to
processing the receiver output, while there is high cost to the receiver acquisition and data
forwarding processes.

3 Compressive Sensing Background

3.1 CS signal acquisition

In the present work we are concerned with the acquisition of a real-valued, continuous-time signal of
interest, which we will denote by x(t). We will assume that x(t) is bandlimited with instantaneous
bandwidth B/2 Hz. We will further assume that x(t) is sparse in the sense that the total occupied
bandwidth, denoted by W/2, is much smaller than the instantaneous bandwidth, i.e., W � B.
From the Shannon-Nyquist sampling theorem, we have that x(t) can be perfectly reconstructed
from a set of uniform samples taken at a rate of B Hz, and thus we can equivalently consider the
problem of acquiring the corresponding discrete-time version of our signal of interest, which we will
denote by x[n].

In both the CS theory and in practice, we will actually be concerned with acquiring a finite
window of x(t), or equivalently x[n]. Without loss of generality, we will assume that we are
interested in a window of duration T = 1 seconds.1 In this paper we will follow [6] and make the
additional simplifying assumption that x(t) has a finite number of bounded harmonics, i.e.,

x(t) = Ψ(α) =

B−1∑
k=0

αkψk(t),

where ψk(t) = ej2πkt are the Fourier basis functions and where α = [α0, α1, . . . , αB−1] is a complex-
valued vector of length B. We will further assume that α has exactly W nonzeros, corresponding
to the active frequencies in the acquisition bandwidth. Thus, we assume that αk = 0 exactly
outside of these W nonzeros, in which case we say that the vector α is W -sparse. In practice,
we do not observe truly W -sparse signals for two main reasons: (i) the spectrum will typically be
contaminated by noise, and (ii) real-world signals are never perfectly bandlimited, and moreover
restricting our attention to a finite-length window leads to an inevitable “leakage” of energy outside
the signal’s original support. Although there exist alternative approaches to help mitigate the effect
of windowing that build on classical spectral estimation techniques [7, 8], an analysis of these more
specialized approaches is beyond the scope of this paper and is largely irrelevant to our discussion.
Hence, we will assume throughout this paper that noise dominates the leakage and that α can be
modeled as a Fourier-sparse vector contaminated by noise.

The Shannon-Nyquist sampling theorem states that B samples of x(t) per T = 1 second contain
all of the information in x(t). Our goal in CS is to do better: to acquire x(t) via M = B/ρ
measurements per second with ρ ≥ 1 as large as possible. The subsampling factor ρ strongly affects
the various costs (i.e., SWAP and monetary cost) described in Section 2. Observe that if the
locations of the W nonzeros of α are known a priori, then by filtering and decimation we could

1We set T = 1 for convenience; for other T one can merely replace B and W below with BT and WT , mutatis
mutandis.
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drive ρ as large as ρmax = B/W . Our aim is to show that we can actually acquire x(t) via a set
of M nonadaptive, linear measurements that require no a priori knowledge of the locations of the
nonzeros of α, with ρ nearly as large as ρmax.

Towards this end, we acquire the measurements

y = Φ(x(t)) + e, (1)

where Φ is a linear measurement operator that maps functions defined on [0, 1] to a length M vector
y of measurements, and where e is a length M vector that represents measurement noise generated
by the acquisition hardware. The central theoretical question in CS is how to design Φ to ensure
that we will be able to recover x(t) from the measurements y. There are many approaches to
solving this problem. Typically we split this question into two parts: (i) What properties of Φ will
ensure that there exists some algorithm that can recover x(t) from y? and (ii) What algorithms
can perform this recovery efficiently?

The answer to the first question is rather intuitive. In order to simplify our discussion, we
observe that since Φ is linear, we can write

yj = 〈φj(t), x(t)〉 =

〈
φj(t),

B−1∑
k=0

αkψk(t)

〉

=

B−1∑
k=0

αk 〈φj(t), ψk(t)〉 .

If we let R denote the M ×B matrix with entries given by rjk = 〈φj(t), ψk(t)〉, then (1) reduces to

y = Rα+ e. (2)

Thus, our problem reduces to that of designing the matrix R.2 Although many properties for R
have been studied, the most common is the restricted isometry property (RIP) [9]. The RIP of
order W requires that there exists a constant δ ∈ (0, 1) such that for all W -sparse α,

√
1− δ ≤

‖Rα‖2
‖α‖2

≤
√

1 + δ. (3)

In words, R preserves the Euclidean norm of W -sparse vectors. Equivalently, the RIP of order
2W ensures that R preserves the Euclidean distance between pairs of W -sparse vectors. The RIP
provides a guarantee that any W -sparse signal consistent with measurements perturbed as in (2)
will be close to the original signal, and so the RIP ensures that the system has a degree of robustness
to measurement noise.

We now consider how to design a matrix R satisfying the RIP. An important result from the
CS theory is that if the entries rij are independent realizations from a Gaussian, Rademacher (±1-
valued), or more generally, any bounded, zero-mean distribution, then with overwhelmingly high
probability R will satisfy the RIP of order W provided that

ρ ≤ ρcs =
κ0

log ρmax
ρmax, (4)

where κ0 < 1 is a constant that depends on B and the probability with which (3) holds [10]. From
this we conclude that CS-based measurement operators Φ pay a small penalty in terms of ρ (of
κ0/ log(ρmax)), for not exploiting any a priori knowledge of the locations of the nonzero frequencies.

2Note that we can always go from R back to Φ by setting Φ = RΨ∗, where Ψ∗ denotes the adjoint of Ψ.
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In general, the theoretical analysis is somewhat lacking concerning the precise value of κ0. If
a specific value for κ0 is required, then one must typically determine it experimentally. This can
be accomplished via Monte Carlo simulations that identify how many measurements are sufficient
to ensure exact recovery in the noise-free setting on at least, say, 99% of trials. As an example, it
is shown in [6] that ρ . 0.6ρmax/ log(ρmax) is sufficient to enable exact recovery in the noise-free
setting. Note that this is not the same as demonstrating that ρ . 0.6ρmax/ log(ρmax) is sufficient to
ensure that R satisfies the RIP, but it is suggestive that the true value of κ0 is much greater than
the conservative estimates provided by the theory. We will observe this phenomenon for ourselves
in Section 6.

Since the random matrix approach is somewhat impractical to build in hardware, several hard-
ware architectures have been implemented and/or proposed that enable compressive samples to
be acquired in practical settings. Examples include the random demodulator [6], random filter-
ing [11, 12], the modulated wideband converter [13], random convolution [14, 15], the compressive
multiplexer [16], and more [17, 18]. Mathematically, such systems can typically be represented as
matrices that operate on the vector x of Nyquist-rate samples. The corresponding matrices, al-
though randomized, typically exhibit a great deal of structure. Although theoretical analysis of
structured random matrices remains a topic of active study in the CS community, there do exist
theoretical guarantees for some of these architectures [6, 14–16]. The amount of subsampling possi-
ble with these constructions is generally consistent with fully random measurements as given in (4),
although proofs that these constructions satisfy the RIP typically result in raising the denominator
in (4) to a small power (e.g., 2 or 4).

3.2 CS recovery algorithms

We now address the question of how to recover the signal x(t) from the measurements y. Most
algorithms actually provide a recovery of α, denoted α̂. By setting x̂(t) = Ψ(α̂), we can recover
x(t). Alternatively, if we build a matrix Ψ by choosing the kth column to be uniform samples of the
function ψk(t), then we can recover the Nyquist-rate samples of x(t) directly by x̂ = Ψα̂. Thus,
x(t), x, and α are effectively equivalent representations of the signal of interest.

The original CS theory proposed `1-minimization as a recovery technique when dealing with
noise-free measurements [3, 5]. Noisy measurements as in (2) can be easily handled using similar
techniques provided that the noise e is bounded, meaning that ‖e‖2 ≤ ε. The accuracy of this
method is made precise in [19], which establishes that for W -sparse signals, provided R satisfies
the RIP of order 2W , the recovery error can be bounded by

‖α̂−α‖2 ≤ κ1ε, (5)

where κ1 ≥ 1 is a constant that depends on the subsampling factor ρ. The optimal value of
this constant is similarly difficult to determine analytically, but in practice it should be close to 2
provided that ρ < ρcs. Thus, measurement noise has a controlled impact on the amount of noise in
the reconstruction. A similar guarantee can be obtained for approximately sparse, or compressible,
signals.3

`1-minimization techniques are powerful methods for CS signal recovery, but there also exist a
variety of alternative algorithms that are commonly used in practice and for which performance
guarantees comparable to that of (5) can be established. As an example, CoSaMP is a greedy

3By compressible, we mean signals that are well approximated by a sparse signal. The guarantee for compressible
signals is similar to (5) but includes an additional term that quantifies the error incurred by approximating x(t) with
a sparse signal.
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algorithm known to satisfy guarantees similar to (5) [20]. CoSaMP and similar greedy algorithms
build on a common set of simple techniques and can be easily understood by breaking the recovery
problem into two separate sub-problems: identifying the locations of the nonzero coefficients of α
and estimating the values of the nonzero coefficients of α. The former problem is clearly somewhat
challenging, but once solved, the latter is relatively straightforward and can be solved using standard
techniques like least squares. In particular, suppose that an oracle provides us with the indices of
the nonzero coefficients of α (its support), denoted by the index set Λ. Then a natural recovery
strategy is to solve the problem:

α̂ = argmin
α

‖Rα− y‖2 s.t. supp(α) = Λ. (6)

If we let RΛ denote the submatrix of R that contains only the columns of R corresponding to the
index set Λ, then the solution to (6) is obtained via the pseudoinverse of RΛ, denoted R†Λ, i.e.,

α̂|Λ = R†Λy and α̂|Λc = 0. (7)

Note that in the noise-free setting, if the oracle provides the correct Λ, then y = RΛα, and so
plugging this into (7) yields α̂ = α provided that RΛ is full rank. Thus, the central challenge in
recovery is to correctly identify the support. CoSaMP and related algorithms solve this problem
by iteratively identifying likely nonzeros, estimating their values, and then improving the estimate
of the support of the signal.

4 Impact of White Noise on CS-Based Acquisition Systems

4.1 Noise model and performance metrics

The bulk of the CS literature focuses on CS acquisition and recovery in the face of measurement
noise e as in (2) [19–23]. In this section we build on [1] to examine the effect of both measurement
noise (i.e., noise caused by the measurement hardware) as well as signal noise (noise at the antenna
induced by the fact that the receiver’s physical temperature is above absolute zero combined with
other random disturbances in the channel). Specifically, we now assume that the Fourier represen-
tation of x(t) consists of a W -sparse signal corrupted by additive noise n. Thus, we acquire the
measurements

y = R(α+ n) + e = Rα+Rn+ e.

This scenario is subtly different from (2), because part of the noise is now scaled by the matrix
R. Our chief interests are to understand how R affects n and how Rn+ e manifests itself in the
recovered α̂.

It is commonly assumed that n = 0 and that e is an arbitrary bounded vector. In many
common settings it is more natural to assume that e ∼ N (0, σ2

eIM ), i.e., e is i.i.d. Gaussian noise,
and likewise for n. In this section we will consider the more general setting where e is a zero-mean,
white random vector, meaning that

E (e) = 0 and E
(
eeT

)
= σ2

eIM . (8)

Similarly, we will assume that n is also a zero-mean, white random vector (with E
(
nnT

)
= σ2

nIB).
Note that this means that the noise is added across the entire B-dimensional Fourier spectrum and
not just to the W nonzeros of α.

In order to quantify the impact of noise on our measurement process, we will define a variety
of different signal-to-noise ratios (SNRs). To begin, we recall a classical method for calculating the
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SNR of the original signal, which we will refer to as the input SNR (ISNR). The ISNR as defined
here4 measures the SNR by including only the noise within the same bandwidth as the signal, which
in our notation is given by

ISNR =
‖α‖22

E
(
‖(α+ n)|Λ −α‖22

) =
‖α‖22

E
(
‖n|Λ‖22

) , (9)

where Λ represents the support of α.5 The ISNR is a measure of the SNR of the signal itself prior
to the acquisition of any measurements.

In the context of CS, it is also useful to consider two additional notions of SNR. We define the
measurement SNR (MSNR) as

MSNR =
‖Rα‖22

E
(
‖y −Rα‖22

) =
‖Rα‖22

E
(
‖Rn+ e‖22

) (10)

and the recovered SNR (RSNR) as

RSNR =
‖α‖22

E
(
‖α̂−α‖22

) , (11)

where α̂ is the output of our CS recovery algorithm. In this section we will analyze the RSNR where
α̂ is the output of the oracle-assisted recovery algorithm in (7) applied to y = R(α+ n) + e. We
focus on the oracle-assisted recovery algorithm in order to simplify the analysis while illustrating a
“best-case” scenario (the oracle-assisted approach yields the same output as a greedy method like
CoSaMP when the greedy method correctly identifies the true support). Note that in this setting,
if we were to directly acquire the full signal, i.e., set R = IB, then (ignoring the impact of the
measurement noise, which in this case would simply be combined with the signal noise term) the
RSNR would be identical to the ISNR. Since the oracle knows which elements should be zero, it
is able to achieve zero error on those coefficients — the only impact of the noise is on the nonzero
coefficients.

4.2 Impact of white measurement noise on the RSNR

We begin by examining the impact on the RSNR of zero-mean, white measurement noise, i.e., the
case where e satisfies (8). To isolate the impact of measurement noise, for the moment we will
assume that n = 0. In light of results such as (5), one might expect that in general we will have
‖α̂−α‖22 ≈ ‖e‖

2
2. Since we assume that R satisfies the RIP, we will also have ‖Rα‖22 ≈ ‖α‖

2
2,

which would lead to the conclusion that RSNR ≈MSNR. However, we will now see that we actually
can expect that the RSNR will be increased by a factor of roughly M/W compared to the MSNR
which corresponds to the potential denoising of white noise that can occur when the signal is known
to live in a W -dimensional subspace. The proof of this and many of the more technical remaining
theorems can be found in the Appendix.

4Our definition corresponds to the so-called in-band SNR. An alternative approach would be to consider the out-
of-band SNR, which includes the entire noise vector across the full bandwidth. For white noise, these definitions are
essentially equivalent but will differ by a factor of W/B.

5Note that in this paper the signal α is deterministic, so the SNR will depend on our particular choice of α.
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Theorem 4.1. Suppose that y = Rα + e, where e ∈ RM is a zero-mean, white random vector
whose entries have variance σ2

e and α is W -sparse. Furthermore, suppose that R satisfies the RIP
of order W with constant δ. Then the α̂ provided by the oracle-assisted recovery algorithm (7)
satisfies

Wσ2
e

1 + δ
≤ E

(
‖α̂−α‖22

)
≤ Wσ2

e

1− δ
. (12)

Hence, the RSNR of the oracle-assisted recovery algorithm satisfies(
1− δ
1 + δ

)
M

W
≤ RSNR

MSNR
≤
(

1 + δ

1− δ

)
M

W
. (13)

Again, by bounding the performance of the oracle-assisted recovery algorithm, we provide a best-
case analysis of how an algorithm like CoSaMP would perform were it able to correctly identify the
true support of α. Intuitively, Theorem 4.1 captures the notions that the RSNR should scale with
the MSNR and that for a constant MSNR additional measurements should lead to an increasingly
accurate recovery.

4.3 Impact of white signal noise on the MSNR

We now examine the scenario where the input signal itself is contaminated with noise. Our chief
interest is to understand how R impacts the signal noise. In order to simplify our analysis, we
will make two assumptions concerning R: (i) the rows of R are orthogonal and (ii) each row of R
has equal norm. Although these assumptions are not necessary to ensure that R satisfies the RIP,
both are rather intuitive. For example, it seems reasonable that if we wish to take the minimal
number of measurements, then each measurement should provide as much new information about
the signal as possible, and thus requiring the rows of R to be orthogonal seems natural. The second
assumption is similarly intuitive and can simply be interpreted as requiring that each measurement
have “equal weight”. Note that ifR is an orthogonal projection, then it automatically satisfies these
properties. These assumptions also hold for all of the R matrices corresponding to the practical
architectures described in Section 3.1. Moreover, given an arbitrary matrix R that satisfies the
RIP, it is always possible to construct a matrix R̃ that has the same row space as R and does
satisfy these properties, as shown in the following lemma.

Lemma 4.1. Suppose that R ∈ RM×B satisfies the RIP of order W with constant δ. There exists
a matrix R̃ with orthonormal rows and the same row space as R such that for all W -sparse α

√
1− δ

smax(R)
≤

∥∥∥R̃α∥∥∥
2

‖α‖2
≤
√

1 + δ

smin(R)
, (14)

where smax(R) denotes the largest and smin(R) the smallest nonzero singular values of R.

Lemma 4.1 constructs matrices R̃ with unit-norm rows. Note that if R has unit-norm columns
and also has orthogonal rows of equal norm, then the rows must have norm

√
ρ. In this case,

smax(R) = smin(R) =
√

1/ρ, and thus (14) is simply a rescaled version of the RIP (and R̃ is
a rescaled version of R). In general we will have smax(R) > smin(R), in which case Lemma 4.1
indicates that the constants in the bound could become slightly worse. Importantly, however, for
randomly generated R matrices it can be shown that, provided M � B, smax(R) ≈ smin(R) ≈√

1/ρ with high probability, and so for these R we should not expect significant degradation. Thus,
without loss of generality we now restrict our attention to matrices R which have orthogonal rows
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each of norm
√
ρ. This assumption ensures that if n is white noise, then Rn will also be white,

allowing us to easily analyze the impact of signal noise in the following theorem. To isolate the
impact of n we assume that e = 0.

Theorem 4.2. Suppose that y = R(α + n), where n ∈ RB is a zero-mean, white random vector
whose entries have variance σ2

n and α is W -sparse. Furthermore, suppose that R satisfies the
RIP of order W with constant δ and has orthogonal rows, each of norm

√
ρ. Then Rn is also a

zero-mean, white random vector whose entries have variance σ2
Rn = ρσ2

n, and hence

(1− δ)W
B
≤ MSNR

ISNR
≤ (1 + δ)

W

B
. (15)

Thus, although the oracle-assisted recovery procedure served to mildly attenuate white noise
added to the measurements, noise added to the signal itself can be highly amplified by the mea-
surement process when M � B (or ρ � 1). This is directly analogous to a classical phenomenon
known as noise folding.

4.4 Noise folding in CS

Theorem 4.2 tells us that the R matrices used in CS will amplify white noise by a factor of ρ. We
can quantify the impact of noise folding by considering the ratio of the ISNR to the RSNR. This
ratio quantifies the penalty for using CS when the support of α is actually known a priori.

Theorem 4.3. Suppose that y = R(α + n), where n ∈ RB is a zero-mean, white random vector
and α is W -sparse. Furthermore, suppose that R satisfies the RIP of order W with constant δ and
has orthogonal rows, each of norm

√
ρ. Then the RSNR of the oracle-assisted recovery algorithm

(7) satisfies
ρ

1 + δ
≤ ISNR

RSNR
≤ ρ

1− δ
. (16)

Proof. We begin by observing that

ISNR

RSNR
=

E
(
‖α̂−α‖22

)
E
(
‖n|Λ‖22

) .

Since n is white, we have that

E
(
‖n|Λ‖22

)
= Wσ2

n. (17)

From Theorem 4.2, we observe that y = Rα +Rn, where Rn is a white random vector with
E
(
Rn(Rn)T

)
= ρσ2

nIM . Since Rn is white, we apply Theorem 4.1 to obtain

Wρσ2
n

1 + δ
≤ E

(
‖α̂−α‖22

)
≤ Wρσ2

n

1− δ
. (18)

Taking the ratio of (18) and (17) and simplifying establishes the theorem.

Note that this theorem could also be established (with a slightly worse constant) by simply
combining (13) and (15).

Noise folding has a significant impact on the amount of noise present in CS measurements.
Specifically, if we measure the ratio in dB, then we have that

ISNR

RSNR
≈ 10 log10 (ρ) .
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Thus, every time we double the subsampling factor ρ (a one octave increase), the SNR loss increases
by 3dB. In other words, for the acquisition of a sparse signal in white noise, the RSNR of the
recovered signal decreases by 3dB for every octave increase in the amount of subsampling.

The impact of noise folding on the recovery error in CS systems satisfying the RIP was first
reported and analyzed in [1], while further analysis was conducted in [24]. A closely related issue
was also considered in [25], which studies the impact of signal noise on the problem of exactly
recovering the true support of the original signal and reaches similar conclusions. Specifically, [25]
shows that exact support recovery in the presence of signal noise requires that M scales linearly
with B. Our main result says that in order to achieve a desired RSNR, we will also require that
M scales linearly with B.

During the final preparation of this manuscript similar results were established for systems with
bounded coherence [26]. We also note that alternative signal acquisition techniques like bandpass
sampling6 (sampling a narrowband signal uniformly at a sub-Nyquist rate to preserve the values
but not the locations of its large Fourier coefficients) are affected by an identical 3dB/octave SNR
degradation [27]. In fact, recent results on minimax rates of estimation in high dimensions imply
that, for Gaussian noise, any acquisition system that acquires fewer than B linear measurements
will suffer from the same 3dB/octave SNR loss, regardless of how the measurements are chosen and
no matter how sophisticated the recovery algorithm [28, 29]. More recently it has been shown that
even if the measurements are chosen adaptively, this loss cannot be avoided [30].

Noise folding is not restricted to only sparse signals in noise [31]. In fact, so-called compressible
signals are also subject to something akin to noise folding, even when the input contains no actual
noise. Specifically, one can often model the “tail” of such signals as uncorrelated noise, enabling
the application of the results above. Treating the tail as noise, we would näıvely arrive at the same
3dB SNR loss as above. In fact, the loss resulting from “tail-folding” is even worse, since as we
increase the amount of subsampling, we will be able to recover less of the signal (the range of W we
can handle will decrease), and thus the “tail” will encompass an ever larger portion of the signal.

The 3dB/octave SNR degradation represents an important tradeoff in the design of CS receivers.
This yields the the engineering design rule for CS receivers of NF ≈ 10 log10(ρ), where NF is the
noise figure as defined in Section 2. This result implies that for a fixed signal bandwidth W/2 there
is a practical limit to the instantaneous bandwidth B/2 for which we can obtain a desired RSNR.
In Section 6 we match this theoretical result against the results of multiple simulations.

Although the noise folding behavior of compressive systems imposes a very real cost, this does
not necessarily preclude its use in practical systems, one example of which is discussed in Section 8.
Conversely, the dramatic sampling rate reduction enabled by CS can lead, in some cases, to sig-
nificant improvements in the dynamic range of the system. This issue is examined in the next
section.

5 Dynamic Range of CS-Based Acquisition Systems

A fundamental advantage of CS is that it enables a significantly lower sampling rate for sparse
signals, which in turn enables the use of higher-resolution ADCs [32]. By exploiting this fact,
a CS acquisition system should exhibit a significantly larger dynamic range than a conventional
system. In this section, we provide a theoretical justification for this claim, and in Section 6 we

6In practice bandpass sampling is not suitable for the typical CS settings. This is because if there are multiple
narrowband signals present in the bandwidth occuring at unknown frequencies, then bandpass sampling causes
irreversible aliasing so that the components can potentially overlap and will be impossible to separate. In contrast
to bandpass sampling, CS acquisition preserves sufficient information to enable the recovery of both the values and
the locations of the large Fourier coefficients.
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Figure 1: A midrise uniform quantization function Qb(xi) with b bits, saturation level G, and
quantization interval ∆ = 2−b+1G.

will quantify the potential gain via the empirical relationship between sampling rate and quantizer
resolution [32].

We begin our analysis by first providing a rigorous and general definition of dynamic range.
Roughly, we define the dynamic range as the ratio of the maximum to the minimum signal power
levels that can be handled with “full fidelity”.7 In order to make this notion precise, we will ignore
the effects of any noise or nonlinearities from the other ADC components and examine only the
impact of the quantizer. This is a fair assumption, since a key goal in the design of an ADC is that
the quantizer be the only component that limits the device’s dynamic range.

Our definition of dynamic range has two properties that aid us in the analysis of CS systems: (i)
the dynamic range does not depend on a stochastic quantization error model, and (ii) any reduction
of quantization error yields a corresponding improvement in dynamic range, i.e., the dynamic range
of the quantizer effectively determines the dynamic range of the system. With this definition in
hand, we examine quantization in both conventional and CS systems and provide lower bounds on
the dynamic range of each. Our key finding will be that, all things being equal, the dynamic range
of a CS acquisition system is generally no worse than that of a conventional system. Thus, since
CS enables lower sampling rates for sparse signals, we can employ a higher-resolution ADC and
attain a larger dynamic range.

5.1 A deterministic approach to dynamic range

To formulate our definition of dynamic range, we first analyze the error induced by quantizing x.
We assume that x is a vector in RB and compare x with the b-bit quantized version of x, which
we denote by Qb (x). Let ∆ denote the quantization interval, and let ±G denote the saturation
levels, so that G = ∆2b−1. Note that if |xi| ≤ G, then we have that |xi − Qb (xi) | ≤ ∆/2, but if
|xi| > G then |xi −Qb (xi) | = |xi| − (G−∆/2). A midrise uniform quantization function Qb(xi) is
depicted in Fig. 1.

For a given x, we define the signal-to-quantization noise ratio (SQNR) of the quantizer as

SQNR(x) =
‖x‖22

‖x−Qb (x)‖22
. (19)

7In this section we are analyzing the CS-based receiver’s dynamic range as a system. This should not be confused
with the dynamic range of a signal, which in our framework could be quantified as the ratio of the largest to smallest
entry in α. An examination of how CS impacts the maximum allowable signal dynamic range would be worthwhile,
but it is not our focus in this paper. We do note, however, that some results in the present section could play a key
role in any such analysis.
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We make the dependence of the SQNR on x explicit, since our definition of dynamic range will be
based on how the scaling of x affects the SQNR. First, however, we establish a practical bound on
the best SQNR attainable for a given G, ∆, and x.

Lemma 5.1. Let x ∈ RB be arbitrary. There always exists a β > 0 such that

SQNR(βx) ≥ 1

γ(x)2

(
2G

∆

)2

, (20)

where

γ(x) =
‖x‖∞
‖x‖2 /

√
B
. (21)

The quantity γ in (21) is known as the peak-to-average ratio (PAR) of x. Also known as the
crest factor or loading factor [33], it is a measure of the ratio between a signal’s “average energy”
to its peak value.

While the expression in (20) may look foreign to some, this bound is similar to standard results
for peak SQNR. Recall that 2G/∆ = 2b. Thus, if we express (20) in dB, then we observe that by
setting β appropriately we can obtain

SQNR(βx) ≥ 20b log10(2)− 20 log10(γ(x))

& 6.02b− 20 log10(γ(x)). (22)

This corresponds to the well-known result that the peak SQNR grows by approximately 6dB per
quantizer bit [33]. Furthermore, although the SQNR bound in (22) provides only a lower bound on
the SQNR, it generally agrees with the results in the literature that assume probabilistic models on
the signal x and/or the quantization noise. For example, a more conventional probabilistic analysis
would assume that the quantization noise has a uniform distribution. In this case, one can derive
the expression

E (SQNR(βx)) ≈ 6.02b− 20 log10(γ(x)) + 4.77,

where the additive constant 4.77 reflects the improvement made possible over our worst-case bound
by placing a uniform distribution on the quantization noise [33]. For our purposes below, a lower
bound on the SQNR is sufficient. We view the deterministic nature of our bound as a strength,
allowing us to avoid any questionable assumptions concerning the quantization noise distribution.

We now show how we can use the SQNR to offer a concrete definition for dynamic range.
Specifically, suppose that we would like to achieve an SQNR of at least C.8 We aim to identify the
range of scalings β of a given signal x for which SQNR(βx) ≥ C. More formally, we want to find
scalars βmin

C (x) and βmax
C (x) such that SQNR(βx) ≥ C for all β ∈

[
βmin
C (x), βmax

C (x)
]
, where

βmin
C (x) ≤ G/ ‖x‖∞ ≤ β

max
C (x). (23)

In words, βmax
C (x) and βmin

C (x) define a range of scalings over which we achieve the desired SQNR
C.

8In our analysis we consider C ∈
(
1, (2G/∆)2/γ(x)2

]
to ensure that our definition leads to a meaningful notion of

dynamic range. Specifically, once we fix ∆ and G, there is an upper limit on the SQNR we can hope to achieve, and
for C beyond that limit the dynamic range will be ill-defined. Similarly, if we set C = 1 then one can easily achieve
infinite dynamic range by quantizing all signals to zero. However, for the range of C considered we can always set
β = G/ ‖x‖∞ to ensure that SQNR(βx) ≥ C (see the proof of Lemma 5.1).
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Using βmax
C (x) and βmin

C (x), we define the dynamic range of a conventional acquisition system
as

DRC(x) :=

(
βmax
C (x)

βmin
C (x)

)2

. (24)

Hence, the dynamic range of a conventional ADC is the ratio of the maximum input scaling to
the minimum input scaling of x such that for both scalings the SQNR is at least C. Note that
this definition implicitly assumes that the entire vector x is scaled by a single constant that does
not dynamically change with time, which might seem to disallow the possibility of automatic gain
control (AGC). However, in practice the time constant of any pre-quantizer AGC circuit will likely
be many orders of magnitude larger than the block-length, so the use of an AGC is largely irrelevant
to our analysis.

At first sight, (24) may appear to be a rather complicated way of describing what is at heart an
elementary concept — dynamic range is often simply quantified as the ratio of the largest to smallest
quantization levels. However, the strength of this definition is that it can easily be extended to
quantify the dynamic range of a CS-based ADC in which the measurement and recovery processes
obscure the impact of finite-range quantization on the final RSNR. Specifically, given an input
signal x (or equivalently α) we apply a recovery algorithm to the quantized CS measurements
Qb (y) = Qb (Rα) to obtain a recovery α̂. We wish to understand the impact of this quantization
on the resulting RSNR. While it might not otherwise be immediately apparent, (24) suggests a
natural way to extend the definition of dynamic range to the CS setting by simply replacing RSNR
with SQNR, i.e., defining βmin

C (x) and βmax
C (x) by considering the range of scalars β such that

RSNR(βx) ≥ C. Note that for a conventional ADC, since RSNR = SQNR, the definition remains
unchanged from (24). We now analyze the dynamic range of a conventional acquisition system in
Section 5.2 and then extend this to the CS setting in Section 5.3.

5.2 Dynamic range of a conventional ADC

We first provide a simple bound on the dynamic range DRC(x) for a conventional ADC.

Theorem 5.1. The dynamic range of a quantizer as defined by (24) is bounded by

DRC(x) ≥ 1

Cγ(x)2 − 1

((
2G

∆

)2

− 1

)
, (25)

where γ(x) is defined as in (21).

For large b, (2G/∆)2 − 1 ≈ 22b, and so by expressing (25) in dB we obtain

DRC(x) & 6.02b− 10 log10

(
Cγ(x)2 − 1

)
. (26)

This coincides with the familiar rule of thumb that just like the SQNR in (22), ADC dynamic range
increases by 6dB per quantizer bit [33]. Note, however, that we again have an additive constant
that here depends both on the targeted SQNR C as well as the PAR γ(x). This is again expected,
since a more ambitious SQNR is more difficult to achieve and since a signal with higher PAR is
harder to quantize, both of which lead to a more limited dynamic range. We revisit the issue of
PAR below in Section 5.4.

In summary, our definition of dynamic range (24) yields a reasonable expression (25) for a
conventional ADC that coincides with the traditional “folk wisdom” on dynamic range.
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5.3 Dynamic range of a CS-based acquisition system

Thus far we have proposed a rigorous and general definition of dynamic range and analyzed a
conventional ADC in this context. We now extend this analysis to the CS case. Our argument
proceeds by first showing that we can always relate RSNR(βx) to SQNR(βy) and then relate
SQNR(βy) to SQNR(βx). This allows us to argue that, whenever SQNR(βx) > C, we have that
RSNR(βx) > C ′ for some C ′. In other words, whenever we can achieve a certain SQNR C by
directly quantizing x, a CS-based system can also achieve the RSNR C ′ (where C ′ is typically
comparable to C). Thus, the dynamic range of these systems will be essentially the same. We
begin by relating RSNR(βx) to SQNR(βy).

Lemma 5.2. Suppose that y = Rα, where α is W -sparse and R satisfies the RIP of order W with
constant δ. Let α̂ denote the output of applying a recovery algorithm to the quantized measurements
Qb (y) which satisfies a recovery guarantee like that given in (5), i.e.,

‖α̂−α‖22 ≤ κ
2
1 ‖Qb (y)− y‖22 . (27)

Then,

RSNR(βx) = RSNR(βα) ≥ SQNR(βy)

(1 + δ)κ2
1

. (28)

Proof. Without loss of generality, suppose that β = 1. From the RIP we have that

‖α‖22 ≥
‖Rα‖22
1 + δ

.

Combining this with (27), we obtain the bound

RSNR(x) = RSNR(α) =
‖α‖22
‖α̂−α‖22

≥
‖y‖22

(1 + δ)κ2
1 ‖Qb (y)− y‖22

=
SQNR(y)

(1 + δ)κ2
1

,

which completes the proof.

In words, RSNR(βx) is lower bounded by a constant multiple of SQNR(βy). This means that
we can expect the RSNR to follow the same trend as the SQNR of the measurements. Thus,
we can restrict our analysis and comparisons to the measurement SQNR. Hence, we can com-
pare SQNR(βy) to SQNR(βx) from Section 5.1. The following lemma shows that we can bound
SQNR(βy) in a manner similar to how Lemma 5.1 bounds SQNR(βx).

Lemma 5.3. Suppose that y = Rα = Φx, where α is W -sparse and R satisfies the RIP of order
W with constant δ. Then there exists a β such that

SQNR(βy) ≥ (1− δ)ρ
‖x‖2∞
‖y‖2∞

1

γ(x)2

(
2G

∆

)2

.
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Proof. We begin by noting that from Lemma 5.1, β = G/ ‖y‖∞ we have that

SQNR(βy) ≥

(
‖y‖22 /M
‖y‖2∞

)(
2G

∆

)2

.

Since R satisfies the RIP we obtain

‖y‖22 ≥ (1− δ) ‖α‖22 = (1− δ) ‖x‖22 .

Thus we have that

‖y‖22 /M
‖y‖2∞

≥
(1− δ) ‖x‖22
‖y‖2∞

= (1− δ)
(
B

M

)
‖x‖2∞
‖y‖2∞

(
‖x‖22 /B
‖x‖2∞

)

= (1− δ)ρ
‖x‖2∞
‖y‖2∞

1

γ(x)2
,

which establishes the lemma.

Thus, CS has the same 6dB per quantizer bit behavior as in (22) with

SQNR(βy) & 6.02b+ 20 log10

(√
(1− δ)ρ ‖x‖∞
γ(x) ‖y‖∞

)
, (29)

the only difference being an additional additive constant that we will analyze in more detail in
Section 5.4.

We are now ready to compute the dynamic range of the CS acquisition system. We retain the
same definition of dynamic range as in (24), but with βmax

C (x) and βmin
C (x) defined by substituting

the SQNR constraint with the requirement that RSNR(βx) ≥ C. In this setting, we can repeat
the same analysis as in Theorem 5.1 to obtain

DRC(x) ≥ 1

C ′γ(x)2 − 1

((
2G

∆

)2

− 1

)
,

where

C ′ =
1− δ

(1 + δ)κ2
1

ρ
‖x‖2∞
‖y‖2∞

.

Thus, when measured in dB the dynamic range is affected by CS only through an additive constant.
In practice, we can take significant advantage of the fact that, all things being equal, a CS

system has the same dynamic range as a conventional Nyquist ADC. Specifically, because the ADC
employed in a CS-based system operates at a significantly lower rate than would be required in a
conventional system, a slower quantizer with higher bit-depth can be employed [32]. If the gain
in effective bits is large, then the 6dB per bit improvement in dynamic range will dominate the
additive constant and result in a substantial increase in the CS system’s dynamic range as compared
to a conventional ADC. Moreover, this entire discussion has ignored the fact that CS systems are
highly robust to large saturation errors due to the democratic nature of CS measurements [34], so
these results may even be understating the possibility for improvement. We explore the possibility
of increased dynamic range empirically in Section 6.
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5.4 Impact of CS on the PAR

We conclude this section with one last note regarding the mollifying effect of a CS acquistion system
on the PAR. All of our expressions for the SQNR or RSNR as well as the dynamic range of a system
depend in some way on the PAR of the signal x or the measurements y, depending on the context.
In practice, the PAR has a significant impact on the resulting expressions. However, the PAR of a
signal x can vary widely in the range

1 ≤ γ(x) ≤
√
B, (30)

which follows from standard norm inequalities. As an example, combining (30) with the lower
bound on the SQNR of a conventional ADC in (22) means that in the best case (which corresponds
to an all-constant vector x) the bound in (22) reduces to 6dB per bit growth in SQNR with no
offset, whereas in the worst case (which corresponds to a K = 1 sparse x) we incur an additive
penalty of −10 log10(B)dB. As the dimension B grows this penalty can become large, reflecting the
fact that as the number of samples grows it becomes possible to construct a signal that has ever
larger PAR. This translates to a similarly wide range of possible values for the additive penalty in
the bound on dynamic range in (26).

Our aim here is to understand how CS impacts PAR. Clearly, we expect the PAR of the CS
measurements y to differ from that of the signal x since each measurement typically consists of a
weighted sum of the entries of x. Intuitively, such measurements have the potential to average out
some of the “spikes” in x resulting in a potentially improved PAR. This appears in the analysis in the
expression for SQNR(βy) in (29), which shows that SQNR(βy) can be improved over SQNR(βx) in
(22) if ρ ‖x‖2∞ / ‖y‖

2
∞ is somewhat larger than 1. In the worst-case, this quantity can be a great deal

smaller than 1; however, on average we are likely to do significantly better. As an illustration, we
describe what can be said when Φ is a matrix with i.i.d. ±1/

√
M (Rademacher) entries, although

our analysis could easily be adapted to show similar results for the practical architectures described
in Section 3.1.

We begin with the worst-case. By combining the the Cauchy-Schwartz inequality with standard
`p-norm inequalities, we have that for all j, |yj | ≤ ρ ‖x‖∞ . Thus we obtain

ρ
‖x‖2∞
‖y‖2∞

≥ 1

ρ
.

Hence, in the worst-case

20 log10

(√
(1− δ)ρ ‖x‖∞
‖y‖∞

)
≈ −10 log10(ρ),

which corresponds to an SQNR loss of 3dB per octave increase in the subsampling factor. However,
this bound will be achieved only when x is both constant magnitude and has elements with signs
exactly matching one of the (randomly chosen) rows of Φ — a highly unlikely scenario. Furthermore,
this bound makes no use of the “dithering” effect promoted by the randomized measurements, a
grave omission indeed. Towards this end, we next consider a probabilistic bound to see that we
can typically obtain better performance.

Lemma 5.4. Suppose that Φ is chosen with i.i.d. entries with variance 1/M drawn according to
any strictly sub-Gaussian distribution. Then

ρ
‖x‖2∞
‖y‖2∞

≥ γ(x)2

4 log(M)
(31)

with probability at least 1− 2/M .
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Proof. By combining the union bound (over M measurements) with standard tail bounds on a
strictly sub-Gaussian distribution, we obtain

P (‖y‖∞ > t) ≤ 2M exp

(
− Mt2

2 ‖x‖22

)
.

Thus,

P ((31) does not hold) ≤ 2M exp

(
−

4Mρ log(M) ‖x‖2∞
2γ(x)2 ‖x‖22

)

= 2M exp

(
−

2 log(M) ‖x‖2∞
γ(x)2 ‖x‖22 /B

)
= 2 exp (log(M)− 2 log(M)) =

2

M
,

which establishes the lemma.

Thus, in practice we expect our bound for SQNR(y) in (29) to differ from our bound for
SQNR(x) in (22) only by a factor of γ(x)2/4 log(M). Recalling our bound on γ(x) we have that

1

4 log(M)
≤ γ(x)2

4 log(M)
≤ B

4 log(M)
.

Hence, for x with small PAR, we can expect a potential loss in SQNR when compared to direct
quantization of x, while for x with moderate or large PAR we can actually expect a significant
improvement.

Finally, we can use Lemma 5.4 to approximate (29) with high probability as

SQNR(βy) & 6.02b− 20 log10

(
4 log(M)/

√
1− δ

)
,

which implies that CS allows us to essentially eliminate the negative impact of high PAR signals.
This is because the randomized measurement procedure of CS will produce measurements having
a PAR that is independent of the input signal’s PAR. For high PAR signals, this results in a
substantial improvement.

6 Simulations

Hardware devices are currently under construction that will permit laboratory testing of CS-based
acquisition receivers [6, 16]. In the interim, however, we have conducted a set of computer simula-
tions to validate the theoretical results described above. We begin by recalling that the use of CS
implies that the input to the receiver must be reasonably sparse. Thus, our simulations assume
that the receiver input consists of no more than P signals, each of bandwidth no greater than W/2
and with a total bandwidth no greater than W/2. We also assume the presence of white additive
noise across the input entire band. We assume that the P input components do not overlap in the
Fourier domain but otherwise might appear anywhere within the instantaneous bandwidth of the
receiver B/2.

The simulation testing suite assembled for this effort permits from 1 to P of these “voice-like”
signals to be modulated, if desired, translated up to arbitrary frequencies, summed, corrupted with
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additive white noise, and then applied to the software-based emulation of a CS receiver. The quality
of the recovered individual components is then quantified using the RSNR as defined in (11).

Figure 2(a) shows the results of a set of simulations of a CS-based wideband signal acquisition
system. In this simulation the signal to be acquired consists of a single 3.1 kHz-wide unmodulated
voice signal single-side-band-upconverted to a frequency within the 1 MHz input bandwidth of the
receiver. Performance is measured as a function of the subsampling factor ρ. The experiment
shown in Fig. 2(a) is conducted at three ISNRs — 60, 40, and 20dB — where ISNR is simply the
ratio of the signal power to that of the noise within the 3.1 kHz bandwidth occupied by the signal.
The impact of this signal noise on the reconstruction error is quantified using the RSNR and is
evaluated for three sampling/recovery strategies:

• Bandpass sampling — This is not a recommended practical technique, but it serves as a
benchmark since, like CS, it does not exploit any prior knowledge as to where the signal resides
in the input spectrum. It is important to recall that this method “folds” the input spectrum
so that signal frequencies can no longer be unambiguously determined at the receiver.

• Oracle-assisted signal recovery from compressive measurements — Although typically not
practical, again, the oracle provides a way to determine what portion of any observed received
quality degradation is completely unavoidable within the CS framework and what portion is
due to the recovery algorithm’s inability to determine the correct spectral support.

• Practical CS-based signal recovery using CoSaMP [20] to determine the support of the input
signal.

We can make the following observations from the experimental results depicted in Fig. 2(a):

• For small amounts of subsampling the RSNR of both the bandpass sampled signal and the
oracle-assisted CS recovery is degraded at a rate of 3dB for each octave increase in the ratio
ρ, exactly as predicted by Theorem 4.3.

• The RSNR of the oracle-assisted recovery approach closely follows the bandpass sampling
RSNR across the entire range considered for ρ. The performance of the CoSaMP algorithm
generally tracks the others until ρ nears the theoretical limit:

ρcs = κ0
ρmax

log ρmax
= κ0

B/W

log(B/W )
. (32)

Note that for these experiments, ρmax = (2 · 106)/(3.1 · 103) ≈ 645, and thus for κ0 = 1
2 we

have log2(ρcs) ≈ 5.6. In Fig. 2(a) we observe that we do not begin to observe a dramatic
difference between the performance of oracle-aided CS and CoSaMP until log2(ρ) > 5. This
demonstrates that the practical impact of κ0 on the maximum subsampling factor ρcs is likely
to be minimal.

• The RSNR performance of the CoSaMP algorithm generally tracks the others, but performs
progressively more poorly for high subsampling factors. Moreover, its performance collapses
as the theoretical limit (32) is reached.

• The oracle-aided CS algorithm performance closely matches the bandpass sampling RSNR,
even for values of ρ where CoSaMP fails. This suggests that CoSaMP is unable to identify
the correct locations of the nonzero Fourier coefficients, since this is the only difference be-
tween CoSaMP and the oracle-aided algorithm. Thus, if any side information concerning the
locations of these nonzeros were available (as in a streaming context, e.g., see [35]), then one
could expect that exploiting this information would have a significant impact on the RSNR.
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Figure 2: Impact of noise and quantization on RSNR as a function of receiver subsampling ratio
ρ. (a) shows the RSNR for an environment consisting of a single unmodulated voice channel in
the presence of additive white noise. The bandpass sampling curve shows the SNR degradation
attributable to the 3dB per octave SNR loss. (b) shows the RSNR for an environment consisting of
a noise-free single unmodulated voice channel and quantized measurements starting at a bit-depth
of 4 or 8 bits per measurement when log2(ρ) = 0. We increased the bit-depth as a function of the
sample rate according to the trends outlined in [32]. We see a marked improvement in RSNR as a
direct result of the sampling rate being decreased.

We next conduct an experiment that demonstrates how the dynamic range of a CS system can
be increased, depicted in Fig. 2(b). As noted earlier, any improvement in the SQNR of the CS
measurements will translate to an improved dynamic range. Thus, in our experiments, we compute
the average RSNR obtained after recovery from quantized CS measurements as a proxy for the
dynamic range. Furthermore, we make use of the trends outlined in [32] that show that the number
of bits per measurement grows according to b = λ − 10 log 10(B/ρ)/2.3, where λ is a constant
determined by the bit-depth of a Nyquist-rate sampler. The number of bits per measurements
then grows linearly with the octaves of subsampling, with slope of about 1.3. This relationship
between sample rate and bit-depth is fundamental to understanding the dynamic range benefits of
CS systems.

Specifically, in each trial we generate a single voice-like signal and compute measurements with
the CS receiver using the same setup as in the previous experiment but where the signal is noise-free
so that we can isolate the impact of quantization noise. The measurements are scaled to make use
of the full range of the quantizer, quantized to b bits, and then recovered using CoSaMP (solid
line) and the oracle recovery algorithm (dashed line). As explained earlier, for a fixed power and
cost, decreasing the sampling rate enables us to choose a higher bit-rate quantizer. To reflect this,
we examine two cases: λ such that the Nyquist-rate sampler starts at (i) b = 4 bits and (ii) b = 8
bits.

From this experiment we see that in both cases, the RSNR grows significantly, achieving a
20dB gain at 4 octaves of subsampling over Nyquist sampling in the 4 bit case and a 17dB gain
in the 8 bit case. The performance then decreases as we move to a regime where CS recovery
is no longer sustainable. The oracle performance continues to improve as subsampling is further
increased. This experiment highlights the very real benefit of reduced sampling rates; easing the
sampling rate requirement can allow us to use higher fidelity hardware components, such as high
bit-depth quantizers.
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While it appears that there is a straightforward tradeoff between noise folding (bad) and dy-
namic range (good) in CS systems, the reality is more nuanced. For instance, when a both signal
and quantization noise are present, it is not always possible to mitigate the negative effects of noise
folding by increasing the ADC bit-depth, since there may be little benefit to increasing the precision
of already noisy measurements. See [36] for further discussion of this issue.

7 Using the Design Rules to Evaluate a CS Receiver

The simulations presented in Section 6 provide an initial validation of the engineering design rela-
tionships established in this paper. To see how they might be used in practice, we return briefly
to the example set of system requirements shown in Table 1. By applying the rules described in
Section 3 and validated in 6 we find that ρcs, the maximum subsampling factor in a CS system, is
about 160. This implies sampling rate, and data link transmission rate, can be reduced from 1 GHz
to 6.25 MHz but at a noise floor loss of about 22dB. Use of the formulae in Section 6 indicates,
however, that an improvement of 9–10 bits can be achieved owing to the lower sampling rate. If
we presume that the ADC used at a 1 GHz sampling rate might have 8 bits of dynamic range,
then the compressive sensing receiver should be able to achieve 17 or more, leading to a system
dynamic range of greater than 100dB. Comparing these results with the objectives in Table 1 shows
the remarkable result that a CS-based acquisition system can theoretically meet the very stringent
and rarely attained instantaneous bandwidth and dynamic range requirements, but at the cost of
a reduced RSNR.

8 Conclusions, Implications, and Recommendations for Future
Work

This paper has examined how CS can provide an exciting new degree of freedom in the design of
high-performance signal acquisition systems. Specifically, the results reported in this paper can be
captured succinctly as follows:

• The application of CS theory to the problem of designing an RF receiver indicates that the
approach is indeed feasible, and that it should reduce the size, weight, power consumption
and monetary cost of the receiver. This comes at a cost of an increased noise figure and an
increased amount of computation required at the downstream “processing center.”

• There is a direct, predictable relationship between the subsampling factor and the noise figure
of the receiver. Specifically, we lose 3dB of RNSR for each halving of the sampling rate.

• Simulation results indicate that a properly designed CS system can approach, and even meet,
the theoretically predicted performance, if the ISNR is high enough.

• Since it permits the use of lower-rate, but higher performance ADCs, the introduction of CS
can substantially improve the dynamic range of a receiver system.

These results mean that CS introduces new tradeoffs in the design of signal acquisition systems.
While a poorer noise figure reduces the sensitivity of a receiver, at the “systems level” that might
be acceptable in trade for what one gets for it — much wider instantaneous bandwidth, improved
dynamic range, and reduction of virtually all elements of the SWAP “cost vector” at the sensor,
where it usually matters the most. We also note that the decimation permitted by using CS in
a sparse signal environment permits a significant dynamic range improvement — up to 20dB in
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the settings considered in this paper. Examples of how this tradeoff can be exploited in practical
systems are explored in [37].

Thus we conclude that further investigation in this area will produce both theoretical and prac-
tical fruit. There are two areas in which we recommend immediate emphasis — (i) verification that
CS receivers can be physically implemented with performance we have theoretically predicted, and
(ii) more work on practical and efficient processing center algorithms for signal reconstruction, or,
equivalently, parameter estimation (e.g., emitter location) from the incoming compressive measure-
ments. Successes in these two areas will make CS an important tool in the toolbox of radio system
designers.

Appendix

We now provide proofs of the more technical results in this paper. In several of the lemmas we
use the notation λj(A) to denote the jth largest eigenvalue of A. We also let sj(A) denote the
jth singular value of A, i.e., sj(A) = λj(A

TA). Before establishing our main result concerning
oracle-assisted recovery, we first state the following useful lemma. The proof of this lemma can be
found in [24].

Lemma 8.1 (Lemma 7.1 of [24]). Suppose that R is an M ×B matrix and let Λ be a set of indices
with |Λ| ≤W . If R satisfies the RIP of order W with constant δ, then for j = 1, 2, . . . ,W we have

1√
1 + δ

≤ sj(R†Λ) ≤ 1√
1− δ

. (33)

Proof of Theorem 4.1. Recall that for the oracle-assisted recovery algorithm, since the RIP ensures
that RΛ is full rank, we have that

α̂|Λ = α|Λ +R†Λe.

Thus, our goal is to estimate E
(∥∥∥R†Λe∥∥∥2

2

)
. Towards this end, we first note that for any A, we

have

E
(
‖Ae‖22

)
= E

(
Tr
(
Ae(Ae)T

))
= Tr

(
AE

(
eeT

)
AT
)
.

Since e is a white random vector, this reduces to

E
(
‖Ae‖22

)
= Tr

(
A
(
σ2
eIM

)
AT
)

= σ2
eTr

(
AAT

)
= σ2

e ‖A‖
2
F ,

where ‖·‖F denotes the Frobenius norm of A. Next we recall that the Frobenius norm of a W ×M
matrix with W < M can also be calculated as

‖A‖2F =
W∑
j=1

sj(A)2.

Thus, we have

E
(∥∥∥R†Λe∥∥∥2

2

)
= σ2

e

W∑
j=1

sj(R
†
Λ)2. (34)
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From Lemma 8.1, sj(R
†
Λ) ∈

[
1/
√

1 + δ, 1/
√

1− δ
]

for j = 1, 2, . . . ,W , and hence

W

1 + δ
≤

W∑
j=1

sj

(
R†Λ

)2
≤ W

1− δ
,

which combined with (34) establishes (12). Next, we note that

RSNR

MSNR
=
‖α‖22
‖Rα‖22

E
(
‖e‖22

)
E
(
‖α̂−α‖22

) =
‖α‖22
‖Rα‖22

Mσ2
e

E
(
‖α̂−α‖22

) .
Combining this with the RIP and with (12) yields (13).

We next establish the following preliminary lemma which we will use to establish Lemma 4.1.

Lemma 8.2. Let A be a real, symmetric, positive definite B×B matrix, and let B be a real B×M
matrix with M ≤ B. Then

λmax(BTAB) ≤ λmax(A)λmax(BTB) (35)

and
λmin(BTAB) ≥ λmin(A)λmin(BTB). (36)

Proof. Recall that since both A and BTB are real, symmetric matrices, we have that

λmin(A) ≤ x
TAx

xTx
≤ λmax(A)

for all x ∈ RB and

λmin(BTB) ≤ y
TBTBy

yTy
≤ λmax(BTB)

for all y ∈ RM . Thus, by setting x = By, we have

yTBTABy

yTy
=
xTAx

yTy
≤ λmax(A)

xTx

yTy

= λmax(A)
yTBTBy

yTy

≤ λmax(A)λmax(BTB),

which establishes (35). The proof of (36) follows from a similar calculation.

Proof of Lemma 4.1. To begin, let R = UΣV T denote the reduced form of the singular value
decomposition of R, so that if R has rank M then U is an M ×M unitary matrix, Σ is a diagonal
M ×M matrix whose entries are given by the singular values sj(R), and V is an B ×M matrix
with orthonormal columns. Let

R̃ = Σ−1UTR = Σ−1UTUΣV T = V T

and observe that from the properties of V and the singular value decomposition we have that R̃
has orthonormal rows and the same row space as R. Thus, it remains to show (14). Towards this
end, we note that if α is W -sparse, then (14) is equivalent to requiring that

1− δ
s2

max(R)
≤

∥∥∥R̃Λx
∥∥∥2

2

‖x‖22
≤ 1 + δ

s2
min(R)
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holds for all x ∈ R|Λ| and all Λ with |Λ| ≤ W . By noting that R̃Λ = Σ−1UTRΛ and applying
Lemma 8.2, we have that∥∥∥R̃Λx

∥∥∥2

2

‖x‖22
=
xT R̃

T

ΛR̃Λx

xTx
≤ λmax(R̃

T

ΛR̃Λ)

= λmax(RT
ΛUΣ−1Σ−1UTRΛ)

≤ λmax(Σ−2)λmax(RT
ΛUU

TRΛ)

=
1

s2
min(R)

λmax(RT
ΛRΛ)

≤ 1 + δ

s2
min(R)

.

The lower bound follows via a similar argument.

Proof of Theorem 4.2. We begin by noting that E (Rn) = RE (n) = 0, so that Rn is zero-mean,
as desired. Hence, we now consider E

(
Rn(Rn)T

)
. Note that the assumptions on R imply that

RRT = ρIM , and hence

E
(
Rn(Rn)T

)
= RE

(
nnT

)
RT (37)

= σ2
nRR

T = ρσ2
nIM , (38)

which establishes that σ2
Rn = ρσ2

n. Furthermore, since
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the bound in (15) simply follows from the RIP.

Proof of Lemma 5.1. Begin by taking β = G/ ‖x‖∞. Observe that

‖βx‖∞ = β ‖x‖∞ = G,

and thus no entries of βx exceed the saturation level G. Hence, we can bound the quantization
error as

‖βx−Qb (βx)‖22 ≤ B
(

∆

2

)2

. (39)

We also have that

‖βx‖22 = β2 ‖x‖22 =
G2 ‖x‖22
‖x‖2∞

. (40)

Combining (39) and (40), we obtain that

SQNR(βx) =
‖βx‖22

‖βx−Qb (βx)‖22
≥
G2 ‖x‖22 / ‖x‖

2
∞

B (∆/2)2 ,

which simplifies to yield the desired result.
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Proof of Theorem 5.1. We begin by considering βmin
C (x). Recall that for all scalings β < G/ ‖x‖∞

we have that ‖βx‖∞ < G, so that there are no saturations. Thus we can bound the SQNR as

SQNR(βx) ≥
β2 ‖x‖22
B(∆/2)2

.

Thus, if we ensure that
β2 ‖x‖22
B(∆/2)2

≥ C

then we also guarantee that SQNR(βx) ≥ C. This will occur provided that

β2 ≥ CB

‖x‖22
(∆/2)2,

and thus we can set

βmin
C (x)2 =

CB

‖x‖22
(∆/2)2.

We now turn to βmax
C (x). Since we are now considering β > G/ ‖x‖∞, there will be at least one

entry of x that takes a value greater than G and thus saturates. Furthermore, the saturated value
is guaranteed to have error greater than ∆/2 since our quantizer represents a maximum value of
G−∆/2. Thus, we observe that the total quantization error is less than the error of a signal where
each element takes the value of the maximum saturated measurement. If we define G = G−∆/2
then we have that

SQNR(βx) ≥
β2 ‖x‖22

B(β‖x‖∞ −G)2
. (41)

By design, we have that β‖x‖∞ > G, and hence(
β‖x‖∞ −G

)2
= β2‖x‖2∞ − 2Gβ‖x‖∞ +G

2

≤ β2‖x‖2∞ − 2GG+G
2

= β2‖x‖2∞ −G2 + (∆/2)2.

From this we observe that
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,

and so from (41) we have that if

β2 ‖x‖22
B(β2‖x‖2∞ −G2 + (∆/2)2)

> C

then SQNR(βx) > C. By rearranging, we see that this will occur provided that
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Thus we can set
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Combining our expressions for βmin
C (x) and βmax

C (x) we obtain
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which simplifies to establish (25).
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