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Abstract— Oscillator phase noise limits the performance of
high speed communication systems since it results in time varying
channels and rotation of the signal constellation from symbol
to symbol. In this paper, joint estimation of channel gains and
Wiener phase noise in multi-input multi-output (MIMO) systems is
analyzed. The signal model for the estimation problem is outlined
in detail and new expressions for the Cramér-Rao lower bounds
(CRLBs) for the multi-parameter estimation problem are derived.
A data-aided least-squares (LS) estimator for jointly obtaining
the channel gains and phase noise parameters is derived. Next,
a decision-directed weighted least-squares (WLS) estimator is
proposed, where pilots and estimated data symbols are employed
to track the time-varying phase noise parameters over a frame.
In order to reduce the overhead and delay associated with the
estimation process, a new decision-directed extended Kalman
filter (EKF) is proposed for tracking the MIMO phase noise
throughout a frame. Numerical results show that the proposed
LS, WLS, and EKF estimators’ performances are close to the
CRLB. Finally, simulation results demonstrate that by employing
the proposed channel and time-varying phase noise estimators the
bit-error rate performance of a MIMO system can be significantly
improved.

Index Terms—Multi-input multi-output (MIMO), Wiener
phase noise, channel estimation, Cramér-Rao Lower Bound
(CRLB), weighted least squares (WLS), and extended Kalman
filter (EKF).

I. INTRODUCTION

A. Motivation and Literature Survey

Wireless communication links are expected to carry ever
higher rates over the available bandwidth. The extensive re-
search in the field of multi-input multi-output (MIMO) systems
has shown that such systems are capable of significantly
enhancing the bandwidth efficiency of wireless systems [1],
[2]. However, achieving synchronous transmission in today’s
high speed wireless systems is a challenging task, since many
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rapidly varying synchronization parameters need to be simul-
taneously and jointly estimated at the receiver [3]. Therefore,
accurate and efficient algorithms that enable synchronous high-
speed communication are of broad interest [4].

Phase noise, which is present in wireless communication
systems due to imperfect oscillators [S]-[12], is greatly detri-
mental to synchronization unless its parameters are accurately
estimated and compensated [3]. The effect of phase noise
on the performance of wireless communication systems is
more pronounced at higher carrier frequencies [4]. In addition,
motivated by the large available bandwidth in the E-band
(60-80 GHz) extensive research has been recently carried
out on efficient algorithms that are capable of outperforming
traditional phase noise tracking schemes, e.g., those based on
the phase-locked loop (PLL). In the case of MIMO systems,
each transmit and receive antenna may be equipped with an
independent oscillator. For example, in the case of line-of-sight
(LoS) MIMO systems!, a single oscillator cannot be used for
all the transmit or receive antennas since the antennas need
to be placed far apart from one another [13]?. Similarly, in
multi-user MIMO or space division multiple access (SDMA)
systems, multiple users with independent oscillators transmit
their signals to a common receiver [15]. Thus, in order to com-
prehensively address the problem of phase noise mitigation in
MIMO systems, algorithms that can jointly estimate multiple
phase noise parameters at the receiver are of particular interest
[13], [15].

In single carrier communication systems, phase noise is
multiplicative and results in a rotation of the signal constel-
lation from symbol to symbol and erroneous data detection
[3]. The Cramér-Rao lower bounds (CRLB) and algorithms
for estimation of phase noise in single-input single-output
(SISO) systems are extensively and thoroughly analyzed in [3],
[16]-[30]. However, these results are not applicable to MIMO
systems, where a received signal may be affected by multiple
phase noise parameters that need to be jointly estimated at the
receiver [13], [31]-[33]. As a matter of fact, for SISO systems,
Kalman filter based methods have been effectively applied in
[16], [20], [25], [29] for signal detection in the presence of
phase noise. However, as stated previously these approaches
are not applicable to the case of MIMO systems and the results

'LoS MIMO has been effectively demonstrated for microwave backhauling
by Ericsson AB.

2For a 4 x 4 LoS MIMO system operating at 10 GHz and with a transmitter
and receiver distance of 2 km, the optimal antenna spacing is 3.8 m at both
the transmitter and receiver [14].



in [16], [20], [25], [29] are focused on signal detection and do
not analyze or investigate the estimation performance of the
Kalman filter based phase noise mitigation methods.

The effect of phase noise on the capacity and performance
of space division multiplexing (SDM) MIMO communication
systems has been analyzed in [31]-[33], where it is demon-
strated that phase noise can greatly limit the performance
of multi-antenna systems. In [31], the effect of oscillator
configuration at the transceiver antennas and the resulting
phase noise on a MIMO beamforming system is analyzed
in detail. In [32], [33], it is demonstrated that imperfect
knowledge of phase noise and channel have a considerable
impact on the capacity of MIMO systems. However, the impact
of imperfect knowledge of phase noise and channel on the
performance of a MIMO system for different numbers of
antennas, modulation schemes, and phase noise variances is
not investigated. In [13], pilot-aided estimation of phase noise
in a MIMO system is investigated, where a Wiener filtering
approach is applied to estimate the phase noise parameters
corresponding to the transmit and receive antennas. However,
the scheme in [13] is based on the assumption that the MIMO
channel is perfectly known at the receiver and it requires that
while one transmit antenna transmits its pilots, the remaining
antennas stay silent, which is bandwidth inefficient and results
in significant overhead. In addition, in [13], the CRLB for the
estimation problem is not derived and the performance of the
proposed MIMO phase noise estimator is not investigated. To
the best of the authors’ knowledge, a complete analysis of
the joint estimation of channel and phase noise parameters
in MIMO systems has not been addressed in the literature to
date.

In orthogonal frequency division multiplexing (OFDM)
phase noise is convolved with the data symbols [7], [34]-[36].
Therefore, the effect of phase noise can be partitioned into a
multiplicative part and an additive part that results in inter-
carrier interference (ICI) and significant performance loss [7].
Since in OFDM systems, the multiplicative part of phase noise
affects all subcarriers similarly [35], it is referred to as the
common phase error (CPE) and can be easily compensated
by a phase rotation as shown in [7], [34], [36], [37]. On
the other hand, the additive part of phase noise is more
challenging to mitigate and considerable research has been
carried out to analyze and reduce its resulting ICI in SISO-and
MIMO-OFDM systems [7], [35], [38]. More specifically, the
algorithms in [7], [36], [39]-[41] are only applicable to SISO-
OFDM systems and do not provide any means of estimating or
tracking multiple phase noise parameters. In [42], it is shown
that channel and phase noise need to be jointly estimated at a
SISO-OFDM receiver and new algorithms for obtaining them
are presented. In order to further improve system performance,
an approach for joint estimation and suppression of CPE and
ICI in SISO-OFDM systems based on the variational inference
approach have been presented in [43], where it is discussed
that in most practical scenarios of interest, the phase noise
process varies much more quickly than the channel and, as a
result, the effect of phase noise cannot be mitigated using a
simple training approach. However, the results in [42], [43] are
only applicable to SISO-OFDM systems, the derived CRLB
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for channel estimation [42] does not take the effect of phase
noise into account, and the estimators in [42] can be only
applied to wireless systems where the receiver is equipped
with a PLL. Furthermore, the iterative algorithms in [43] can
potentially result in unwanted delay and overhead in high
speed communication systems.

Even though the results in [35] provide schemes for miti-
gating the effect of phase noise induced ICI in MIMO-OFDM
systems, they present no means of estimating the CPE or
the multiplicative phase noise affecting these communication
systems. Algorithms for CPE estimation in MIMO-OFDM
systems have been proposed in [34], [37], [38]. However,
these schemes are based on the assumption that the MIMO
channels are known and are limited to scenarios where a single
oscillator is used at all the transmit or receive antennas. As a
result, the approaches in [34], [37], [38] cannot track multiple
channels and phase noise parameters and cannot be applied
in various MIMO systems. Moreover, in [34], [37], [38], no
specific performance bound, e.g., CRLB, for the estimation
of channel and phase noise parameters is derived. In [15], a
new algorithm for estimation of the CPE in SDMA MIMO-
OFDM systems has been proposed. Even though the maximum
a posteriori estimator in [15] can track multiple phase noise
parameters, it has a very high computational complexity, it is
based on the assumption that the MIMO channels are perfectly
known, and the performance of the proposed estimators is only
verified for low-to-moderate phase noise variances. Finally,
in [15], the CRLB for estimation of multiple phase noise
parameters in SDMA MIMO systems is not derived.

It is important to note that compared to single carrier
systems, phase noise deteriorates the performance of OFDM
systems more significantly [44]. This sensitivity to phase noise
in OFDM systems is even more severe as the constellation
size and number of subcarriers increases [44]. Therefore,
application of single carrier systems to very high speed com-
munication links may be advantageous. Moreover, application
of single carrier SDM instead of OFDM in wireless com-
munication systems that operate in frequency non-selective
fading channels may result in reduced overhead and cost, since
OFDM signalling requires additional signal processing at the
transmitter and receiver (a fast Fourier transform (FFT) and
an inverse FFT at the receiver and transmitter, respectively)
[45], necessitates more overhead due to the cyclic prefix [45],
and requires linear amplifiers [46]. For example, in the case of
high speed LoS microwave backhaul links (backhaul networks
connect cellular base stations to the core network), the wireless
channel is not frequency selective [47]-[49] and, therefore,
single carrier SDM is used instead of OFDM [47]. Moreover,
OFDM may not be suitable for wireless systems that operate
in non-linear channels due to OFDM signals’ amplitude vari-
ations and high peak-to-average power ratio (PAPR) [46]. An
example can be found in satellite communication links, where
use of high power amplifiers results in significant non-linearity
in the wireless channel [46, p. 383]. Finally, single carrier
systems are considered to be advantageous in the E-band
due to their low PAPR (at very high carrier frequencies the
dynamic range of power amplifiers is limited) and their better
performance when using high rate or weak error correcting
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codes [50, p. 261].

B. Contributions

In this paper, joint estimation of multiple phase noise
parameters and channel gains in a single carrier SDM MIMO
system equipped with [V; transmit and [V, receive antennas is
analyzed. The system model for the estimation problem is for-
mulated in detail and new CRLBs for the multiple parameter
estimation problem corresponding to online processing of the
received signal are derived. A data-aided least squares (LS)
estimator for jointly obtaining the channel gains and phase
noise values is derived. Next, the pilot and estimated data
symbols in combination with a decision-directed® weighted
least-squares (WLS) estimator are used to track the time-
varying phase noise processes over a frame. In order to
reduce overhead and delay associated with the estimation
process, a decision-directed extended Kalman filter (EKF) is
also proposed. The performance of the proposed LS, WLS,
and EKF based channel and phase noise estimators is shown
to be close to the derived CRLBs over a wide range of
signal-to-noise ratio (SNR) values. Moreover, simulation re-
sults demonstrate that by employing the proposed channel and
phase noise estimators the bit-error rate (BER) performance of
a MIMO system can be significantly improved in the presence
of time-varying phase noise. Finally, the effect of number of
antennas, modulation scheme, and phase noise variance on the
performance of MIMO systems with imperfect knowledge of
channel and phase noise is investigated*.

The contributions of this paper can be summarized as follows:

o The joint estimation of channel gains and phase noise in
an N, x Ny MIMO system is parameterized and new
CRLBs for the multi-parameter estimation problem in
cases of both data-aided and decision-directed estimation
are derived. The CRLBs are then used as a benchmark for
the performance of the proposed estimators and are also
applied to quantitatively determine the effect of unknown
phase noise on channel estimation accuracy and vice
versa.

o Algorithms for estimating and tracking the unknown
channel gains and time-varying phase noise, respectively,
throughout a frame are proposed. A data-aided LS es-
timator for jointly obtaining the MIMO channel and
phase noise parameters is proposed. Next, novel WLS
and EKF based estimators are proposed that are shown
to accurately track the phase noise over a frame and reach
the derived CRLB. A complexity analysis is carried out to
show that the proposed EKF can efficiently track multiple
noisy and time-varying phase shifts in a MIMO system.

« Extensive simulations are carried out that investigate the
performance of MIMO systems in the presence of im-
perfectly estimated channels and phase noises for differ-
ent phase noise variances, modulations, synchronization
overheads, channel conditions, and Doppler rates. These
simulations demonstrate that application of the proposed

3For decision-directed, the prior pilot and estimated data symbols are used
to estimate the current symbol’s phase noise parameters.
“This paper is partly presented at SPAWC 2012 [51].

channel and phase noise estimators can significantly
improve the performance of MIMO systems.

C. Organization

The remainder of the paper is organized as follows: in
Section II the phase noise model and MIMO framework
used throughout the paper are outlined, Section III derives
the new CRLBs for both cases of data-aided and decision-
directed estimation, Section IV presents the novel channel and
phase noise estimation algorithms while Section V provides
numerical and simulation results that examine the performance
of MIMO systems in the presence of estimated channel and
phase noise. Finally, Section VI concludes the paper and
summarizes its key findings.

D. Notation

Superscripts (-)*, (-)f, and (-)7 denote the conjugate, the
conjugate transpose, and the transpose operators, respectively.
Bold face small letters, e.g., x, are used for vectors, bold
face capital alphabets, e.g., X, are used for matrices, and
[X]z,y represents the entry in row = and column y of X.
Ix«x, Oxxx, and 1x,x denote the X x X identity, all
zero, and all 1 matrices, respectively. ® stands for Schur
(element-wise) product, | - | is the absolute value operator,
Zx returns the phase of the complex variable z, |x| denotes
the element-wise absolute value of a vector x, diag(x) is used
to denote a diagonal matrix, where the diagonal elements are
given by vector x. diag(X) is used to denote the diagonal
elements of matrix X. E[] denotes the expected value of the
argument, and R{-} and 3{-} are the real and imaginary parts
of a complex quantity, respectively. Finally, N (u,0?) and
CN (;L,JQ) denote real and complex Gaussian distributions
with mean £ and variance o2, respectively.

II. SYSTEM MODEL

A point-to-point MIMO system with N; and N, transmit
and receive antennas, respectively, is considered (see Fig. 1).
As shown in Fig. 2 each frame of length Ly symbols is
assumed to consist of a training sequence (TS) of length L,
symbols, data symbols, and pilot symbols that are transmitted
every L, symbol interval. In this paper, the following set of
assumptions is adopted:

Al. The pilot symbols are assumed to be known at the re-

ceiver. Moreover, it is assumed that all transmit antennas

simultaneously broadcast mutually orthogonal TSs of
length L; = N, to the receiver.

In order to ensure generality, each transmit and receive

antenna is assumed to be equipped with an independent

oscillator as depicted in Fig. 1. This ensures that the sys-
tem model is in line with previous work in the literature

[13] and is also applicable to various MIMO scenarios,

e.g., LoS MIMO and SDMA MIMO systems.

A3. The analyses in this paper are based on the assumption
of Quasi-static and frequency-flat fading channels, where
the channel gains are assumed to remain constant over
a frame, i.e., the channel gains are modeled as unknown

A2.
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Fig. 1. System model for a point-to-point MIMO systems.
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Fig. 2. Timing diagram for transmission of training, pilot, and data symbols

within a frame.

deterministic parameters over a frame. Nevertheless, in
Section V, the performances of the proposed channel and
phase noise tracking schemes in the presence of time-
varying channels are investigated.

The time-varying phase noise process is modeled as a
random-walk or Wiener model. It should be noted that
phase noise is assumed to evolve much more slowly than
the symbol rate. Therefore, phase noise is assumed to not
change during the duration of a symbol but to change
from symbol to symbol.

Perfect timing and frame synchronization is assumed,
which can be achieved by standard frame synchronization
algorithms using a timing feedback loop [18].

Note that Assumptions A3, A4, and AS are in line with
previous phase noise estimation algorithms in SISO and
MIMO systems in [3], [13], [17], [18], [52]-[54]. Moreover,
Assumption A3 is reasonable in many practical scenarios, e.g.,
in LoS MIMO systems applied to microwave backhaul [47]
and satellite communication links [46], where the channel
gains vary much more slowly than the phase noise process.
More importantly, unlike the results in [3], [13], [17], [18],
[52]-[54], which assume that the channel gains are estimated
and equalized before phase noise estimation, in this paper
we jointly estimate the MIMO channel gains and phase noise
parameters. Note that even though the analyses in this paper
are based on the assumption of quasi-static fading channels,
in Section V, it is demonstrated that by selecting an appro-
priate synchronization overhead, the proposed estimators can
accurately track MIMO channels and phase noise processes in
the presence of time-varying channels with different Doppler
rates.

The discrete-time baseband received signal model at the kth
antenna of the MIMO receiver is given by>

A4.

AS.

N,
7] e
ye(n) = &% My &% Msy(n) + wy(n)
=1

)]

Ny
:Zak,éejﬁk‘[(n)sf(n)+w’f(n)’ k=1,---,N,
=1

where
5Throughout this paper indices { = 1,--- ,N¢, k = 1,--- | N,, and

n=1,---,L s are used to denote transmit antennas, receive antennas, and
symbols, respectively.

e s¢(n) is the nth, for n = 1,---, Ly, M-ary modulated
transmitted symbol that corresponds to the /th transmit
antenna and consists of both pilots and data symbols,

e Ny is the quasi-static unknown channel gain from the
/th transmit to the kth receive antenna, which is assumed
to be constant over the length of a frame and to be
distributed as a complex Gaussian random variable, i.e.,
hie ~ CN (pny, o5 07, ,) from frame to frame,

o Qg £ |hk,¢| is the channel gain from the fth transmit to
the kth receive antenna,

. 05” (n) and 9,[:] (n) correspond to the nth sample of the
phase noise at the ¢th transmit and kth receive antenna,
respectively,

o Bro(n) = 9?] (n) + 9,[;] (n) + Zhy ¢ denotes the overall
phase shift from the oscillator and channel corresponding
to the ¢th transmit and kth receive antenna, and

e wi(n) is the zero-mean complex additive white Gaus-
sian noise (AWGN) at the kth receive antenna, i.e.,
wg(n) ~ CN(0,02). Note that the AWGN variance, o2,
is assumed to be known since it can be estimated at the
receiver [55].

The discrete time phase noise model in (1) is motivated by
the results in [3], [7], [13]. More importantly, for free-running
oscillators, it is found that the phase noise process can be
modeled as a Brownian motion or Wiener process [5]-[10].
Therefore, 01[;’] and 9,[:}, for(=1,--- ,N;andk=1,--- ,N,,
are given by [5]-[10]

0 (n) =0, (n — 1) + A (n),

07 (n) =01 (n — 1) + Al (n), )
where the phase innovations for the ¢th transmit and kth
receive antennas, ALt] (n) and Ag'] (n), respectively, are as-
sumed to be white real Gaussian processes with AE,t] (n) ~
N(O, O’Zm) and AE:] (n) ~ N(O, UZ["])' The variances of the
innovations or the phase noise rate at the /th and kth transmit
and receive antennas, O'QAM and o2 > Tespectively, are given

4 Ak
by [5]-{10], [38]

1t] :27“355} T,

2

2
g
A

UQA[J] =21, 3)
where the constants cg] and cg] denote the one-sided 3-dB

bandwidth of the Lorentzian spectrum of the oscillators at the
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(th and kth transmit and receive antennas, respectively, and
T, is the sampling time. As shown in [11], [12], in practice,
the phase noise innovation variance is small, e.g., using the
measurement results in [12, Fig. 16] and [12, Eq. (10)] for a
free-running oscillator operating at 2.8 GHz with Ty =106
sec, the phase noise rate is calculated to be 03 = 10~* rad2
Finally, throughout this paper it is assumed that a . and a

are known at the receiver, given that they are dependent on
the oscillator properties.
Eq. (1) can be written in vector and matrix form as

y(n) =0 (n)HOM (n)s(n) + w(n)
= (A ©) ejB(")> s(n) +w(n), 4)
[
£P(n)
where
e y(n) 2 y(n),- L yn, ()],
e s(n) 2 [s1(n),-- ,sn, ()],
e HZ [hy, - ,hy ",
o by 2 [hpa,- hen,) s fork=1,--- | N,,
o Oll(n) £ diag (eje[lr](”), e ,ejeg\rflr(")) is an N, X N,
matrix,
. Oll(n) £ diag (ejegt]("), e ,ejeg‘t’]t(")) is an Ny x IV,
matrix,
« B(n) 2[Bi(n), -, By, (n)]" is an N, x N, matrix,
o Br(n) 2 [Bea(n), - Ben ()],
e A2 [ay, - ,ay, | isthe N, x N; channel gain matrix,
o (XL é [ak’l, e 7ak7Nt}T, and
e w(n) 2 [wi(n), -+ wy, (n)]".

The following remarks are in order:

Remark 1: Given that both the channel gains, A, and phase
fluctuations, B(n), in (4) are assumed to be unknown, the TS
at the beginning of each frame is used to jointly estimate a
total of 2N, N,. parameters at the receiver. Next, since in most
practical scenarios of interest, the channel gains vary much
more slowly compared to the phase noise processes [43], the
pilot and estimated data symbols are used to only estimate the
N¢N, phase noise parameters, B(n), over the frame.

Remark 2: It is a well-known fact that the Bayesian CRLB
(BCRLB) [56, p. 84] is better suited for determining the
lower bound on the estimation accuracy of random parameters.
However, deriving the exact a priori joint distribution of
the N, N,. parameters [y ¢(n), Yk, ¢, and the multi-parameter
BCRLB are very difficult. Therefore, using the assumption that
phase noise of a practical oscillators varies slowly with time
and the Taylor series approximation, we incorporate the phase
noise innovations, Ag] (n) and AE:] (n), Vk, £, in to the additive
noise term, w(n) and transform the joint estimation of channel

gains, A, and phase fluctuations, B(n) into a deterministic
multi-parameter estimation problem over the length of the
observation sequence.

I1I. CRAMER-RAO LOWER BOUNDS

In this section, new expressions for the Fisher’s information
matrices (FIMs) and the CRLBs for data-aided estimation
(DAE) and decision-directed estimation (DDE) of phase noise
and channel gains in MIMO systems are derived. Note that
the derived CRLBs are applicable to online processing of
the received signals for joint estimation of phase noise and
channels.

A. CRLB for Data-Aided Estimation (DAE)

In order to coherently detect the transmitted signal at time
instant n, s(n), the MIMO receiver needs to jointly estimate
the channel gains and phase noise parameters, A and B(n),
respectively. As a result, the vector parameter of interest, A,
is given by

A2 AT A, 5)
where X\, = [a{,ﬁg(n)]T, for k = 1,---,N,. Let us
consider that a TS of length L; is used to estimate the
parameters of interest at time instant n, A and B(n). In the
following steps, we seek to express the corresponding received
signal vector as a function of the parameters of interest.

The phase noise model in Eq. (2) can be rewritten as

#n—2) =m — > Al
m=n— Lt+1

6 (n — L) =61 (n Z Al m), k0. (6)
m=n—L;+1

Using (6), the received signal at the kth receive antenna in (1)
can be modelled as (7) at the bottom of this page.
For small values of L, (7b) can be tightly approximated as

Z@kiejﬁke(n
x(l—j< S AP m)+ Al )))
m=n—L;+1

x sp(n — Ly) + wg(n — Ly), (8)

n—Lt

since for practical oscillators the phase noise innovation vari-
ances are small [11], [12] and the Taylor series expansion of
the term e_j (Z";;:nthﬁ»l (Agj] (m)"’_AE;] (7”)>)

for small phase
innovations Ag] and ALT]

can be approximated by

n—Lt

Zh

_ Z Oék,eej (ﬁk,e(n)—zzln,:nthﬂ (AE"T](m)—"—A‘[}](m)))Sz(n . Lt) + wk(n —Ly).

(=1

‘9[ (n)— 2771 n— Lf+1 T](771)+9t](7’)) Z"‘ n—Li+1 Lt](m))se(n_l/t)+wk}(n_Lt)7

(72)

(7b)



n

(% (Al +alm) )

e m=n—L;+1

1—j( zn:

m=n—L;+1

~ ©)]
(a0 + am) ).

Note that the small angle approximation in (9) has also been
used in [7] and [57] for estimating and analyzing the effect of
phase noise in SISO systems. Finally, Remark 5 at the end of
this subsection compares the derived data-aided CRLB against
the posterior CRLB (PCRLB) in [21] for SISO systems and
shows that the above approximation is valid even for high
phase noise variances, e.g., 03 = 1073 rad? [11], [12], [19],
[27], [29].

The received training signal at the kth antenna in (7) can
be written in vector form as

Ny
Vi~ E Oék,eejﬁk’[(n)sé
/=1

Ny
—J Z g 0P My © py  + wy, (10
=1
overall noise
where
© Yk = 2 lyp(n— Ly + 1), ,yx(n)]”,
e Sy = [Sf(nth + ) S/( )}T,

o Wi = [wk(n —Li+ 1), ;wi(n)], and
o e 2 [ p o A ) + A ),

T
S pers AL M)+ AP (m), 0

The received signals atTall receive antennas, y, can be written

asy = [le, e ,yJTVJ . Note that based on Assumption A2,

A ), Al m), A (n), and AP (m), Vk # k0 # I,n #
m, are mutually independent. In addition, it follows from the
assumptions in Section II and (1) that wg(n) and wg(m),
Vk # k,n # m, and Al'(n), Al(n), and wy(n), VK, €,n,
are mutually independent. Subsequently, the received signal
vector, y, is distributed as CAN (uy,Xy), where the mean
and the N,.L; x N,L; covariance matrix of y, py and Xy,

respectively, are given by

T
py 2 (i gy ] (112)
z]}’1,1 EYLNr
Ty=| (11b)
z:yN,,.,l z:)’NT.N,,.
In (11), is given b i iBr.e(m)s, and
Hy, 1s given by py, = Ze Qg€ sy and as

shown in Appendlx A, the Lt X Lt sub matrices Xy, ., for
L, {= 1,---,N; and k, k= 1,---,N,, can be determined as
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Sy ok sest! © (0¥ + oA[t )
E o Xejﬁk,f(n)e_jﬁfc,[(”)sésgl @ (O-QALT]\II)
ik +0121)ILtXLt7 k=k
Zé\’:tl |O¢M|‘aw|ej/3k,z(n)e—jﬂz,e(n)sgsf
Q(Ui[t]ql)a k # k
4
12)
where W is an L, x L; matrix given by
Ly-1 L—-2 Ly—3 --- 0
o b Ly—2 Li—2 Ly—3 --- 0
0 0 0 - 0

Proposition 1: The 2N N,. x 2N N,. FIM for joint DAE of

channel gains and phase noise parameters is given by
FIM1,1 FIMI,NT

FIM = . (13)

FIMuy, 1 FIMy, n,

In (13), FIM,, i, for k, k=1, ---,N,,are 2N; x2N; matrices
that are determined as shown in (14) at the bottom of this page,
where

« Uy 2 [Oz;cq)thNp(EkS) N
N, L; x N; matrix,

e E; £ diag(e/Pka(m) ...
matrix, S = [sq,--- ,sn,|7 is an N; x L; matrix,

« Y. 2 diag( a1, -+, ak,N, ) is an Ny X N, matrix,

e the /th row and fth column, for K,Z = 1,---, Ny,
elements of the IV; x N; matrices II;;, II;5, II5;, and
II,, are given by

T

_k)LexN,| s an

,eIPen ()Y s an N x N

- ) 0,
_ 1 !
[Hll]e,z (k, k) = {Ey 8akezy dax kﬁ}
Xy,
11
[ 12“ kk { y ﬁakg y 35M }
51 82
y 95M >y

[Hgl ZZ k‘]{i ATI‘{E 1

II (k, k) 2Tr{ ! z:* Y
[ 22@@ r y 55“ k n)}

and the N, L; x N,L; matrices 9%y and ~2E¥ _ are
. . ) dag,e OBk,e(n)
derived in Appendix A.
Proof: See Appendix A. The following remarks are in order:
Remark 3: The CRLB for the estimation of channel gains
and phase noise parameters, oy and Bg(n), for k =

1,---, N,, respectively, in (5) is given by

CRLB()\) = diag (FIM ™). (15)

FIMur = | 9g {r, U’y

2R {UL S, U} + Ty (k, k)
S UL} + Mo (K, k)

=25 {UIS UL Y3} + Mook, k) (14)
2§R{’I‘kUkE U} + Moo (k, k)
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Given the structure of the FIM in (13) and (14), it is difficult
to find a closed-form expression for the CRLB for an N,. x N,
MIMO system. However, partitioned matrix inverse [58] can
be applied to find a closed-form expression for the CRLB for
specific values of N, and N,.

Remark 4: The N;N, x N;N, FIM for estimation of overall
channels in (4), P(n), FIMP®I can be also determined in
a similar fashion as above, where the IN; x IN; submatrices
FIME:E(”)], for k,k=1,---,N,, are given by

H
FIM%”)] _ [2% { (ULP(n)]> 2;1U£_€P(n)]}

+1 k)| 16)

[P(n)] & T ST oT ’

In (16) U, = O%k—1)L.xn SO0, 7k)thNJ ’
P(n _ Xy _ oy

H[ (k k) {Ey ! 6pk,e(n) y ! opy, (") }7 pk’é(n) de-

notes the kth row and (th column element of P(n) and

i, form=1,---, N,, is determined as

aprn,l(")
j2 z( )Sesf

ol AW‘I’ +0%,P)
+Z 21 (p ( Ysest
Opm,e(n) QUZ%J‘I’)a m=k f k
pl%,z(”)sesf O] U2A[t]\II7 m = k’ k 7é
[‘ — —
0, m=kk#k
07 m 7£ k’ m 7£
(17)

Using (15), the FIM in (17) can be applied to find the CRLB
for estimation of the overall MIMO channels including phase
noise, P(n). Note that as shown in Section V-B, P(n) is used
at the MIMO receiver to equalize the effect of channels and
phase noise. Therefore, the CRLB on the estimation accuracy
of P(n) can be used to determine the effect of channel and
phase noise estimation accuracy on the performance of MIMO
systems.

Remark 5: Fig. 3 compares the data-aided CRLB for esti-
mation of phase noise against the PCRLB in [21] for SISO
systems. In addition to illustrating that the CRLB derived
in this paper is accurate, Fig. 3 verifies the small angle
approximation applied in this section for different values of
L, and phase noise variance in SISO systems. It is shown that
even for large phase noise variances, e.g., 03 = 1072 rad?,
[11], [12], [19], [27], [29], the derived CRLB is close to the
PCRLB in [21].

Remark 6: The FIM in (13) and (14) is not block diagonal.
Therefore, the estimation of channel magnitudes and phase
noise parameters in a MIMO system are coupled with one
another, i.e., channel estimation accuracy is affected by the
presence of phase noise and vice versa. This result indicates
that channel and phase noise estimation need to be carried out
jointly in a MIMO system.

Remark 7: The CRLB usually depends upon unknown pa-
rameters. Here, it is also intuitively reasonable that channel and

7 i oo )
0.0128
/ N
/ 0.0126 \
. ( 0.0124 “
\ 4
\ \ 00122‘”””H”HHMHHH /’
o \ N 0012 ,
- \\ N 0.0118
m 4.2 4.2005 4.201
) -
ot .
%
>
m
4
@
O
- - -CRLB, 0;=10" -
—— PCRLB [21], 03=10"°
107 |-+ CRLB, 02=107*
PCRLB [21], 02=10"*
L L L \ \ L L L
1 1.5 2 25 35 45 5 5.5 6
Tralnlng Length Ll
Fig. 3. The CRLB and PCRLB in [21] for data-aided estimation of phase

noise in a SISO system with SNR=10 dB and h1,1 =1

phase noise estimation accuracies depend on their actual val-
ues, e.g., if the channel gains are extremely small, indicating
low SNR conditions, the channel and phase noise estimation
variances will be large [59].

B. CRLB for Decision-Directed Estimation (DDE)

Since in most practical scenarios of interest channel gains
vary much slower than the phase noise processes [43] and
based on the assumption of quasi-static fading channels, the es-
timates of the channel magnitudes obtained using the TSs and
data-aided estimation can be used over the frame. Therefore, in
the case of DDE, denote L, as the number of previous symbols
used to estimate the mth symbol’s phase noise parameters,
B(n), which consist of both pilots and estimates of data
symbols. In order to make the analysis in this subsection
tractable, we assume DDE with perfect decision feedback.
Note that even though this assumption makes the proposed
CRLB a looser bound for decision directed estimators with
imperfect decision feedback, the numerical results in Section
V demonstrate that the derived DDE-CRLB is a valid and
accurate lower bound for both cases of perfect and imperfect
decision feedback.

Based on the above set of assumptions the vector of parameters
of interest for DDE, 5\, is given by

X2 [8Tm), -, B85 m)]" (18)

The N;N,.x N;N,. FIM for the DDE, FIM, can be derived in a
similar fashion as that of DAE in (13), where the N; x N; sub-

matrices of FIM denoted by FIM, 7, for k, k=1---,N,,
are given by®
FIM, ; = 2R { Y, U/ S5 Uy + oo (k, k) } . (19)

6Similar steps as the ones outlined in Section III-A and Appendix A are
used and, therefore, are not repeated here.



In (19), f];, denotes the covariance matrix of the obser-
vation sequence in the decision-directed scenario, ¥, =

[yk(n — Lo), -+, ys(n — 1)]T,_which is determined by replac-
ing ¥ with W in (12), where ¥ is given by
L, L,—1 L,—2 --- 1
ol L1 Lo-1 Le-2 1
\IJ =
1 1 1 e 1
In addition, in (19), Uy £
(081 n (BaS)T. 00 iy v, | s an NyLo x N,

matrix, S £ [§1,---,5n5,]7 is an N; x L, matrix,
- N — s T

Se = [Se(n — Ly),--- ,Sz(ZL — 1)]", Ey and Yj are
defined below (14), and IlIyz(k,k) is determined by
replacing X, with Xy in IIx(k,k) below (14). The
CRLB for the decision directed case, CRLB is given by

CRLB()) = diag (FIM‘1

IV. CHANNEL AND PHASE NOISE ESTIMATION

In this section, an LS estimator for joint data-aided estima-
tion of channels and phase noise parameters and a WLS and an
EKEF for decision-directed tracking of phase noise parameters
over a frame are derived.

A. Data-Aided Estimation (DAE)

The conditional likelihood function of y given the channel
magnitudes and phase noise parameters at time instant n, A
and B(n), respectively, is given by

(414 B0)) = gy
v ()N det ()

x eXp{ —(y —my) "2y - uy)}-

Based on (20) and since the covariance matrix, Xy in (11)
and (12), is a function of both channel magnitudes and
phase noises, the derivation of the joint maximum-likelihood
estimator of channel and phase noise parameters is highly
complex. Therefore, in this section we derive a significantly
less complex data-aided LS estimator. Using (20), the joint LS
estimates of A and B(n), A and BIDPAE], respectively, can be
determined as

(20)

A B (n) = argmin(y — py) (v — py). Q@D

The cost function in (21) can be modified as

A, BPAE () = arg min(Y — P(n)S)? (Y — P(n)S), (22)

where Y = [y1,---,yn,]T and S and P(n) are defined in
(14) and (4), respecAtively. Using well-known methods, the LS
estimate of P(n), P(n), can be shown to be
. YS#
P(n) = YSH(SSH)"! = :
Ly
where the second equality in (23) follows from Assumption

Al,ie., SST = LN, xn,. As demonstrated in [11], [12] and
discussed in Section II, for most practical oscillators, the phase

(23)
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noise variances, O'A , and o2 Al , Vk, £ in (3), are very small.

Therefore, the LS estimator is expected to accurately obtain
the MIMO channel and phase noise parameters. Using (23),
estimates of the channel magnitude and phase noise matrices
are determined by

[Ys"|
Ly’
respectively. Simulation results in Section V-B show that the

performance of the proposed LS estimator in (24) is close to
the CRLB over a wide range of SNR values.

A:

H
and B[DAE](n):Z{YLS } (24)

t

B. Decision-Directed Estimation

In order to track the phase noise parameters throughout
a frame, in this subsection WLS and EKF decision-directed
estimators are proposed.

1) Weighted Least-Squares Estimator: The conditional log-
likelihood function (LLF) up to an additive constant can be
determined as

log (p(7|A, B(n)) ) =1log (det(Sy))
+ (¥ - Ay)"'E5
where fig, = 2113\21 ak,zej'@kl(”)éz, and y, Z_)y, Sy are defined
in Section III-B. Using (25), decision-directed WLS estimates

of the nth symbol’s N;N, phase noises, BIPPEl(n), is given
by

BPPH () = arg min(y — fy) "S5 (5 —
B(n)

"(¥ — By), 25

Bg).  (20)

In order to reduce the computational complexity, the term
log (det(Xy)) in (26) is omitted, resulting in a WLS estimator.
Numerical results demonstrate that log (det(Zy)) in (12) does
not vary significantly for different phase noise values, 3 ¢,
vk, £

Note that the minimization in (26) requires an exhaustive
search over an NyN, dimensional space, which is computa-
tionally intensive. Even though the proposed WLS estimator
may be computationally complex to implement, it is used to
verify the CRLB derivations and to assess the performance of
the proposed EKF estimator. In addition, the computational
complexity of this exhaustive search and the proposed WLS
estimator can be reduced by applying alternating projection
(AP) [60]. AP is an iterative process, where at each iteration
the right hand side of (26) is minimized with respect to one
of the phase noise parameters, e.g., i.¢, while the remaining
terms are kept at their most updated values. In other words,
AP reduces the multi-dimensional minimization problem into
a series of one-dimensional minimizations. Even though AP is
not guaranteed to converge to the true estimates, in [60, Sec.
IV-A] it is shown that AP converges to a local maximum and
through proper initialization, it results in global convergence.
Since phase noise does not vary quickly with time, the phase
noise estimates obtained at the beginning of each frame,
using the data-aided LS estimator in Section IV-A, are used
to initialize the AP process for the WLS estimator. This
ensures that the iterative algorithm converges more quickly. In
addition, the numerical simulations in Fig. 6 indicate that using
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the above initialization, AP converges to the true estimates in
only 4 cycles.

2) Extended Kalman Estimator: This section presents an
EKF to track N, N; phase noise parameters (3 ¢(n), Vk,Z,
in decision-directed mode. First, the state and observation
equations are developed for the EKF. Using (2), B ¢(n), Yk, ¢,
can be written as

Bre(n) = Bre(n — 1) + Ay o(n), 27

where Ay ¢(n) = AEZ] (n) + Ag] (n) is the sum of the phase
noise innovations for the ¢th transmit and the kth receive

antennas. Using (27), the unknown state vector ¢(n) =
[ﬂ{(n% e 7/6],1\}7‘({”‘)],11 is given by

d(n) = ¢(n—1) +6(n), (28)
where  the  state  noise  vector  d(n) =

[Ara(n), -, Ay n, (), Ay, a(n), -, An, x, ()]

is distributed as 8(n) ~ N(On,n,x1,Q). The state noise
covariance matrix, Q = E {§(n)d(n)"}, is an Ny N, x Ny N,
matrix that can be determined straightforwardly as

Q11 Q1. N,
Q= : : ; (29)
L QN1 Qn, N,
Jig,lthth + diag <Ui‘[lﬂ, - 702%]) , k= k
Bk = 2 2 .
diag ( 0% 1, -, 0% |, k # k.
¢ (A 7h) ’
(30)

The observation equation for the Kalman filter is given by
y(n) = 2(n) + w(n) = (A © B s(n) + w(n), (D)

where z(n) £ [z1(n), -, 2y, (n)]T = (A ©BM™)s(n).
Since the observation equation in (31) is a non-linear function
of the unknown state vector ¢(n), the EKF is used instead. The
EKF uses Taylor series expansion to linearize the non-linear
observation equation in (31) about the current estimates [61].
Thus, the Jacobian matrix is evaluated by computing the first
order partial derivative of z(n) with respect to the state vector

@(n) as
9z (n)
_ 32
aagiT((nn)) glxm 01xn,
01xn, 8;;"((7;)) O1xn,
O1xn,  O1xn, ZZ%T ((:LL))

where D(¢(n)) denotes the N, x N,N, Jacobian matrix
evaluated at ¢(n), and

0z (n) _[ Ozi(n)  Oz(n) ] (33)
9BL(n)  [9Bka(n)’ " 9By, (n)
- [J'Sl(n)ak,lem’l(")7 o s, (n)ag, v, €PN (")} '

Using (28)-(33), the remaining EKF equations can be formu-
lated as (34)-(38) at the bottom of this page, where

. D(¢(n|n - 1)) = D(d)(n)) ‘¢(7L)=¢£(7L|n—1)’

. ) . T
o nln—1) = [T (nln— 1), . BF, (nln — 1)]
predicted state vector at the nth symbol,
e W=02Iyn xn,»
* B() =By _g0in-1)
o K(n) is the NyN,. x N, Kalman gain matrix,
e Ais given in (24), and
e M(n|n) is the NyN, x N;N, filtering error covariance
matrix.
Note that the filtered state vector estimate, ¢(n|n), and the
N¢N, x N¢N, filtering error covariance matrix, M(n|n), are
updated every nth symbol using the Kalman gain K(n).
Before starting the EKF recursion (32)-(38), (ﬁ(Lt|Lt) and
M(L;|L;) should be initialized with appropriate values, where
L, corresponds to the last training symbol. It is assumed that
the Kalman filter initializes the state vector as ¢(L¢|L;) =

. T .
vec ((B[DAE]) (Lt)), where (B[DAE]) (L) is found using

(24). The error covariance matrix, M (L;|L;), is initialized as
M(L:|Lt) = xIN, N, xN,.N,» Where x is a constant that is used
to adjust the reliance of the EKF on the data-aided estimates
obtained using the LS estimator’.

is the

C. Complexity Analysis
In this subsection, the computational complexity of the WLS
and EKF in decision-directed mode is analyzed. Through-

7In this paper x is generally selected to be a small value, e.g, x = 0.1,
since as shown in Section V-B the data-aided estimates are accurate.

(34)
(35)

(36)

(37
(38)



out this section, computational complexity is defined as the
number of complex additions plus number of multiplications
[59] required to update the phase noise estimates at every
symbol. Let us denote the com]putational complexity of the
WLS algorithm by Cyrs = C\[KJ,VL[S +C’\[,§‘L]S. The notations C\[Vj\g
and C’\[,?L]S denote the number of complex multiplications and
additions, respectively, used by the WLS estimator and are
determined as shown in (39) and (40) at the bottom of this
page where N denotes the number of alternating projection
cycles used, and x denotes the step size in the WLS search
in (26). Similarly, the computational complexity of the EKF
algorithm is denoted by Ckar = CEKE + CI[<‘4A]L. The notations
C}Sﬂ and CI[&]L are used to denote the number of complex
multiplications and additions, respectively, used by the EKF
estimator and are determined as

cM —9N,N2(N,N, + N,) + N?

(36)
+ NpNy(2 4 Np) + NINZ(L+ Np) + 2N, N, (41)
——
37 (38) (32)
CEL = (N;N))? + N, (N, Ny = 1) 2N, N; + N,)
———
(35) (36)
+ N1+ Ny(N, — 1) + N}
(36)
+ Np[Ny(Ny — 1) + 21Ny
(37)
+ (N N¢)*(NeNy + N, — 1) (42)
(38)

Remark 8: In order to quantitatively compare the computa-
tional complexity of the proposed WLS and EKF estimator, we
have evaluated Cwrs and Ckay, for a 2 x 2 MIMO system. We
assumed L, = N; and in order to ensure that the performance
of the proposed WLS is close to the CRLB, the step size,
k = 1072 and N' = 4 in (39) and (40), respectively. It is
observed that the proposed EKF estimator is 3070 times more
computationally efficient than the proposed WLS estimator.
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V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
estimators versus the CRLB. Subsequently, the BER of a
MIMO system employing the proposed channel and phase
noise estimators is investigated in detail. Throughout this
section Ly = L, = N x = 0.1, and without loss of
generality, it is assumed that UZM = O’QA[T] = azA, Vk, ¢, and
02 = 1/SNR. The MIMO channel matrix is generated as a
sum of LoS and non-line-of-sight (NLoS) components such

that the overall channel matrix, H, is given by [14]

K
—H
K+1 Los +

H= ———Hnios, (43)

K+1

where K denotes the Rician factor, i.e., the ratio between
the power of the LoS and NLoS channel components [62,
p-52], Hyos and Hypos, respectivelyg. The elements of Hj s
are generated according to the model in [14] with the antenna
spacing at the transmitters and receiver, d; and d,., respectively,
set to their optimum values, the distance between transmitter
and receiver is set to 2000 m, the antenna angles at the
transmitter and receiver, ¢, and ,, respectively, are set to
¢ = 5° and ¢, = 0°, the carrier frequency is set to 60 GHz,
and unless otherwise specified K = 2 dB. The elements of
Hnios are modeled as independent and identically distributed
(i.i.d) complex Gaussian random variables with CN(0,1).
Walsh-Hadamard codes with binary phase-shift keying (BPSK)
or quadrature phase-shift keying (QPSK) are used for the TSs.
Given that the estimation range of the proposed WLS and
EKF estimators are limited to [—m,7) the phase unwrapping
algorithm in [3] is applied here, where phase noise estimates
for prior symbols are used in combination with the phase
noise variance to unwrap the estimate for the current symbol.
A minimum of 10° Monte-Carlo trials are used. Finally,
the mean-square error (MSE) performance of the proposed
estimators and the BER performance of the overall MIMO
system are investigated in the following subsections.

8Note that K = —oo and K = oo dB result in pure NLoS and LoS
channels, respectively [14].

Chits =N<Ntzvr>2§{ N, [N(2L3) + No(N: = 1) (2L7 +3)] + (N? = N,) [No(2L] + 3)]

+ (VL)
——

2

5 in (26)
+ (NyLo)® + Ny N¢(1 + L) } (39)
—— N——
F-B5)"E; (3-Ry) 5 in26) Ry in (26)
C{;“L]S :N(NtNr)H{ N, [L2{(N¢ — 1) + N} + (N2 = N,) [L2(Ny — 1)] + N, Lo(N, L, — 1)?
£y in (26) (F-hy) "S5 (F-hy)
(40)

+ (N, Lo)? + N, Ly(N; — 1) }
—_—— N——

=21 in (26) My in (26)
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Fig. 4. MSE for DAE of channel, P(n), for a 2 x 2 MIMO system for
different phase noise variances.

A. Estimation Performance

Channel realizations are drawn independently from the
model in (43) for each Monte-Carlo simulation trial. BPSK
modulation is used for the pilot and data symbols. Without
loss of generality, only the MSE for the estimation of channel
gain and phase noise for the first antenna element is presented.
Note that similar results are obtained for the estimation of the
parameters for the remaining antennas and are not presented
here to avoid repetition.

Figs. 4 and 5 plot the CRLB and MSE for DAE of MIMO
channels, P(n), and time-varying phases, respectively, versus
SNR. The CRLB in (15) is numerically evaluated for different
phase noise variances, e.g., 0% = [1073,107%,1075] rad®.
Note that, 0% = 1073 rad?, corresponds to a very high phase
noise variance [11], [12], [19], [27], [29]. The CRLB results
in Fig. 4 show that in the presence of phase noise, estimation
of the MIMO channel suffers from an error floor, which is
directly related to the variance of phase noise innovations.
This result can be anticipated given that as shown in (10)
even at very high SNR, where the effect of the AWGN noise,
wp,, is negligible, the additive noise corresponding to phase
noise limits the estimation accuracy. The same noise also
limits the estimation accuracy of the nth symbol’s phase noise
parameters in the data-aided case and results in an error floor
in Fig. 5. Using Monte-Carlo simulations the MSE of the data-
aided LS estimator for jointly estimating the MIMO channels
and phases in (24) is also evaluated and compared against the
CRLB. The results in Figs. 4 and 5 show that the proposed LS
estimator’s MSE for channel estimation is close to the CRLB
over a wide range of SNR values while its MSE for phase
estimation is slightly higher than the CRLB at low SNR.

Fig. 6 plots the CRLB and MSE of the proposed WLS and

o LSEst.02=107 f
& 0 LSEst. 05107 |
0 [
100 p o LSEst =107
N —o—CRLB 02=10 ]
w 207 e —6—CRLB02=10" |
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—
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©
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Z 107
© L
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<
o 107k ¥
1
[
|
10700
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140999 N 15 B 150001
10°° T I I I
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SNR [dB]

Fig. 5. MSE for DAE of phase noise for a 2 x 2 MIMO system for different
phase noise variances.

EKF for DDE of phase noise versus SNR. The CRLB for
DDE with perfect decision feedback in (19) is numerically
evaluated for different phase noise variances and L, = 2.
As depicted in Fig. 6, the CRLB for DDE of phase noise
also suffers from an error floor, which is higher compared
to the DAE in Fig. 5. This higher error floor is due to the
Wiener model of phase noise in (2) and since in the case of
DDE the transmitted symbols at time instant n are assumed
to be unknown, i.e., only the observations up to the (n —
1)th symbol, 1 2 [yx(n — Lo), - ,yx(n — 1)]" can be used
while estimating the nth symbol’s phase noise. Therefore, as
observed in Fig. 6 the estimation accuracy of phases at time n,
B(n), cannot reach below the variance of the white Gaussian
phase noise innovations, Aéﬂ (n) and AE:] (n), Vk,£.

In Fig. 6, the MSE performances of the proposed WLS and
EKF estimators are also compared against the CRLB, where it
is shown that the proposed estimators’ MSEs are close to the
CRLB over a wide range of SNR values. In order to ensure
a fair comparison with the CRLB, the MSE performances of
the proposed WLS in (26) and EKF estimators in (32)-(38)
are also evaluated with perfect decision feedback. Note that
even though the Kalman filter is an optimal minimum mean-
square error (MMSE) estimator [55], the extended Kalman
filter does not have the same optimality properties and its
performance highly depends on the accuracy of the applied
linearization [55]. Therefore, as shown in Fig. 6, as the phase
noise variances increase and the accuracy of the applied
linearization for EKF decreases, the gap between the MSE
of the proposed EKF and the CRLB slightly widens.

Fig. 7 compares the MSE of the proposed EKF estimator
for both perfect and imperfect decision feedback against the
CRLB in (19). It is shown that the proposed EKF estimator’s
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Fig. 6. Perfect decision feedback MSE for DDE of phase noise for
a 2 x 2 MIMO system for different phase noise variances.

performance while operating in imperfect decision feedback
mode is close to that of perfect decision feedback and the
CRLB in (19) over a wide range of SNRs. The latter indicates
that even though the CRLB in (19) is derived based on the
assumption of perfect decision feedback, it can be used as
a tight bound for assessing the performance of imperfect
decision feedback based estimators at medium-to-high SNR
values. Finally, note that since the estimator in [13] fails to
accurately track phase noise with the proposed system setup,
its performance is not depicted in this subsection.

B. MIMO System Performance

In this section the BER performance of uncoded 2 x 2
and 4 x 4 MIMO systems in the presence of phase noise is
investigated. The proposed LS estimator and training symbols
at the start of each frame are used to obtain the MIMO
channel gains and phases at time n. These estimates are used to
initialize the state model of the one step ahead EKF estimator
and obtain the phase noise estimates for the data symbols at
time n + 1. Subsequently, the detected data symbols at time
n + 1 are used to estimate the phase noise processes at time
n + 2 and this process is carried out throughout the frame
to the last symbol. The frame length is set to Ly = 1000
symbols and new channels are generated for each frame.
Unless otherwise specified, the pilot spacing is set to L,=10,
which corresponds to a synchronization overhead of 10%. An
MMSE linear receiver given by

3(n) = (B ()P(n) + o3Lvxn, ) B (m)y(n), (44

is used to equalize the effect of phase noise and channel gains.
Note that since the matrices ®["l(n) and ®(n) in (4) are
diagonal, Vn, phase noise does not affect the conditioning
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Fig. 7. Imperfect vs. perfect decision feedback MSE for DDE of phase

noise for a 2 X 2 MIMO system (O’QA = 10~* rad? and Ly = 10).

of the overall MIMO channel matrix. Finally, the BER of
a MIMO system using the proposed decision-directed WLS
estimator is not presented, given that its application in practical
settings is limited due to its extremely high complexity as
shown in Section IV-C.

Fig. 8 depicts the BER performance of a 2 x 2 MIMO
system using the proposed LS channel and phase estimator
without phase tracking and with the proposed EKF phase
tracking in the presence of various phase noise variances. The
scenario with perfect channel estimation and synchronization
is also plotted and is used as a benchmark for assessing
the performance of the proposed channel and phase tracking
system. The results in Fig. 8 demonstrate that without phase
tracking throughout the frame, the MIMO system performance
deteriorates significantly. On the other hand, by combining
the proposed LS and EKF channel and phase estimators,
respectively, the BER performance of the MIMO system is
shown to improve immensely even in the presence of very
strong phase noise, e.g., 0% = 107 rad?. In addition, it is
demonstrated that the proposed EKF is capable of tracking
the phase noise accurately with imperfect decision feedback
where the gap between the perfect and imperfect decision
feedback scenarios is small (a performance gap of 1.5dB
with SNR=20dB and 0% = 10~* rad®). More importantly,
it is shown that the BER performance of a MIMO system
using the combination of the proposed channel and phase
noise estimators is close to the ideal case of perfect channel
and phase noise estimation (a performance gap of 3dB with
SNR=20dB). Finally, Fig. 8 shows that the overall MIMO
system’s BER performance suffers from an error floor at
high SNR. This result is anticipated, since at high SNR the
performance of the MIMO system is dominated by phase noise
instead of AWGN and as depicted in Fig. 6, the effect of phase
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35

MIMO system for phase noise variance, 03 = [1073,107%,1075]
rad?, (BPSK and L, = 10).

noise cannot be completely eradicated.

Fig. 9 illustrates the BER performance of a 2 x 2 MIMO
system using the proposed EKF phase tracking algorithm with
imperfect decision feedback for different pilot spacing. Based
on the results in Fig. 9, it can be concluded that for imperfect
decision feedback the proposed EKF algorithm is not very
sensitive to pilot spacing at low-to-medium SNR while at
high SNR pilot spacing has a more significant impact on
MIMO BER performance. This result is expected given that

-0+ EKF imperf. dec. feedback QPSK
- © - EKF perf. dec. feedback QPSK
—6— Perf. channel & phase noise QPSK
B8 EKF imperf. dec. feedback 16-QAM
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Fig. 10. BER of a 2 x 2 MIMO system for QPSK and
16-QAM modulations (L, = 10 and U'QA =10 rad?).
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Fig. 9. Perfect and Imperfect decision feedback BER of a 2 x 2 MIMO
system for different pilot spacing L, = [5,15] (BPSK and 03 = 1074
rad?).

the proposed EKF inherently relies less on the observations
and more on the state model at low SNRs. However, as the
SNR increases the EKF algorithm updates the phase noise
estimates by relying more and more on the observations.
Fig. 10 compares the BER performance of a 2 x 2 MIMO
system for higher order modulations, i.e., QPSK or 76-
quadrature amplitude modulation (16-QAM). The results in
Fig. 10 show that even for denser constellations with imperfect
decision feedback the proposed EKF is capable of tracking the

BER
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Fig. 11. Perfect and Imperfect decision feedback BER of a MIMO system
for different Ny and N, values, (BPSK modulation, O'QA =104 rad?, and
Ly, = 10).
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Fig. 12. Imperfect and perfect decision feedback BER of a 2 x 2
MIMO system for different Rician factors K, (BPSK, L, = 10,
and 0% = 1074 rad?).

phase noise over the frame and improving the overall system
performance quite significantly. However, from the results in
Fig. 10, one can deduce that compared to BPSK modulation,
by employing QPSK or 16-QAM, the BER gap between
a MIMO system based on perfect and imperfect decision
feedback grows larger, since denser constellations are more
susceptible to erroneous decoding in the presence of phase
noise. This performance gap for denser constellations can be
reduced by employing error-correcting codes in conjunction
with the proposed EKF estimator.

Fig. 11 depicts the BER performance of 2 x 2 and 4 x 4
MIMO systems in the presence of imperfect and perfect chan-
nel and phase noise estimation. Fig. 11 shows that using the
proposed channel and EKF estimators the BER performance
of a 4 x 4 MIMO system is only 3dB apart from the idealistic
case of perfect channel and phase noise estimation at low-to-
medium SNR. However, from the results in Fig. 11 it can be
concluded that the performance of the proposed EKF estimator
degrades as the dimensionality of the MIMO system increases.
Therefore, for a 4 x 4 system, at high SNR, overall system
performance is dominated by phase noise and compared to
a 2 x 2 MIMO system, the performance gap between the
cases of perfect and imperfect estimation widens. Note that for
many practical applications, such as microwave backhauling,
the number of transmit and receive antennas are not very large
and the proposed EKF algorithm can be applied effectively to
enable point-to-point communications over a wide range of
SNR values.

Fig. 12 illustrates the perfect and imperfect decision feed-
back BER of a 2 x 2 MIMO system using the proposed EKF
estimator for different Rician factors, K’ = [—3,2,10] dB. The
results in Fig. 12 demonstrate that the proposed EKF with

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, XXXX, 2012

A [13] 4x4 QPSK
4 [13] 4x4 BPSK
—A— EKF imperf. dec. feedback 4x4 QPSK
—o— EKF imperf. dec. feedback 4x4 BPSK

10 20 25 30

15
SNR [dB]

Fig. 13. BER performance of a 4 x 4 MIMO system using the proposed
algorithm compared to that of [13] for QPSK and BPSK modulations (L, =
10 and 6% = 1073 rad?).

imperfect decision feedback is capable of tracking the phase
noise even for channels with a strong NLoS component, i.e.,
K = —3 dB. In addition, it is observed that the performance
gap between the BER for perfect and imperfect decision
feedback scenarios is reduced as the Rician factor K increases.
This result can be anticipated given that as K increases the
MIMO channel quality also improves, resulting in a smaller
bit error rate and in turn improving phase noise tracking in
the case of imperfect decision feedback.

Fig. 13 compares the BER performance of a 4 x 4 MIMO
system employing the proposed channel and phase noise
estimation algorithm against that of [13]. As outlined in [13],
N; = 4 orthogonal pilot symbols need to be transmitted from
each antenna. Thus, in order to ensure a fair comparison
and maintain a 10% synchronization overhead, the results
corresponding to [13] are generated by transmitting orthogonal
pilot symbols before every stream of 40 data symbols. In
addition, instead of assuming perfect channel knowledge as in
[13], the MIMO channels are estimated using the transmitted
pilot symbols for both algorithms. Fig. 13 shows that for
the same synchronization overhead, the proposed algorithm
noticeably outperforms the scheme in [13] for both QPSK and
BPSK modulations. This result is expected since unlike the
proposed EKF estimator, the approach in [13] does not provide
any means of tracking the phase noise parameters using the
received data symbols. Therefore, phase noise rotates the
signal constellation and results in a significantly higher BER.
Moreover, the results in Fig. 13 show that even though the
performance of the proposed EKF based algorithm degrades as
the number of antennas increases, it outperforms the approach
in [13] for different modulations.

Fig. 14 depicts the BER performance of a MIMO system
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Fig. 14. BER of a 2 x 2 MIMO system in the presence of time-varying and
phase noise (BPSK and UQA = 10~* rad?).

employing the proposed scheme in time-varying channels
with Doppler rates’ of [0.001, 0.002, 0.004] and synchro-
nization overheads of [10%, 16.6%]. The results in Fig. 14
show that even though the channels’ time varying nature
negatively affects system performance, for low Doppler rates
and a synchronization overhead of 16.6%, a MIMO system’s
BER employing the proposed LS channel estimator and EKF
phase noise tracking algorithm is close to that of quasi-
static channels, i.e., no Doppler. However, as anticipated, as
the Doppler rate increases a higher synchronization overhead
is needed by the proposed scheme to maintain the same
system performance. Therefore, Fig. 14 shows that by taking
advantage of both training and received data symbols and
balancing the trade-off between synchronization overhead and
performance, the proposed channel and phase noise tracking
approach can track different channel conditions, e.g., high and
low phase noise variances and Doppler rates, to achieve a
specific system performance.

VI. CONCLUSION

In this paper, the estimation and effect of channel and phase
noise in SDM MIMO systems is analyzed. After outlining
the system model and deriving the CRLB for the multi-
parameter estimation problem, a new data-aided LS algorithm
is proposed that can jointly estimate the channel gains and
phase noise. The MSE of the proposed LS estimator is shown
to be close to the CRLB over a wide range of SNR values.
In order to track the time-varying phase noise throughout a
frame using the pilot and estimated data symbols, decision-
directed WLS and EKF based estimators are proposed and it
is shown that these estimators’ MSEs are close to the CRLB.
Next, the combination of the proposed LS and EKF estimators
are applied to investigate the BER performance of an uncoded
MIMO system in the presence of phase noise. The comparison

9The time-varying channels are generated based on the Jakes’ spectrum
[63].

is carried out for many different parameters such as phase
noise rate, pilot-spacing, choice of modulation, and number
of antennas. It is shown that the performance of a MIMO
system using the proposed estimators is close to the idealistic
setting of perfect channel and phase noise estimation. For
example, at an SNR of 20 dB for a 2 x 2 MIMO system with
imperfect decision feedback and a synchronization overhead
of 10%, there is a performance gap of 3dB between the
two systems. We anticipate that this performance gap can
be further reduced by performing soft-decision feedback and
phase tracking using all the symbols within a frame, i.e.,
offline processing. In addition, the results in Section V show
that by selecting an appropriate synchronization overhead, the
proposed estimators can track MIMO channels and phase noise
processes in the presence of various Doppler rates. These
results demonstrate that the proposed channel and phase noise
tracking schemes can be used to enable application of MIMO
systems to new frontiers such as point-to-point microwave
backhaul and satellite communication links. Note that even
though the proposed scheme cannot be directly applied to
frequency selective channels, the principles and methodologies
proposed here can be used to develop new channel and
multiple phase noise estimation algorithms for such channels.
For example, it is well-known that application of OFDM
and orthogonal frequency division multiple access (OFDMA)
can significantly improve the performance of communication
systems in frequency selective channels. However, similar to
single carrier systems, OFDM and OFDMA systems may
be affected by multiple multiplicative phase noise processes
[15], i.e., CPEs. Therefore, the algorithms proposed here can
be modified and applied to estimate multiple phase noise
parameters in such systems and improve their performance.
However, addressing this specific problem is beyond the scope
of this paper and can be the subject of future work.

APPENDIX A
DERIVATION OF FIM

In this appendix the FIM for the data-aided estimation of
X is derived. The received signal vector at the k" receive
antenna, yr = [yp(n — Ly +1), -, yx (n)]T is given by

Ny

Vi = Z Oék;’(ejﬂk’z(n)sé
=1

Ny
—J Z g €t Mgy © ahy o 4 W, (A1)
=1

where

e ez | > Alm) + AP (m),

m=n—L;+2
T

> Al )+ alm),- 0
m=n—L;+3
o sp = [sg(n—Li+1),---,50(n)]7,
o Wi = [wi(n— L+ 1), ,wi(n)].
Based on the assumptions in Section II, the vector of re-
ceived signals at all receive antennas, y £ [y7, - 7yJ:f,T]T

bl



is distributed as y ~ CAN (py,Xy), where p, =

T .
LH)T,I,- . ,u;NJ with py, = Zév:tl €%k (Mg, and the
¢ X Ly submatrices 3y, . of the N.L; x N, L; covariance
matrix, Xy, for K,k =1,---, N;, can be determined as
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Note that (A.2b) follows from (A.2a) due to the assumption
that the AWGN and phase noise innovations Ag], AE:], vk, £,
are mutually independent. Moreover, (A.2c) follows from the
assumption of mutual independence between the phase noise
innovations corresponding to difference symbols'®. Given that
the observation sequence, y, has a complex Gaussian distri-
bution, the ith row and ith column entry of the submatrix
FIM, ; for £, =1,--- 2Ny and k,k = 1,--- , N, is given
by [61]

— 0 0
(=1 17 7
FIM, ;|, , =2R% A Yt 4
g:g: ) (n) [FIMcelec {a’\” T Ok
_ _3Bre(n) ,—iBg z(n
ageag g’ e ' 0%y 0X
=1 -1 +Tr (22X ) (A3)
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xE [(Se ® Pre) (570 ¥rz) ] ’
= -‘rO’?UI LixLes k=k where )y, ¢ denotes the /th element of the vector of parameters
Ne Ny of interests corresponding to the kth receive antenna, Ay in
Z Zak LQr Eejﬁk,ﬂ(n)e*jﬁ)%j(n) o v
= 45k, (A.1). In order to evaluate the FIM, the derivatives " and
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elements of FIM, ; can be obtained as

[FIMk,I}]e,Z =2R gg}iz_l 5;; (A.72)
+Tr {zyl gj; =)t gj_;} ,

[FIMy 1], 70w, = ggi xy! aa él 2, (A.7b)
+Tr{§3;1aaoi.: _1362]3:6}’

[FIM, 7], . ; =2R gg i Eylgfoﬁzz (ATC)
+Tr{2;1g§f:é ”gj‘;} :

[FIM £, n oy, =2R ggi Eylg/i 27 (A.7d)
—I-Tr{E;lg;:g ‘1222}.

Using (A.7a)-(A.7d), FIM,, , for k, k=1,---,N,, can be
obtained as shown in (14) in Section III-A.
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