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Abstract

In this paper linear canonical correlation analysis (LCCA) is generalized by applying a structured

transform to the joint probability distribution of the considered pair of random vectors, i.e., a trans-

formation of the joint probability measure defined on their joint observation space. This framework,

called measure transformed canonical correlation analysis (MTCCA), applies LCCA to the data after

transformation of the joint probability measure. We show that judicious choice of the transform leads to

a modified canonical correlation analysis, which, in contrast to LCCA, is capable of detecting non-linear

relationships between the considered pair of random vectors. Unlike kernel canonical correlation analysis,

where the transformation is applied to the random vectors, in MTCCA the transformation is applied to

their joint probability distribution. This results in performance advantages and reduced implementation

complexity. The proposed approach is illustrated for graphical model selection in simulated data having

non-linear dependencies, and for measuring long-term associations between companies traded in the

NASDAQ and NYSE stock markets.

Index Terms

Association analysis, canonical correlation analysis, graphical model selection, multivariate data

analysis, probability measure transform.

I. INTRODUCTION

Linear canonical correlation analysis (LCCA) [1] is a technique for multivariate data analysis and

dimensionality reduction, which quantifies the linear associations between a pair of random vectors. In

particular, LCCA generates a sequence of pairwise unit variance linear combinations of the considered
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random vectors, such that the Pearson correlation coefficient between the elements of each pair is maximal,

and each pair is uncorrelated with its predecessors. The coefficients of these linear combinations, called the

linear canonical directions, give insight into the underlying relationships between the random vectors. They

are easily obtained by solving a simple generalized eigenvalue decomposition (GEVD) problem, which

only involves the covariance and cross-covariance matrices of the considered random vectors. LCCA has

been applied to blind source separation [3], image set matching [4], direction-of-arrival estimation [5],

[6], data fusion and group inference in medical imaging data [7], localization of visual events associated

with sound sources [8], audio-video synchronization [9], undersea target classification [10] among others.

The Pearson correlation coefficient is only sensitive to linear associations between random variables.

Therefore, in cases where the considered random vectors are statistically dependent yet uncorrelated,

LCCA is not an informative tool.

In order to overcome the linear dependence limitation several generalizations of LCCA have been

proposed in the literature. In [11] an information-theoretic approach to canonical correlation analysis,

called ICCA, was proposed. This method generates a sequence pairwise unit variance linear combinations

of the considered random vectors, such that the mutual-information (MI) [12] between the elements of

each pair is maximal, and each pair is uncorrelated with its predecessors. Since the MI is a general

measure of statistical dependence, which is sensitive to non-linear relationships, the ICCA [11] is capable

of capturing pairs of linear combinations exhibiting non-linear dependence. However, in contrast to LCCA,

the ICCA does not reduce to a simple GEVD problem. Indeed, in [11] each pair of linear combinations

must be obtained separately via an iterative Newton-Raphson [13] algorithm, which may converge to

undesired local maxima. Moreover each step of the Newton-Raphson algorithm involves re-estimation of

the MI in a non-parametric manner at a potentially high computational cost.

Another approach to non-linear generalization of LCCA is kernel canonical correlation analysis (KCCA)

[14]-[16]. KCCA applies LCCA to high-dimensional non-linear transformations of the considered random

vectors that map them into some reproducing kernel Hilbert spaces. Although the KCCA approach can be

successful in extracting non-linear relations [16], [17]-[19], it suffers from the following drawbacks. First,

the high-dimensional mappings may have high computational complexity. Second, the method is highly

prone to over-fitting errors, and requires regularization of the covariance matrices of the transformed

random vectors to increase numerical stability. Finally, the non-linear mappings of the random vectors

may mask the dependencies between their original coordinates.

In this paper we propose a different non-linear generalization of LCCA called measure transformed

canonical correlation analysis (MTCCA). We apply a structured transform to the joint probability distri-
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bution of the considered pair of random vectors, i.e., a transformation of the joint probability measure

defined on their joint observation space. The proposed transform is structured by a pair of non-negative

functions called the MT-functions. It preserves statistical independence and maps the joint probability

distribution into a set of probability measures on the joint observation space. By modifying the MT-

functions classes of measure transformations can be obtained that have different properties. Two types of

MT-functions, the exponential and the Gaussian, are developed in this paper. The former has a translation

invariance property while the latter has a localization property.

MTCCA applies LCCA to the considered pair of random vectors under the proposed probability

measure transform. By modifying the MT-functions the correlation coefficient under the transformed

probability measure, called the MT-correlation coefficient, is modified, resulting in a new general frame-

work for canonical correlation analysis. In MTCCA, the MT-correlation coefficients between the elements

of each generated pair of linear combinations are called the MT-canonical correlation coefficients.

The MT-functions are selected from exponential and Gaussian families of functions parameterized by

scale and location parameters. Under these function classes it is shown that pairs of linear combinations

with non-linear dependence can be detected by MTCCA. The parameters of the MT-functions are selected

via maximization of a lower bound on the largest MT-canonical correlation coefficient. We show that,

for these selected parameters, the corresponding largest MT-canonical correlation coefficient constitutes

a measure for statistical independence under the original probability distribution. In this case it is also

shown that the considered random vectors are statistically independent under both transformed and original

probability distributions if and only if they are uncorrelated under the transformed probability distribution.

In the paper an empirical implementation of MTCCA is proposed that uses strongly consistent esti-

mators of the measure transformed covariance and cross-covariance matrices of the considered random

vectors.

The MTCCA approach has the following advantages over LCCA, ICCA, and the KCCA discussed

above: 1) In contrast to LCCA, MTCCA is capable of detecting non-linear dependencies. Moreover,

under appropriate selection of the MT-functions, the largest MT-canonical correlation coefficient is a

measure of statistical independence between the considered random vectors. 2) In comparison to the ICCA,

MTCCA is easier to implement from the following reasons. First, it reduces to a simple GEVD problem,

which only involves the measure transformed covariance and cross-covariance matrices of the considered

random vectors. Second, while MTCCA with exponential and Gaussian MT-functions involves a single

maximization for choosing the MT-functions parameters, the ICCA involves a sequence of maximization

problems, each having the same dimensionality as in MTCCA. 3) In the paper we show that unlike



4

the empirical ICCA and KCCA, the computational complexity of the empirical MTCCA is linear in the

sample size which makes it favorable in large sample size scenarios. 4) Unlike KCCA, MTCCA does

not expand the dimensions of the random vectors, nor does it require regularization of their measure

transformed covariance matrices. 5) Finally, unlike KCCA, in MTCCA the original coordinates of the

observation vectors are retained after the probability measure transform. Therefore, MTCCA can be easily

applied to variable selection [20] by discarding a subset of the variables for which the corresponding

entries of the measure transformed canonical directions are practically zero.

The proposed approach is illustrated for two applications. The first is a simulation of graphical models

with known dependency structure. In this simulated example we show that in similar to ICCA, the

MTCCA outperforms the LCCA in selecting valid linear/non-linear graphical model topology. The second

application is construction of networks that analyze long-term associations between companies traded in

the NASDAQ and NYSE stock markets. We show that MTCCA and KCCA better associate companies

in the same sector (technology, pharmaceutical, financial) than does LCCA and ICCA. Furthermore,

MTCCA is able to achieve this by finding strong non-linear dependencies between the daily log-returns

of these companies.

The paper is organized as follows. In Section II, LCCA is reviewed. In Section III, LCCA is generalized

by applying a transform to the joint probability distribution. Selection of the MT-functions associated

with the transform is discussed in Section IV. In Section V, empirical implementation of MTCCA is

obtained. In Section VI, the proposed approach is illustrated via simulation experiment. In Section VII,

the main points of this contribution are summarized. The propositions and theorems stated throughout

the paper are proved in the Appendix.

II. LINEAR CANONICAL CORRELATION ANALYSIS: REVIEW

A. Preliminaries

Let X and Y denote two random vectors, whose observation spaces are given by X ⊆ Rp and Y ⊆ Rq,

respectively. We define the measure space (X × Y,SX×Y , PXY), where SX×Y is a σ-algebra over X ×Y ,

and PXY is the joint probability measure on SX×Y . The marginal probability measures of PXY on SX
and SY are denoted by PX and PY, where SX and SY are the σ-algebras over X and Y , respectively. Let

g (·, ·) denote an integrable scalar function on X ×Y . The expectation of g (X,Y) under PXY is defined

as

E [g (X,Y) ;PXY] ,
∫
X×Y

g (x,y) dPXY (x,y) , (1)
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where x ∈ X and y ∈ Y . The random vectors X and Y will be said to be statistically independent under

PXY if

E [g1 (X) g2 (Y) ;PXY] = E [g1 (X) ;PX] E [g2 (Y) ;PY] (2)

for all integrable scalar functions g1 (·), g2 (·) on X and Y , respectively. The random vectors X and Y

will be said to be uncorrelated under PXY if

E
[
XYT ;PXY

]
= E [X;PX] E

[
YT ;PY

]
, (3)

where (·)T denotes the transpose operator.

B. The LCCA procedure

LCCA generates a sequence of pairwise unit-variance linear combinations
(
aTkX,bTkY

)
, k = 1, . . . , r =

min (p, q) in the following manner. The first pair
(
aT1 X,bT1 Y

)
is determined by maximizing the Pearson

correlation coefficient between aTX and bTY over a ∈ Rp and b ∈ Rq with the constraint that both

aTX and bTY have unit variance. Similarly, the k-th pair
(
aTkX,bTkY

)
(1 < k ≤ r) is determined by

maximizing the Pearson correlation coefficient between aTX and bTY over a ∈ Rp and b ∈ Rq with the

constraints that both aTX and bTY have unit variance and
(
aTX,bTY

)
are uncorrelated with all the

previously obtained pairs
(
aTl X,bTl Y

)
, l = 1, . . . , k−1. The pairs (ak,bk) and

(
aTkX,bTkY

)
are called

the k-th order linear canonical directions and the k-th order linear canonical variates, respectively.

The Pearson correlation coefficient between aTkX and bTkY is called the k-th order linear canonical

correlation coefficient.

The Pearson correlation coefficient between aTX and bTY under PXY is given by

Corr
[
aTX,bTY;PXY

]
,

Cov
[
aTX,bTY;PXY

]√
Var [aTX;PX]

√
Var [bTY;PY]

=
aTΣXYb√

aTΣXa
√

bTΣYb
, (4)

where Var [·;PX] and Cov [·, ·;PXY] denote the variance and covariance under PX and PXY, respectively.

The last equality in (4) can be easily verified using the basic definitions of variance and covariance,

where ΣX ∈ Rp×p, ΣY ∈ Rq×q and ΣXY ∈ Rp×q denote the covariance matrix of X under PX, the

covariance matrix of Y under PY, and their cross-covariance matrix under PXY, respectively, and it is

assumed that ΣX and ΣY are non-singular.

Hence, LCCA solves the following constraint maximization sequentially over k = 1, . . . , r.

ρk (ΣX,ΣY,ΣXY) = max
a,b

aTΣXYb, (5)

s.t. aTΣXa = bTΣYb = 1,

and aTΣXYbl = bTΣT
XYal = aTΣXal = bTΣYbl = 0 ∀ 1 ≤ l < k,
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where ρk (ΣX,ΣY,ΣXY) denotes the k-th order linear canonical correlation coefficient. Since the number

of constraints in (5) increases with k, it is implied that the linear canonical correlation coefficients satisfy

the following order relation 1 ≥ ρ1 (ΣX,ΣY,ΣXY) ≥ . . . ≥ ρr (ΣX,ΣY,ΣXY) ≥ 0.

It is well known that the constrained maximization problem in (5) reduces to the set of r distinct

solutions of the following generalized eigenvalue problem [21] 0 ΣXY

ΣT
XY 0

 a

b

 = ρ

 ΣX 0

0 ΣY

 a

b

 , (6)

where ρ = ρk (ΣX,ΣY,ΣXY) is the k-th largest generalized eigenvalue of the pencil in (6), and[
aT ,bT

]T
=
[
aTk ,b

T
k

]T is its corresponding generalized eigenvector.

III. MEASURE TRANSFORMED CANONICAL CORRELATION ANALYSIS

In this section LCCA is generalized by applying a transform to the joint probability measure PXY.

First, a transform which maps PXY into a set of joint probability measures
{
Q

(u,v)
XY

}
on SX×Y is derived

that have the property that they preserve statistical independence of X and Y under PXY. The MTCCA

method is obtained by applying LCCA to X and Y under the transformed probability measure Q(u,v)
XY .

A. Transformation of the joint probability measure PXY

Definition 1. Given two non-negative functions u : Rp → R and v : Rq → R satisfying

0 < E [u (X) v (Y) ;PXY] <∞, (7)

a transform on the joint probability measure PXY is defined via the following relation

Q
(u,v)
XY (A) , Tu,v [PXY] (A) =

∫
A

ϕu,v (x,y) dPXY (x,y) , (8)

where A ∈ SX×Y , x ∈ X , y ∈ Y , and

ϕu,v (x,y) ,
u (x) v (y)

E [u (X) v (Y) ;PXY]
. (9)

The functions u (·) and v (·), associated with the transform Tu,v [·], are called the MT-functions.

In the following Proposition, some properties of the measure transform (8) are given.

Proposition 1. Let Q(u,v)
XY be defined by relation (8). Then

1) Q(u,v)
XY is a probability measure on SX×Y .
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2) Q(u,v)
XY is absolutely continuous w.r.t. PXY, with Radon-Nikodym derivative [33] given by

dQ
(u,v)
XY (x,y)

dPXY (x,y)
= ϕu,v (x,y) . (10)

3) If X and Y are statistically independent under PXY, then they are statistically independent under

Q
(u,v)
XY .

4) Assume that the MT-functions u (·) and v (·) are strictly positive. If X and Y are statistically

independent under Q(u,v)
XY , then they are statistically independent under PXY.

[A proof is given in Appendix A]

By modifying the MT-functions u (·) and v (·), such that the conditions in Definition 1 are satisfied,

an infinite set of joint probability measures on SX×Y can be obtained.

B. The MTCCA procedure

MTCCA generates a sequence of pairwise linear combinations
(
aTkX,bTkY

)
, k = 1, . . . , r = min (p, q)

that have the following properties under the transformed probability measure Q
(u,v)
XY : aTkX and bTkY

have unit variance, the correlation coefficient between aTkX and bTkY is maximal, and
(
aTkX,bTkY

)
are uncorrelated with

(
aTl X,bTl Y

)
for all 1 ≤ l < k. In MTCCA, the pairs (ak,bk) and

(
aTkX,bTkY

)
are called the k-th order MT-canonical directions and the k-th order MT-canonical variates, respectively.

The correlation coefficient between aTkX and bTkY under Q(u,v)
XY is called the k-th order MT-canonical

correlation coefficient.

The correlation coefficient between aTX and bTY under Q(u,v)
XY is given by

Corr
[
aTX,bTY;Q

(u,v)
XY

]
,

Cov
[
aTX,bTY;Q

(u,v)
XY

]
√

Var
[
aTX;Q

(u,v)
X

]√
Var

[
bTY;Q

(u,v)
Y

] =
aTΣ

(u,v)
XY b√

aTΣ
(u,v)
X a

√
bTΣ

(u,v)
Y b

,

(11)

where Corr
[
·, ·;Q(u,v)

XY

]
is called the MT-correlation coefficient, and the measures Q(u,v)

X and Q(u,v)
Y are

the marginal probability measures of Q(u,v)
XY on SX and SY , respectively. The matrices Σ

(u,v)
X , Σ

(u,v)
Y and

Σ
(u,v)
XY denote the covariance matrix of X under Q(u,v)

X , the covariance matrix of Y under Q(u,v)
Y , and

their cross-covariance matrix under Q(u,v)
XY , respectively, where it is assumed that Σ

(u,v)
X and Σ

(u,v)
Y are

non-singular.

Using (1) and (10) it can be shown that E
[
G (X,Y) ;Q

(u,v)
XY

]
= E [G (X,Y)ϕu,v (X,Y) ;PXY],

where G (X,Y) is some arbitrary matrix function of X and Y. Therefore, one can easily verify that

Σ
(u,v)
X = E

[
XXTϕu,v (X,Y) ;PXY

]
− E [Xϕu,v (X,Y) ;PXY] E

[
XTϕu,v (X,Y) ;PXY

]
, (12)
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Σ
(u,v)
Y = E

[
YYTϕu,v (X,Y) ;PXY

]
− E [Yϕu,v (X,Y) ;PXY] E

[
YTϕu,v (X,Y) ;PXY

]
, (13)

and

Σ
(u,v)
XY = E

[
XYTϕu,v (X,Y) ;PXY

]
− E [Xϕu,v (X,Y) ;PXY] E

[
YTϕu,v (X,Y) ;PXY

]
. (14)

Equations (12)-(14) imply that Σ
(u,v)
X , Σ

(u,v)
Y and Σ

(u,v)
XY are weighted covariance and cross-covariance

matrices of X and Y under PXY, with weighting function ϕu,v (·, ·).

MTCCA solves the following constrained maximization sequentially over k = 1, . . . , r.

ρk

(
Σ

(u,v)
X ,Σ

(u,v)
Y ,Σ

(u,v)
XY

)
= max

a,b
aTΣ

(u,v)
XY b, (15)

s.t. aTΣ
(u,v)
X a = bTΣ

(u,v)
Y b = 1,

and aTΣ
(u,v)
XY bl = bTΣ

(u,v)T
XY al = aTΣ

(u,v)
X al = bTΣ

(u,v)
Y bl = 0 ∀ 1 ≤ l < k,

where ρk
(
Σ

(u,v)
X ,Σ

(u,v)
Y ,Σ

(u,v)
XY

)
denotes the k-th order MT-canonical correlation coefficient. Since the

number of constraints in (15) increases with k, the MT-canonical correlation coefficients satisfy the

following order relation 1 ≥ ρ1

(
Σ

(u,v)
X ,Σ

(u,v)
Y ,Σ

(u,v)
XY

)
≥ . . . ≥ ρr

(
Σ

(u,v)
X ,Σ

(u,v)
Y ,Σ

(u,v)
XY

)
≥ 0.

Similarly to (5) the constrained maximization problem in (15) reduces to the following generalized

eigenvalue problem  0 Σ
(u,v)
XY

Σ
(u,v)T
XY 0

 a

b

 = ρ

 Σ
(u,v)
X 0

0 Σ
(u,v)
Y

 a

b

 , (16)

where ρ = ρk (ΣX,ΣY,ΣXY) is the k-th largest generalized eigenvalue of the pencil in (16), and[
aT ,bT

]T
=
[
aTk ,b

T
k

]T is its corresponding generalized eigenvector.

By modifying the MT-functions u (·) and v (·), such that the condition in (7) is satisfied, the MT-

correlation coefficient under Q(u,v)
XY is modified, resulting in a family of canonical correlation analyses,

generalizing LCCA described in Subsection II-B. In particular, by choosing u (x) ≡ 1 and v (y) ≡ 1,

then Q
(u,v)
XY = PXY, Corr

[
aTX,bTY;Q

(u,v)
XY

]
= Corr

[
aTX,bTY;PXY

]
, and the LCCA is obtained.

Other choices of u (·) and v (·) are discussed below.

IV. SELECTION OF THE MT-FUNCTIONS

In this section we parameterize the MT-functions u (x; s) and v (y; t) with parameters s ∈ Rp and

t ∈ Rq under the exponential and Gaussian families of functions. This will result in the corresponding

cross-covariance matrix Σ
(u,v)
XY (t, s) gaining sensitivity to non-linear relationships between the entries of

X and Y. Optimal choice of the parameters s and t is also discussed.
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A. Exponential MT-functions

Let u (·; ·) and v (·; ·) be defined as the parameterized functions

uE (x; s) , exp
(
sTx

)
and vE (y; t) , exp

(
tTy

)
, (17)

where s ∈ Rp and t ∈ Rq. Using (9), (14) and (17) one can easily verify that the cross-covariance matrix

of X and Y under Q(uE,vE)
XY takes the form

Σ
(uE,vE)
XY (s, t) =

∂2 logMXY (s, t)

∂s∂tT
, (18)

where

MXY (s, t) , E
[
exp

(
sTX + tTY

)
;PXY

]
(19)

is the joint moment generating function of X and Y, and it is assumed that MXY (s, t) is finite in some

open region in Rp × Rq containing the origin. Note that the cross-covariance matrix in (18) involves

higher-order statistics of X and Y. Additionally, observe that Σ
(uE,vE)
XY (s, t) reduces to the standard

cross-covariance matrix ΣXY for s = 0 and t = 0. Finally, note that the quantity in (18) has been

proposed in [22]-[28] for blind source separation, blind channel estimation, blind channel equalization,

and auto-regression parameter estimation. To the best of our knowledge this paper is the first to propose

this quantity for generalizing LCCA.

In the following Theorem, which follows directly from (18) and the properties of MXY (s, t) [29], [30],

one sees that Σ
(uE,vE)
XY (s, t) preserves statistical independence and can capture non-linear dependencies

when they exist.

Theorem 1. Let U denote an arbitrary open region in Rp × Rq containing the origin, and assume that

MXY (s, t) is finite on U . The random vectors X and Y are statistically independent under the joint

probability measure PXY if and only if

Σ
(uE,vE)
XY (s, t) = 0 ∀ (s, t) ∈ U. (20)

[A proof is given in Appendix B].

The “if” is the interesting part of the theorem since the “only if” part follows directly from Property 3

of Proposition 1. In particular, if X and Y are statistically dependent under PXY, then there exist a ∈ Rp,

b ∈ Rq, s ∈ Rp and t ∈ Rq, such that aTΣ
(uE,vE)
XY (s, t) b 6= 0. Thus, (11) implies that if X and Y are

statistically dependent under PXY then there exist linear combinations of the form aTX and bTY whose

MT-correlation coefficient under Q(uE,vE)
XY is non-zero.



10

Finally, we show that MTCCA with the exponential MT-functions in (17) is translation-invariant. Let

X′ , X+α and Y′ , Y+β, where α and β are deterministic vectors in Rp and Rq, respectively. Accord-

ing to (9) and (17) ϕu,v (X,Y) = ϕu,v (X′,Y′). Therefore, by (12)-(14): Σ
(uE,vE)
X (s, t) = Σ

(uE,vE)
X′ (s, t),

Σ
(uE,vE)
Y (s, t) = Σ

(uE,vE)
Y′ (s, t), and Σ

(uE,vE)
XY (s, t) = Σ

(uE,vE)
X′Y′ (s, t). Thus, by (15), the MT-canonical

correlation coefficients are invariant to translation, i.e.

ρk

(
Σ

(uE,vE)
X (s, t) ,Σ

(uE,vE)
Y (s, t) ,Σ

(uE,vE)
XY (s, t)

)
= ρk

(
Σ

(uE,vE)
X′ (s, t) ,Σ

(uE,vE)
Y′ (s, t) ,Σ

(uE,vE)
X′Y′ (s, t)

)
for k = 1, . . . , r.

B. Gaussian MT-functions

Next we define the MT-functions u (·; ·, ·) and v (·; ·, ·) by

uG (x; s, σ) ,
1

(2πσ2)
p

2

exp

(
−
‖x− s‖22

2σ2

)
and vG (y; t, τ) ,

1

(2πτ2)
q

2

exp

(
−
‖y − t‖22

2τ2

)
,(21)

where s ∈ Rp, t ∈ Rq, σ ∈ R+, τ ∈ R+, and ‖·‖2 denotes the l2-norm. Since uG (·; ·, ·) and vG (·; ·, ·)

are strictly positive and bounded, one can easily verify that the condition in (7) is satisfied. Relations (9)

and (14) imply that the MT-functions (21) produce a weighted cross-covariance matrix, for which the

observations are weighted in an inverse proportion to the distances ‖x− s‖22 and ‖y − t‖22. Hence, the

resulting MT-correlation coefficient is a measure of local linear dependence in the vicinity of (s, t). We

note that local linear dependence exists whenever there are global non-linear dependencies.

Sensitivity of Σ
(uG,vG)
XY (s, t) to non-linear relationships between X and Y is shown via the following

Theorem.

Theorem 2. Let σ, τ be fixed and positive. Additionally, let U denote an arbitrary open region in

Rp × Rq containing the origin. The random vectors X and Y are statistically independent under the

joint probability measure PXY if and only if

Σ
(uG,uG)
XY (s, t) = 0 ∀ (s, t) ∈ U. (22)

[A proof is given in Appendix C].

Hence, if X and Y are statistically dependent under PXY, then there exist a ∈ Rp, b ∈ Rq, s ∈ Rp

and t ∈ Rq, such that aTΣ
(uG,vG)
XY (s, t) b 6= 0. Therefore, again, non-linear dependencies can be detected

using MTCCA.
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C. Comparison between the exponential and Gaussian MT-functions:

Unlike MTCCA with Gaussian MT-fucntions (21), MTCCA with exponential MT-functions (17) is

translation invariant. Moreover, in MTCCA with Gaussian MT-functions, in addition to the location

parameters s, t, which share the same dimensionality of the scaling parameters of the exponential MT-

functions, one has to set two width parameters σ and τ . On the other hand, unlike the exponential MT-

functions, the Gaussian MT-functions are bounded in the joint observation space X ×Y . Hence, MTCCA

with Gaussian MT-functions is more robust to outliers. Additionally, the Gaussian MT-functions has the

property that they localize linear dependence over the observation space. This property is illustrated in

Subsection VI-A. Additional common properties of the exponential and Gaussian MT-functions are given

in the following remarks:

Remark 1. Since the exponential and Gaussian MT-functions are strictly positive, by Property 4 of

Proposition 1 we conclude that Q(uE,vE)
XY and Q(uG,vG)

XY preserve statistical dependence under PXY.

Remark 2. The exponential and Gaussian MT-functions preserve Gaussianity in the sense that if X and

Y are jointly Gaussian under PXY, then they are jointly Gaussian under Q(uE,vE)
XY and Q(uG,vG)

XY .

D. Selection of the MT-functions parameters

A natural choice of the parameters s and t, would be those that maximize the first-order MT-canonical

correlation coefficient ρ1

(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
in (15). However, this maximization

is analytically cumbersome. Therefore, as an alternative, we propose maximizing a lower bound on

ρ1

(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
. We show that the resultant first-order MT-canonical corre-

lation coefficient will be sensitive to dependence between X and Y.

Proposition 2. Define the following element-by-element average:

ψ
(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
,

 1

pq

p∑
i=1

q∑
j=1

[
Σ

(u,v)
XY (s, t)

]2

i,j[
Σ

(u,v)
X (s, t)

]
i,i

[
Σ

(u,v)
Y (s, t)

]
j,j


1/2

,

(23)

where [A]i,j denotes the i, j-th entry of A.

ψ
(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
≤ ρ1

(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
. (24)

[A proof is given in Appendix D]



12

Proposition 2 suggests choosing the optimal MT-functions parameters by maximizing the lower bound

in (24):

(s∗, t∗) = arg max
(s,t)∈V

ψ
(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
, (25)

where V a closed region in Rp × Rq containing the origin. Under the MT-functions pairs in (17) and

(21) one can verify that ψ
(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
is continuous in Rp×Rq. Therefore,

by the extreme value theorem [31] it has a maximum in V . The maximization problem in (25) can be

solved numerically, e.g., using gradient ascent [13] or greedy search over the region V .

The following theorem justifies the use of the first-order MT-canonical correlation coefficient as a

measure of statistical independence.

Theorem 3. The random vectors X and Y are statistically independent under PXY if and only if

ρ1

(
Σ

(u,v)
X (s∗, t∗) ,Σ

(u,v)
Y (s∗, t∗) ,Σ

(u,v)
XY (s∗, t∗)

)
= 0,

where (u, v) are the MT-functions in (17) or (21), and (s∗, t∗) are selected according to (25). [A proof

is given in Appendix E]

Therefore, if the MT-functions and their parameters are selected as in Theorem 3, we conclude that

X and Y are statistically independent under PXY if and only if they are uncorrelated under Q(u,v)
XY .

Hence, since by Property 3 of Proposition 1 Q
(u,v)
XY preserves statistical independence under PXY, we

also conclude that X and Y are statistically independent under Q(u,v)
XY if and only if they are uncorrelated

under Q(u,v)
XY .

V. EMPIRICAL IMPLEMENTATION OF MTCCA

Given N i.i.d. samples of (X,Y) an empirical version of MTCCA (15) can be implemented by

replacing Σ
(u,v)
X , Σ

(u,v)
Y and Σ

(u,v)
XY in (15), (16) and (25) with their sample covariance estimates. Hence,

strongly consistent estimators of Σ
(u,v)
X , Σ

(u,v)
Y and Σ

(u,v)
XY are constructed, based on N i.i.d. samples of

(X,Y).

Proposition 3. Let (Xn,Yn), n = 1, . . . , N denote a sequence of i.i.d. samples from the joint distribution

PXY, and define the empirical covariance estimates

Σ̂
(u,v)
X ,

1

N − 1

N∑
n=1

XnX
T
n ϕ̂u,v (Xn,Yn)− N

N − 1
µ̂

(u,v)
x µ̂

(u,v)T
x , (26)

Σ̂
(u,v)
Y ,

1

N − 1

N∑
n=1

YnY
T
n ϕ̂u,v (Xn,Yn)− N

N − 1
µ̂

(u,v)
Y µ̂

(u,v)T
Y , (27)
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and

Σ̂
(u,v)
XY ,

1

N − 1

N∑
n=1

XnY
T
n ϕ̂u,v (Xn,Yn)− N

N − 1
µ̂

(u,v)
x µ̂

(u,v)T
Y , (28)

where

µ̂
(u,v)
X ,

1

N

N∑
n=1

Xnϕ̂u,v (Xn,Yn) , µ̂
(u,v)
Y ,

1

N

N∑
n=1

Ynϕ̂u,v (Xn,Yn) , (29)

and

ϕ̂u,v (Xn,Yn) ,
u (Xn) v (Yn)

1
N

N∑
n=1

u (Xn) v (Yn)

. (30)

Assume

E
[
u4 (X) ;PX

]
<∞, E

[
v4 (Y) ;PY

]
<∞, (31)

E
[
X4
k ;PX

]
<∞ ∀k = 1, . . . , p and E

[
Y 4
l ;PY

]
<∞ ∀l = 1, . . . , q, (32)

where Xk and Yl denote the k-th and the l-th entries of X and Y, respectively. Then Σ̂
(u,v)
X → Σ

(u,v)
X ,

Σ̂
(u,v)
Y → Σ

(u,v)
Y and Σ̂

(u,v)
XY → Σ

(u,v)
XY almost surely as N →∞. [A proof is given in Appendix F]

Note that for u (X) ≡ 1 and v (Y) ≡ 1, the estimators Σ̂
(u,v)
X , Σ̂

(u,v)
Y , and Σ̂

(u,v)
XY reduce to the standard

unbiased estimators of the covariance and cross-covariance matrices ΣX, ΣY and ΣXY, respectively.

The empirical MTCCA procedure with the exponential and Gaussian MT-functions is given in Appendix

G. In the first stage of the procedure, the parameters of the MT-functions are selected by solving a single

(p+q)-dimensional maximization problem (64) using gradient ascent. It can be shown that each iteration

of the gradient ascent algorithm, which only involves the empirical measure transformed covariance

and cross-covariance matrices, has asymptotic computational load (ACL) of O((p + q)2N) flops per

iteration. In the second stage, the empirical MT-canonical correlation coefficients and directions are

obtained simultaneously by solving the GEVD problem (65) with ACL of O((p + q)3) flops. Unlike

the empirical MTCCA, the empirical ICCA [11] involves a sequence of (p+ q)-dimensional numerical

maximizations, one for each pair of canonical directions, using an iterative Newton-Raphson algorithm.

It can be shown that each iteration of the Newton-Rafson algorithm, which involves re-estimation of

the mutual-information in a non-parametric manner and inversion of a Hessian matrix, has ACL of

O((p + q)N2 + (p + q + 2k)3) flops, where k denotes a canonical directions pair index. The empirical

KCCA procedure [14]-[16], which involves computation of two N × N Gram matrices followed by

solving a GEVD problem, has ACL of O((p + q)N2 + N3) flops. Hence, one sees that unlike the
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empirical ICCA and KCCA, the computational complexity of the empirical MTCCA is linear in N ,

which makes it favorable in large samples size scenarios.

VI. NUMERICAL EXAMPLES

In this section, we illustrate the use of empirical LCCA, ICCA, KCCA and MTCCA for graphical

model selection. In every example below the empirical MTCCA was performed with the exponen-

tial and Gaussian MT-functions via the procedure in Appendix G. In ICCA, the empirical mutual-

information, Îk, between each pair of canonical variates was mapped to the interval [0, 1] via the formula

ρ̂k =

√
1− exp(−2Îk) which produce the empirical informational canonical correlation coefficients. The

empirical KCCA was performed using Gaussian radial basis function kernels. Since KCCA masks the

original coordinates of X and Y, it is not illustrated for the graphical model selection tasks in simulation

examples 1 and 2, which involve variable selection. In simulation examples 1 and 2, the canonical

correlation coefficients and canonical directions were estimated using N = 1000 i.i.d. samples of X

and Y. The statistical significance of the empirical canonical correlation coefficients was tested using

empirical estimates of p-values associated with rejecting the null-hypothesis of no statistical dependence

between X and Y (see Appendix H).

A. Simulation example 1: Selection of graphical model with non-linear connections

In this example, we consider the random vectors X = [X1, X2]T and Y = [Y1, Y2]T , where

Y1 = cos (X1) + 0.1W,

and X1, X2, Y2, and W are mutually independent standard normal random variables. For this example,

the pair of linear combinations of the form
(
aTX,bTY

)
having maximal dependency is obtained for the

vector pair (a1 = [1, 0]T ,b1 = [1, 0]T ) which are identical to the true first-order MT-canonical directions.

In this example, all pairs of linear combinations of the form aTX and bTY have zero linear correlation

even though they are not statistically independent. The dependencies between X and Y are depicted by

the bipartite graphical model in Fig. 1.

The averaged estimates of the MT, linear, and informational canonical correlation coefficients and

their corresponding averaged p-values, based on 1000 Monte-Carlo simulations, are given in Table I.

The sample means and standard deviations of the absolute dot products of (a1/‖a1‖2, â1/‖â1‖2) and

(b1/‖b1‖2, b̂1/‖b̂1‖2), based on 1000 Monte-Carlo simulations, are given in Table II. The absolute dot

products should be equal to 1 when the estimated canonical directions â, b̂ are equal to a1 = [1, 0]T ,
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Fig. 1. The graphical model of dependencies in simulation example 1. A single edge exists between X1 and Y1 due to the

non-linear relation model Y1 = cos (X1)+0.1W . The correlation between X1 and Y1 under PXY is equal to zero even though

they are dependent.

b1 = [1, 0]T , respectively. One can notice that in contrast to LCCA, the MTCCA and ICCA detect the

true dependencies between X and Y, depicted by the bipartite graphical model in Figs. 1.

TABLE I

SIMULATION EXAMPLE 1: THE AVERAGED ESTIMATES OF THE MT, LINEAR, AND INFORMATIONAL CANONICAL

CORRELATION COEFFICIENTS AND THEIR CORRESPONDING AVERAGED p-VALUES (IN PARENTHESES).

Exponential MT-functions Gaussian MT-functions LCCA ICCA

ρ̂1 0.83 (0) 0.88 (0) 0.06 (0.37) 0.85 (0)

ρ̂2 0.04 (0.38) 0.03 (0.36) 0.01 (0.45) 0.23 (0.42)

TABLE II

SIMULATION EXAMPLE 1: THE SAMPLE MEANS AND STANDARD DEVIATIONS (IN PARENTHESIS) OF c(a1, â1) AND

c(b1, b̂1), WHERE c(u,v) , | uT v
‖u‖2‖v‖2

|.

Exponential MT-functions Gaussian MT-function LCCA ICCA

c(a1, â1) 0.99 (7 · 10−4) 0.99 (3 · 10−4) 0.73 (0.27) 0.99 (2 · 10−5)

c(b1, b̂1) 0.99 (4 · 10−4) 0.99 (1 · 10−4) 0.75 (0.22) 0.99 (1 · 10−5)

Scatter plots of the empirical first-order MT, linear, and informational canonical variates (âT1 X, b̂T1 Y)

are shown in Figs. 2(a)-2(d). Observe that unlike LCCA, MTCCA and ICCA recover the true non-linear

relation between X and Y, which has a raised cosine shape. In these figures, we have also plotted the

ellipses associate with the empirical covariance matrices of [âT1 X, b̂T1 Y]T under the probability measures

Q
(uE,vE)
XY , Q(uG,vG)

XY , and PXY, respectively. Observing Figs. 2(a) and 2(b) one can notice that the local
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linear trend is better captured by MTCCA with Gaussian MT-functions due to their localization property,

discussed in Subsection IV-B.
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Fig. 2. Simulation example 1: Scatter plots of the empirical first-order canonical variates obtained by: (a) MTCCA with

exponential MT-functions, (b) MTCCA with Gaussian MT-functions, (c) LCCA, and (d) ICCA. Note that, while the linear

canonical variates are uninformative (circular Gaussian distributed), the MT and informational canonical variates have captured

the non-linear structure (raised cosine shape) of the non-linear model. This occurs since all variables in example 1 have zero

correlation but some variables are non-linearly dependent. The ellipses represent the associated covariance matrices under the

probability measures Q(uE,vE)
XY , Q(uG,vG)

XY , and PXY , respectively.
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B. Simulation example 2: Selection of graphical model with linear and non-linear connections

In this example, we consider a more complex model. Let the random vectors X = [X1, X2, X3, X4, X5]T

and Y = [Y1, Y2, Y3]T satisfy

Y1 = X1 + 0.5X2 + 0.1W1,

Y2 = cos (X3 + 0.75X4 + 0.5X5) + 0.1W2,

where Xi, i = 1, . . . , 5, Wi, i = 1, 2, and Y3 are mutually independent standard normal random variables.

In this example there exist two independent pairs of linear combinations (aTkX,bTkY), k = 1, 2, with

maximal inter-dependencies. These maximally dependent canonical variates are obtained for the vector

pairs (a1 = [1, 0.5, 0, 0, 0]T ,b1 = [1, 0, 0]T ) and (a2 = [0, 0, 1, 0.75, 0.5]T ,b2 = [0, 1, 0]T ), which are

also the first-order and second-order MT-canonical directions. The dependencies between X and Y are

depicted by the bipartite graphical model in Fig. 3.

Fig. 3. The dependency graphical model corresponding to simulation example 2. There are two connected components

{(X1, Y1), (X2, Y1)} and {(X3, Y2), (X4, Y2), (X5, Y2)}.

The averaged estimates of the MT, linear, and informational canonical correlation coefficients and their

corresponding averaged p-values, based on 1000 Monte-Carlo simulations, are given in Table III. The

sample means and standard deviations of the absolute dot products of the pairs (ak/‖ak‖2, âk/‖âk‖2) and

(bk/‖bk‖2, b̂k/‖b̂k‖2), k = 1, 2, based on 1000 Monte-Carlo simulations, are given in Table IV. Observe

that both MTCCA and ICCA detect the true dependencies between X and Y, depicted by the bipartite

graphical model in Fig. 3. As expected, the LCCA detects only the linearly dependent combinations.
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TABLE III

SIMULATION EXAMPLE 2: THE AVERAGED ESTIMATES OF THE MT, LINEAR, AND INFORMATIONAL CANONICAL

CORRELATION COEFFICIENTS AND THEIR CORRESPONDING AVERAGED p-VALUES (IN PARENTHESIS).

Exponential MT-functions Gaussian MT-functions LCCA ICCA

ρ̂1 1 (0) 1 (0) 1 (0) 0.93 (0)

ρ̂2 0.75 (0) 0.9 (0) 0.08 (0.22) 0.89 (0)

ρ̂3 0.08 (0.2) 0.1 (0.18) 0.04 (0.35) 0.24 (0.27)

TABLE IV

SIMULATION EXAMPLE 2: THE SAMPLE MEANS AND STANDARD DEVIATIONS (IN PARENTHESIS) OF c(ak, âk) AND

c(bk, b̂k), k = 1, 2, WHERE c(u,v) , | uT v
‖u‖2‖v‖2

|.

Exponential MT-functions Gaussian MT-functions LCCA ICCA

c(a1, â1) 1 (5 · 10−5) 1 (5 · 10−4) 1 (10−5) 0.99 (7 · 10−4)

c(a2, â2) 0.99 (6 · 10−3) 0.99 (8 · 10−3) 0.5 (0.28) 0.99 (1 · 10−3)

c(b1, b̂1) 1 (8 · 10−5) 1 (9 · 10−4) 1 (2 · 10−5) 0.99 (2 · 10−3)

c(b2, b̂2) 0.99 (2 · 10−3) 0.99 (6 · 10−3) 0.7 (0.26) 0.99 (3 · 10−3)

C. Measuring long-term associations between NASDAQ/NYSE traded companies

Here, MTCCA is applied to a real world example of capturing long-term associations between pairs

of companies traded on the NASDAQ and NYSE stock markets. The compared companies were Mi-

crosoft (MSFT), Intel (INTC), Apple (AAPL), Merck (MRK), Pfizer (PFE), Johnson and Johnson (JNJ),

American express (AXP), JP Morgan (JPM), and Bank of America (BAC). For each pair of companies,

we considered the random vectors X = [X1, X2]T and Y = [Y1, Y2]T . The variables X1 and Y1 are

the log-ratios of two consecutive daily closing prices of a stock, called log-returns. The variables X2

and Y2 are the log-ratios of two consecutive daily trading volumes of a stock, called log-volume ratios.

Consecutive daily measurements of X and Y from January 2, 2001 to December 31, 2010, comprising

2514 samples, were obtained from the WRDS database [35].

Figs. 4(a) and 4(b) display the matrix of empirical first-order MT-canonical correlation coefficients for

the exponential and Gaussian MT-functions, respectively. Figs. 4(c)-4(e) show the matrix of empirical

first-order canonical correlation coefficients obtained by LCCA, ICCA and KCCA, respectively. Note that

MTCCA and KCCA better cluster companies in similar sectors: (MSFT, INTC, AAPL) - technology,
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(MRK, PFE, JNJ) - pharmaceuticals, (AXP, JPM, BAC) - financial. In this example, the p-values associated

with all empirical first-order canonical correlation coefficients were less than 0.01.

The empirical first-order canonical correlation coefficients were used for constructing graphical models

in which the nodes represent the compared companies. The criterion for connecting a pair of nodes was

set to empirical first-order canonical correlation coefficient greater than a threshold λ. In Figs. 5-7 the

graphical models selected by MTCCA with exponential MT-functions are compared to LCCA, ICCA and

KCCA, respectively. Similarly, in Figs. 8-10 the graphical models selected by MTCCA with Gaussian

MT-functions are compared to LCCA, ICCA and KCCA, respectively. In the first column of each figure

we show the graphs selected by MTCCA for λ = 0.5, 0.55, 0.58. In the second column we show the

corresponding graphs selected by the other compared method by scanning λ over the interval [0, 1] and

finding the graph with minimum edit distance [36]. The symmetric difference graphs are shown in the third

column. The red lines in the symmetric difference graphs indicate edges found by MTCCA and not by the

other compared method, and vice-versa for the black lines. Note that for all of the threshold parameters

λ investigated, the MTTCA graph shows equal or larger number of dependencies than the closest LCCA,

ICCA and KCCA graphs. This result suggests that MTCCA has captured more dependencies than LCCA,

ICCA and KCCA. While there is no ground truth validation, the fact that MTCCA clusters together

companies in similar sectors (Banking, pharmaceuticals, and technology) provides anecdotal support for

the power and applicability of MTCCA.

Fig. 11 depicts the distribution of the empirical MT, linear, and informational first-order canonical

directions. Let â1 = [â1,1, â1,2]T and b̂1 =
[
b̂1,1, b̂1,2

]T
on the unit circle. Observe that in MTCCA (first

and second columns) â1,2 and b̂1,2 are relatively small in comparison to â1,1 and b̂1,1. One can conclude

that, unlike LCCA and ICCA, MTCCA is zeroing in on the strong non-linear dependencies between the

daily log-returns of these companies and is de-emphasizing the daily log-volume ratios. This analysis is

not performed for KCCA since the empirical canonical directions obtained by KCCA do not correspond

to the original coordinates of X and Y.

We note that in this example the difference between MTCCA and ICCA may possibly arise from the

sensitivity of fixed kernel density estimation, preformed in ICCA, to the heavy-tailed financial data [37].

VII. CONCLUSION

In this paper, LCCA was generalized by applying a structured transform to the joint probability distri-

bution of X and Y. By modifying the functions associated with the transform, this generalization, called

MTCCA, preserves independence and captures non-linear dependencies. Two classes of MTCCA were
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Fig. 4. NASDAQ/NYSE experiment. Empirical first-order canonical correlation coefficients obtained by (a) MTCCA with

exponential MT functions, (b) MTCCA with Gaussian MT-functions. (c) LCCA, (d) ICCA, and (e) KCCA. Note the three

blocks of mutually high canonical correlations revealed by MTCCA and KCCA; MTCCA and KCCA better cluster companies

in similar sectors: (MSFT, INTC, AAPL) - technology, (MRK, PFE, JNJ) - pharmaceuticals, (AXP, JPM, BAC) - financial.
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Fig. 5. NASDAQ/NYSE experiment. Left column: The graphical models selected by MTCCA with exponential MT-functions

for λ = 0.5, 0.55, 0.58. Middle column: The closest graphs selected by LCCA. Right column: The symmetric difference

graphs: the red lines indicate edges found by MTCCA and not by LCCA, and vice-versa for the black lines. For these values

of λ, exponential MTCCA detects more dependencies than LCCA: the MTCCA graph has more edges than the closest LCCA

graph.

proposed based on specification of MT-functions in the exponential and Gaussian families, respectively.

The proposed MTCCA approach was compared to LCCA, ICCA and KCCA for graphical model selection

in simulated data having non-linear dependencies, and for measuring long-term associations between pairs

of companies traded on the NASDAQ and NYSE stock markets. It is likely that there exist other classes

of MT-functions that have a similar capability to accurately detect non-linear dependencies.

In the paper we have shown that the Hessian of the joint cumulant generating function (18) is a special

case of measure transformed covariance matrix with exponential MT-functions. Therefore, in similar to

the generalization proposed in this paper, the techniques in [22]-[28], which are based on Hessians of
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Fig. 6. NASDAQ/NYSE experiment. Left column: The graphical models selected by MTCCA with exponential MT-functions

for λ = 0.5, 0.55, 0.58. Middle column: The closest graphs selected by ICCA. Right column: The symmetric difference

graphs: the red lines indicate edges found by MTCCA and not by ICCA, and vice-versa for the black lines. For these values

of λ, exponential MTCCA detects more dependencies than ICCA: the MTCCA graph has more edges than the closest ICCA

graph.

the cumulant generating function, may also be generalized by the measure-transformation framework.
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APPENDIX

A. Proof of Proposition 1:

1) Property 1:

Since ϕu,v (x,y) is nonnegative, then by Corollary 2.3.6 in [32] Q(u,v)
XY is a measure on SX×Y .
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Fig. 7. NASDAQ/NYSE experiment. Left column: The graphical models selected by MTCCA with exponential MT-functions

for λ = 0.5, 0.55, 0.58. Middle column: The closest graphs selected by KCCA. Right column: The symmetric difference

graphs: the red lines indicate edges found by MTCCA and not by KCCA, and vice-versa for the black lines. For λ = 0.58 the

MTCCA graph has one more edge than the closest KCCA graph.

Furthermore, Q(u,v)
XY (X × Y) = 1 so that Q(u,v)

XY is a probability measure on SX×Y .

2) Property 2:

Follows from definitions 4.1.1 and 4.1.3 in [32].

3) Property 3:

Let Q(u,v)
X and Q

(u,v)
Y denote the marginal probability measures of Q(u,v)

XY , defined on SX and

SY , respectively. Additionally, let Ax and Ay denote arbitrary sets in the σ-algebras SX and SY ,

respectively. Using (8) and (9), the assumed statistical independence of X and Y under PXY, and
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Fig. 8. NASDAQ/NYSE experiment. Left column: The graphical models selected by MTCCA with Gaussian MT-functions for

λ = 0.5, 0.55, 0.58. Middle column: The closest graphs selected by LCCA. Right column: The symmetric difference graphs:

the red lines indicate edges found by MTCCA and not by LCCA, and vice-versa for the black lines. For these values of λ,

Gaussian MTCCA detects more dependencies than LCCA: the MTCCA graph has more edges than the closest LCCA graph.

Tonelli’s Theorem [33]:

Q
(u,v)
X (Ax) =

∫
Ax×Y

dQ
(u,v)
XY (x,y) =

∫
Ax×Y

u (x) v (y)

E [u (X) v (Y) ;PXY]
dPXY (x,y) (33)

=

∫
Ax

u (x)

E [u (X) ;PX]
dPX (x)

∫
Y

v (y)

E [v (Y) ;PY]
dPY (y) =

∫
Ax

u (x)

E [u (X) ;PX]
dPX (x) .

Similarly, it can be shown that Q(u,v)
Y (Ay) =

∫
Ay

v(y)
E[v(Y);PY]dPY (y), and

Q
(u,v)
XY (Ax ×Ay) =

∫
Ax

u (x)

E [u (X) ;PX]
dPX (x)

∫
Ay

v (x)

E [v (Y) ;PX]
dPY (y) = Q

(u,v)
X (Ax)Q

(u,v)
Y (Ay) .

(34)
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Fig. 9. NASDAQ/NYSE experiment. Left column: The graphical models selected by MTCCA with Gaussian MT-functions for

λ = 0.5, 0.55, 0.58. Middle column: The closest graphs selected by ICCA. Right column: The symmetric difference graphs:

the red lines indicate edges found by MTCCA and not by ICCA, and vice-versa for the black lines. For these values of λ,

Gaussian MTCCA detects more dependencies than ICCA: the MTCCA graph has more edges than the closest ICCA graph.

Therefore, since Ax and Ay are arbitrary, X and Y are statistically independent under the transformed

probability measure Q(u,v)
XY .

4) Property 4:

According to the definition of ϕu,v (x,y) in (9), the strict positivity of u (x) and v (y), and Property

2, we have that Q(u,v)
XY is absolutely continuous w.r.t. PXY with strictly positive Radon-Nikodym

derivative dQ
(u,v)

XY (x,y)

dPXY(x,y) = ϕu,v (x,y). Therefore, by Proposition 4.1.2 in [32] it is implied that PXY

is absolutely continuous w.r.t. Q(u,v)
XY with a strictly positive Radon-Nikodym derivative given by

dPXY (x,y)

dQ
(u,v)
XY (x,y)

=
1

ϕu,v (x,y)
. (35)
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Fig. 10. NASDAQ/NYSE experiment. Left column: The graphical models selected by MTCCA with Gaussian MT-functions

for λ = 0.5, 0.55, 0.58. Middle column: The closest graphs selected by KCCA. Right column: The symmetric difference

graphs: the red lines indicate edges found by MTCCA and not by KCCA, and vice-versa for the black lines. For λ = 0.55, 0.58

the MTCCA graph has more edges than the closest KCCA graph.

Hence, let Ax and Ay denote arbitrary sets in the σ-algebras SX and SY , respectively. Using (9),

(35), the assumed statistical independence of X and Y under Q(u,v)
XY , and Tonelli’s Theorem [33]:

PXY (Ax ×Ay) =

∫
Ax×Ay

1

ϕu,v (x,y)
dQ

(u,v)
XY (x,y) (36)

= E [u (X) v (Y) ;PXY]

∫
Ax

1

u (x)
dQ

(u,v)
X (x)

∫
Ay

1

v (y)
dQ

(u,v)
Y (y) .

Similarly, it can be shown that

PX (Ax) = PXY (Ax × Y) = E [u (X) v (Y) ;PXY] E

[
1

v (Y)
;Q

(u,v)
Y

] ∫
Ax

1

u (x)
dQ

(u,v)
X (x) (37)
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â
1
,2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

b̂1,1

b̂
1
,2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
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Fig. 11. NASDAQ/NYSE experiment. Distribution of the empirical MT, linear, and informational first-order canonical directions

on the unit circle. Left to right ordering: First column - MTCCA with exponential MT-functions. Second column - MTCCA

with Gaussian MT-functions. Third column - LCCA. Fourth column - ICCA. The estimated MT-canonical directions in first

and second columns are much more concentrated than the linear and informational canonical directions in third and fourth

columns, respectively. In particular, while linear and informational canonical directions appear to be equally sensitive to the

daily log-returns and the daily log-volume ratios, MT-canonical directions are much more sensitive to the former as contrasted

to the latter.

and

PY (Ay) = PXY (X ×Ay) = E [u (X) v (Y) ;PXY] E

[
1

u (X)
;Q

(u,v)
X

] ∫
Ay

1

v (y)
dQ

(u,v)
Y (y) . (38)

Now, using (1), (9), and (10) we have that

E

[
1

u (X)
;Q

(u,v)
X

]
= E

[
1

u (X)
;Q

(u,v)
XY

]
= E

[
ϕu,v (X,Y)

u (X)
;PXY

]
=

E [v (Y);PY]

E [u (X) v (Y) ;PXY]
, (39)

and similarly,

E

[
1

v (Y)
;Q

(u,v)
Y

]
=

E [u (X);PX]

E [u (X) v (Y) ;PXY]
. (40)
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Additionally, by setting Ax = X and Ay = Y in (36), followed by using (1), (39), and (40) it is

implied that

E [u (X) v (Y) ;PXY] = E [u (X) ;PX] E [v (Y) ;PY] . (41)

Finally, substitution of (41) into (36), (40) into (37), and (39) into (38) yields

PXY (Ax ×Ay) =

∫
Ax

E [u (X) ;PX]

u (x)
dQ

(u,v)
X (x)

∫
Ay

E [v (Y) ;PY]

v (y)
dQ

(u,v)
Y (y) = PX (Ax)PY (Ay) ,

(42)

and therefore, since Ax and Ay are arbitrary, X and Y are statistically independent under PXY.

B. Proof of Theorem 1:

Using (18) and (19) one can verify that if the condition in (20) is satisfied, then

MXY (s, t) = MX (s)MY (t) ∀ (s, t) ∈ U, (43)

where MX (·) and MY (·) are the marginal moment generating functions of X and Y, respectively. The

joint moment generating function reduced to any open region containing the origin, within its region of

convergence, uniquely determines the joint distribution [29], [30] (this property stems from the analyticity

of the joint moment generating function about the origin). Hence, by the relation above we have that

X and Y are statistically independent. Conversely, if X and Y are statistically independent under PXY,

then by Property 3 of Proposition 1 we have that Σ
(uE,vE)
XY (s, t) = 0 for all (s, t) ∈ U .

C. Proof of Theorem 2:

Using (9), (14), and (21) one can easily verify that

Σ
(uG,vG)
XY (s, t) =

E
[
XYT g (X)h (Y) exp

(
sTX
σ2 + tTY

τ2

)
;PXY

]
E
[
g (X)h (Y) exp

(
sTX
σ2 + tTY

τ2

)
;PXY

] −

E
[
Xg (X)h (Y) exp

(
sTX
σ2 + tTY

τ2

)
;PXY

]
E
[
YT g (X)h (Y) exp

(
sTX
σ2 + tTY

τ2

)
;PXY

]
E2
[
g (X)h (Y) exp

(
sTX
σ2 + tTY

τ2

)
;PXY

] ,

(44)

where

g (X) , exp

(
−‖X‖

2

2σ2

)
and h (Y) , exp

(
−‖Y‖

2

2τ2

)
. (45)

Additionally, define

M
(g,h)
XY (s, t) , E

[
exp

(
sTX + tTY

)
;Q

(g,h)
XY

]
(46)
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as the joint moment generating function of X and Y under the transformed probability measure Q(g,h)
XY

associated with the MT-functions g (X) and h (Y) in (45). Using (1) and (10) it can be shown that

M
(g,h)
XY (s, t) = E

[
exp

(
sTX + tTY

)
ϕg,h (X,Y) ;PXY

]
, (47)

where ϕg,h (X,Y) is defined in (9). Therefore, by (44) and (47) we have that

Σ
(uG,vG)
XY (s, t) = σ2τ2∂

2 logM
(g,h)
XY

(
σ−2s, τ−2t

)
∂s∂tT

. (48)

Hence, if the condition in (22) is satisfied, then by the properties of the joint moment generating function

[29], [30], it is implied that X and Y are statistically independent under Q(g,h)
XY . Thus, since the MT-

functions g (X) and h (Y) are strictly positive, then by Property 4 of Proposition 1 we conclude that

X and Y are statistically independent under PXY. Conversely, if X and Y are statistically independent

under PXY, then by Property 3 of Proposition 1 we have that Σ
(uG,vG)
XY (s, t) = 0 for all (s, t) ∈ U .

D. Proof of Proposition 2:

Let e
(p)
i denote a p-dimensional column vector, where

[
e

(p)
i

]
k

= δi,k, and δ(·,·) denotes the Kronecker

delta function. It is easily verified that

p∑
i=1

q∑
j=1

(
e

(p)T
i Σ

(u,v)
XY (s, t) e

(q)
j

)2

e
(p)T
i Σ

(u,v)
X (s, t) e

(q)
j e

(p)T
i Σ

(u,v)
Y (s, t) e

(q)
j

≤ p · q · max
a6=0,b 6=0

(
aTΣ

(u,v)
XY (s, t) b

)2

aTΣ
(u,v)
X (s, t) abTΣ

(u,v)
Y (s, t) b

.

(49)

Hence, by (49)  1

p · q

p∑
i=1

q∑
j=1

(
e

(p)T
i Σ

(u,v)
XY (s, t) e

(q)
j

)2

e
(p)T
i Σ

(u,v)
X (s, t) e

(q)
j e

(p)T
i Σ

(u,v)
Y (s, t) e

(q)
j


1/2

(50)

≤

 max
a6=0,b6=0

(
aTΣ

(u,v)
XY (s, t) b

)2

aTΣ
(u,v)
X (s, t) abTΣ

(u,v)
Y (s, t) b


1/2

= max
a6=0,b6=0

aTΣ
(u,v)
XY (s, t) b√

aTΣ
(u,v)
X (s, t) a

√
bTΣ

(u,v)
Y (s, t) b

= max
a,b

aTΣ
(u,v)
XY (s, t) b s.t. aTΣ

(u,v)
X a = bTΣ

(u,v)
Y b = 1,

where the last equality stems from the invariance of
aTΣ(u,v)

XY (s,t)b√
aTΣ(u,v)

X (s,t)a
√

bTΣ(u,v)

Y (s,t)b
to normalization of

a and b. Therefore, according to (15), (23) and (50), the relation in (24) is verified.
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E. Proof of Theorem 3:

If ρ1

(
Σ

(u,v)
X (s∗, t∗) ,Σ

(u,v)
Y (s∗, t∗) ,Σ

(u,v)
XY (s∗, t∗)

)
= 0, then by (24) and the positivity of ψ (·, ·, ·)

ψ
(
Σ

(u,v)
X (s∗, t∗) ,Σ

(u,v)
Y (s∗, t∗) ,Σ

(u,v)
XY (s∗, t∗)

)
= 0.

Therefore, since by (25) (s∗, t∗) are the maximizers of ψ
(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
over

V , which is a closed region in Rp × Rq containing the origin, we have that

ψ
(
Σ

(u,v)
X (s, t) ,Σ

(u,v)
Y (s, t) ,Σ

(u,v)
XY (s, t)

)
= 0 ∀ (s, t) ∈ V.

Hence, by the definition (23) of ψ (·, ·, ·), Σ
(u,v)
XY (s, t) = 0 on the interior of V , which is an open region

in Rp × Rq containing the origin. Thus, since the MT-functions u (·) and v (·) are chosen according to

(17) or (21), by Theorems 1 and 2 X and Y must be statistically independent under PXY.

Conversely, if X and Y are statistically independent under PXY, then by Property 3 of Proposition

1 we have that Σ
(u,v)
XY (s, t) = 0 for all (s, t) ∈ V , and in particular for (s∗, t∗). Therefore, by (15),

ρ1

(
Σ

(u,v)
X (s∗, t∗) ,Σ

(u,v)
Y (s∗, t∗) ,Σ

(u,v)
XY (s∗, t∗)

)
= 0.

F. Proof of Proposition 3:

It suffices to show that if the conditions in (31) and (32) are satisfied, then Σ̂
(u,v)
XY → Σ

(u,v)
XY almost

surely as N →∞. Convergence proofs for Σ̂
(u,v)
X and Σ̂

(u,v)
Y are very similar and therefore omitted.

According to (28)-(30)

lim
N→∞

Σ̂
(u,v)
XY = lim

N→∞

1

N

N∑
n=1

XnY
T
n ϕ̂u,v (Xn,Yn)− lim

N→∞
µ̂

(u,v)
X lim

N→∞
µ̂

(u,v)T
Y , (51)

where

lim
N→∞

1

N

N∑
n=1

XnY
T
n ϕ̂u,v (Xn,Yn) =

lim
N→∞

1
N

N∑
n=1

XnY
T
nu (Xn) v (Yn)

lim
N→∞

1
N

N∑
n=1

u (Xn) v (Yn)

, (52)

lim
N→∞

µ̂
(u,v)
X =

lim
N→∞

1
N

N∑
n=1

Xnu (Xn) v (Yn)

lim
N→∞

1
N

N∑
n=1

u (Xn) v (Yn)

, (53)

lim
N→∞

µ̂
(u,v)
Y =

lim
N→∞

1
N

N∑
n=1

Ynu (Xn) v (Yn)

lim
N→∞

1
N

N∑
n=1

u (Xn) v (Yn)

, (54)
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and it is assumed that the denominator

lim
N→∞

1

N

N∑
n=1

u (Xn) v (Yn) 6= 0 a.s. (55)

In the following, the limits of the series in the r.h.s. of (52)-(54) are obtained. Additionally, in Remark

3 below, we show that the assumption in (55) is satisfied. Since (Xn,Yn), n = 1, . . . , N is a sequence

of i.i.d. samples of (X,Y), then the random matrices XnY
T
nu (Xn) v (Yn), n = 1, . . . , N , in the r.h.s.

of (52), define a sequence of i.i.d. samples of XYTu (X) v (Y). Moreover, if E
[
X4
k ;PX

]
<∞, for any

k = 1, . . . , p, E
[
Y 4
l ;PY

]
< ∞, for any l = 1, . . . , q, E

[
u4 (X) ;PX

]
< ∞, and E

[
v4 (Y) ;PY

]
< ∞,

then

E [|XkYlu (X) v (Y)| ;PXY] ≤
(

E
[
(XkYl)

2 ;PXY

]
E
[
(u (X) v (Y))2 ;PXY

]) 1

2 (56)

≤
(
E
[
X4
k ;PX

]
E
[
Y 4
l ;PY

]
E
[
u4 (X) ;PX

]
E
[
v4 (Y) ;PY

]) 1

4 <∞,

for any k = 1, . . . , p and any l = 1, . . . , q, where the second and third semi-inequalities stem from

the Hölder inequality for random variables [32]. Therefore, by Khinchine’s strong law of large numbers

(KSLLN) [33]

lim
N→∞

1

N

N∑
n=1

XnY
T
nu (Xn) v (Yn) = E

[
XYTu (X) v (Y) ;PXY

]
a.s. (57)

Similarly, it can be shown that if the conditions in (31) and (32) are satisfied, then by the KSLLN

lim
N→∞

1

N

N∑
n=1

Xnu (Xn) v (Yn) = E [Xu (X) v (Y) ;PXY] a.s., (58)

lim
N→∞

1

N

N∑
n=1

Ynu (Xn) v (Yn) = E [Yu (X) v (Y) ;PXY] a.s., (59)

and

lim
N→∞

1

N

N∑
n=1

u (Xn) v (Yn) = E [u (X) v (Y) ;PXY] a.s. (60)

Remark 3. By (60) and the assumption in (7) the denominator in the r.h.s. of (52)-(54) is non-zero

almost surely.

Therefore, since the sequences in the l.h.s. of (52)-(54) are obtained by continuous mappings of the

elements of the sequences in their r.h.s., then by (57)-(60), and the Mann-Wald Theorem [34]

lim
N→∞

1

N

N∑
n=1

XnY
T
n ϕ̂u,v (Xn,Yn) =

E
[
XYTu (X) v (Y) ;PXY

]
E [u (X) v (Y) ;PXY]

= E
[
XYTϕu,v (X,Y) ;PXY

]
a.s.

(61)
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lim
N→∞

µ̂
(u,v)
X =

E [Xu (X) v (Y) ;PXY]

E [u (X) v (Y) ;PXY]
= E [Xϕu,v (X,Y) ;PXY] a.s. (62)

and

lim
N→∞

µ̂
(u,v)
Y =

E
[
YTu (X) v (Y) ;PXY

]
E [u (X) v (Y) ;PXY]

= E [Yϕu,v (X,Y) ;PXY] a.s., (63)

where the last equalities in (61)-(63) follow from the definition of ϕu,v (X,Y) in (9).

Thus, since the sequence in the l.h.s. of (51) is obtained by continuous mappings of the elements

of the sequences in its r.h.s., then by (61)-(63), the Mann-Wald Theorem, and (14) it is concluded that

Σ̂
(u,v)
XY → Σ

(u,v)
XY a.s. as N →∞.

G. The empirical MTCCA procedure with the exponential and Gaussian MT-functions

Given N i.i.d. samples of X and Y, the empirical MTCCA procedure with the exponential and Gaussian

MT-functions was carried out via the following steps:

1) Estimate the optimal MT-functions parameters in (17) and (21) according to(
ŝ∗, t̂

∗
)

= arg max
(s,t)∈V

ψ
(
Σ̂

(u,v)
X (s, t) , Σ̂

(u,v)
Y (s, t) , Σ̂

(u,v)
XY (s, t)

)
, (64)

where ψ (·, ·, ·) is defined in (23), and Σ̂
(u,v)
X (s, t), Σ̂

(u,v)
Y (s, t), and Σ̂

(u,v)
XY (s, t) are the estimates

in (26)-(28) of the covariance matrices Σ
(u,v)
X (s, t), Σ

(u,v)
Y (s, t), and Σ

(u,v)
XY (s, t), respectively. The

maximization in (64) was carried out numerically using gradient ascent over the search region V ,

which was selected as follows:

a) For the exponential MT-functions, we chose

VE =
{
s ∈ Rp, t ∈ Rq : ĴXY (s, t) ≤ D

}
,

where D =
√

2, and ĴXY (s, t) , 1 + sT µ̂X + tT µ̂Y + 1
2s

T R̂Xs + sT R̂XYt + 1
2t
T R̂Yt is a

quadratic empirical approximation of the joint moment generating function MXY (s, t) in (19).

The vectors µ̂X and µ̂Y denote the sample expectations of X and Y, respectively. The matrices

R̂X, R̂Y, and R̂XY denote sample auto-correlation matrix of X, the sample auto-correlation matrix

of Y, and their cross-correlation matrix, respectively. Since D =
√

2 and ĴXY (s, t) is quadratic

and takes a unit value at the origin, then VE defines a closed region in Rp × Rq containing the

origin.

b) For the Gaussian MT-functions, the search region was set to

VG = {s ∈ Rp, t ∈ Rq : ν̂ (Xk, 5) ≤ sk ≤ ν̂ (Xk, 95) , ν̂ (Yl, 5) ≤ tl ≤ ν̂ (Yl, 95) ,

k = 1, . . . , p, l = 1, . . . , q},
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where sk and tl are the k-th and l-th entries of s and t, respectively, and ν̂ (X,α) is the empirical

α-th percentile of the random variable X . One can notice that VG defines a closed rectangle in

Rp ×Rq. In the considered examples it was verified that VG contains the origin. We note that in

case where VG does not contain the origin, one can always subtract the expectations of X and Y

and perform MTCCA on X′ = X− E [X;PX] and Y′ = Y − E [Y;PY].

2) Obtain estimates of the MT-canonical correlation coefficients,

ρ̂k , ρk

(
Σ̂

(u,v)
X

(
ŝ∗, t̂

∗
)
, Σ̂

(u,v)
Y

(
ŝ∗, t̂

∗
)
, Σ̂

(u,v)
XY

(
ŝ∗, t̂

∗
))

, k = 1, . . . , r,

and estimates of the MT-canonical directions,(
âk, b̂k

)
, k = 1, . . . , r,

by solving the following GEVD equation 0 Σ̂
(u,v)
XY

(
ŝ∗, t̂

∗
)

Σ̂
(u,v)T
XY

(
ŝ∗, t̂

∗
)

0

 a

b

 = ρ

 Σ̂
(u,v)
X

(
ŝ∗, t̂

∗
)

0

0 Σ̂
(u,v)
Y

(
ŝ∗, t̂

∗
)
 a

b

 ,
(65)

where ρ = ρ̂k is the k-th largest generalized eigenvalue of the pencil in (65), and
[
aT ,bT

]T
=[

âTk , b̂
T
k

]T
is its corresponding generalized eigenvector.

In all considered examples the width parameters σ and τ of the Gaussian MT-functions (21) were set to

σ = 1
p

p∑
k=1

σ̂ (Xk) and τ = 1
q

q∑
l=1

σ̂ (Yl), where σ̂ (X) denotes the empirical standard deviation the random

variable X .

H. Testing the statistical significance of the empirical canonical correlation coefficients

Let XN , {Xn}Nn=1 and YN , {Yn}Nn=1 denote sequences of N i.i.d. samples of X and Y, respec-

tively. Additionally, let ρ̂k
(
XN ,YN

)
denote the empirical k-th order canonical correlation coefficient

based on XN and YN . A bootstrap based procedure for testing the statistical significance of the empirical

k-th order canonical correlation coefficient is specified below:

1) Repeat the following procedure for M times (with index m = 1, . . . ,M ):

a) Generate a randomly permuted version of the sequence YN , denoted by YN
m .

b) Compute the statistic θm = ρ̂k
(
XN ,YN

m

)
.

2) Construct an empirical cumulative distribution function from the sample statistics θm, m = 1, . . . ,M ,

as

FΘ (θ) = Pr (Θ ≤ θ) =
1

M

M∑
m=1

1x≥0 (x = θ − θm) ,
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where 1 is an indicator random variable on its argument x.

3) Compute the p-value

p0 = 1− FΘ (θ0) ,

where θ0 = ρ̂k
(
XN ,YN

)
is the true detection statistic.

4) If p0 < α, then we have that ρ̂k
(
XN ,YN

)
is significant at level α, leading to rejection of the

null-hypothesis of no dependence between X and Y.

In all considered examples, the number of permutations M and the significance level α were set to 1000

and 0.01, respectively.
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