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Abstract

In this paper, we study the target tracking problem in wireless sensor networks (WSNs) using

quantized sensor measurements under limited bandwidth availability. At each time step of tracking, the

available bandwidthR needs to be distributed among theN sensors in the WSN for the next time step.

The optimal solution for the bandwidth allocation problem can be obtained by using a combinatorial

search which may become computationally prohibitive for large N and R. Therefore, we develop

two new computationally efficient suboptimal bandwidth distribution algorithms which are based on

convex relaxation and approximate dynamic programming (A-DP). We compare the mean squared error

(MSE) and computational complexity performances of convexrelaxation and A-DP with other existing

suboptimal bandwidth distribution schemes based on generalized Breiman, Friedman, Olshen, and Stone

(GBFOS) algorithm and greedy search. Simulation results show that, A-DP, convex optimization and

GBFOS yield similar MSE performance, which is very close to that based on the optimal exhaustive

search approach and they outperform greedy search and nearest neighbor based bandwidth allocation

approaches significantly. Computationally, A-DP is more efficient than the bandwidth allocation schemes

based on convex relaxation and GBFOS, especially for a largesensor network.

I. INTRODUCTION

A wireless sensor network (WSN) consists of a large number ofspatially distributed sensors

which are tiny, battery-powered devices, and have limited on-board energies. When properly
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programmed and networked, WSNs perform different tasks that are useful in a wide range

of applications such as battlefield surveillance, environment and health monitoring, and disaster

relief operations. Dense deployment of sensors in the network introduces redundancy in coverage,

so selecting a subset of sensors may still provide information with the desired quality. As shown

in Fig. 1, the adaptive sensor management policies select a subset of active sensors to meet the

application requirements in terms of quality of service while minimizing the use of resources.

In this paper, we assume that the task of the WSN is to track a moving target in a given region

of interest (ROI). Sensors receive observations from an object of interest and send quantized

information to the fusion center over bandwidth limited channels. So the fusion center needs

to distribute the available bandwidth among sensors using predictive information based on the

target dynamics and the received sensor data. We consider a myopic (one-step ahead) scenario,

where at a given time step, the fusion center only decides on the bandwidth distribution of the

next time step.

Fig. 1: System model for sensor and resource management based on feedback from recursive

estimator.

In the literature, there exist many sensor selection algorithms (see [1] and references therein). In

[1], the sensor selection problem, an integer programming problem, has been relaxed and solved

through convex optimization. One popular strategy for sensor selection is to use information

driven methods [2], [3], where the main idea is to select the sensors that provide the most useful

information, which is quantified by entropy or mutual information. The posterior Cramér-Rao

lower bound (PCRLB) is also a very important tool because it provides a theoretical performance

limit for a Bayesian estimator. As we have shown in our previous paper [4], for sensor selection,

the complexity to compute the mutual information increasesexponentially with the number of
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sensors to be selected, whereas the computational complexity of Fisher information, which is

the inverse of the PCRLB, increases linearly with the numberof sensors to be selected. For

target tracking in a bearing-only sensor network, a sensor selection approach which minimizes

the PCRLB on the estimation error has been proposed in [5] and[6], where the selected sensors

transmit either analog or quantized data to the fusion center.

For the case where the fusion center receives quantized sensor measurements, given the total

bandwidth constraint,R, at each time step during tracking, the fusion center shoulddetermine

the optimal bandwidth distribution for the channels between the sensors and the fusion center

which optimizes the target tracking performance in the WSN that consists ofN sensors. This

problem is more general than the sensor selection problem, because in the bandwidth allocation

problem, the channel corresponding to each sensor could be assigned a different number of bits,

while in sensor selection problems, a sensor is either activated or not to transmit its measurement

under the constraint on the total number of selected sensors. The myopic bandwidth allocation

problem can be solved by using an exhaustive search which enumerates all possible bandwidth

distributions and decides on the solution that maximizes the determinant of the Fisher information

matrix (FIM) which is the inverse of the PCRLB. Under Gaussian assumption, maximizing the

determinant of the FIM is equivalent to minimizing the volume of the uncertainty ellipsoid [7].

The search space of this problem is





R +N − 1

N − 1



, which implies that explicit enumeration

of all the solutions is computationally prohibitive for largeN andR. Therefore, computationally

efficient suboptimal methods are required. In [8], the generalized Breiman, Friedman, Olshen,

and Stone (GBFOS) algorithm has been employed for dynamic bandwidth distribution for target

tracking which significantly outperforms a static equal bitallocation scheme in terms of tracking

performance. But still, as we show later in the paper, the GBFOS algorithm may become

computationally costly with increasing values ofN .

Dynamic programming (DP) [9] solves the resource allocation problems by breaking them

down into simpler steps. For a scalar-valued parameter estimation problem, a DP recursion can

be easily formulated to find the optimal bandwidth distribution at each time step by maximizing

the Fisher information due to the fact that the total Fisher information is the summation of each

sensor’s individual Fisher information. For target tracking, even though the Fisher information

is in a matrix form and the objective is to maximize the determinant of the FIM, we can still
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formulate a DP recursion which would yield a suboptimal solution. We refer to this scheme as

approximate DP (A-DP), which is computationally very efficient since its complexity increases

linearly with N .

In our preliminary work [10], we compared the performances of dynamic bandwidth allocation

approaches based on A-DP, GBFOS and greedy search. Motivated by the sensor selection

method presented in [1], in this paper, we first formulate thebandwidth allocation problem as a

constrained optimization problem with binary-valued decision variables and equality constraints.

We then relax and solve the problem optimally using Newton’smethod by replacing the Boolean

variable,qi,m ∈ {0, 1}, which represents whether or not the quantized measurementof sensor

i is transmitted to the fusion center inm bits, with its convex counterpart̂qi,m ∈ [0, 1]. Using

the idea of probabilistic transmission for bandwidth management [1], [11], we treat̂qi,m as the

transmission probability, that is at a given time, sensori transmits its decision to the fusion

center inm bits with probabilityq̂i,m ∈ [0, 1]. Therefore, the convex relaxation based bandwidth

allocation method meets the bandwidth constraint in an average sense and introduces a weak

constraint on bandwidth availability. We compare the bandwidth allocation schemes based on

convex relaxation, A-DP, GBFOS and greedy search in terms oftheir mean squared error and

computational load under different process noise parameters. Simulation results show that convex

relaxation, A-DP and GBFOS yield similar tracking performance, which is also similar to that

of the optimal bandwidth allocation scheme based on exhaustive search. Among these three

suboptimal schemes, A-DP has the least computational load,when the sensor network is large.

The rest of the paper is organized as follows. In Section II, we introduce the target tracking

problem, and describe the optimization of the quantizationthresholds and particle filtering in

target tracking. In Section III, we describe the bandwidth distribution schemes based on convex

relaxation, A-DP, GBFOS and greedy search. In Section IV, wepresent numerical examples and

compare the performances of the considered bandwidth distribution schemes in terms of their

computational load and MSEs. Finally, we conclude our work in Section V and discuss some

future research directions.

II. TARGET TRACKING IN WIRELESSSENSORNETWORKS

The problem we seek to solve is to track a moving target using aWSN whereN sensors

are grid deployed in a square surveillance area of sizeb2. The assumption of grid layout is not
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necessary but has been made here for convenience. Target tracking based on sensor readings can

be performed for an arbitrary network layout if sensor placements are known in advance. All the

sensors that are assigned bandwidth report to a central fusion center, which estimates the target

state, i.e., the position and the velocity of the target based on quantized sensor measurements.

We assume that the target (e.g., an acoustic or an electromagnetic source) emits a signal from the

location (xt, yt) at timet. We assume that the target is based on flat ground and all the sensors

and target have the same height so that a 2-D model is sufficient to formulate the problem.

At time t, the target dynamics are defined by a 4-dimensional state vector xt =

[xt yt ẋt ẏt]
T where ẋt and ẏt are the target velocities in the horizontal and the vertical

directions respectively. Target motion is defined by the following white noise acceleration model:

xt+1 = Fxt + υt (1)

whereF models the state dynamics andυt is the process noise which is assumed to be white,

zero-mean and Gaussian with the following covariance matrix Q.

F =















1 0 D 0

0 1 0 D
0 0 1 0

0 0 0 1















, Q = ρ















D3

3
0 D2

2
0

0 D3

3
0 D2

2

D2

2
0 D 0

0 D2

2
0 D















(2)

In (2), D andρ denote the time interval between adjacent sensor measurements and the process

noise parameter, respectively. It is assumed that the fusion center has perfect information about

the target state-space model (1) as well as the process noisestatistics (2).

The target is assumed to be an acoustic or an electromagneticsource that follows the power

attenuation model provided below [12]. At any given timet, the signal power received at the

sensori is given as

a2i,t =
P0

1 + αdni,t
(3)

By adopting this model, we prevent the receiver amplifier from saturation and the regularity

conditions for PCRLB hold when the target is very close to a sensor. In Eq. (3),P0 denotes the

signal power of the target,n is the signal decay exponent andα is a scaling parameter.di,t is the

distance between the target and theith sensor,di,t =
√

(xi − xt)2 + (yi − yt)2, where(xi, yi)

are the coordinates of theith sensor. Without loss of generality,α andn are assumed to be unity
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and 2, respectively. At timet, the received signal at sensori is given by

zi,t = ai,t + ni,t (4)

whereni,t is the noise term modeled as additive white Gaussian noise (AWGN), i.e., ni,t ∼
N (0, σ2), which represents the cumulative effects of sensor background noise and the modeling

error of signal parameters.

Rather than transmitting analog sensor observations to thefusion center, transmitting a

quantized version of sensor measurements decreases the amount of communication and therefore

reduces the energy consumption. A sensor measurementzi,t at sensori is locally quantized before

its transmission to the fusion center usingRi,t bits. Let Rt , [R1,t, . . . , RN,t] be the vector

of quantization rates used by theN sensors in the network. For the bandwidth distribution

problem, at each time step of tracking,Ri,t can take valuesm, m ∈ {0, 1, . . . , R} whereR

is the maximum number of bits to be transmitted to the fusion center collectively by all the

sensors. LetLm , 2m − 1 be the number of decision intervals for transmittingm bits to the

fusion center andDi,t be them-bit observation of sensori quantized with rateRi,t = m at time

stept, then

Di,t =



























0 −∞ < zi,t < ηm1

1 ηm1 < zi,t < ηm2
...

Lm − 1 ηmLm−1 < zi,t < ∞

(5)

whereηm = [ηm0 ηm1 . . . ηmLm
] with ηm0 = −∞ and ηmLm

= ∞. The quantization thresholds are

assumed to be identical at each sensor for simplicity. We explain the selection of the quantization

thresholds for each data rateRi,t = m later in this section. Givenxt andm, it is easy to show

that the probability of a particular quantization outputl is,

P (Di,t = l|xt, Ri,t = m) = Q

(

ηml − ai,t
σ

)

−Q

(

ηml+1 − ai,t

σ

)

(6)

whereQ(.) is the complementary distribution function of the standardGaussian distribution with

zero mean and unit variance,

Q(x) =

∫ ∞

x

1√
2π

exp

(

−t2

2

)

dt (7)
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At time t, let the fusion center receive the data vectorDt = [D1,t, . . . , DN,t] from theN sensors

with the corresponding quantization rate vectorRt = [R1,t, . . . , RN,t], then

p(Dt|xt,Rt) =

N
∏

i=1

p(Di,t|xt, Ri,t) (8)

where we assumep(Di,t|xt, Ri,t = 0) = 1.

A. PCRLB with quantized data

Let p(Dt,xt) be the joint probability density ofDt andxt, andx̂t be an estimate ofxt at time

stept. Based on the received dataDt quantized with rate vectorRt, and the prior probability

distribution function ofxt, p(xt), the PCRLB on the mean squared estimation error has the form,

E
{

[x̂t − xt][x̂t − xt]
T |Rt

}

≥ J−1
t (Rt) (9)

whereJt(Rt) is the4× 4 Fisher information matrix (FIM) with the elements

Jt(Rt)(i, j) = E

[

−∂2 log p(Dt,xt|Rt)

∂xt(i)∂xt(j)

]

i, j ∈ {1, . . . , 4} (10)

whereJt(Rt)(i, j) denotes theith row, jth column element of the matrixJt(Rt) andxt(i) denotes

theith element of vectorxt. Let∇xt
xt

, ∇xt
∇T

xt
denote the second order partial derivative operator

with respect toxt. Using this notation, (10) can be rewritten in a more compactfashion as,

Jt(Rt) = E
[

−∇xt

xt
log p(Dt,xt|Rt)

]

(11)

Sincep(Dt,xt|Rt) = p(Dt|xt,Rt)p(xt), Jt(Rt) can be decomposed into two parts as,

Jt(Rt) = JD
t (Rt) + JP

t (12)

where

JD
t (Rt) , Ep(Dt|xt)p(xt)

[

−∇xt

xt
log p(Dt|xt,Rt)

]

JP
t , Ep(xt)

[

−∇xt
xt
log p(xt)

]

Note thatJD
t (Rt) represents the Fisher information obtained from the data averaged over the

prior distributionp(xt) and JP
t represents thea priori Fisher information.Ep(Dt|xt)p(xt)[.] and

Ep(xt)[.] denote expectations with respect top(Dt|xt)p(xt) andp(xt) respectively.
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Given the vector of quantization ratesRt = [R1,t, . . . , RN,t] and using (8) in (12), the data

part of the Fisher information can be written as,

JD
t (R1,t, . . . , RN,t) =

∫

xt

Ep(Dt|xt,Rt)

[

−∇xt

xt
log p(Dt|xt,Rt)

]

p(xt)dxt (13)

=
N
∑

i=1

∫

xt







2Ri,t−1

∑

l=0

−∇xt

xt
log p(Di,t = l|xt, Ri,t)p(Di,t = l|xt, Ri,t)







p(xt)dxt

For a givenxt, let us defineJS
i,t(Ri,t|xt), as the Fisher information of sensori,

JS
i,t(Ri,t|xt) , Ep(Dt|xt,Rt)

[

−∇xt
xt
log p(Di,t|xt)

]

(14)

=

2Ri,t−1
∑

l=0

{

−∇xt
xt
log p(Di,t = l|xt, Ri,t)p(Di,t = l|xt, Ri,t)

}

Then combining (13) and (14), sensori’s contribution to the Fisher informationJD
i,t(Ri,t) can

be stated as,

JD
i,t(Ri,t) ,

∫

xt

JS
i,t(Ri,t|xt)p(xt)dxt (15)

GivenRt, the Fisher information at timet can be written as,

Jt(Rt) =
N
∑

i=1

JD
i,t(Ri,t) + JP

t (16)

From (14), after straight-forward calculations, the(1, 1) term of JS
i,t(Ri,t|xt) can be derived as,

E

[

−∂2 log p(Di,t|xt)

∂x2
t

]

=

2Ri,t−1
∑

l=0

1

p(Di,t = l|xt, Ri,t)

(

∂p(Di,t = l|xt, Ri,t)

∂xt

)2

(17)

The rest of the terms can be derived similarly. Using the procedures similar to [13],JS
i,t(Ri,t|xt)

can be obtained as follows,

JS
i,t(Ri,t = m|xt) = n2κi,t(m, xi, yi, xt, yt)

a2i,tα
2d2n−4

i,t

(1 + αdni,t)
2
× (18)















(xi − xt)
2 (xi − xt)(yi − yt) 0 0

(xi − xt)(yi − yt) (yi − yt)
2 0 0

0 0 0 0

0 0 0 0














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where

κi,t(m, xi, yi, xt, yt) =
1

8πσ2



















2m−1
∑

l=0

[

e−
(ηm

l
−ai,t)

2

2σ2 − e−
(ηm

l+1−ai,t)
2

2σ2

]2

p(Di = l|xt)



















(19)

Detailed derivation of (18) can be found in the Appendix. Note that in (18) and (19),di,t and

ai,t are functions of the sensor location(xi, yi) and target location(xt, yt).

B. Optimization of Quantization Thresholds

The Fisher information and hence the PCRLB are functions of the quantization thresholds

corresponding to each data rateRi,t = m. Thus, the quantization thresholds should be designed

to achieve better estimation accuracy. An algorithm to obtain the optimal quantization thresholds

that minimizes the variance of the estimation errors has been proposed in [13]. If we assume

that (xi, yi) and (xt, yt) are uniformly distributed in a region, we can minimize the sum of

two diagonal elements of the CRLB matrix, after averaging the CRLB matrix over all the

random parameters which may result in a large computationalload since it requires a multiple

fold integration. To alleviate this problem, some alternative methods to design the quantization

thresholds were developed in [13].

Note that all the information about[xt, yt]
T is contained in sensors’ signal amplitudes(ai,t)’s.

If all the signal amplitudes can be recovered from their quantized dataDi,t accurately, an accurate

estimate of[xt, yt]
T can be obtained. In this paper, we use the Fisher informationbased heuristic

quantization method [13] which maximizes the Fisher information about the signal amplitude

ai,t contained in the quantized dataDi,t. We defineFa(η|xi, yi, xt, yt, Ri,t = m) as the Fisher

information of the signal amplitude contained in quantizedm-bit data,Di,t, using a threshold

η. Note thatai,t is a function ofdi,t for fixed P0, α and n as defined in (3). Then given

Ri,t = m, sensor location(xi, yi) and source location(xt, yt), it has been derived in [13] that

Fa(η|xi, yi, xt, yt, Ri,t = m) = 4κi,t(m, xi, yi, xt, yt). The Fisher information based heuristic

quantization method [13] finds the decision thresholds thatmaximize

Fa(η|Ri,t = m) = E[−∇ai,t
ai,t

log p(Di,t|ai,t(xi, yi, xt, yt))] (20)

=

∫

xi,yi,xt,yt

4κ(m, xi, yi, xt, yt, )dxidyidxtdyt

=

∫

u

4κ(m|u)p(u)du

July 9, 2018 DRAFT
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where u = d2i,t and the Fisher information about the signal amplitude is averaged over

the probability density function ofu, p(u), under the assumption that(xi, yi) and (xt, yt)

are independent and identically distributed and follow a uniform distribution U [−b/2, b/2].

Derivation of p(u) and other details of this quantizer design approach can be found in [13].

We assume that the decision thresholds of each quantizationrate are identical at each sensor.

The quantization thresholds of each possible quantizationrate is optimized offline and can be

stored at each sensor before the WSN operation.

C. Particle Filtering with Quantized Data

It is known that Kalman Filter provides the optimal solutionto the Bayesian sequential

estimation problem for linear and Gaussian systems. In nonlinear systems, the extended Kalman

filter (EKF) can be used to provide a suboptimal solution by linearizing the nonlinear state

dynamics and/or nonlinear measurement equations locally.However, it has been shown [14]

that, even for linear and Gaussian systems, when the sensor measurements are quantized, the

EKF fails to provide an acceptable performance especially when the number of quantization

levels is small. Therefore, we propose to employ a particle filter to solve the Bayesian sequential

estimation problem.

Let D1:t = [D1, . . . ,Dt] be the received sensor data up to timet which are obtained

according to the data ratesR1:t = [R1, . . . ,Rt]. In particle filtering, the main idea is to find

a discrete representation of the posterior distributionp(xt|D1:t) by using a set of particles

{xs
t ; s = 1, . . . , Ns} with associated weights{ws

t ; s = 1, . . . , Ns}. The posterior density at

t can be approximated as,

p(xt|D1:t) ≈
Ns
∑

s=1

ws
t δ(xt − xs

t ) (21)

whereNs denotes the total number of particles. In this paper, we employ sequential importance

resampling (SIR) particle filtering algorithm [15] to solvethe nonlinear Bayesian filtering

problem. In Algorithm 1, we provide a summary of the SIR basedparticle filtering rather than

discussing the details. Note thatTS in Algorithm 1 denotes the number of time steps over which

the target is tracked. A more detailed treatment of particlefiltering can be found in a wide

variety of publications such as [15].
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Algorithm 1 SIR based Particle Filtering for Target Tracking

Set t = 0. Generate initial particlesxs
0 ∼ p(x0) with ∀s , ws

0 = N−1
s .

while t ≤ TS do

(A1.1) xs
t+1 = Fxs

t + υt (Propagating particles)

(A1.2) p(xt+1|D1:t) =
1
Ns

∑Ns

s=1 δ(xt+1 − xs
t+1)

(A1.3) Bandwidth Allocation: DecideRt+1 and obtain sensor dataDt+1

(A1.4) ws
t+1 ∝ p(Dt+1|xs

t+1,Rt+1) (Updating weights)

ws
t+1 =

ws
t+1

∑Ns
j=1 w

j
t+1

(Normalizing weights)

x̂t+1 =
∑Ns

s=1w
s
t+1x

s
t+1

(A1.5) {xs
t+1, N

−1
s } = Resampling(xs

t+1, w
s
t+1)

(A1.6) t = t + 1

end while

In Algorithm 1, p(Dt+1|xs
t+1,Rt+1) is obtained according to (6) and (8). Resampling step

avoids the situation that all but one of the importance weights are close to zero [15].

By using equations (10) to (16), at timet, one can compute the PCRLB on the estimation error

and the corresponding FIM, for a given bandwidth allocationschemeRt and prior distribution

p(xt). For the bandwidth allocation problem, at timet, from (A1.2), we first generate the prior

p(xt+1|D1:t) using data received up to timet.

Under the Gaussian assumption, maximizing the determinantof the FIM is equivalent to

minimizing the volume of the uncertainty ellipsoid [7]. Therefore, we determine bandwidth

allocation scheme for timet+1, Rt+1, by maximizing the determinant of the Fisher information

aboutxt+1 as,

maxR1,t+1,...,RN,t+1
det(Jt+1(Rt+1)) (22)

s.t.

N
∑

i=1

Ri,t+1 = R

The fusion center then informs the sensors aboutRt+1 and sensors transmit their quantized

measurementsDt+1 accordingly. The Fisher information,Jt+1(Rt+1) is written as

Jt+1(Rt+1) = Ep(Dt+1,xt+1|D1:t,Rt+1)

[

−∇xt+1
xt+1

log p(Dt+1,xt+1|D1:t,Rt+1))
]

July 9, 2018 DRAFT
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Following the derivations from (10) to (16), the Fisher information,Jt+1(Rt+1), is obtained as,

Jt+1(Rt+1) =

N
∑

i=1

JD
t+1(Ri,t+1) + JP

t+1 (23)

Using the particle approximation,

p(xt+1|D1:t) ≈
1

NS

NS
∑

s=1

δ(xt+1 − xs
t+1) (24)

JD
t+1(Ri,t+1) is found from,

JD
t+1(Ri,t+1) =

1

NS

NS
∑

s=1

JS
t+1(Ri,t+1|xs

t+1) (25)

As in (12), JP
t+1 = Ep(xt+1|D1:t)[−∇xt+1

xt+1 log p(xt+1|D1:t)] has been defined as the prior Fisher

information ofxt+1. According to (24),p(xt+1|D1:t) has a non-parametric representation by a

set of random particles with associated weights, so it is very difficult to calculate the exactJP
t+1

[16]. Instead, we use a Gaussian approximation such thatp(xt+1|D1:t) ≈ N (µt+1,Σt+1), where

µt+1 =
1

Ns

Ns
∑

s=1

xs
t+1

and

Σt+1 =
1

Ns

Ns
∑

s=1

(xs
t+1 − µt+1)(x

s
t+1 − µt+1)

T

Given the Gaussian approximation, it is easy to show thatJP
t+1 = Σ−1

t+1.

III. D YNAMIC BANDWIDTH ALLOCATION FOR TARGET TRACKING

An exhaustive search can be employed to find the optimal bandwidth distribution which

maximizes (22). For a network ofN sensors and bandwidth constraintR, there are a total of




R +N − 1

N − 1



 = (N+R−1)!
(N−1)!R!

possible bandwidth distribution solutions. For largeN andR, such

an exhaustive search may not be feasible in real time. Therefore suboptimal but computationally

more efficient algorithms are required which we explore in this section.
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A. Convex Optimization Based Dynamic Bandwidth Allocation

In this paper, we use the log determinant of the FIM as the objective function for resource

management. Using Boolean variablesqi,m ∈ {0, 1}, the bandwidth allocation problem can be

explicitly formulated as follows,

maxqt+1
log det(Jt+1(qt+1)) = log det

(

R
∑

m=0

N
∑

i=1

qi,mJ
D
i,t+1(Ri,t+1 = m) + JP

t+1

)

(26)

subject to
R
∑

m=0

qi,m = 1 i ∈ {1, . . . , N}

R
∑

m=0

N
∑

i=1

m qi,m = R

qi,m ∈ {0, 1} m ∈ {0, 1, . . . , R} i ∈ {1, . . . , N}

In the above formulation,qt+1 = [q1,0, q2,0, . . . , qN,0, . . . , q1,R, q2,R, . . . , qN,R]
T denotes the

bandwidth allocation scheme for timet + 1 where qi,m = 1 when sensori transmits its

measurement inm bits andJD
i,t+1(m) is the corresponding FIM of sensori. Note that we drop

the time indext + 1 from the elements of vectorqt+1 to simplify the notation. All constraints

are equality constraints where the firstN constraints guarantee that each sensor can transmit

using only one of the quantization rates. Ifm = 0 is selected, the quantized measurement of the

sensor is not transmitted to the fusion center. The(N +1)th constraint ensures that the sum rate

constraint is satisfied and the lastN(R + 1) constraints restrictqi,m to be Boolean.

Similar to the convex relaxation approach presented in [1],the lastN(R+ 1) constraints can

be relaxed by replacing the Boolean variablesqi,m ∈ {0, 1} with their continuous counterparts,

q̂i,m ∈ [0, 1]. Then the problem becomes

maxq̂t+1 log det(Jt+1(q̂t+1)) = log det

(

R
∑

m=0

N
∑

i=1

q̂i,mJ
D
i,t+1(Ri,t+1 = m) + JP

t+1

)

(27)

subject to
R
∑

m=0

q̂i,m = 1 i ∈ {1, . . . , N}

R
∑

m=0

N
∑

i=1

m q̂i,m = R

0 ≤ q̂i,m ≤ 1 m ∈ {0, 1, . . . , R} i ∈ {1, . . . , N}

We can further relax the problem (27), by removing the lastN(R+1) constraints and including
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them into the objective function. Then, the new cost function to be minimized becomes as,

φ(q̂t+1) , (28)

−
{

log det

(

R
∑

m=0

N
∑

i=1

q̂i,mJ
D
i,t+1(m) + JP

t+1

)

+ τ
R
∑

m=0

N
∑

i=1

(

log (q̂i,m) + log (1− q̂i,m)

)

}

whereφ(q̂t+1) is a convex function of the decision variablesq̂i,m [17]. The additional summation

term in the objective function forceŝqi,m to be in the interval[0, 1]. τ is a positive parameter

that controls the quality of the approximation.

Let us define,

A ,





















1 0 . . . 0 1 0 . . . 0 . . . 1 . . . 0 0

0 1 . . . 0 0 1 . . . 0 . . . 0 . . . 0 0

: : : : : : : : : : : : :

0 0 . . . 1 0 0 . . . 1 . . . 0 . . . 0 1

0 0 . . . 0 1 1 . . . 1 . . . R . . . R R





















q̂t+1 ,

(

q̂1,0 q̂2,0 . . . q̂N,0 q̂1,1 q̂2,1 . . . q̂N,1 . . . q̂1,R . . . q̂N−1,R q̂N,R

)T

and

b ,

(

1 1 . . . 1 R
)T

Then, the firstN + 1 equality constraints of (27) can be represented in a matrix form as,

Aq̂t+1 = b

Finally, we have the following convex optimization problem,

minq̂t+1 φ(q̂t+1) (29)

subject to Aq̂t+1 = b

which can be solved efficiently and optimally using Newton’smethod. The underdetermined

systemAq̂t+1 = b has infinite number of solutions but there is only a subset of solutions

which are feasible satisfying0 ≤ q̂t+1 ≤ 1 where0 and1 are the all zero and all one vectors

respectively. The Newton method starts with a feasible solution, so we formulate the following
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linear optimization sub-problem to find an initial feasiblesolution,

minq̂t+1 −
R
∑

m=0

N
∑

i=1

q̂i,m (30)

subject to Aq̂t+1 = b

0 ≤ q̂i,m ≤ 1 m ∈ {0, . . . , R} i ∈ {1, . . . , N}

The optimality conditions for (29), which is named as the Karush Kuhn Tucker (KKT) system,

is written as [17],




∇q̂t+1

q̂t+1
φ AT

A 0









∆Z

ω



 =





−∇q̂t+1φ

0



 (31)

where∆Z is the Newton Step,ω is the the optimal dual variable,∇q̂t+1φ is the gradient vector,

and∇q̂t+1

q̂t+1
φ is the Hessian matrix ofφ with respect to the decision vectorq̂t+1.

In order to solve the system given in (31), first we need to compute the gradient vector,

∇q̂t+1φ, and the Hessian matrix,∇q̂t+1

q̂t+1
φ, with sizesN(R + 1) × 1 andN(R + 1) × N(R + 1)

respectively. Let us start by computing the gradient. First, the (i,m)th element of the gradient

vector is,

(∇q̂t+1φ)i,m = (32)

∂

∂q̂i,m

{

− log det

(

R
∑

m=0

N
∑

i=1

q̂i,mJ
D
i,t+1(m) + JP

t+1

)

− τ
∂

∂q̂i,m

R
∑

m=0

N
∑

i=1

(log (q̂i,m) + log (1− q̂i,m))

}

Let X be an invertible matrix andx be a scalar. Using the property

∂ log det (X)

∂x
= tr

{

X−1∂X

∂x

}

and the definition

W ,

(

R
∑

m=0

N
∑

i=1

q̂i,mJ
D
i,t+1(m) + JP

t+1

)

each element of the gradient vector is obtained as

(∇q̂t+1φ)i,m = −tr{W−1JD
i,t+1(m)} − τ

q̂i,m
+

τ

1− q̂i,m
(33)

In order to compute∇q̂t+1

q̂t+1
φ, for i, i∗ ∈ {1, 2, . . . , N} andm,m∗ ∈ {0, 1, . . . , R}, we define

ψ(i∗,m∗),(i,m) ,
∂

∂q̂i∗,m∗

(

∂W

∂q̂i,m

)

=
∂

∂q̂i∗,m∗

{

−tr(W−1JD
i,t+1(m))

}

(34)
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Using the properties

∂

∂x
tr{X} = tr

{

∂X

∂x

}

and

∂X−1

∂x
= −X−1∂X

∂x
X−1

we get

ψ(i∗,m∗),(i,m) = tr{W−1JD
i∗,t+1(m

∗)W−1JD
i,t+1(m)}

Finally the Hessian matrix is obtained as

(∇q̂t+1

q̂t+1
φ) = ψ + τ diag

(

1

q̂21,0
+

1

(1− q̂1,0)2
; . . . ;

1

q̂2N,R

+
1

(1− q̂N,R)2

)

(35)

Having obtained∇q̂t+1φ, ∇q̂t+1

q̂t+1
φ and A, the block elimination method [17] can be used

to solve the KKT system, which is summarized in Algorithm 2. (For the details of block

elimination method see Section 10.4. in [17]). In order to compute the complexity of the

Algorithm 2 Solving KKT system by block elimination

(A2.1) Form(∇q̂t+1

q̂t+1
φ)−1AT and (∇q̂t+1

q̂t+1
φ)−1(∇q̂t+1φ).

(A2.2) FormS = −A(∇q̂t+1

q̂t+1
φ)−1AT

(A2.3) Determineω by solvingSω = A(∇q̂t+1

q̂t+1
φ)−1(∇q̂t+1φ).

(A2.4) Determine∆Z by solving(∇q̂t+1

q̂t+1
φ)−1∆Z = ATω − (∇q̂t+1φ).

convex relaxation based bandwidth allocation method, we ignore the complexity for computing

(∇q̂t+1φ) and(∇q̂t+1

q̂t+1
φ). The cost of block elimination to solve (29) is dominated by the Cholesky

decomposition of∇q̂t+1

q̂t+1
φ which is used to find(∇q̂t+1

q̂t+1
φ)−1. Let us defineV , N(R+1). Then,

in order to compute the Cholesky decomposition of the matrix(∇q̂t+1

q̂t+1
φ), we require a total of

1
6
(V3−V) summations and multiplications and1

6
(3V2−3V) divisions [18]. Thus the complexity

of bandwidth allocation based on convex optimization increases withO(N3(R + 1)3).

At each iteration of Newton’s method, the solution vectorq̂t+1 is updated bŷqt+1 = q̂t+1 +

s∆Z wheres ∈ (0, 1] is the step size obtained by the backtracking line search method [17]. We

stop the Newton iterations when the Newton decrement,λ , (−∇q̂t+1φ
T∆Z)1/2, is less than

some predefined precision. The summary of the Newton’s method is presented in Algorithm 3.
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Algorithm 3 Newton’s method for the bandwidth allocation problem

Find a feasible starting point̂qt+1 from (30) and set precisionǫ > 0

Repeat

(A3.1) Compute the Newton Step∆Z from (31) and Newton decrementλ =

(−∇q̂t+1φ
T∆Z)1/2

(A3.2) Choose Step sizes by backtracking line search.

(A3.3) Updateq̂t+1 = q̂t+1 + s∆Z

(A3.4) Quit if λ2/2 ≤ ǫ, then q̂∗
t+1 = q̂t+1, else go to Step (A3.1).

The Probabilistic Transmission Scheme: From the optimal solution of the relaxed problem

q̂∗
t+1, the bandwidth distribution for the next time step needs to be determined. For the sensor

selection problem, the authors in [1] employed a simple scheme in whichk sensors are selected

out of N sensors by first sortinĝq∗
t+1 in descending order and then settingk largest elements of

q̂∗
t+1 to one. For the bandwidth distribution problem, a similar solution is to sort the probabilities

q̂i,m in descending order and then to assign 1 starting from the largest probability until the

bandwidth constraint is satisfied. However, in this paper, we consider a randomized scheme

similar to the ones used in [1] and [11]. Since the elements ofq̂∗
t+1 are within the range[0, 1],

we can consider eacĥqi,m as the transmission probability of sensori, transmitting information

in m bits. Instead of putting a strict bandwidth constraint, i.e.
∑N

i=1Ri,t+1 = R, the probabilistic

transmission puts a weak constraint on the bandwidth availability and ensures that the sensors

on the average transmitR bits to the fusion center. We present a numerical example on the

probabilistic transmission scheme in Section IV.

B. Approximate Dynamic Programming based Bandwidth Distribution

In this section, we present the bandwidth allocation algorithm based on A-DP which will be

shown to provide near optimal solution but require much lesscomputation time than the convex

relaxation approach. Note that the Fisher information matrix can be expressed as the summation

of each sensor’s individual Fisher information matrices asdefined in (23). In this section, we

formulate an approximate DP recursion in tracking applications where we can maximize the

Fisher information by maximizing its determinant subject to the bandwidth constraint.
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Typically DP involves progression along time. But in our problem formulation the DP

progresses across sensors and is executed at each time step of tracking to determine the bandwidth

allocations of the next time step. Since A-DP is performed ateach time step, for simplicity, the

time indext+1 for Fisher information matrix is dropped. Instead an index for the stages in DP

is adopted. LetJN = Jt+1 andAi(Ri) = JD
t+1(Ri) be the reward in terms of Fisher information

when sensori quantizes its measurement inRi bits (Ri ∈ {0, 1, . . . , R}). While constructing the

DP trellis, the bandwidth distribution problem is first divided intoN+1 stages which correspond

to N sensors and a termination stage. We define the state of a stageas the remaining bandwidth

for the usage of sensori. So each stage hasR + 1 states associated with it. The bandwidth

allocation chosen at any sensor (stage) determines the feasible states at the next sensor. An

example DP trellis is shown in Fig. 2 withN = 6 andR = 3 which implies a total of 7 stages

and 4 states in the DP trellis. As an example, sensor1 is at stater = 1 means 2 bits have already

been used by the otherN − 1 sensors and 1 bit is available for sensor1. Then, sensor 1 can

only take the actionA1(1) and the DP goes to the termination stage (stage0) which has only

the 0 bit available state.

For such a DP trellis, we have,

JN = AN(RN) + {AN−1(RN−1) + . . .+A1(R1) + J0}

= AN(RN) + JN−1

:

J1 = A1(R1) + J0 (36)

whereJ0 = Σ−1
t+1 and

∑N
i=1Ri = R. According to the matrix determinant lemma [19],

det(X+A) = det(X+AI) = det(X) det(I+X−1A)

With X = Ji−1, A = Ai(Ri), andI being the identity matrix, we have

log

{

det(JN)

}

= log

{

det(JN−1)

}

+ log

{

det
[

I+ J−1
N−1AN(RN )

]

}

:

log

{

det(J1)

}

= log

{

det(J0)

}

+ log

{

det(I+ J−1
0 A1(R1))

}
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Fig. 2: Trellis of the DP for tracking time stept. (N = 6, R = 3).

We can maximizedet(JN), by maximizinglog

{

det(JN)

}

. The DP recursion at each stage

is formulated as follows: the trellis starts fromJ0(0) and for the first stage (i = 1) and for allr ∈
{0, 1, . . . , R},

log

[

det[J1(r)]

]

= log

[

det[I+ J−1
0 (0)A1(r)]

]

+ log

[

det[J0(0)]

]

(37)

Then for all the intermediate stagesi ∈ {2, . . . , N − 1} and for allr ∈ {0, 1, . . . , R},

log

[

det[Ji(r)]

]

= (38)

max
k=0,1,...,r







log

[

det[I+ J−1
i−1(r − k)Ai(k)]

]

+ log

[

det[Ji−1(r − k)]

]







Finally for the last stagei = N ,

log

[

det[JN(R)]

]

= (39)

max
k=0,1,...,R







log

[

det[I+ J−1
N−1(R− k)Ai(k)]

]

+ log

[

det[JN−1(R− k)]

]







In (37), (38), and (39), the reward of sensori’s transmission inRi bits depends not only on

Ai(Ri) but also on the FIM of the previous stageJ−1
i−1. So at each stagei, the FIM,Ji(r), which

has the maximum determinant should be stored in a memory for its use at the next recursion.
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Note that the proposed A-DP may not yield the maximum matrix determinant at the final stage.

The suboptimality of the A-DP recursions is discussed laterin this section.

We analyze the computational complexity of A-DP in terms of number of matrix summations.

Note that the number of element-wise summation is a scaled version of number of matrix

summations. The first stage needsR matrix summations to compute the FIM at all states. For

all the intermediate stages, at each stater, (r ∈ {1, . . . , R}), r different matrix summations are

required to find the FIM with the maximum determinant. Finally at stageN , A-DP again needs

overR matrix summations in order to maximize the determinant ofdetJN . So the A-DP totally

searches over,

R + (N − 2)

[

R
∑

r=1

r

]

+R = 2R + (N − 2)
R(R + 1)

2

matrix summations which is linear inN and quadratic inR.

Suboptimality of the A-DP recursions: For a given state of a stage, we choose the path with

the maximum determinant of the FIM and dismiss all the other paths arriving at this state. The

proposed DP recursions would yield the optimal solution to maximize the determinant of the

FIM, if the following property were satisfied,

if det{J′} ≥ det{J′′} (40)

then det{A+ J
′} ≥ det{A+ J

′′}

for some positive semidefinite matricesJ
′

, J
′′

andA. Unfortunately, the above property is not

necessarily true. Consider the simple example,J
′

=





1 0

0 1



 and J
′′

=





1 −0.1

−0.1 1





wheredet{J′} > det{J′′}. Let A =





1 0.1

0.1 1



. Thendet{A+ J
′} < det{A+ J

′′}.

At each stage of the DP, we only store the FIM with the maximum determinant. Therefore,

the final solution obtained by the DP recursions becomes suboptimal since not all the feasible

solutions are enumerated.

C. Existing Suboptimal Bandwidth Distribution Methods

In this section, we review some existing suboptimal methodsthat are suitable for solving the

bandwidth allocation problem in target tracking applications.
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1) GBFOS Algorithm: This algorithm has been first proposed in [8] for dynamic bandwidth

allocation in target tracking. The GBFOS algorithm starts by assigning the maximum number

of bits, R to each sensor in the network and then reduces the number of bits one bit at a time

until the sum rate constraint is satisfied. The GBFOS algorithm can be stated as in Algorithm

4. Note that in order to simplify the notation, we drop the time indext + 1 in the algorithm.

As shown in Step (A4.1), at each iteration, the GBFOS algorithm searches theN sensors and

reduces the bits of the sensor by one which ensures the minimum reduction of the determinant

of the FIM. An efficient implementation of the GBFOS algorithm and its complexity analysis

can be given as follows:

Let us defineJi as the FIM after theith iteration, andAk(Rk) , JD
t+1(Rk) as sensork’s

contribution to the FIM usingRk bits. In the beginning, we need to calculateJ0 = JP
t+1 +

A1(R) +A2(R) + .... +AN(R). As a result, totallyN matrix summations are needed. At the

i-th iteration, wherei = 1, . . . , (N − 1)R, there are at mostN different ways to reduce 1 bit.

Assuming one particular solution is to reduce one bit at thek-th sensor, (k ∈ {1, 2, . . . , N}),

andJi(k) = Ji−1 + Ak(Rk − 1) − Ak(Rk), which requires two matrix summations. Hence at

each iteration, at most2N matrix summations are required. At the end of theith iteration, we

storeJi(k) with the maximum determinant. In summary, we need at mostN + 2N(N − 1)R

matrix summations, which is quadratic inN and linear inR. Note that this is an upper bound

on complexity.

2) Greedy Algorithm: Basically, greedy search is the reverse of the GBFOS method which

makes the algorithm much faster. The greedy algorithm can bestated as in Algorithm 5. The

greedy algorithm starts by assigning0 bits to each sensor in the network and then increases the

number of bits one bit at a time until the sum rate constraint is satisfied inR iterations. At each

iteration, greedy algorithm searches theN sensors and a single bit is added to the sensor which

maximizes the determinant of the resulting FIM.

The implementation of greedy search and its complexity can be stated as follows: At the first

iteration, there areN different ways to add 1 bit. For thek-th way of adding 1 bit,J1(k) = JP
t+1+

Ak(1). Then we setJ1 = maxk det(J
1(k)). Hence, totallyN matrix summations are required at

the first iteration. At thei-th iteration, fori = 2, . . . , R, there are stillN different ways to add 1

bit. For thek-th way of adding 1 bit,Ji(k) = Ji−1 +Ak(Rk + 1)−Ak(Rk). Note thatAk(Rk)

could be a zero matrix sinceRk could be zero. Therefore, for each iteration, at most a totalof
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Algorithm 4 GBFOS - Bandwidth Distribution Algorithm

SetR0 = [R1 = R, . . . , RN = R] andJ0 = JP
t+t +A1(R) +A2(R) + .... +AN(R).

FOR i = 1 : (N − 1)R

(A4.1) FOR k = 1 : N

IF Rk > 0

Reduce one bit from sensork and computedet(Ji(k)) where

Ji(k) = Ji−1 +Ak(Rk − 1)−Ak(Rk).

ENDIF

ENDFOR

(A4.2) ∀ k with Rk > 0, find the sensorp∗ for which det(Ji(k)) is the maximum:

p∗ = arg max
k whereRk>0

det(Ji(k)).

(A4.3) DecrementRp∗ = Rp∗ − 1, updateRi = [R1, . . . , Rp∗, . . . , RN ] and setJi = Ji(p∗).

ENDFOR

2N matrix summations are required. In summary, we need at mostN+(R−1)2N = N(2R−1)

matrix summations which is an upper bound for the complexityof greedy search.

Algorithm 5 Greedy Bandwidth Distribution Algorithm

SetR0 = [R1 = 0, . . . , RN = 0] andJ0 = JP
t+1.

FOR i = 1 : R

(A4.1) FOR k = 1 : N

Add one bit to sensork and computedet(Ji(k)) where

Ji(k) = Ji−1 +Ak(Rk + 1)−Ak(Rk).

ENDFOR

(A4.2) Find the sensorp∗ for which det(Ji(k)) is the maximum:

p∗ = argmax
k

det(Ji(k)).

(A4.3) IncrementRp∗ = Rp∗ + 1, updateRi = [R1, . . . , Rp∗, . . . , RN ] and setJi = Ji(p∗).

ENDFOR
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IV. SIMULATION RESULTS

In this section, we illustrate the performance of differentdynamic bandwidth distribution

methods with numerical examples. For the convex relaxationproblem, we solve the linear

programming problem in (30) which is formulated to find the feasible initial point by using the

“linprog” routine in MATLAB . The Newton method parametersǫ andτ are selected according

to [20]. Simulation results show that, for the convex relaxation scheme, the optimal solution is

reached in around ten iterations.

We evaluate the computation time of each bandwidth allocation approach by using the “etime”

function of MATLAB averaged over 100 trials. In Fig. 3, the mean computation times of

the considered suboptimal bandwidth allocation schemes are compared. Since the number of

summations for A-DP increases linearly withN , for large number of sensors, the computation

time of A-DP is less than the computation time of GBFOS and convex relaxation where the

number of summations increase quadratically and cubicallyrespectively.
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Fig. 3: Computation time in seconds for convex relaxation, A-DP, GBFOS, and greedy search

(R = 5).

We next compare the MSE performances of the bandwidth distribution schemes based on

optimal exhaustive search, A-DP, convex optimization, GBFOS and greedy search. In addition,

we analyze the MSE performance of nearest neighbor bandwidth allocation, where all the

bandwidth is assigned to the sensor which is nearest to the predicted target location. In our
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simulations, we assume thatN sensors are grid deployed in ab2 = 20m × 20m surveillance

area as shown in Fig. 4-(a) and (b). We selectP0 = 103 and sensor observation noiseσ2 = 1.

The probability density function of the target’s initial state,p(x0), is assumed to be Gaussian

with meanµ0 = [−8 − 8 2 2] and covarianceΣ0 = diag[σ2
θ σ2

θ 0.01 0.01] where we select

3σθ = 2 so the initial point of the target remains in the ROI with veryhigh probability. The target

motion follows a white noise acceleration model and we consider two process noise parameters

ρ = 2.5 × 10−3 and ρ = 0.1. Measurements are assumed to be taken at regular intervals of

D = 0.5 seconds and the observation length is10 seconds. Namely, we perform target tracking

overTS = 20 time steps for each Monte-Carlo trial. The number of particles used in the particle

filter is Ns = 5000. We assumeR = 5 bits of bandwidth is available at each time step for data

transmission. The MSE at each time step is averaged overTtrials = 500 trials as,

MSE(t) =
1

Ttrials

Ttrials
∑

v=1

[

(xv
t (1)− x̂v

t (1))
2 + (xv

t (2)− x̂v
t (2))

2
]

(41)

where in thevth trial xv
t and x̂v

t are the actual and estimated target states at timet respectively.

In Fig. 4-(a) and (b), a WSN is illustrated whereN = 9 sensors track a target under the process

noise parametersρ = 2.5 × 10−3 and ρ = 0.1 respectively. Forρ = 2.5 × 10−3, the process

noise is relatively small and the target trajectory is almost deterministic. Forρ = 0.1, the target

trajectory has relatively large uncertainty. For the first time step of tracking, Table I presents

each sensor’s transmission probability for each quantization rate for the convex optimization

based bandwidth allocation scheme withR = 5. Note that att = 1, the target is relatively

close to sensor 1 located at(−10 m.,−10 m.). Then it is very likely that sensor1 transmits

its measurement usingm = 5 bits because of the probability,̂q1,5 ≈ 0.84. Rest of the sensors

tend to remain silent since their transmission probabilities using0 bits are almost 1. As seen in

Table II, the probabilistic transmission introduces a weakconstraint on the bandwidth and on

the average sensors transmitR bits to the fusion center.

For N = 9 sensors, Figs. 5-(a) and 5-(c) show the average number of sensors activated and

Figs. 5-(b) and 5-(d) show the MSE at each time step of tracking averaged over 500 Monte-

Carlo trials. Simulation results show that underρ = 2.5 × 10−3, convex relaxation, A-DP and

GBFOS yield similar tracking performance to that of exhaustive search in terms of MSE. For

ρ = 2.5 × 10−3, between the time steps 8 and 10, the target is relatively close to sensor5

located at(0, 0). Hence, using exhaustive search, A-DP, convex relaxation,and GBFOS based
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TABLE I: Transmission probabilities of each quantization rate forN = 9 andR = 5 at t = 1

for the example illustrated in Fig. 4-(a).

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

i = 1 0.0021 0.0010 0.0011 0.0037 0.1482 0.8440

i = 2 0.9877 0.0082 0.0003 0.0017 0.0012 0.0009

i = 3 0.9895 0.0053 0.0021 0.0014 0.0010 0.0008

i = 4 0.9906 0.0031 0.0031 0.0017 0.0011 0.0003

i = 5 0.9888 0.0057 0.0023 0.0014 0.0010 0.0008

i = 6 0.9895 0.0053 0.0021 0.0014 0.0010 0.0008

i = 7 0.9895 0.0053 0.0021 0.0014 0.0010 0.0008

i = 8 0.9895 0.0053 0.0021 0.0014 0.0010 0.0008

i = 9 0.9895 0.0053 0.0021 0.0014 0.0010 0.0008

TABLE II: Mean and Standard deviation of the total number of transmitted bits using convex

relaxation based bandwidth allocation method,R = 5.

Mean Standard Deviation

N = 9, ρ = 2.5× 10
−3 5.0071 1.9781

N = 25, ρ = 2.5× 10
−3 5.0291 1.6264

N = 9, ρ = 0.1 5.0129 1.3439

N = 25, ρ = 0.1 5.0093 1.2119

bandwidth allocation schemes, almost all the bandwidth is allocated to sensor5. When the target

is not relatively close to any of the sensors, as in time steps2-6 and 12-17, the fusion center

has relatively large uncertainty about the target location, so multiple sensors are activated with

relatively coarse information which increases the estimation error as shown in Fig. 5-(b). After

time step 17, the target approaches sensor 9 and by using exhaustive search, convex relaxation,

A-DP and GBFOS, all the bandwidth is assigned to sensor 9 and then estimation error reduces

again. The greedy bandwidth allocation scheme tends to activate more sensors all the time with

relatively coarse information as compared to the other bandwidth allocation algorithms. With

small process noise parameter(ρ = 2.5 × 10−3), nearest neighbor based bandwidth allocation
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Fig. 4: A WSN withN = 9 sensors tracking sample targets (a)ρ = 2.5× 10−3 (b) ρ = 0.1.

becomes more accurate than greedy search since the target trajectory is highly deterministic and

there is a small uncertainty on the predicted target location. However, the tracking performance

of the nearest neighbor approach is still not as good as thosefor exhaustive search, convex

relaxation, GBFOS, and A-DP. Forρ = 0.1, the uncertainty on target trajectory is relatively

large and we observe a worse tracking performance as compared to theρ = 2.5×10−3 case. On

the other hand, still A-DP, convex optimization, and GBFOS perform equally well as exhaustive

search in terms of MSE and outperform greedy search. Forρ = 0.1, nearest neighbor based

bandwidth allocation introduces much larger estimation errors which are sometimes even greater

than those obtained by the greedy search based dynamic bandwidth allocation scheme.

For N = 25 sensors, Figs. 6-(a) and 6-(c) show the average number of sensors activated and

Figs. 6-(b) and 6-(d) show the MSE at each time step of tracking. Since the sensor density

is increased, the bandwidth allocation schemes tend to assign all the available bandwidth to a

single sensor which has more precise information about the target. This improves the tracking

performance at each time step. Forρ = 2.5× 10−3 andρ = 0.1 cases, convex relaxation, A-DP

and GBFOS yield similar estimation performances and they significantly outperform the greedy

search and nearest neighbor based bandwidth allocation approaches in terms of the MSE.
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Fig. 5: N = 9, R = 5, Ttrial = 500 (a) Average number of active sensors,ρ = 2.5× 10−3 , (b)

MSE at each time step,ρ = 2.5×10−3, (c) Average number of active sensors,ρ = 0.1, (d) MSE

at each time step,ρ = 0.1.

V. CONCLUSION

In this paper, we studied the dynamic bandwidth allocation problem for target tracking in a

WSN with quantized measurements. Under the bandwidth availability constraint, we proposed

two bandwidth distribution schemes which are based on convex relaxation and approximate DP

to maximize the determinant of the FIM. Simulation results show that convex relaxation, A-

DP and GBFOS algorithms yield similar tracking performance, which is close to that provided
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Fig. 6:N = 25, R = 5, Ttrial = 500 (a) Average number of active sensors,ρ = 2.5× 10−3 , (b)

MSE at each time step,ρ = 2.5× 10−3, (c) Average number of active sensors,ρ = 0.1 (d) MSE

at each time step,ρ = 0.1.

by the optimal exhaustive search approach, and they outperform the greedy search and nearest

neighbor approach significantly. Using the optimal solution of the convex optimization problem

as the probability of transmission at each data rate, convexrelaxation based bandwidth allocation

satisfies the bandwidth constraint on the average while the other bandwidth distribution methods

put a strict constraint on the bandwidth availability. In terms of computational complexity, A-DP

is computationally more efficient than GBFOS and convex relaxation methods especially for a
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large sensor network with a largeN .

In this work, we developed and compared bandwidth allocation schemes in target tracking for

one step ahead only. Our future work will cover extensions ofproposed schemes to non-myopic

scenarios. Multi-target tracking by dynamic bandwidth allocation will also be considered as a

future research direction.

APPENDIX

It is easy to show that

∂

∂xt
Q

(

ηml − ai,t
σ

)

=
ai,tnαd

n−2
i,t (xi − xt)

2
√
2πσ2(1 + αdni,t)

e−
(ηm

l
−ai,t)

2

2σ2 (42)

Then, substituting (42) in (17), we have

E

[

− ∂2

∂x2
t

p(Di,t = l|xt, Ri,t = m)

]

(43)

=











2m−1
∑

l=0

[

e−
(ηm

l
−ai,t)

2

2σ2 − e−
(ηm

l+1−ai,t)
2

2σ2

]2

8πσ2p(Di,t = l|xt, Ri,t = m)











a2i,tn
2α2d2n−4

i,t (xi − xt)
2

(1 + αdni,t)
2

= κi,t(m, xi, yi, xt, yt)
a2i,tn

2α2d2n−4
i,t

(1 + αdni,t)
2
(xi − xt)

2

Due to the symmetry between elementsxt andyt,

E
[

− ∂2

∂y2t
p(Di,t = l|xt, Ri,t = m)

]

= κi,t(m, xi, yi, xt, yt)
a2i,tn

2α2d2n−4
i,t

(1 + αdni,t)
2
(yi − yt)

2 (44)

and

E

[

− ∂2

∂xt∂yt
p(Di,t = l|xt, Ri,t = m)

]

(45)

= κi,t(m, xi, yi, xt, yt)
a2i,tn

2α2d2n−4
i,t

(1 + αdni,t)
2
(xi − xt)(yi − yt)
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