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Abstract

In this paper, we study the target tracking problem in wieselsensor networks (WSNSs) using
quantized sensor measurements under limited bandwidtlalaNigy. At each time step of tracking, the
available bandwidthz needs to be distributed among thesensors in the WSN for the next time step.
The optimal solution for the bandwidth allocation probleande obtained by using a combinatorial
search which may become computationally prohibitive fagéaN and R. Therefore, we develop
two new computationally efficient suboptimal bandwidthtidimition algorithms which are based on
convex relaxation and approximate dynamic programmin@®@@®- We compare the mean squared error
(MSE) and computational complexity performances of cometaxation and A-DP with other existing
suboptimal bandwidth distribution schemes based on gkreidaBreiman, Friedman, Olshen, and Stone
(GBFOS) algorithm and greedy search. Simulation resultsvstnat, A-DP, convex optimization and
GBFOS vyield similar MSE performance, which is very close Hattbased on the optimal exhaustive
search approach and they outperform greedy search andsheaighbor based bandwidth allocation
approaches significantly. Computationally, A-DP is moffeet than the bandwidth allocation schemes

based on convex relaxation and GBFOS, especially for a lsegsor network.

. INTRODUCTION

A wireless sensor network (WSN) consists of a large numbespatially distributed sensors

which are tiny, battery-powered devices, and have limitaeboard energies. When properly
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programmed and networked, WSNs perform different tasks @@ useful in a wide range
of applications such as battlefield surveillance, envirentrand health monitoring, and disaster
relief operations. Dense deployment of sensors in the nktintroduces redundancy in coverage,
so selecting a subset of sensors may still provide infoonatiith the desired quality. As shown
in Fig. 1, the adaptive sensor management policies seledbset of active sensors to meet the
application requirements in terms of quality of service lvhminimizing the use of resources.
In this paper, we assume that the task of the WSN is to track\angaarget in a given region
of interest (ROI). Sensors receive observations from aeablpf interest and send quantized
information to the fusion center over bandwidth limited chels. So the fusion center needs
to distribute the available bandwidth among sensors usriadigtive information based on the
target dynamics and the received sensor data. We considgopien(one-step ahead) scenario,
where at a given time step, the fusion center only decideserbandwidth distribution of the

next time step.
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Fig. 1: System model for sensor and resource managemend basteedback from recursive

estimator.

In the literature, there exist many sensor selection algms (see [1] and references therein). In
[1], the sensor selection problem, an integer programminglpm, has been relaxed and solved
through convex optimization. One popular strategy for eerselection is to use information
driven methods [2], [3], where the main idea is to select #mesers that provide the most useful
information, which is quantified by entropy or mutual infation. The posterior Cramér-Rao
lower bound (PCRLB) is also a very important tool becausedvigles a theoretical performance
limit for a Bayesian estimator. As we have shown in our prasipaper [4], for sensor selection,

the complexity to compute the mutual information increasgsonentially with the number of
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sensors to be selected, whereas the computational conyptéxFisher information, which is

the inverse of the PCRLB, increases linearly with the nunifesensors to be selected. For
target tracking in a bearing-only sensor network, a sensl@cson approach which minimizes
the PCRLB on the estimation error has been proposed in [5[@nevhere the selected sensors

transmit either analog or quantized data to the fusion cente

For the case where the fusion center receives quantizedrsereasurements, given the total
bandwidth constraintRz, at each time step during tracking, the fusion center shdetérmine
the optimal bandwidth distribution for the channels betw#ge sensors and the fusion center
which optimizes the target tracking performance in the W8AaL tonsists ofV sensors. This
problem is more general than the sensor selection probleoause in the bandwidth allocation
problem, the channel corresponding to each sensor coulddigned a different number of bits,
while in sensor selection problems, a sensor is eitheratetivor not to transmit its measurement
under the constraint on the total number of selected sen§besmyopic bandwidth allocation
problem can be solved by using an exhaustive search whicmenates all possible bandwidth
distributions and decides on the solution that maximizesi#gterminant of the Fisher information
matrix (FIM) which is the inverse of the PCRLB. Under Gaussassumption, maximizing the

determinant of the FIM is equivalent to minimizing the voleiraf the uncertainty ellipsoid [7].

: R+ N —1 o . .
The search space of this problem |is , Which implies that explicit enumeration
N -1

of all the solutions is computationally prohibitive for ¢ggr/N and R. Therefore, computationally
efficient suboptimal methods are required. In [8], the galiwed Breiman, Friedman, Olshen,
and Stone (GBFOS) algorithm has been employed for dynanmdvaiath distribution for target

tracking which significantly outperforms a static equaldibcation scheme in terms of tracking
performance. But still, as we show later in the paper, the G8BFRalgorithm may become

computationally costly with increasing values bt

Dynamic programming (DP) [9] solves the resource allocafooblems by breaking them
down into simpler steps. For a scalar-valued parametemastin problem, a DP recursion can
be easily formulated to find the optimal bandwidth distribntat each time step by maximizing
the Fisher information due to the fact that the total Fishésrmation is the summation of each
sensor’s individual Fisher information. For target trancki even though the Fisher information

is in a matrix form and the objective is to maximize the deteant of the FIM, we can still
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formulate a DP recursion which would yield a suboptimal solu We refer to this scheme as
approximate DP (A-DP), which is computationally very efiti since its complexity increases
linearly with N.

In our preliminary work [10], we compared the performancedymamic bandwidth allocation
approaches based on A-DP, GBFOS and greedy search. Mdtibgtehe sensor selection
method presented in [1], in this paper, we first formulatelihedwidth allocation problem as a
constrained optimization problem with binary-valued dam variables and equality constraints.
We then relax and solve the problem optimally using Newtométhod by replacing the Boolean
variable,q; ,, € {0, 1}, which represents whether or not the quantized measureofesgnsor
i is transmitted to the fusion center in bits, with its convex counterpatf ,, € [0,1]. Using
the idea of probabilistic transmission for bandwidth mamragnt [1], [11], we treat, ,, as the
transmission probability, that is at a given time, sensdransmits its decision to the fusion
center inm bits with probabilityg, ., € [0, 1]. Therefore, the convex relaxation based bandwidth
allocation method meets the bandwidth constraint in anagseisense and introduces a weak
constraint on bandwidth availability. We compare the badtlwallocation schemes based on
convex relaxation, A-DP, GBFOS and greedy search in termbaf mean squared error and
computational load under different process noise paraseéd@mulation results show that convex
relaxation, A-DP and GBFOS yield similar tracking perforroa, which is also similar to that
of the optimal bandwidth allocation scheme based on exlvausearch. Among these three
suboptimal schemes, A-DP has the least computational lehédn the sensor network is large.

The rest of the paper is organized as follows. In Section d,imtroduce the target tracking
problem, and describe the optimization of the quantizatfmesholds and particle filtering in
target tracking. In Section Ill, we describe the bandwidgtribution schemes based on convex
relaxation, A-DP, GBFOS and greedy search. In Section IVpresent numerical examples and
compare the performances of the considered bandwidthidison schemes in terms of their
computational load and MSEs. Finally, we conclude our werlSection V and discuss some

future research directions.

[I. TARGET TRACKING IN WIRELESS SENSORNETWORKS

The problem we seek to solve is to track a moving target usivgSiN where N sensors

are grid deployed in a square surveillance area of Biz&he assumption of grid layout is not
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necessary but has been made here for convenience. Taehtydased on sensor readings can
be performed for an arbitrary network layout if sensor paests are known in advance. All the
sensors that are assigned bandwidth report to a centrainfeginter, which estimates the target
state, i.e., the position and the velocity of the target 8ase quantized sensor measurements.
We assume that the target (e.g., an acoustic or an electrmti@agource) emits a signal from the
location (, y;) at timet. We assume that the target is based on flat ground and all tiserse
and target have the same height so that a 2-D model is sufficieiormulate the problem.

At time ¢, the target dynamics are defined by a 4-dimensional statéonveg =
ze v 4 )7 wherei; andy; are the target velocities in the horizontal and the vertical

directions respectively. Target motion is defined by théofeing white noise acceleration model:
X1 = Fx + vy 1)

whereF models the state dynamics angdis the process noise which is assumed to be white,

zero-mean and Gaussian with the following covariance m&dri

10D 0] g 2o
010 D 0o 2 o0 2
F = Q=1 )
00 1 0 >0 D 0
00 0 1| 0 2 0 D

In (2), D andp denote the time interval between adjacent sensor measntrem ued the process
noise parameter, respectively. It is assumed that therfuseater has perfect information about
the target state-space model (1) as well as the process statsgics (2).

The target is assumed to be an acoustic or an electromaguoetice that follows the power
attenuation model provided below [12]. At any given timehe signal power received at the

sensor; is given as
P,
2 0
2 "0 3
al,t 1 _‘_adzt ( )
By adopting this model, we prevent the receiver amplifiemfreaturation and the regularity
conditions for PCRLB hold when the target is very close tom@see In Eq. (3),F, denotes the

signal power of the target, is the signal decay exponent ands a scaling parametet, ; is the

distance between the target and tHesensor,d;; = \/(xi —x¢)% + (yi — yi)?, Where (z;, ;)

are the coordinates of th& sensor. Without loss of generality,andn» are assumed to be unity
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and 2, respectively. At time, the received signal at sensors given by
Zit = Qi + Nyt (4)

wheren;, is the noise term modeled as additive white Gaussian noi®¢GN), i.e., n;; ~
N (0, 0?), which represents the cumulative effects of sensor backgrmoise and the modeling
error of signal parameters.

Rather than transmitting analog sensor observations toful®n center, transmitting a
guantized version of sensor measurements decreases thatamheommunication and therefore
reduces the energy consumption. A sensor measuremegitsensor is locally quantized before
its transmission to the fusion center usify, bits. Let R, =S [Ri4,..., Ry, be the vector
of quantization rates used by th€ sensors in the network. For the bandwidth distribution
problem, at each time step of tracking,; can take valuesn, m € {0,1,..., R} whereR
is the maximum number of bits to be transmitted to the fusienter collectively by all the
sensors. Letl,, £ 2™ — 1 be the number of decision intervals for transmittimgbits to the
fusion center and); , be them-bit observation of sensarquantized with rate?; , = m at time
stept, then
0 —oo<zy<ni"

1 <z <t
D, = el 5)

Ly —1 0t 1 <zip <00

wheren™ = [ni* 0" ... nf’ ] with 75" = —oco andn}’ = oo. The quantization thresholds are
assumed to be identical at each sensor for simplicity. Wéaexthe selection of the quantization
thresholds for each data ratg; = m later in this section. Giver; andm, it is easy to show

that the probability of a particular quantization outpus,

P(Dyy = I[%,, Rip = m) = Q (u) i (M) ©

g g

where((.) is the complementary distribution function of the standaeissian distribution with

zero mean and unit variance,

Q)= [ o=ew (—g) at ™)
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At time t, let the fusion center receive the data veddr= [D;,, ..., Dy,] from the N sensors

with the corresponding quantization rate vedRy= [Ry 4, ..., Ry4), then

t|XtaRt Hp zt|Xt7 zt (8)

where we assumg(D; ;|x;, R;+ = 0) = 1.

A. PCRLB with quantized data

Let p(Dy, x;) be the joint probability density dD,; andx;, andx; be an estimate aof, at time
stept. Based on the received dal2, quantized with rate vectdR,, and the prior probability
distribution function ofx,, p(x;), the PCRLB on the mean squared estimation error has the form,

EA{[x — x][%¢ — x4 \Rt} > J. 1 (Ry) 9)

whereJ;(R,) is the4 x 4 Fisher information matrix (FIM) with the elements

0? 10gp(Dt7 Xt‘Rt>
oxy (i)@xt (])

Ji(Ry)(i,j) = F |— i,7€4{1,...,4} (10)

whereJ;(R;)(i, j) denotes the!" row, j* column element of the matrix;(R;) andx; (i) denotes
thei' element of vectok,. Let V¥ £ V, VL denote the second order partial derivative operator

with respect tax;. Using this notation, (10) can be rewritten in a more compashion as,
Ji(Ry) = E [~V log p(Dy, x¢|Ry)] (11)
Sincep(Dy, x¢|R;) = p(Dy|x, Ry)p(x¢), J:(R;) can be decomposed into two parts as,
Ji(Ry) =IP(Ry) + 3] (12)
where

J?(Rt) £ Ep(Dt|Xt [ th logp( t|Xt7 Rt)}
JféEp(Xt [ VXt logp( )}
Note thatJP(R;) represents the Fisher information obtained from the datsaged over the

prior distributionp(x;) and J{ represents the priori Fisher information.E,mp, x,)px)[.] and

E,x,.] denote expectations with respectptd;|x;)p(x;) andp(x;) respectively.
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Given the vector of quantization rat&s, = [R;,,..., Ry.| and using (8) in (12), the data

part of the Fisher information can be written as,

J?(le cee RN,t) = / Ep(Dt|Xt R.) [—Viﬁ Ing(Dt|Xt> Rt)] p(Xt)dXt (13)

ztl

= Z/ VXt logp(Di,t = Z|Xt, Ri,t)p(Di,t = l|Xt, Ri,t) p(Xt)dXt

For a givenx;, let us define]ft(RMxt), as the Fisher information of sensgr

I3 (Ridxi) = Eypyjxiry [~ Vi log p(Diylxy)] (14)
offit

- Z { —Vilog p(D;y = U|x¢, Rit)p(Diy = l|Xt>Ri,t)}

Then combining (13) and (14), sensts contribution to the Fisher informatiod,(R; ;) can

be stated as,

Jgt(Ri,t)é /J;'S:t(Ri,t|Xt)p(Xt)dXt (15)

Xt

Given R, the Fisher information at timécan be written as,
ZJ Riy)+37 (16)

From (14), after straight-forward calculations, tfie1) term of J?,(R;,|x;) can be derived as,

oftit 1

0? logp(Dit|xt)} 1 (0p(Dit = %, R-t))2
E|- : = ’ G 17
81'% lXZO: p(Di,t = l|Xt, RLt) 8,I't ( )

The rest of the terms can be derived similarly. Using the gadoaces similar to [13]th(Ri,t|xt)

can be obtained as follows,

J?,(Riy = m|x;) = n’kis(m, i, yi, 2o, ye) a?’tazd?’? i (18)
SR ’ (1+ad},)?
[ @wia)? (@ w)m—w) 00
(@i — @) (Y — ye) (yi — ue)? 00
0 0 0 0
i 0 0 0 0 |
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where
[ _ (" —a; 1)? _ (7lfi1*az‘,t)2 2
1 om _1 (& 202 — € 202
'%i,t<m7xi7yi7xtayt) = 87TO'2 § p(D _ l|X ) (19)
i t

=0

Detailed derivation of (18) can be found in the Appendix. &ttat in (18) and (19)/;, and

a;; are functions of the sensor location;, y;) and target locatiofx,, y;).

B. Optimization of Quantization Thresholds

The Fisher information and hence the PCRLB are functionshefduantization thresholds
corresponding to each data rae, = m. Thus, the quantization thresholds should be designed
to achieve better estimation accuracy. An algorithm to iolitee optimal quantization thresholds
that minimizes the variance of the estimation errors has lpgeposed in [13]. If we assume
that (z;,y;) and (z;,v;) are uniformly distributed in a region, we can minimize themsof
two diagonal elements of the CRLB matrix, after averaging @RLB matrix over all the
random parameters which may result in a large computatioaal since it requires a multiple
fold integration. To alleviate this problem, some alten@imethods to design the quantization
thresholds were developed in [13].

Note that all the information abolit;, y;]” is contained in sensors’ signal amplitudes;)’s.

If all the signal amplitudes can be recovered from their gjuad dataD, , accurately, an accurate
estimate ofz;, ;|7 can be obtained. In this paper, we use the Fisher informatésed heuristic
guantization method [13] which maximizes the Fisher infation about the signal amplitude
a;; contained in the quantized dafa, ;. We defineF,(n|x;, v;, x, y¢, Riy = m) as the Fisher
information of the signal amplitude contained in quantizecbit data, D, ;, using a threshold
n. Note thata;, is a function ofd,, for fixed Fy, o andn as defined in (3). Then given
R,, = m, sensor locatior{z;, y;) and source locatiofiz,,y;), it has been derived in [13] that
F.(m|i, yi, weyyp, Riy = m) = 4k (m, x;, yi, 2, y:). The Fisher information based heuristic

guantization method [13] finds the decision thresholds thaximize
Fa(”7|Rz‘,t =m) = E[—ng logp(Di,tmi,t(xu Yis T, Yt))] (20)

= / 4K(m7 Liy Yiy Tty Yt )dxldyzdxtdyt
TiyYi, Tt Yt

~ [ Antmlup(da

u
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where u = dﬁt and the Fisher information about the signal amplitude israyed over
the probability density function of:, p(u), under the assumption that;,v;) and (z;,y;)
are independent and identically distributed and follow afarm distribution U[—b/2,b/2].
Derivation of p(u) and other details of this quantizer design approach can bedfan [13].
We assume that the decision thresholds of each quantizattenare identical at each sensor.
The quantization thresholds of each possible quantizatta is optimized offline and can be

stored at each sensor before the WSN operation.

C. Particle Filtering with Quantized Data

It is known that Kalman Filter provides the optimal solutibm the Bayesian sequential
estimation problem for linear and Gaussian systems. Inimeal systems, the extended Kalman
filter (EKF) can be used to provide a suboptimal solution medirizing the nonlinear state
dynamics and/or nonlinear measurement equations loddbyever, it has been shown [14]
that, even for linear and Gaussian systems, when the sersasurements are quantized, the
EKF fails to provide an acceptable performance especialigrwthe number of quantization
levels is small. Therefore, we propose to employ a partitiler fio solve the Bayesian sequential
estimation problem.

Let D;, = [D4,...,D;] be the received sensor data up to timhevhich are obtained
according to the data ratd?,; = [Ry,...,Ry]. In particle filtering, the main idea is to find
a discrete representation of the posterior distributior;|D1.;) by using a set of particles
{x}; s = 1,..., Ny} with associated weight$w;; s = 1,..., Ny}. The posterior density at

t can be approximated as,
Ns
p(a|Dis) = Y wid(x — x;) (21)
s=1

where N, denotes the total number of particles. In this paper, we eyngequential importance
resampling (SIR) particle filtering algorithm [15] to solibe nonlinear Bayesian filtering
problem. In Algorithm 1, we provide a summary of the SIR bapadicle filtering rather than
discussing the details. Note tH&$ in Algorithm 1 denotes the number of time steps over which
the target is tracked. A more detailed treatment of partiitlering can be found in a wide

variety of publications such as [15].
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Algorithm 1 SIR based Particle Filtering for Target Tracking

Sett = 0. Generate initial particles; ~ p(xq) with Vs ,w§ = N .
while t < T do
(Al.1l) x;,, = Fx; + v, (Propagating particles)
(AL1.2) p(x¢11|D1s) = 5 S O(Xe1 — X5y
(A1.3) Bandwidth Allocation: Decid®,;,; and obtain sensor dala,
(A1.4) w;,, < p(Dyi1]x7, 4, Riy1) (Updating weights)
(TS # (Normalizing weights)

7
j=1 Wi+

K1 = Ei\le Wi X7
(AL.5) {x},,, N, '} = Resamplingx;_,,w;, )
(AL6)t =1+ 1

end while

In Algorithm 1, p(D,|x;,,, R¢;1) is obtained according to (6) and (8). Resampling step
avoids the situation that all but one of the importance wisigiie close to zero [15].

By using equations (10) to (16), at timgone can compute the PCRLB on the estimation error
and the corresponding FIM, for a given bandwidth allocaseshemeR,; and prior distribution
p(x;). For the bandwidth allocation problem, at timefrom (A1.2), we first generate the prior
p(x441|D1.) using data received up to time

Under the Gaussian assumption, maximizing the determiofrnhe FIM is equivalent to
minimizing the volume of the uncertainty ellipsoid [7]. Teére, we determine bandwidth
allocation scheme for time+ 1, R, 1, by maximizing the determinant of the Fisher information

aboutx,; as,

maXR1,t+1 ----- RN 111 det(‘]t-i-l(Rt-i-l)) (22)
N
s.t. Z Ri,t+1 =R
i=1

The fusion center then informs the sensors alRut; and sensors transmit their quantized

measurement®, ,; accordingly. The Fisher informatiod, ;(R;1) is written as

Jt-l-l(Rt-i-l) = Ep(Dt+1,Xt+1\D1:mRt+1) [_vizﬁ logp(Dt-i-lv Xt+1|D1:tv Rt-l-l))}
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Following the derivations from (10) to (16), the Fisher imfation,J;;(R;. 1), is obtained as,

N
Jia(Regn) = > I0 1 (Rign) + 36, (23)
i=1
Using the particle approximation,
1 &
p(Xe41[D1y) = Ne > 06— x4) (24)
s=1
JP 1 (Ri+1) is found from,
1 &
2 (Bigrn) = 5= 2 T (Rigalya) (25)
s=1

As in (12), 37, = Epxypr)|— Vil log p(x+1|D1.)] has been defined as the prior Fisher
information ofx,,;. According to (24),p(x;+1|D1.) has a non-parametric representation by a
set of random particles with associated weights, so it ig déficult to calculate the exact/, ,

[16]. Instead, we use a Gaussian approximation suchpisat |D1..) ~ N (g, 1, 2¢41), Where

N
1 «—
i1 = N § :Xt+1
S
s=1

and

N
1 &, s
Y1 = N Z(Xt—H - ut+1)(xt+1 — MKy

s

)T
s=1

Given the Gaussian approximation, it is easy to show Jat = ;.

I1l. DYNAMIC BANDWIDTH ALLOCATION FOR TARGET TRACKING

An exhaustive search can be employed to find the optimal ballvdistribution which

maximizes (22). For a network oV sensors and bandwidth constraiit there are a total of

R+N -1 _ (N+R-1)!
N_1 (N=1)IR!

an exhaustive search may not be feasible in real time. Téversluboptimal but computationally

possible bandwidth distribution solutions. For lafgeand R, such

more efficient algorithms are required which we explore iis gection.
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A. Convex Optimization Based Dynamic Bandwidth Allocation

In this paper, we use the log determinant of the FIM as theatilbge function for resource
management. Using Boolean variablgs, € {0, 1}, the bandwidth allocation problem can be

explicitly formulated as follows,

R N
maxg,,, 1ogdet(Jii1(Gyy)) = logdet (ZZqszzm i1 = >+Jt+1> (26)

=0 =1

R
subjectto » gim =1 i€{l,....N}

m=0

R N

m=0 =1

¢m €4{0,1} me{0,1,...,R} ie{l,...,N}
In the above formulationg,., = [qi10,%,0,---,qN0s-- -+ QR ©,R; - - .,qv.gr)" denotes the
bandwidth allocation scheme for time+ 1 where ¢;,,, = 1 when sensori transmits its
measurement im bits andJ}, ., (m) is the corresponding FIM of sensarNote that we drop
the time indext + 1 from the elements of vectay;,; to simplify the notation. All constraints
are equality constraints where the fiSt constraints guarantee that each sensor can transmit
using only one of the quantization ratesnif= 0 is selected, the quantized measurement of the
sensor is not transmitted to the fusion center. TNet 1) constraint ensures that the sum rate
constraint is satisfied and the 1aS8t{ R + 1) constraints restrict; ,, to be Boolean.

Similar to the convex relaxation approach presented intfi,lastN(R + 1) constraints can

be relaxed by replacing the Boolean varialbjes € {0, 1} with their continuous counterparts,

Gim € [0,1]. Then the problem becomes

R N
maxg,,, logdet(Jyy1(Ge1)) = logdet (ZZ@MJ;;H(R,M )+Jt+1> (27)

=0 =1

R
subjectto » Gim =1 i€{l,....N}

0<G¢m<1 me{0,1,...,R} ie{l,...,N}
We can further relax the problem (27), by removing the IdéR + 1) constraints and including
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them into the objective function. Then, the new cost functio be minimized becomes as,

O(Gs1) = (28)
R N R N
— {log det (Z D GimI i (m) + Jg';1> +TY > <log (Gim) + log (1 — qi,m)) }
m=0 i=1 m=0 i=1

where¢(q:+1) is a convex function of the decision variablgs, [17]. The additional summation
term in the objective function forceg ,, to be in the interval0, 1]. 7 is a positive parameter
that controls the quality of the approximation.

Let us define,

10 010 0 1 0 0

01 0 0 1 0 0 0 0
AL

00 1 00 1 0 0 1

oo0...011...1 ... R ... R R

T

Qt+1é<@1,o Goo --- 4no Qi1 Q21 --- 4N oo QR --- (N—1,R @N,R)
and
N T
b=(11 .. 1R

Then, the firstV + 1 equality constraints of (27) can be represented in a matrix fas,
Aélt+1 - b
Finally, we have the following convex optimization problem

min(lt+1 ¢(€It+1) (29)

subject to AG,.1 =Db

which can be solved efficiently and optimally using Newtoniethod. The underdetermined
system.Aq,.; = b has infinite number of solutions but there is only a subsetobfit®ns
which are feasible satisfying@ < §;,; < 1 where0 and1 are the all zero and all one vectors

respectively. The Newton method starts with a feasibletswiuso we formulate the following
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linear optimization sub-problem to find an initial feasilsielution,

R N
ming., =Y Y dim (30)
m=0 i=1
subject to Ag,.1 =Db

0<¢m<1 me{0,....,R} ie{l,...,N}

The optimality conditions for (29), which is named as the W& Kuhn Tucker (KKT) system,

is written as [17],

vgiigb AT AZ _ _v(it+1¢ (31)
A 0 w 0

where AZ is the Newton Stepy is the the optimal dual variabl&/,, ., ¢ is the gradient vector,
and Vgﬁgb is the Hessian matrix of with respect to the decision vectqy, ;.

In order to solve the system given in (31), first we need to ageghe gradient vector,
Vi @, and the Hessian matrngﬁgb, with sizesN(R+ 1) x 1and N(R+1) x N(R+ 1)

respectively. Let us start by computing the gradient. Fits¢ (i, m)"" element of the gradient

vector is,
( ét+1¢)' = (32)
9 R N P R N
96 { log det <ZZ zt+1 —|—Jt+1> _78QA< ZZ 10g QZm —|—10g<1_%m>>}
L,m m=0 i=1 LM =0 i=1

Let X be an invertible matrix and be a scalar. Using the property

Jlogdet (X ) x- 10X
Ox

and the definition

each element of the gradient vector is obtained as

.
(vétH(b)ZEm = _tT{W lle)zt—i-l(m)} o q + 1 — Cf (33)

In order to computevgﬁgb, fori,i* € {1,2,...,N} andm,m* € {0,1,..., R}, we define

o [ OW 0 .
Ve ) (im) = D (3§i,m) = P {—tr(WHJ3 1 (m) } (34)
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Using the properties

0 0X

and

OX~' 10X

—1
or ox X

we get
V(e imy = AW THIL ("YW HIP L (m)}

Finally the Hessian matrix is obtained as

" 1 1 1 1
Vi) = ap + 7 diag | — + _ S — _ 35
(Vaiu9) =¥+ 7 diag <q%,o T—ao? Bt —qN,R>2> (39)
Having obtainedV,,, ¢, nggb and A, the block elimination method [17] can be used

to solve the KKT system, which is summarized in Algorithm ol the details of block

elimination method see Section 10.4. in [17]). In order tonpote the complexity of the

Algorithm 2 Solving KKT system by block elimination
(A2.1) Form (Vi p) =L AT and (VI )~ (V,,,, ¢).

qt+1 qt+1

(A2.2) FormS = —A(Vi+1g)~1 AT

qt+1

(A2.3) Determinew by solvingSw = A(V‘Zt+1¢)‘1(vqt+1¢).

qt+1

(A2.4) DetermineAZ by solving (V;’:Zigb)‘lAZ = ATw — (V4,,0)-

convex relaxation based bandwidth allocation method, werig the complexity for computing
(Via @) and(V;?Zigb). The cost of block elimination to solve (29) is dominated bg Cholesky
decomposition o2 ¢ which is used to findVZ*!¢)~'. Let us define) = N(R+ 1). Then,
in order to compute the Cholesky decomposition of the ma(tﬂ%zigb), we require a total of
+(V®—V) summations and multiplications ard3V? — 3V) divisions [18]. Thus the complexity
of bandwidth allocation based on convex optimization iases withO(N3(R + 1)3).

At each iteration of Newton’s method, the solution veadigr; is updated by§; .1 = Gi+1 +
sAZ wheres € (0, 1] is the step size obtained by the backtracking line searchaddtl7]. We
#TAZ)V/?, is less than

some predefined precision. The summary of the Newton’s ndethpresented in Algorithm 3.

stop the Newton iterations when the Newton decremgn§; (—V,,,,
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Algorithm 3 Newton’s method for the bandwidth allocation problem
Find a feasible starting poird;.; from (30) and set precision> 0

Repeat

(A3.1) Compute the Newton Step\Z from (31) and Newton decremend =
(—Vi 6T AZ)Y?

(A3.2) Choose Step size by backtracking line search.

(A3.3) Updateq; .1 = qi+1 + SAZ

(A3.4) Quit if \?/2 < ¢, thenq;,, = q:+1, else go to Step (A3.1).

The Probabilistic Transmission Scheme: From the optimal solution of the relaxed problem
4;.,, the bandwidth distribution for the next time step needseéadbtermined. For the sensor
selection problem, the authors in [1] employed a simple s&h& whichk sensors are selected
out of N sensors by first sorting;; in descending order and then settih¢prgest elements of
q;,, to one. For the bandwidth distribution problem, a similduton is to sort the probabilities
¢i.m in descending order and then to assign 1 starting from trgeegarprobability until the
bandwidth constraint is satisfied. However, in this papes, aensider a randomized scheme
similar to the ones used in [1] and [11]. Since the elemen®;of are within the ranggo, 1],
we can consider eacf) ,, as the transmission probability of sengptransmitting information
in m bits. Instead of putting a strict bandwidth constraint, EL R;++1 = R, the probabilistic
transmission puts a weak constraint on the bandwidth dikilaand ensures that the sensors
on the average transmit bits to the fusion center. We present a numerical examplehen t

probabilistic transmission scheme in Section IV.

B. Approximate Dynamic Programming based Bandwidth Distribution

In this section, we present the bandwidth allocation athoribased on A-DP which will be
shown to provide near optimal solution but require much t@ssaputation time than the convex
relaxation approach. Note that the Fisher information ma@n be expressed as the summation
of each sensor’s individual Fisher information matricesdafned in (23). In this section, we
formulate an approximate DP recursion in tracking applcet where we can maximize the

Fisher information by maximizing its determinant subjexcthe bandwidth constraint.
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Typically DP involves progression along time. But in our lplem formulation the DP
progresses across sensors and is executed at each timétsagziag to determine the bandwidth
allocations of the next time step. Since A-DP is performedaath time step, for simplicity, the
time indext + 1 for Fisher information matrix is dropped. Instead an indexthe stages in DP
is adopted. Lefy = J;;1 andA;(R;) = J2 | (R;) be the reward in terms of Fisher information
when sensof quantizes its measurement i) bits (R; € {0, 1, ..., R}). While constructing the
DP trellis, the bandwidth distribution problem is first dled into/N + 1 stages which correspond
to N sensors and a termination stage. We define the state of aagafe remaining bandwidth
for the usage of sensar So each stage hak + 1 states associated with it. The bandwidth
allocation chosen at any sensor (stage) determines théleatates at the next sensor. An
example DP trellis is shown in Fig. 2 with = 6 and R = 3 which implies a total of 7 stages
and 4 states in the DP trellis. As an example, semgsrat state- = 1 means 2 bits have already
been used by the othé¥ — 1 sensors and 1 bit is available for sengorThen, sensor 1 can
only take the actiom (1) and the DP goes to the termination stage (st@gehich has only
the O bit available state.

For such a DP trellis, we have,

Jv =ANRN) +{AN_1(Ry_1) + ...+ Ay(Ry) + Jo}

— AN(RN) + JN_1

J, =A(R)+Jo (36)
whereJ, = 2;}1 and Zf\il R; = R. According to the matrix determinant lemma [19],
det(X + A) = det(X + AI) = det(X) det(I + X *A)
With X = J,_;, A = A;(R;), andI being the identity matrix, we have

log { det(JN)} = log { det(JN_l)} +log { det [T+ Jy5, An(Ry)] }

iog { det(Jl)} = log { det(Jo)} + log { det (I + ngAl(Rl))}
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As(0) Ay

AINNJINAINGIND,

Js(3) J5(3) J43) J33) J53) 33

i=6 i=5 i=4 i=3 i=2 i=1

Fig. 2: Trellis of the DP for tracking time step (N =6, R = 3).

We can maximizelet(Jy), by maximizinglog < det(Jy) p. The DP recursion at each stage
is formulated as follows: the trellis starts frakg(0) and for the first stage & 1) and for all- €
{0,1,..., R},

log {det[Jl(r)]] = log [det[l + ng(O)Al(r)]} + log [det[Jo(O)]} (37)
Then for all the intermediate stagés {2,...,N — 1} and for allr € {0, 1, ..., R},

log [det[.]i(r)]] = (38)

max < log [det[I +J; 4 (r — /{:)Ai(k)]] + log {det[Ji_l(r — l{;)]}

k=0,1,...,r

Finally for the last stage = N,

log {det [JN(R)]] — (39)

k=0,1,...R

max { log {det[I + Iy (R - /{Z)Ai(k)]] +log [det[JN_l(R - /f)]} }

In (37), (38), and (39), the reward of senst transmission inR; bits depends not only on
A;(R;) but also on the FIM of the previous stagg’,. So at each stage the FIM, J;(r), which

has the maximum determinant should be stored in a memorytdarse at the next recursion.
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Note that the proposed A-DP may not yield the maximum matetedninant at the final stage.
The suboptimality of the A-DP recursions is discussed latehis section.

We analyze the computational complexity of A-DP in terms wintber of matrix summations.
Note that the number of element-wise summation is a scalesiove of number of matrix
summations. The first stage neellsmatrix summations to compute the FIM at all states. For
all the intermediate stages, at each state- € {1, ..., R}), r different matrix summations are
required to find the FIM with the maximum determinant. Fipalt stage/N, A-DP again needs
over R matrix summations in order to maximize the determinani«fJ . So the A-DP totally

searches over,
R

}H%N—%lgy

r=1

R(R+1)

+R=2R+ (N 2=

matrix summations which is linear iv and quadratic inR.

Suboptimality of the A-DP recursions: For a given state of a stage, we choose the path with
the maximum determinant of the FIM and dismiss all the otrehg arriving at this state. The
proposed DP recursions would yield the optimal solution taximize the determinant of the

FIM, if the following property were satisfied,

if  det{J'} > det{J"} (40)
then det{A +J'} > det{A +J"}

for some positive semidefinite matricds J* and A. Unfortunately, the above property is not

10 " 1 —0.1
necessarily true. Consider the simple examgle= andJ =
0 1 —0.1 1
! " 1 0‘1 i 1"
wheredet{J } > det{J }. Let A = . Thendet{A +J } < det{A +J"}.
0.1 1

At each stage of the DP, we only store the FIM with the maximweteaninant. Therefore,
the final solution obtained by the DP recursions becomesginbal since not all the feasible

solutions are enumerated.

C. Existing Suboptimal Bandwidth Distribution Methods

In this section, we review some existing suboptimal methbds are suitable for solving the

bandwidth allocation problem in target tracking applioas.
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1) GBFOS Algorithm: This algorithm has been first proposed in [8] for dynamic bedth
allocation in target tracking. The GBFOS algorithm stangsassigning the maximum number
of bits, R to each sensor in the network and then reduces the numbetsobrie bit at a time
until the sum rate constraint is satisfied. The GBFOS algoritan be stated as in Algorithm
4. Note that in order to simplify the notation, we drop thedimdext¢ + 1 in the algorithm.
As shown in Step (A4.1), at each iteration, the GBFOS algorisearches th&/ sensors and
reduces the bits of the sensor by one which ensures the mimiraduction of the determinant
of the FIM. An efficient implementation of the GBFOS algonthand its complexity analysis
can be given as follows:

Let us defineJ’ as the FIM after the'" iteration, andA,(Ry) £ JZ.,(R;) as sensok’s
contribution to the FIM usingR), bits. In the beginning, we need to calculaté = J/. , +
Ai(R)+ Az(R) + ... + Ay(R). As a result, totallyN matrix summations are needed. At the
i-th iteration, where = 1,..., (N — 1)R, there are at mosV different ways to reduce 1 bit.
Assuming one particular solution is to reduce one bit ati#tl sensor, X € {1,2,...,N}),
andJ' (k) = J=1 + Ap(R, — 1) — Ax(Rx), which requires two matrix summations. Hence at
each iteration, at mostN matrix summations are required. At the end of tHeiteration, we
store J*(k) with the maximum determinant. In summary, we need at most 2N (N — 1)R
matrix summations, which is quadratic i¥ and linear inR. Note that this is an upper bound
on complexity.

2) Greedy Algorithm: Basically, greedy search is the reverse of the GBFOS methudhw
makes the algorithm much faster. The greedy algorithm castéied as in Algorithm 5. The
greedy algorithm starts by assignifigits to each sensor in the network and then increases the
number of bits one bit at a time until the sum rate constrairgatisfied inR iterations. At each
iteration, greedy algorithm searches tNesensors and a single bit is added to the sensor which
maximizes the determinant of the resulting FIM.

The implementation of greedy search and its complexity @asthted as follows: At the first
iteration, there areV different ways to add 1 bit. For theth way of adding 1 bitJ'(k) = J©, , +
A (1). Then we sefl! = max;, det(J'(k)). Hence, totallyN matrix summations are required at
the first iteration. At the-th iteration, fori = 2, ..., R, there are stillV different ways to add 1
bit. For thek-th way of adding 1 bitJ‘(k) = J*~' + Ay(Ry + 1) — Ax(Ry). Note thatA,(Ry)
could be a zero matrix sinck,, could be zero. Therefore, for each iteration, at most a tital
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Algorithm 4 GBFOS - Bandwidth Distribution Algorithm

SetRy=[R1 =R,...,Ry =Rl andJ’ = J, + A1(R) + A2(R) + .... + Ax(R).
FORi=1:(N-1)R
(AA1)FOR k=1:N
IF R, >0
Reduce one bit from sensérand computelet(J‘(k)) where
Ji(k) =371+ Ap(Rr — 1) — Ar(Ry).
ENDIF
ENDFOR
(A4.2) V k with R, > 0, find the sensop* for which det(J’(k)) is the maximum:

PR e ST )

(A4.3) Decrement?,. = R,- — 1, updateR,; = [Ry, ..., Ry, ..., Ry] and set]’ = J'(p*).

ENDFOR

2N matrix summations are required. In summary, we need at (MestR —1)2N = N(2R—1)

matrix summations which is an upper bound for the complesitgreedy search.

Algorithm 5 Greedy Bandwidth Distribution Algorithm

SetRy=[R; =0,...,Ry =0] andJ’ = J[,.
FOR:i=1:R
(AM1)FOR k=1:N
Add one bit to sensok and computelet(J'(k)) where
Ji(k) =T+ Ap(Rr +1) — Ar(Ryp)-
ENDFOR
(A4.2) Find the sensop* for which det(J*(k)) is the maximum:
p* = arg max det(J'(k)).

(A4.3) IncrementR,- = R,- + 1, updateR; = [Ry,..., Ry, ..., Ry] and set]* = J'(p

ENDFOR
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[V. SIMULATION RESULTS

In this section, we illustrate the performance of differelyhamic bandwidth distribution
methods with numerical examples. For the convex relaxafimmblem, we solve the linear
programming problem in (30) which is formulated to find thadile initial point by using the
“linprog” routine in MATLAB . The Newton method parametersandr are selected according
to [20]. Simulation results show that, for the convex retaxascheme, the optimal solution is
reached in around ten iterations.

We evaluate the computation time of each bandwidth allonapproach by using the “etime”
function of MATLAB averaged over 100 trials. In Fig. 3, the ame computation times of
the considered suboptimal bandwidth allocation schemescampared. Since the number of
summations for A-DP increases linearly wiif, for large number of sensors, the computation
time of A-DP is less than the computation time of GBFOS andverrrelaxation where the

number of summations increase quadratically and cubicalipectively.

. T
—A— Convex Relax
== Approx. DP

GBFOS
Greedy

Computation Time
=
o

o M

0 10 20 30 40 50 60 70
Number of Sensors

Fig. 3: Computation time in seconds for convex relaxatiodD® GBFOS, and greedy search
(R=15).

We next compare the MSE performances of the bandwidth loigion schemes based on
optimal exhaustive search, A-DP, convex optimization, GBFand greedy search. In addition,
we analyze the MSE performance of nearest neighbor bankvélbibcation, where all the

bandwidth is assigned to the sensor which is nearest to thaigbed target location. In our
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simulations, we assume that sensors are grid deployed inbd= 20 m x 20 m surveillance
area as shown in Fig. 4-(a) and (b). We selBgt= 10° and sensor observation noisé = 1.

The probability density function of the target’s initialage, p(x,), is assumed to be Gaussian
with mean, = [-8 — 8 2 2] and covariance, = diag[oi o5 0.01 0.01] where we select
30y = 2 so the initial point of the target remains in the ROI with véigh probability. The target
motion follows a white noise acceleration model and we atsrsiwo process noise parameters
p = 25x 1072 and p = 0.1. Measurements are assumed to be taken at regular intervals o
D = 0.5 seconds and the observation length (isseconds. Namely, we perform target tracking
overTs = 20 time steps for each Monte-Carlo trial. The number of pagtialsed in the particle
filter is IV, = 5000. We assume&R = 5 bits of bandwidth is available at each time step for data

transmission. The MSE at each time step is averaged Bygr, = 500 trials as,

1 Ttrials

MSE(t) =

(7 (1) = %7(1)" + (x}(2) —%7(2))"] (41)

trials
where in thev'™ trial x¥ andx? are the actual and estimated target states at tirespectively.

In Fig. 4-(a) and (b), a WSN is illustrated wheke= 9 sensors track a target under the process
noise parameterg = 2.5 x 1072 and p = 0.1 respectively. Fop = 2.5 x 103, the process
noise is relatively small and the target trajectory is altdeterministic. Fop = 0.1, the target
trajectory has relatively large uncertainty. For the fiigtet step of tracking, Table | presents
each sensor’s transmission probability for each quamizatate for the convex optimization
based bandwidth allocation scheme with= 5. Note that att = 1, the target is relatively
close to sensor 1 located &t10 m.,—10 m.). Then it is very likely that sensor transmits
its measurement using = 5 bits because of the probability; 5 ~ 0.84. Rest of the sensors
tend to remain silent since their transmission probaéditising) bits are almost 1. As seen in
Table II, the probabilistic transmission introduces a weakstraint on the bandwidth and on
the average sensors transmitbits to the fusion center.

For N = 9 sensors, Figs. 5-(a) and 5-(c) show the average number sbreactivated and
Figs. 5-(b) and 5-(d) show the MSE at each time step of trackweraged over 500 Monte-
Carlo trials. Simulation results show that unger 2.5 x 1073, convex relaxation, A-DP and
GBFOS vyield similar tracking performance to that of exhaessearch in terms of MSE. For
p = 2.5 x 1073, between the time steps 8 and 10, the target is relativelyecto sensob

located at(0,0). Hence, using exhaustive search, A-DP, convex relaxatind, GBFOS based
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TABLE I: Transmission probabilities of each quantizatiaterfor N =9 andR =5 att =1

for the example illustrated in Fig. 4-(a).

m=0 | m=1|m=2|m=3| m=4| m=5
¢=1 | 0.0021 | 0.0010 | 0.0011| 0.0037 | 0.1482 | 0.8440
i=2 | 0.9877 | 0.0082 | 0.0003| 0.0017| 0.0012 | 0.0009
i=3 | 0.9895 | 0.0053 | 0.0021 | 0.0014 | 0.0010 | 0.0008
i=4 1] 09906 | 0.0031| 0.0031| 0.0017| 0.0011 | 0.0003
i=>5 | 0.9888 | 0.0057 | 0.0023 | 0.0014| 0.0010 | 0.0008
i=06 | 0.9895 | 0.0053 | 0.0021 | 0.0014| 0.0010 | 0.0008
i=7 | 09895 | 0.0053| 0.0021 | 0.0014| 0.0010 | 0.0008
=28 | 0.9895 | 0.0053 | 0.0021| 0.0014| 0.0010 | 0.0008
i=9 | 0.9895 | 0.0053 | 0.0021| 0.0014| 0.0010 | 0.0008

TABLE Il: Mean and Standard deviation of the total number @insmitted bits using convex

relaxation based bandwidth allocation methéds= 5.

Mean | Standard Deviation
N=9,p=25x10"3% | 50071 1.9781
N =25 p=25x10"% | 50291 1.6264
N=9 p=0.1 5.0129 1.3439
N =25 p=0.1 5.0093 1.2119

bandwidth allocation schemes, almost all the bandwidtliasa@ed to sensads. When the target
is not relatively close to any of the sensors, as in time s&fsand 12-17, the fusion center
has relatively large uncertainty about the target locatsmmultiple sensors are activated with
relatively coarse information which increases the esimna¢rror as shown in Fig. 5-(b). After
time step 17, the target approaches sensor 9 and by usingsixieasearch, convex relaxation,
A-DP and GBFOS, all the bandwidth is assigned to sensor 9 lzend éstimation error reduces
again. The greedy bandwidth allocation scheme tends teaéetmore sensors all the time with
relatively coarse information as compared to the other waitt allocation algorithms. With

small process noise parametgr= 2.5 x 1073), nearest neighbor based bandwidth allocation
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Fig. 4: A WSN with N = 9 sensors tracking sample targets fa} 2.5 x 1073 (b) p = 0.1.

becomes more accurate than greedy search since the tajgetdry is highly deterministic and
there is a small uncertainty on the predicted target lonatitowever, the tracking performance
of the nearest neighbor approach is still not as good as tfaysexhaustive search, convex
relaxation, GBFOS, and A-DP. Fgr = 0.1, the uncertainty on target trajectory is relatively
large and we observe a worse tracking performance as cothfiathep = 2.5 x 10~ case. On
the other hand, still A-DP, convex optimization, and GBFG®fgrm equally well as exhaustive
search in terms of MSE and outperform greedy search.gFer 0.1, nearest neighbor based
bandwidth allocation introduces much larger estimatiogonrerwhich are sometimes even greater

than those obtained by the greedy search based dynamic leihdMocation scheme.

For N = 25 sensors, Figs. 6-(a) and 6-(c) show the average number sbiseactivated and
Figs. 6-(b) and 6-(d) show the MSE at each time step of trackBince the sensor density
is increased, the bandwidth allocation schemes tend tgrasdi the available bandwidth to a
single sensor which has more precise information aboutatget. This improves the tracking
performance at each time step. foe 2.5 x 1073 andp = 0.1 cases, convex relaxation, A-DP
and GBFOS vyield similar estimation performances and thegifsicantly outperform the greedy

search and nearest neighbor based bandwidth allocatiowages in terms of the MSE.
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Fig. 5: N =9, R =5, T;;e = 500 (a) Average number of active sensopsE 2.5 x 1073, (b)
MSE at each time step, = 2.5 x 1073, (c) Average number of active sensopss 0.1, (d) MSE

at each time steg; = 0.1.

V. CONCLUSION

In this paper, we studied the dynamic bandwidth allocatiovblgem for target tracking in a
WSN with quantized measurements. Under the bandwidthabily constraint, we proposed
two bandwidth distribution schemes which are based on corelaxation and approximate DP
to maximize the determinant of the FIM. Simulation resuli®w that convex relaxation, A-

DP and GBFOS algorithms yield similar tracking performanahich is close to that provided

July 9, 2018 DRAFT



JOURNAL OF BTEX CLASS FILES, VOL. X, NO. X, SEPTEMBER 20XX 28

—=— A-DP —&— A-DP

451 GBFOS 1 1.8r ''N/'' GBFOS
Convex Relax. Convex Relax.
4H Greedy 4 1.6} Greedy

Nearest —B— Nearest
351 : : g 14 ‘
3r b 1.2

0.8

&

o

0

@

o w
225 g 1
3]

©

s

o

#*

0.6

Time Step Time Step
(@) (b)
5 T T T 8 T
—=— A-DP —&— A-DP
4.5 GBFOS q Y/ GBFOS
Convex Relax. m Convex Relax.
4H Greedy 4 Greedy
Nearest 6H —B— Nearest

# of active sensors
MSE
N

Time Step Time Step
(©) (d)

Fig. 6: N = 25, R = 5, T},.a = 500 (a) Average number of active sensops+ 2.5 x 1072 , (b)
MSE at each time step,= 2.5 x 1073, (c) Average number of active sensops+ 0.1 (d) MSE

at each time stegy = 0.1.

by the optimal exhaustive search approach, and they ootperthe greedy search and nearest
neighbor approach significantly. Using the optimal solutad the convex optimization problem
as the probability of transmission at each data rate, corelaxation based bandwidth allocation
satisfies the bandwidth constraint on the average while ttiner dvandwidth distribution methods
put a strict constraint on the bandwidth availability. Imbts of computational complexity, A-DP

is computationally more efficient than GBFOS and convexxaian methods especially for a
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large sensor network with a large.
In this work, we developed and compared bandwidth allooatithemes in target tracking for
one step ahead only. Our future work will cover extensionproposed schemes to hon-myopic

scenarios. Multi-target tracking by dynamic bandwidtloedition will also be considered as a

future research direction.

APPENDIX

It is easy to show that
m o ; dr2 L= (] —a; )2
i@ (771 az,t) _ Gipnady, (z xt)e_lTQ) (42)
O o 2v2mo%(1 + ady,)
Then, substituting (42) in (17), we have

82
E {—@P(Di,t = Z|Xt> Rz’,t = m)} (43)

B (" —a; )2 _ (] q—a; )2 2
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Due to the symmetry between elementsand y;,

2 d%z—él

= K:i,t(m7 xiuyiuxtuyt> (.IZ — .C(,"t)z

2 2 2d2n—4
it

92 o . o ai,tn (0% , 9
1) [_B_g/fp(Dzvt = Z|Xt, Ri,t = m)] - /fi,t(ma Liy Yiyr Tt yt) 2 (yl - yt) (44)
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and
82
E {— 8xt8ytp(Di’t =l|x, Riy =m) (45)
ey
= kig(m, zi, yi, T, yt)m(% — 24)(Yi — Y1)
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