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Accurate and Computationally Efficient

Tensor-based Subspace Approach for

Multi-Dimensional Harmonic Retrieval
Weize Sun and H.C. So

Abstract

In this paper, parameter estimation forR-dimensional (R-D) sinusoids withR > 2 in additive white

Gaussian noise is addressed. With the use of tensor algebra and principal-singular-vector utilization

for modal analysis, the sinusoidal parameters at one dimension are first accurately estimated according

to an iterative procedure which utilizes the linear prediction property and weighted least squares. The

damping factors and frequencies in the remaining dimensions are then solved such that pairing of the

R-D parameters is automatically achieved. Algorithm modification for a singleR-D tone is made and

it is proved that the frequency estimates are asymptotically unbiased while their variances approach

Cramér-Rao lower bound at sufficiently high signal-to-noise ratio conditions. Computer simulations are

also included to compare the proposed approach with conventional R-D harmonic retrieval schemes in

terms of mean square error performance and computational complexity.

Index Terms

multi-dimensional spectral analysis, harmonic retrieval, parameter estimation, tensor algebra, sub-

space method

I. INTRODUCTION

The problem of harmonic retrieval (HR) has been an importanttopic in science and engineering because

many real-world signals can be well described by the sinusoidal model. Although one-dimensional (1-D)
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spectral analysis is the most common, multi-dimensional HRin fact has numerous applications such as

wireless communication channel estimation [1]–[2], nuclear magnetic resonance (NMR) spectroscopy [3]

and multiple-input multiple-output (MIMO) radar imaging [4].

As in 1-D spectral estimation,R-dimensional (R-D) HR whereR ≥ 2, can be achieved by means of

either nonparametric or parametric approaches [5]. Analogously, the crucial step in theR-D scenarios is

to find the damping factor and frequency parameters which arenonlinear functions of the observed data.

The nonparametric HR methods, including the periodogram and correlogram, are based directly on the

Fourier transform. Although no assumptions are made about the observed sequence, the resolution, or

ability to resolve closely spaced frequencies using the nonparametric approach is fundamentally limited by

the length of the data available. On the other hand, the parametric approach, which assumes that the signal

satisfies a generating model with known functional form, canattain a higher resolution. ConventionalR-D

parametric HR techniques include maximum likelihood (ML) [6], iterative quadratic ML (IQML) [7] and

subspace [1]–[3], [8]–[14] approaches such as estimation of signal parameters via rotational invariance

technique (ESPRIT) and multi-dimensional folding (MDF). However, the ML-based methods are only

feasible for 2-D HR due to their extremely high computational requirement. On the other hand, the

subspace methodology involves a smaller complexity, and its underlying principle is to separate the data

into signal and noise subspaces, usually via eigenvalue decomposition (EVD) of the sample covariance

matrix or singular value decomposition (SVD) of the raw datamatrix, and the parameters of interest are

then extracted from the corresponding eigenvectors, singular vectors, eigenvalues or singular values.

For 2-D cases, the data perfectly align with the matrix representation and thus EVD or SVD can be

straightforwardly applied. Nevertheless, even signals with R > 2 are stored in matrices by means of

stacking operations in most of the existing subspace-basedapproaches. In fact, it is more natural to store

and manipulate higher-dimensional signals using tensors [15]–[16]. Although tensor methods such as

higher-order SVD (HOSVD) or parallel factor (PARAFAC) havebeen very popular in some scientific

areas, particularly chemometrics and psychometrics [17],they are relatively new in the signal processing

discipline. It is worth mentioning that the links of multidimensional HR with tensor algebra and HOSVD

were first recognized in [18] and [19], respectively. Other important pioneer works on tensor-based HR

include [4], [10]–[11], [20]. To the best of our knowledge, the state-of-the-art subspace-basedR-D HR

methods cannot provide estimation performance attaining the Cramér-Rao lower bound (CRLB) [21].

It is also desirable that the computational requirement of the HR schemes can be made lower even in

processing multi-dimensional data. In this paper, we contribute to the development of an accurate and

computationally efficient tensor-basedR-D HR approach.
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The rest of the paper is organized as follows. In Section II, we first introduce the necessary notation

and then formulate the problem ofR-D HR in the presence of white Gaussian noise. By exploiting

the subspace methodology of principal-singular-vector utilization for modal analysis (PUMA) and tensor

algebra, the proposed estimation algorithm is developed inSection III. Note that we have already applied

PUMA for a single 2-D tone in [14] where the key ideas are to exploit the rank-one property of the

corresponding 2-D noise-free data matrix and to find the damping factor as well as frequency parameters

for each dimension from the left and right principal singular vectors in a separable manner. With the

use of tensor algebra, the parameters of interest at one dimension will first be accurately estimated

according to an iterative procedure which utilizes the sinusoidal linear prediction (LP) property and

weighted least squares (WLS). By employing the estimated parameters and observed tensor data, we are

able to decompose the tensor into damped single-tone sequences which correspond to the damping factors

and frequencies in the remaining dimensions. They are then estimated according the iterative procedure

and the pairing of theR-D parameters is automatically achieved. As tensor algebraand PUMA are

exploited, the devisedR-D HR approach is referred to as tensor PUMA (TPUMA) algorithm. We also

devise a computationally attractive scheme to determine the appropriate dimension for processing in the

first stage. In Section IV, the proposed approach is modified for a singleR-D undamped tone and it is

proved that the frequency estimates are asymptotically unbiased and their variances attain CRLB when

signal-to-noise ratio (SNR) is sufficiently high. In Section V, extensive simulation results are included

to evaluate the performance of the PUMA approach by comparing with the ESPRIT [8]–[11] and MDF

[12]–[13] algorithms as well as CRLB. Finally, conclusionsare drawn in Section VI.

II. N OTATION AND PROBLEM FORMULATION

The notation used in this paper is first introduced as follows. Scalars, vectors, matrices and tensors

are denoted by italic, bold lower-case, bold upper-case andbold calligraphic symbols, respectively. The

rth unfolding ofAAA is written as[AAA](r) ∈ CMr×(M1M2···Mr−1Mr+1···MR) where the order of the columns is

chosen according to [15]. Ther-mode product of tensorAAA ∈ CM1×M2×···×MR and matrixU ∈ CNr×Mr

along therth dimension is expressed asBBB = AAA ×r U ∈ CM1×M2×···×Mr−1×Nr×Mr+1×···×MR where

[BBB](r) = U[AAA](r). Note thatBBB can be interpreted as multiplying allr-mode vectors ofAAA by U. The

outer product of two tensorsAAA ∈ CM1×M2×···×MP andBBB ∈ CN1×N2×···×NQ is a (P + Q)-D tensor of

the form CCC = AAA ◦ BBB ∈ CM1×M2×···×MP×N1×N2×···×NQ where cm1,m2,...,mR,n1,n2,...,nR
= am1,m2,...,mR

·
bn1,n2,...,nR

and ◦ is the outer product operator. The symbol⊔ represents the concatenation operator

whereAAA = AAA1 ⊔r AAA2 is obtained by stackingAAA2 ∈ CM1×M2×···×Mr−1×L2×Mr+1×···×MR to the end of
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AAA1 ∈ CM1×M2×···×Mr−1×L1×Mr+1×···×MR along therth dimension. The HOSVD ofAAA ∈ CM1×M2×···×MR

is AAA = SSS ×1 U1 ×2 U2 · · · ×R UR whereSSS ∈ CM1×M2×···×MR is the core ordered tensor satisfying the

all-orthogonality andUr ∈ CMr×Mr , r = 1, 2, · · · , R, are the unitary matrices of ther-mode singular

vectors [15]. Finally, the remaining mathematical symbolsused in the paper are listed in Table 1.

Symbol Meaning

∠(a) angle ofa

|a| magnitude ofa
T transpose
H conjugate transpose
∗ complex conjugate
−1 inverse
† pseudoinverse

vec vectorization operator

⊗ Kronecker product

⊙ Khatri-Rao product

E expectation operator

C
M1×M2×···×MR set ofM1 ×M2 × · · · ×MR complex tensors

Ii i× i identity matrix

0i×j i× j zero matrix

Ã variable ofA

Ā noise-free value ofA

Â estimate ofA

[a]
i

ith element ofa

[A]
i,j

(i, j) entry ofA

am1,m2,...,mR
(m1,m2, . . . ,mR) entry of aR-D tensorAAA ∈ CM1×M2×···×MR

diag(a) diagonal matrix with vectora as main diagonal

rank(A) rank ofA

span(A) span ofA

Tr(A) trace of the square matrixA

blkdiag(A1,A2, · · · ,An) block diagonal matrix with submatricesA1,A2, · · ·An

Toeplitz(a,bT ) Toeplitz matrix with first columna and first rowb
T

Table 1: Mathematical symbols

The observedR-D sinusoidal signal is modeled as:

YYY = XXX +QQQ (1)
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where

xm1,m2,...,mR
=

F∑

f=1

γf

R∏

r=1

αmr

r,f e
jωr,fmr , mr = 1, 2, . . . ,Mr, r = 1, 2, . . . , R, f = 1, 2, . . . , F (2)

TheYYY ∈ CM1×M2×···×MR is the tensorial structured data set with lengthMr along therth dimension.

The tensorXXX is the signal component whereγf , ωr,f ∈ (−π, π) and αr,f ∈ (0, 1], f = 1, 2, · · · , F ,

represent the unknown complex amplitudes, frequencies anddamping factors in therth dimension, and

F is the number ofR-D frequencies which is assumed knowna priori. It is assumed that at least one of

{Mr} is larger thanF with distinct frequencies. For ease of presentation but without loss of generality,

we let MR > F with all {ωR,f} being distinct. On the other hand, the elements inQQQ are zero-mean

complex white Gaussian noises with unknown variancesσ2. The task is to find{ωr,f} and{αr,f} from

theM =
∏R

r=1Mr entries ofYYY . Note that{γf} can be easily estimated by applying a least squares (LS)

fit [14] on (1) after the frequencies and damping factors havebeen determined.

III. PROPOSEDESTIMATOR

Employing the connection between the PARAFAC and HR in [4], the noise-free tensorXXX can be

expressed as

XXX =

F∑

f=1

γfg1,f ◦ g2,f · · · ◦ gR,f (3)

where gr,f =
[
ar,f a2r,f · · · aMr

r,f

]T
, ar,f = αr,fe

jωr,f (4)

According to (3),XXX can also be written as

XXX = CCCγ1,γ2,...,γF
×1 G1 ×2 G2 · · · ×R GR (5)

where Gr =
[
gr,1 gr,2 · · · gr,F

]
(6)

andCCCγ1,γ2,...,γF
∈ CF×F×···×F is aR-D tensor whose(f, f, · · · , f) entry equalsγf and zero otherwise.

Based on (3) and (5), therth unfolding ofXXX is

[XXX ](r) = GrΣ(Gr+1 ⊙Gr+2 ⊙ · · ·GR ⊙G1 ⊙G2 ⊙ · · ·Gr−1)
T (7)

where Σ = diag
([

γ1, γ2, . . . , γF

])
(8)

On the other hand, computing the HOSVD ofYYY yields

YYY = SSS ×1 U1 ×2 U2 · · · ×R UR (9)
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where eachUr, r = 1, 2, · · · , R, is related to the SVD of[YYY](r) as

[YYY](r) = UrΛrV
H
r (10)

where Λr = diag
([

λr,1, λr,2, · · · , λr,Nr

])
, Nr = min{Mr,M/Mr}, is the square diagonal matrix

containing singular values withλr,1 ≥ λr,2 ≥ · · · ≥ λr,Nr
≥ 0 while Ur =

[
ur,1 ur,2 · · · ur,Nr

]
∈CMr×Nr and Vr ∈ C(M/Mr)×Nr are orthonormal matrices whose columns are the corresponding left

and right singular vectors of[YYY](r), respectively.

As the rank of tensorXXX is F , we use the observedYYY to obtain a low multi-linear rank approximation

or the truncated HOSVD ofXXX , denoted byX̂XX [15]:

X̂XX = SSS [s] ×1 U
[s]
1 ×2 U

[s]
2 · · · ×R U

[s]
R (11)

whereU
[s]
r =

[
ur,1 ur,2 · · · ur,lr

]
∈ CMr×lr , r = 1, 2, · · · , R, lr = min{F,Mr,M/Mr}, and

SSS [s] has only the firstlr elements ofSSS in the rth dimension. Although (11) is not the best rank-F

approximation, optimum estimation performance can be achieved, which is demonstrated in Sections

IV and V. Noted that the best rank-(l1, l2, · · · , lR) approximation [22] ofXXX can be employed but its

computational complexity is much higher.

Comparing (5) and (11), we deduce that whenMr ≥ F , span(Ū[s]
r ) ⊆ span(Gr), and thus we can

write

Ū[s]
r = GrΩr, r = 1, 2, · · · , R (12)

where eachΩr ∈ Clr×F is an unknown nonsingular matrix. Assuming that all frequencies are distinct in

the rth dimension which impliesrank(Gr) = F , each column ofŪ[s]
r =

[
ūr,1 ūr,2 · · · ūr,lr

]

is a different linear combination ofF damped cisoids, namely,αr,1e
jωr,1, αr,2e

jωr,2, · · · , αr,F e
jωr,F .

According to the sinusoidal LP property, we have:

[ūr,f ]m +

F∑

i=1

cr,i[ūr,f ]m−i = 0, m = F + 1, F + 2, . . . ,Mr, f = 1, 2, . . . , lr (13)

where{cr,i}, which are characterized by{αr,fe
jωr,f} only, are the LP coefficients for therth dimension.

That is,{ar,f} are given by theF roots of zF +
∑F

i=1 ci,rz
F−i = 0. Since{cr,i} are common for all

columns inŪ[s]
r , we can formulate a multi-channel estimation problem [23] for their determination by

considering thelr column vectors aslr channel outputs.

Basically, we can exploit (12)–(13) to determine the frequencies and damping factors at each dimension

individually from the noisyU[s]
r , r = 1, 2, · · · , R. However, this straightforward idea has three drawbacks.

First, we have to computeR SVDs according to (10). Second, parameter matching for theR-D parameters
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is needed. Both correspond to extensive computational requirement particularly for largeR, F and/or

{Mr}. The last disadvantage is thatMr > F for r = 1, 2, · · · , R, and distinct frequencies at each of

the R dimensions are required. In order to achieve computationalefficiency and reduce the restriction,

we propose an alternative estimation procedure as follows.The main strategy is first to estimate the

frequencies and damping factors at only one dimension by exploiting (12). We then make use of these

estimates and the inherent structure ofXXX as well as tensor algebra to determine the parameters of the

remaining dimensions such thatR-D frequency matching is automatically achieved. According to our

assumptions in Section II thatMR > F andωR,i 6= ωR,j , i 6= j, i, j = 1, 2, · · · , F , we start the estimation

at theRth dimension fromU[s]
R by following [23] which utilizes the LP property and WLS. Nevertheless,

we will discuss the selection of the first dimension for processing at the end of this section.

For sufficiently small noise condition, each column ofU
[s]
R will approximately satisfy (13). Defining

c =
[
cR,1 cR,2 · · · cR,F

]
and combining all thelR = min{F,MR,M/MR} = min{F,M/MR}

columns inU[s]
R , the LP error vector, denoted bye, is constructed as:

e = Dc̃− d (14)

where

D =
[
DT

1 DT
2 · · · DT

lR

]T
(15)

d =
[
dT
1 dT

2 · · · dT
lR

]T
(16)

Df =




[uR,f ]F [uR,f ]F−1 · · · [uR,f ]1

[uR,f ]F+1 [uR,f ]F · · · [uR,f ]2
...

...
. . . · · ·

[uR,f ]MR−1 [uR,f ]MR−2 · · · [uR,f ]MR−F




(17)

df = −
[
[uR,f ]F+1 [uR,f ]F+2 · · · [uR,f ]MR

]T
, f = 1, 2, · · · , lR (18)

The WLS estimate ofc is computed as

ĉ = argmin
c̃

(Dc̃− d)H W (Dc̃− d) = (DHWd)−1DHWD (19)

whereW ∈ ClR(MR−F )×lR(MR−F ) represents the weighting matrix. In this study, we apply theGauss-

Markov theorem [21] to deriveW which is optimum in the sense of producing the minimum variance.

Let

A(c) = Toeplitz

([
cR,1 01×(MR−F−1)

]T
,
[
cR,F cR,F−1 · · · cR,1 1 01×(MR−F−1)

])
(20)
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The optimum weight is computed using the covariance matrix of the residual error vector, which is a

function of c, denoted byW(c):

W(c) = σ2
[
E
{
(Dc− d)(Dc− d)H

}]−1
= σ2

[
E

{
vec
(
A(c)U

[s]
R

)
vec
(
A(c)U

[s]
R

)H}]−1

(21)

ExpressingU[s]
R = Ū

[s]
R +∆U

[s]
R and using (1) and (10), we apply [24] to obtain

∆U
[s]
R ≈ Ū

[s]
R Θ+ [QQQ](R)V̄

[s]
R (Λ̄

[s]
R )−1 − Ū

[s]
R Ū

[s]H
R [QQQ](R)V̄

[s]
R (Λ̄

[s]
R )−1 (22)

whereV̄[s]
R andΛ̄[s]

R = diag(
[
λ̄2
R,1, λ̄

2
R,2, · · · , λ̄2

R,F

]
) are the noise-free signal subspace components and

Θ = Z ⊙
(
Ū

[s]H
R [QQQ](R)V̄

[s]
R Λ̄

[s]
R + Λ̄

[s]
R V̄

[s]H
R [QQQ]H(R)Ū

[s]
R

)
with [Z]m,n being equal to1/(λ̄R,n − λ̄R,m)

for m 6= n and zero otherwise. Using the fact thatA(c)Ū
[s]
R = 0(M−K)×M and (22), we have

A(c)U
[s]
R = A(c)∆U

[s]
R ≈ A(c)[QQQ](R)V̄

[s]
R (Λ̄

[s]
R )−1 (23)

Vectorizing both sides of (23) yields

vec
(
A(c)U

[s]
R

)
≈
(
(Λ̄

[s]
R )−1V̄

[s]T
R ⊗A(c)

)
vec([QQQ](R)). (24)

As QQQ is independent and identical distributed (IID), itsRth unfolding [QQQ](R) is also IID, then we have

E{vec([QQQ](R))vec([QQQ](R))
H} = σ2IM . With the use of (24), we obtain

E

{
vec
(
A(c)U

[s]
R

)
vec
(
A(c)U

[s]
R

)H}
≈
[
Λ−2

R ⊗A(c)A(c)H
]−1

(25)

where{λ̄R,f} are replaced by{λR,f} in practice. Substituting (25) into (21) yields

W(c) ≈ (Λ
[s]
R )2 ⊗

(
A(c)A(c)H

)−1
(26)

As W(c) is block diagonal, (19) can be simplified to

ĉ =




lR∑

f=1

λ2
R,fD

H
f

(
A(c)A(c)H

)−1
Df




−1


lR∑

f=1

λ2
R,fD

H
f

(
A(c)A(c)H

)−1
df


 (27)

which is more computational attractive. As (26) is not knowna priori, we employ the iterative relaxation

procedure [30] to solve for{ωR,f} and{αR,f}, which is summarized in Table 2. Note that this relaxation

approach corresponds to the IQML technique [25] or the Steiglitz-McBride algorithm [26], which has

local convergence property with linear rate of convergence[27].

When{âR,f} are available, the parameters in the remaining dimensions are then determined as follows.

According to (1), (2) and (5), we expressXXX as

XXX = XXX sub×R GR (28)
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(i) Compute the SVD of[YYY ](R) to obtainU[s]
R

(ii) Set A(ĉ)AH(ĉ) = IMR−F

(iii) Calculate ĉ using (27) withA(c) = A(ĉ)

(iv) Compute an updated version ofA(ĉ) using (20)

(v) Repeat Steps (iii)-(iv) until a stopping criterion is reached. In our study, we choose a fixed number of iterationsκ as the criterion

(vi) Solve all roots ofzF +
∑F

i=1 ĉR,iz
F−i = 0, denoted bŷaR,f , f = 1, 2, · · · , F

(vii) Estimate the frequencies and damping factors of theRth dimension aŝωR,f = ∠(âR,f ) and α̂R,f = |âR,f |, f = 1, 2, · · · , F

Table 2: Estimation algorithm at first stage

where XXX sub= CCCλ1,λ2,...,λF
×1 G1 ×2 G2 · · · ×R−1 GR−1

= IIIR ×1 G1 ×2 G2 · · · ×R−1 GR−1 ×R Σ (29)

with IIIR ∈ CF×F×···×F being aR-D tensor whose diagonal elements are one and zero otherwise.

Therefore, the sub-tensorXXX sub ∈ CM1×M2×···×MR−1×F can be represented as a concatenation ofF

tensors in theRth dimension:

XXX sub= XXX sub1 ⊔R XXX sub2 ⊔R · · · ⊔R XXX subF (30)

where

XXX subf = γf (g1,f ◦ g2,f ◦ · · · ◦ gR−1,f ) (31)

Note that theRth unfolding of the sub-tensorXXX sub is:

[XXX sub](R) =
[
[XXX sub1]

T
(R) [XXX sub2]

T
(R) · · · [XXX subF ]

T
(R)

]T
(32)

where [XXX subf ]
T
(R) = γfg1,f ⊙ g2,f ⊙ · · · ⊙ gR−1,f (33)

Substituting{aR,f} with {âR,f} in (4) and (6), we obtain an estimate ofGR, namely,ĜR. Furthermore,

we replaceXXX andGR by the observedYYY and ĜR, respectively, in (28), an estimate ofXXX sub, denoted

by ZZZ, is then obtained as

ZZZ = YYY ×R Ĝ
†
R = ZZZ1 ⊔R ZZZ2 ⊔R · · · ⊔R ZZZF (34)

whereZZZf is a (R− 1)-D tensor corresponding toXXX subf , f = 1, 2, · · · , F . In practice, we compute (34)

with the use of matrix operations as

[ZZZ ](R) = Ĝ
†
R[YYY](R) =

[
[ZZZ1]

T
(R) [ZZZ2]

T
(R) · · · [ZZZF ]

T
(R)

]T
(35)
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where theRth unfolding components of{[ZZZf ](R)} are vectors. Comparing (30)–(31) and (34), we deduce

thatZZZf can be approximated as:

ZZZf ≈ h1,f ◦ h2,f · · · ◦ hR−1,f (36)

where hr,f = βr,fgr,f , r = 1, 2, · · · , R − 1, f = 1, 2, · · · , F (37)

with {βr,f} being unknown constants. According to (36), therth unfolding ofZZZf , r = 1, 2, · · · , R− 1,

is thus:

[ZZZf ](r) ≈ hr,f (hr+1,f ⊙ · · · ⊙ hR−1,f ⊙ h1,f ⊙ · · · ⊙ hr−1,f )
T (38)

indicating its rank is one in the absence of noise. Based on (37)–(38), we utilize the SVD of[ZZZf ](r) to

estimate each of the remaining{ar,f} in a separable manner as follows. According to the rank-1 property,

an approximation of[ZZZf ](r) by SVD truncation is:

[ZZZf ](r) ≈ λr,f,1ur,f,1v
H
r,f,1 (39)

whereλr,f,1, ur,f,1 andvr,f,1 are the largest singular value and the corresponding left and right singular

vectors of[ZZZf ](r), respectively. That is to say,ur,f,1 is a noisy version of the 1-D single-tone sequence

hr,f up to an unknown multiplication scalar. As a result, we can apply the same iterative relaxation

procedure in Table 2 to findωr,f andαr,f from eachur,f,1, and the steps are summarized in Table 3.

(i) ConstructĜR with aR,f = âR,f , f = 1, 2, · · · , F , according to (4) and (6)

(ii) Compute[ZZZ ](R) using (35)

(iii) For eachf , f = 1, 2, · · · , F , extractZZZf from [ZZZ ](R); for eachr, r = 1, 2, · · · , R− 1, do therth unfolding of [ZZZf ],

denoted by[ZZZf ](r), and compute its left principal singular vector, namely,ur,f,1

(iv) SetW(âr,f ) = IMr−1

(v) Computeâr,f = (dH
r,f,1W(ar,f )dr,f,2)/(d

H
r,f,1W(ar,f )dr,f,1) wheredr,f,1, dr,f,2 beingur,f,1 without the

last and the first element andW(ar,f ) = W(âr,f )

(vi) Find an updatedW(âr,f ) = (A(âr)A
H(âr))

−1 whereA(âr) = Toeplitz

([
−âr 01×(Mr−2)

]T
,
[
−âr 1 01×(Mr−2)

])

(vii) Repeat Steps (v)-(vi) forκ iterations

(viii) Estimate the frequencies and damping factors of therth dimension aŝωr,f = ∠(âr,f ) and α̂r,f = |âr,f |

Table 3: Estimation algorithm at second stage

From Table 3, it is observed that even the frequencies are identical in all remaining dimensions,

r = 1, 2, · · · , R−1, the algorithm still works properly because each of the{âr,f} is separately estimated.
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Moreover, since at least two samples are needed in single-tone frequency estimation, the operating

requirement ismin{M1,M2, . . . ,MR−1} ≥ 2 with MR > F . This identifiability is inferior to the existing

results [13]. Although the proposed scheme shows inferiority in identifiability, it is able to outperform

the conventional methods in terms of computational complexity and accuracy.

The last issue we have to address for the proposed approach isto determine the appropriate dimension,

denoted byro, instead ofR, in the first estimation stage. Based on the above development, it is necessary

that Gro spans full column rank, which means that all frequencies in the roth dimension are distinct

andMro ≥ F + 1. The former requirement also suggests that the minimum separation between any two

adjacent frequencies at theroth dimension should be large among all dimensions. As a result, we suggest

to computero as:

ro = arg max
r∈[1,2,...,R]

(
(Mr − 1)min

i 6=j
|ω̂r,i − ω̂r,j|

)
, subject to Mro > F (40)

That is, for eachr such thatMr > F , we compute the weighted minimum frequency separation between

{ω̂r,i}, i = 1, 2, · · · , F , and ro corresponds to the dimension with the maximum smallest difference.

Analogous to the standard ESPRIT method [9], rough values ofall {ω̂r,i} are determined using one

SVD in our study in order to achieve computational efficiencyin the dimension selection step. As

the conventional ESPRIT approach maximizes the data reuse via spatial smoothing to boost estimation

performance, an obvious way for complexity reduction is to decrease the data redundancy. Inspiring by

[8], [28], we constructYYYss ∈ CL1×L2×···×LR×(K1K2...KR) with less redundancy fromYYY, which has the

form of:

YYYss = [YYY1,1,...,1 ⊔R+1 YYY2,1,...,1 ⊔R+1 · · · ⊔R+1 YYYK1,1,...,1 ⊔R+1 YYY1,2,...,1

⊔R+1 · · · ⊔R+1 YYYK1,2,...,1 ⊔R+1 YYY1,K2,...,KR
⊔R+1 · · · ⊔R+1 YYYK1,K2,...,KR

] (41)

whereYYYk1,k2,...,kR
= YYY ×1 J

K1

k1
×2 J

K2

k2
· · · ×R JKR

kR
, JKr

kr
=
[
0Lr×(kr−1)pr

ILr
0Lr×(Kr−kr)pr

]
and

(Kr − 1)pr + Lr = Mr, with Kr, Lr and pr, r = 1, 2, . . . , R, being integers to be determined. The

{pr} whose values are between 1 andLr, can be viewed as the reuse factors. Whenpr = 1 for all

r, YYYss involves maximum data reuse as in [10]. On the other hand, there is no redundancy inYYYss

if pr = Lr, corresponding to a smoothed tensor with the smallest size for a particular set of{Lr}.

Considering that the(R+1)-D tensorYYYss is composed ofR-D sinusoids withK1K2 · · ·KR snapshots,

then we can straightforwardly apply the matrix-based standard ESPRIT algorithm [8] to solve for all

{ω̂r,i} with Mr > F . Basically, one SVD for[YYYss]
T
(R+1) is required and the interested reader is referred

DRAFT



12

to [8] for the detailed estimation procedure. To reduce the redundancy, we simply assignKr = ⌈F/2R⌉,
r = 1, 2, . . . , R andpi ≈ Li subject to

∏R
r=1 Lr ≥ F in our study.

Finally, the major computational complexity of the proposed algorithm is studied as follows. In

the step of findingro, we apply the standard ESPRIT method [8] toYYYss, which has a complexity

of O(ktF
∏R

r=1 LrKr), where kt is a constant depends on the design of the algorithm [29]. With

appropriate choices ofLr, Kr and pr, we havepr ≈ Lr which results inO(ktF
∏R

r=1 LrKr) ≈
O(ktF

∏R
r=1Mr) = O(ktFM). The main calculations in Tables 2 and 3 are computing the SVDand

matrix inverse. In the first stage of computingω̂ro,f and α̂ro,f , the SVD operation in (10) has an order

of O(ktF
∏R

r=1 Mr) = O(ktFM) while that of (27) is less thanO((F + 1)M3
ro). In estimation of

the remaining frequencies and damping factors, the complexity of computing the principal left singular

vector ofur,f,1 from [ZZZf ](r), r = 1, 2, · · · , ro − 1, ro + 1, · · · , R, f = 1, 2, · · · , F has a complexity of

O(ktMF (R − 1)/Mro) < O(ktM(R− 1)) asF < Mro , while the cost for each matrix inverse in Table

3 is O(M3
r ). As a result, the computational requirement of the major steps of the TPUMA approach

is less thanO(ktM(R + F − 1)) +
∑R

r=1O(κ(F + 1)M3
r ) whereκ denotes the required number of

iterations. It is found from extensive computer simulations that the TPUMA algorithm converges only

in a few iterations, say,κ = 3. As a comparison with the ESPRIT methodology in terms of SVD

operations, the matrix-based and tensor-based ESPRIT algorithms have complexities ofO(ktL
EKEF )

andO(ktL
EKEF (R+1)+LEKEFR+LEF 2R), respectively [10], whereLE

r +KE
r −1 = Mr, LE

r > 1,

KE
r > 1, LE =

∏R
r=1 L

E
r and KE =

∏R
r=1K

E
r . Furthermore, extra parameter pairing procedure is

needed in the ESPRIT approach and thus we expect that the proposed algorithm is more computationally

attractive.

IV. M ODIFICATION FOR SINGLE-TONE

In this section, the special case whenXXX is an R-D undamped single-tone is investigated. We will

show that the TPUMA algorithm for single-tone estimation can be simplified, which leads to significant

reduction in complexity. Although there are no closed-formexpressions for the performance of the

proposed algorithm in the general case, we are able to provide its closed-form variance expression for

the single-tone case, which is shown to be equal to CRLB.

The signal model in (2) is now simplified as:

xm1,m2,...,mR
= γ

R∏

r=1

ejωrmr (42)
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where the parameters of interest areωr, r = 1, 2, · · · , R. Without loss of generality and for presentation

consistency, we start the estimation at theRth dimension. According to (3)–(4),XXX becomes

XXX = γg1 ◦ g2 · · · ◦ gR (43)

where gr =
[
ar a2r · · · aMr

r

]T
, ar = ejωr (44)

Noting that the rank ofXXX is one and following (9)–(12), the estimate of[XXX ](R) is:

[X̂XX ](R) ≈ λR,1uR,1v
H
R,1 (45)

where uR,1 ≈ βugR (46)

v∗
R,1 ≈ βvg1 ⊙ g2 ⊙ · · · ⊙ gR−1 (47)

That is,λR,1, uR,1 andvR,1 are the largest singular value and the corresponding left and right singular

vectors of[X̂XX ](R), respectively. On the other hand,βu andβv are unknown scalars which are analogous

to Ωr in (12) andβr,f in (37), although the relationships in (46)–(47) are simpler. Note that we can

follow [14] to obtain λ̄R,1 =
√
M |γ| and ūR,1 = gRe

−jϕg/
√
MR whereϕg ∈ (−π,−π] is unknown,

in the noise-free case. As a result,uR,1 corresponds to a noisy tone sequence whose frequency isωR.

Based on the sinusoidal LP property and WLS, we follow the development in (13)–(21) to obtain the

estimate ofaR as:

âR = (xH
1 W(aR)x2)

−1(xH
1 W(aR)x1) (48)

where x1 = [[uR,1]1 [uR,1]2 · · · [uR,1]MR−1]
T (49)

x2 = [[uR,1]2 [uR,1]3 · · · [uR,1]MR
]T (50)

W(aR) = σ2/λ̄2
1

[
E
{
A(aR)uR,1u

H
R,1A

H(aR)
}]−1 ≈ (A(aR)A

H(aR))
−1 (51)

with A(aR) = Toeplitz

([
−aR 01×(MR−2)

]T
,
[
−aR 1 01×(MR−2)

])
.

Using the substitution ofaR = ejωR yields a closed-form expression forW(aR) = W(ωR) with

elements [30]:

[W(ωR)]m,n =
MR min(m,n)−mn

MR
ej(m−n)ωR , m = 1, 2, · · · ,MR − 1, n = 1, 2, · · · ,MR − 1

(52)

As xH
1 W(ωR)x1 is real and positive [30], we simplify (48) to obtain the conceptual estimate ofωR as:

ω̂R = ∠
(
xH
1 W(ωR)x2

)
(53)

which is practically solved via an iterative and relaxationmanner as in Table 3.

DRAFT



14

Following (28)–(39), we substituteωR with ω̂R in (44) to construct̂gR and then compute theRth

unfolding of the sub-tensorZZZ as:

[ZZZ](R) = ĝ
†
R[YYY ](R) (54)

Finally, we utilize (53) to solve forωr from ur,1, which is the principal left singular vector of[ZZZ](r),

r = 1, 2, · · · , R − 1. The complete estimation procedure forR-D single-tone frequency estimation is

summarized in Table 4.

(i) Compute the principal left singular vector of[YYY ](R), namely,uR,1

(ii) Obtain an initial frequency estimatêωR using (53) with[W(ωR)]m,n = 0 for m 6= n in (52)

(iii) ConstructW(ωR) according to (52) witĥωR = ωR

(iv) Compute an updated̂ωR using (53)

(v) Repeat Steps (iii)–(iv) forκ iterations

(vi) Use ω̂R to construct[ZZZ ](R) according to (54) and compute the principal left singular vector of each[ZZZ ](r),

namely,ur,1, r = 1, 2, · · · , R − 1

(vii) Repeat the iterative procedure in Steps (ii)–(v) to obtain ω̂r from ur,1, r = 1, 2, · · · , R − 1

Table 4: Frequency estimation algorithm forR-D single-tone

The means and variances of{ωr} are now analyzed. Upon the global convergence such thatω̂r is

located at a reasonable proximity ofωr, r = 1, 2, · · · , R, we have proved that (See Appendix A):

lim
SNR→∞

E{ω̂r} = ωr (55)

var(ω̂r) ≈
6σ2

M(M2
r − 1)|γ|2 (56)

which is the CRLB for R-D frequency estimation (see Appendix B). Expressions (55)and (56)

indicate that the proposed scheme provides asymptoticallyunbiased frequency estimates and is efficient,

respectively.

V. NUMERICAL EXAMPLES

Computer simulations have been carried out to evaluate the performance of the proposed approach

by comparing with the standard ESPRIT (SE) [8], unitary ESPRIT (UE) [9], standard tensor ESPRIT

(STE), unitary tensor ESPRIT (UTE) [10], single-snapshot unitary tensor ESPRIT (SSUTE) [11], MDF

[12] and improved MDF (IMDF) [13] schemes. The stopping criterion of the PUMA algorithm is a fixed
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number of iterations, andκ = 3 iterations are used because no significant improvement is observed for

more iterations. All elements in the noise tensorQQQ are zero-mean white complex Gaussian processes with

identical variances ofσ2 which is adjusted for producing different SNR conditions. The average mean

square error (MSE) is employed as the performance measure and CRLB is included as the optimality

benchmark. All results provided are averages of 1000 independent runs.

In the first test, estimation of two damped 3-D sinusoids from8× 8× 8 data sets is investigated and

the appropriate methods for comparison are SE, STE and MDF algorithms. The complex amplitudes and

damping factors are assigned as
[
γ1 γ2

]
=
[
1ej1 2ej2

]
and

[
α1,1 α2,1 α3,1

]
=
[
0.99 0.99 0.99

]
,[

α1,2 α2,2 α3,2

]
=
[
0.99 0.98 0.97

]
. Three different frequency separation cases are investigated and

the parameter settings are provided in Table 5. The frequencies of the first tone are fixed. Cases 1, 2 and

3 correspond to the two 3-D frequencies are well separated inone dimension and closely spaced in the

remaining dimensions, closely spaced in all dimensions andclosely spaced in one dimension and same

in the remaining dimensions, respectively. The average MSEs of frequencies and damping factors versus

SNR for the three cases are plotted in Figures 1 to 6. Figures 1and 2 show the results for the first case

and we see that the proposed method is superior to the SE, STE and MDF schemes atSNR ≥ 2 dB and

its performance attains CRLB forSNR ≥ 6 dB. The MSEs of frequencies and damping factors for the

second case are shown in Figures 3 and 4. It is observed that none of the examined algorithms is optimal,

although the STE method performs the best whenSNR ≥ 20 dB while the TPUMA and MDF methods

have the smallest threshold SNR of 12 dB. Figures 5 and 6 show the results for the third case where only

the proposed estimator gives the best accuracy forSNR ≥ 38 dB while the MDF scheme provides the best

threshold performance. The average computation times of the SE, STE, MDF and TPUMA algorithms

for a single trial are measured as0.0119s, 0.1644s, 0.0221s and0.0038s, respectively, which agree with

the complexity analysis in Section III. Combining the findings in Figures 1 to 6, the MDF algorithm

performs the best at lower SNR, while the proposed method is the most computationally attractive and

is able to attain the highest accuracy at sufficiently high SNR conditions.

In the second test, estimation of two undamped 3-D sinusoidsfrom 8× 8× 8 data sets is investigated

and the appropriate methods for comparison are UE, UTE, SSUTE and IMDF algorithms. We follow

the parameter settings in the first case of the previous experiment except that the damping factors are

now equal to unity. The average MSEs for frequency versus SNRare plotted in Figure 7 and it is seen

that whenSNR ≥ 6 dB, the proposed scheme outperforms other methods and its performance is close

to CRLB. The average computation times of the UE, UTE, SSUTE,IMDF and TPUMA algorithms

are measured as0.0318s, 0.0509s, 0.5444s, 0.0609s and0.0040s, indicating the significant complexity
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First tone:
[
ω1,1 ω2,1 ω3,1

]
=

[
0.2π 0.1π 0.8π

]

Case 1: well separated in one dimension and closely spaced inremaining dimensions

Second tone:
[
ω1,2 ω2,2 ω3,2

]
=

[
0.5π 0.04π 0.86π

]

Case 2: closely spaced in all dimensions

Second tone:
[
ω1,2 ω2,2 ω3,2

] [
0.26π 0.04π 0.86π

]

Case 3: closely spaced in one dimension and same in remainingdimensions

Second tone:
[
ω1,2 ω2,2 ω3,2

]
=

[
0.26π 0.1π 0.8π

]

Table 5: Three different frequency separation cases in firsttest

reduction in the TPUMA method.

The third test examines the single-tone case and the noise-free signal is the first 3-D sinusoid in the

above experiment. The average MSEs are shown in Figure 8 and we observe that the proposed method

is superior to the remaining schemes atSNR ≥ −8 dB. Moreover, its performance attains CRLB for

SNR ≥ −2 dB, which collaborates the analysis of (56). On the other hand, the average computation times

of the UE, UTE, SSUTE, IMDF and TPUMA algorithms are measuredas 0.0295s, 0.0477s, 0.5201s,

0.0587s and0.0009s, which again demonstrate the latter computational advantage.

In the fourth test, we examine the scenario when only one of the {Mr} is larger thanF . The

noise-free signal consists of three undamped 3-D cisoids with M1 = M2 = 2 and M3 = 10.

The values of the complex amplitudes and frequencies are
[
γ1 γ2 γ3

]
=
[
1ej1 2ej2 1ej3

]

and
[
ω1,1 ω2,1 ω3,1

]
=

[
0.2π 0.6π 0.8π

]
,
[
ω1,2 ω2,2 ω3,2

]
=

[
0.4π 0.1π 0.5π

]
,[

ω1,2 ω2,2 ω3,2

]
=
[
0.6π 0.4π 0.3π

]
. The average MSE performance versus SNR is plotted in

Figure 9. Note that in this case, the UE, UTE and SSUTE methodsare equivalent. It is seen that when

SNR ≥ 12 dB, the proposed estimator outperforms the UE and IMDF algorithms and its performance

achieves the CRLB. Regarding the complexity, the measured computation times of the UE, IMDF and

TPUMA schemes are0.0047s, 0.0014s and0.0027s.

In the final test, the computational time of the proposed algorithm versusMr is examined because

its complexity contains the term of
∑R

r=1O(κ(F + 1)M3
r ). Note that the TPUMA algorithm is still

computationally attractive for largeF because its complexity order is linearly increasing withF . Figure

10 shows the results of the proposed, UE, UTE, IMDF methods versusM3 for an undamped 3-D model

with fixing F = 3 andM1 = M2 = 6. Note that the SSUTE algorithm is not included here because

its complexity is much higher. We again see the computational advantage of the TPUMA scheme for

increasingM3, and this also implies that the term ofO(ktM(R+F−1)) dominates
∑R

r=1O(κ(F+1)M3
r ).
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VI. CONCLUSION

A subspace-basedR-dimensional (R-D) harmonic retrieval (HR) approach withR > 2 in additive

white Gaussian noise, which is referred to as tensor principal-singular-vector utilization for modal analysis

(TPUMA) algorithm, is devised. The sinusoidal parameters at one dimension are first estimated according

to an iterative procedure which utilizes the linear prediction property and weighted least squares. The

damping factors and frequencies in the remaining dimensions are then solved such that pairing of the

R-D parameters is automatically achieved. We also modify theTPUMA method for a singleR-D tone

and prove that the frequency estimates are asymptotically unbiased and their variances attain Cramér-Rao

lower bound (CRLB) at sufficiently high signal-to-noise ratio conditions. Computer simulations show that

the TPUMA algorithm is computationally simpler than conventional HR estimators and its variance can

attain CRLB even when there are identical frequencies at(R− 1) dimensions or the lengths in(R− 1)

dimensions are less than the number of sinusoids. Nevertheless, the proposed scheme cannot work well

when there are identical frequencies in all dimensions. As afuture work, we will extend the TPUMA

methodology for this challenging scenario.

APPENDIX A

We first produce the bias and variance forω̂R of (53) and then utilize the derived results to the

frequency estimates in the remaining dimensions. According to (48), the estimate ofaR = ejωR is given

by the âR = argmin
ãR

J(ãR) where

J(ãR) = (x1ãR − x2)
HW(aR)(x1ãR − x2) (A.1)

At sufficiently high SNR conditions such thatâR is located at a reasonable proximity ofaR and assuming

that J ′′(ãR) is smooth enough aroundaR, we expandJ ′(âR) using Taylor series to yield [14]:

0 = J ′(âR) = J ′(aR) + J ′′(aR)(âR − aR) ≈ J ′(aR) + E{J ′′(aR)}(âR − aR) (A.2)

Expressingx1 = x̄1 +∆x1 andx2 = x̄2 +∆x2 as well as usinḡx1aR = x̄2, J ′(aR) is approximated

as:

J ′(aR) = 2xH
1 W(aR)(x1aR − x2)

= 2(x̄1 +∆x1)
HW(aR) [(x̄1 +∆x1)aR − (x̄2 +∆x2)]

≈ 2x̄H
1 W(aR) (∆x1aR −∆x2)

= 2x̄H
1 W(aR)A∆uR,1 (A.3)

DRAFT



18

where∆uR,1 = uR,1 − ūR,1. According to (45), the noise matrix under this case is[QQQ](R). From [24],

∆uR,1 can be approximated as

∆uR,1 ≈ λ̄−1
R,1ŪnŪ

H
n [QQQ](R)v̄R,1

= λ̄−1
R,1

(
v̄T
R,1 ⊗ ŪnŪ

H
n

)
vec([QQQ](R))

= λ̄−1
R,1

(
v̄T
R,1 ⊗ (IM − ūR,1ū

H
R,1

)
)vec([QQQ](R)) (A.4)

where Ūn =
[
ūR,2 ūR,3 · · · ūR,NR

]
, NR = min{MR,M/MR}. For zero-meanQQQ, E{∆uR,1}

approaches a zero vector. Moreover,E

{
∆uR,1∆uH

R,1

}
is:

E
{
∆uR,1∆uH

R,1

}
= λ̄−2

R,1

(
v̄T
R,1 ⊗ ŪnŪ

H
n

)
E
{
vec([QQQ](R))vec([QQQ](R))

H
} (

v̄∗
R,1 ⊗ ŪnŪ

H
n

)

= λ̄−2
R,1

(
v̄T
R,1 ⊗ ŪnŪ

H
n

) (
σ2IM

) (
v̄∗
R,1 ⊗ ŪnŪ

H
n

)

= λ̄−2
R,1σ

2
(
v̄T
R,1v̄

∗
R,1

)
⊗
(
ŪnŪ

H
n ŪnŪ

H
n

)

= λ̄−2
R,1σ

2ŪnŪ
H
n (A.5)

On the other hand, when SNR is sufficiently high,E{J ′′(aR)} is

E{J ′′(aR)} = E{2xH
1 W(aR)x1} ≈ 2x̄H

1 W(aR)x̄1 (A.6)

Let gR1 begR in (44) without the last element. UsinḡuR,1 = gRe
−jϕg/

√
MR and interchangingW(ωR)

andW(aR), x̄H
1 W(aR)x̄1 is calculated as:

x̄H
1 W(aR)x̄1 =

1

M2
R

gH
R1W(ωR)gR1

=
1

M2
R

MR−1∑

m=1

MR−1∑

n=1

e−jωRm (MR min(m,n)−mn) ej(m−n)ωRejωRn

=
1

M2
R

(
MR−1∑

m=1

(MRm−m2) +

M−1∑

m=1

m−1∑

n=1

(MRn−mn) +

MR−1∑

n=1

n−1∑

m=1

(MRm−mn)

)

=
M2

R − 1

12
(A.7)

Combining (A.6)–(A.7), we get:

E{J ′′(aR)} ≈ M2
R − 1

6
(A.8)

From (A.3) and (A.6)–(A.8), it is clear thatE{J ′(aR)} = 0 andE{J ′′(aR)} = (M2
R − 1)/6 when

SNR tends to infinity. Together with (A.2), we obtainlim
SNR→∞

E{âR} = a. As âR = ejω̂R, ω̂R is an
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asymptotically unbiased estimate ofωR. Employing (A.2) again, the variance ofâR is:

var(âR) = E {(âR − aR)(âR − aR)
∗} =

E{J ′(aR)(J
′(aR))

∗}
[E{J ′′(aR)}]2

(A.9)

Using (A.5), ŪnŪ
H
n = IMR

− ūR,1ū
H
R,1, A(aR)ūR,1 = 0(MR−1)×1 and W(aR) = WH(aR) =

(A(aR)A
H(aR))

−1, the numerator of (A.9) is:

E{J ′(aR)(J
′(aR))

∗} = 4x̄1W(aR)A(aR)E{
{
∆uR,1∆uH

R,1

}
AH(aR)W

H(aR)x̄1

= 4λ̄−2
R,1σ

2x̄1W(aR)A(aR)ŪnŪ
H
n AH(aR)W

H(aR)x̄1

= 4λ̄−2
R,1σ

2x̄1W(aR)A(aR)(IMR
− ūR,1ū

H
R,1)A

H(aR)W(aR)x̄1

= 4λ̄−2
R,1σ

2x̄1W(aR)W
−1(aR)W(aR)x̄1

=
4λ̄−2

R,1σ
2(M2

R − 1)

12
(A.10)

Substituting (A.8) and (A.10) with̄λR,1 =
√
M |λ| into (A.9) andSNR = |γ|2/σ2 yields:

var(âR) ≈
12σ2

M(M2
R − 1)|γ|2 =

12

M(M2
R − 1)SNR

(A.11)

Employing the transformation formula ofvar(ŵR) ≈ var(âR)/(2|aR|2) [32], we eventually get (56) for

r = R.

According to (54) and the definition ofRth unfolding, the elements of the(R− 1) dimensional tensor

ZZZ can be written as:

zm1,m2,··· ,mR−1
= ĝ

†
R

(
γ

R−1∏

r=1

ejωrmrgR + q(m1,m2,··· ,mR−1)

)
(A.12)

whereγ
∏R−1

r=1 ejωrmr ĝ
†
RgR and ĝ†

Rq
(m1,m2,··· ,mR−1) are the signal and noise components with

q(m1,m2,··· ,mR−1) =
[
qm1,m2,··· ,mR−1,1 qm1,m2,··· ,mR−1,2 · · · qm1,m2,··· ,mR−1,MR

]T
(A.13)

For zero-mean white Gaussian disturbance, we have

E{qm1,m2,··· ,mR−1,mR
· qHm1,m2,··· ,mR−1,mR

} = σ2 (A.14)

and E{qm1,m2,··· ,mR−1,mR
· qHn1,n2,··· ,nR−1,nR

} = 0, nr = 1, 2, · · · ,Mr (A.15)

if mr 6= nr for at least one ofr = 1, 2, · · · , R. Henceq(m1,m2,··· ,mR−1) has the following properties:

E{
(
q(m1,m2,··· ,mR−1)

)(
q(m1,m2,··· ,mR−1)

)H
} = IMR

σ2 (A.16)

and E{
(
q(m1,m2,··· ,mR−1)

)(
q(n1,n2,··· ,nR−1)

)H
} = 0MR

(A.17)
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if mr 6= nr for at least one ofr = 1, 2, · · · , R − 1. Assuming thatĝ†
R and q(m1,m2,··· ,mR−1) are

uncorrelated, we then have:

E{ĝ†
Rq

(m1,m2,··· ,mR−1)} = E{ĝ†
R}E{q(m1,m2,··· ,mR−1)} = 0 (A.18)

E{
(
ĝ
†
Rq

(m1,m2,··· ,mR−1)
)2

} = E{
(
ĝ
†
Rq

(m1,m2,··· ,mR−1)
)(

ĝ
†
Rq

(m1,m2,··· ,mR−1)
)H

}

= E{ĝ†
RE{

(
q(m1,m2,··· ,mR−1)

)(
q(m1,m2,··· ,mR−1)

)H
}ĝ†H

R }

= MRσ
2 (A.19)

and E{
(
ĝ
†
Rq

(n1,n2,··· ,nR−1)
)(

ĝ
†
Rq

(m1,m2,··· ,mR−1)
)H

} = 0 (A.20)

where we see that the noise component inZZZ is also an uncorrelated zero mean process with power of

MRσ
2. On the other hand, by substitutinĝgR = gR which is valid for sufficiently high SNR conditions,

the signal component inZZZ can be approximated as:

γ

R−1∏

r=1

ejωrmrg
†
RgR ≈ MRγ

R−1∏

r=1

ejωrmr (A.21)

which has a power ofM2
R|γ|2. That is, the SNR inZZZ is SNRZZZ = (M2

R|γ|2)/(MRσ
2) = MRSNR.

As (A.12) is analogous to (42), we can apply the development in (A.1)–(A.11) to analyzêωr, r =

1, 2, · · · , R−1. As a result,{ω̂r} are asymptotically unbiased estimates of{ωr}. Moreover, from (A.11),

we have:

var(âr) ≈
12

SNRZZZ(M/MR)(M2
r − 1)

=
12σ2

M(M2
r − 1)|γ|2 , r = 1, 2, · · · , R − 1 (A.22)

Applying var(ŵr) ≈ var(âr)/(2|ar |2) again, we obtain (56) for the remaining frequency estimates.

APPENDIX B

The CRLB for a single undampedR-D cisoid in the presence of white Gaussian noise is derived as

follows. First we defineγ = bejθ whereb = |γ| is the magnitude andθ is the phase. DecomposingYYY as

real and imaginary components asYYY = YYY real+ jYYY imag, the joint probability density function forYYY with

the unknown parameter vectorΦ =
[
ω1 ω2 · · · ωR θ b

]T
is [31]:

f (YYY;Φ) =

(
1

σ2π

)M

exp

{
− 1

σ2

M1∑

m1=1

M2∑

m2=1

· · ·
MR∑

mR=1
[(
yreal
m1,m2,··· ,mR

− µm1,m2,··· ,mR

)2
+
(
yimag
m1,m2,··· ,mR

− νm1,m2,··· ,mR

)2]}
(B.1)
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where µm1,m2,··· ,mR
= b cos

(∑R
r=1 mrωr + θ

)
and νm1,m2,··· ,mR

= b sin
(∑R

r=1 mrωr + θ
)

. Using

(B.1), the(i, j) entry, i, j = 1, 2, · · · , R+2, of the corresponding Fisher information matrix, denoted by

J, are:

[J]i,j = E{ ∂

∂ [Φ]i
log f (YYY;Φ)

∂

∂ [Φ]j
log f (YYY;Φ)}

=
2

σ2

M1∑

m1=1

M2∑

m2=1

· · ·
MR∑

mR=1

[
∂µm1,m2,··· ,mR

∂ [Φ]i

∂µm1,m2,··· ,mR

∂ [Φ]j
+

∂νm1,m2,··· ,mR

∂ [Φ]i

∂νm1,m2,··· ,mR

∂ [Φ]j

]
(B.2)

After some manipulations, it can be shown that

J =
2M

σ2





A+BBT /|γ|2 B

BT b2


 0(R+1)×1

01×(R+1) 1


 (B.3)

where A =
|γ|2
12

diag
([

M2
1 − 1 M2

2 − 1 · · · M2
R − 1

])
(B.4)

B =
|γ|2
2

[
M1 + 1 M2 + 1 · · · MR + 1

]T
(B.5)

Noting that the CRLB for frequencies, denoted byCRLBωr
, is given as

[
J−1

]
r,r

, r = 1, 2, · · · , R, and

applying the matrix inversion lemma, we have:

CRLBωr
=

σ2

2M

[
(A+

1

|γ|2BBT − 1

|γ|2BBT )−1

]

r,r

=
σ2

2M

[
A−1

]
r,r

=
6σ2

M(M2
r − 1)|γ|2 (B.6)
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Fig. 1. Average mean square frequency error versus SNR for

3-D damped tones in first case
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Fig. 2. Average mean square damping factor error versus SNR

for 3-D damped tones in first case
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Fig. 3. Average mean square frequency error versus SNR for

3-D damped tones in second case
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Fig. 4. Average mean square damping factor error versus SNR

for 3-D damped tones in second case
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Fig. 5. Average mean square frequency error versus SNR for

3-D damped tones in third case
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Fig. 6. Average mean square damping factor error versus SNR

for 3-D damped tones in third case
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Fig. 7. Average mean square frequency error versus SNR for

3-D undamped tones
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Fig. 8. Average mean square frequency error versus SNR for

single 3-D undamped tone
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Fig. 9. Average mean square frequency error versus SNR for

2× 2× 10 data set
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Fig. 10. Average computation time for a single run underM1 =

M2 = 6 andF = 3
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