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Abstract

The interest in wireless sensor networks as solution to distributed inference problems in quite diverse moni-
toring applications has been steadily increasing in the last years. The basic idea is to use a large number of
wirelessly connected sensor nodes, spatially distributed over the region to be monitored, that collaborate in
order to collect, process, and communicate information about the phenomenon of interest. In general, wireless
sensor networks are deployed in remote regions so that the sensor nodes are difficult to access. This compli-
cates or even prevents their maintenance, e.g., recharging sensor node batteries, and makes it desirable that the
wireless sensor network works with a minimum of supervision. The remote sensor node deployment and the
unsupervised nature of the wireless sensor network fuel the interest in a high network lifetime, i.e., the time the
network is capable to perform the desired tasks, regardless of failures of some sensor nodes. The sensor nodes
are therefore required to be durable and to withstand harsh environmental conditions and the wireless sensor
network has to operate at low computational complexity and with low communication overhead.

In this dissertation we are specifically concerned with the reconstruction of physical fields from irregular
samples provided by the sensor nodes of a wireless sensor network. The sampling and reconstruction problem
has been previously addressed in the literature under the often unrealistic assumption that the field is spatially
strictly bandlimited. This assumption is too restrictive in many physical scenarios, such as for non-wave fields
like electrostatic fields or diffusion fields in liquids and gases. Moreover, in the context of wireless sensor
networks, it is inherently impossible to pre-process the analog field as it is done using anti-aliasing filters in
conventional temporal sampling applications.

We use the theory of shift-invariant spaces to model physical fields and to develop a scheme based on this
model for sampling and reconstruction of time-varying, non-bandlimited physical fields. Our field reconstruc-
tion is based on the least-squares estimation of the model coefficients. As generator functions that span the
shift-invariant spaces we use such of compact support, in particular Basis-splines, that provide excellent in-
terpolation properties and allow us to reduce the computational complexity of the reconstruction, leading to a
complexity that scales linearly with the number of sensor nodes. Moreover, the use of compactly supported
generator functions admits the partitioning of the sensor nodes into clusters, thereby splitting up the field re-
construction into smaller problems that can be independently solved by the sensor node clusters. Within the
overlapping subregions corresponding to the clusters, the estimates for the field are averaged for better recon-
struction quality. We extend and generalize shift-invariant spaces by using different generator functions within
the clusters, thereby introducing hybrid shift-invariant spaces. These allow better adaption of the field model
to local smoothness properties of the field to be reconstructed. For time-varying fields, we show that the use
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of iterative solvers initialized with the solution from the previous time-step yields large savings in the com-
putational efforts necessary for the reconstruction. We furthermore analyze the impact of sensor localization
errors on the mean square error of the reconstructed field. Numerical simulations illustrate the performance
of our proposed field reconstruction scheme and show that it is less sensitive to sensor localization errors than
bandlimited reconstruction while providing a significant reduction in computational complexity.

In the context of our field reconstruction scheme, we also introduce an amplify-and-forward scheme for the
transmission of sensor node measurements to the fusion center (or cluster head). We derive the optimal sensor
node transmit power allocation for minimal mean square error and minimal transmit sum power respectively.
In both cases the power allocation problem is convex and can be solved numerically in an efficient manner.
For the special case of critical sampling we derive closed-form solutions for these convex problems. In numer-
ical simulations we compare the performance of the proposed power allocation schemes with uniform power
allocation.

In summary, we present a robust wireless sensor network architecture for sampling and reconstruction
of non-bandlimited time-varying fields that provides excellent reconstruction quality with low computational
complexity and low communication overhead. The corresponding optimal transmit power allocation scheme
takes into account the sensor node positions and thereby preserves a stable reconstruction.



Kurzfassung

Das Interesse an drahtlosen Sensornetzen zur Lösung von verteilten Inferenzproblemen in verschiedenen Über-
wachungsanwendungen stieg in den letzten Jahren kontinuierlich an. Die grundsätzliche Idee liegt in der
Verwendung einer großen Anzahl von drahtlos verbundenen Sensorknoten, die räumlich in einem zu über-
wachenden Gebiet verteilt sind. Die Sensorknoten kooperieren bei der Datensammlung, -verarbeitung und
-übertragung, um Informationen über das Phänomen von Interesse zu erhalten. Im Allgemeinen werden draht-
lose Sensornetze in abgelegenen Gebieten verwendet. Das erschwert oder verhindert die Wartung der Sensor-
knoten, z.B. das Laden der Akkumulatoren, und macht es wünschenswert, drahtlose Sensornetze mit einem
Minimum an Überwachung und Betreuung betreiben zu können. Die Verwendung in entlegenen Gebieten
und der unbeaufsichtigte Betrieb von drahtlosen Sensornetzen motivieren das Interesse an einer langen Be-
triebsdauer, wobei die Betriebsdauer jene Zeit ist, die das Sensornetz seine Aufgabe erfüllt, trotz eventuellen
Ausfalls einzelner Sensoren. Die Sensorknoten müssen daher schwierigen Umweltbedingungen widerstehen
und das Sensornetz muss mit geringem Berechnungs- und Kommunikationsaufwand betrieben werden können.

In dieser Dissertation beschäftigen wir uns mit der Rekonstruktion von physikalischen Feldern aus un-
regelmäßigen Abtastwerten, die von Sensorknoten eines drahtlosen Sensornetzes bereitgestellt werden. Das
Abtastungs- und Rekonstruktionsproblem wurde in der Literatur unter der oft unrealistischen Annahme behan-
delt, dass das Feld räumlich streng bandbegrenzt ist. Diese Annahme ist für viele physikalischen Szenarien
zu restriktiv, z.B. für Nicht-Wellenfelder wie elektrostatische Felder oder Diffusionsfelder in Flüssigkeiten und
Gasen. Darüber hinaus ist bei drahtlosen Sensornetzen die Vorbearbeitung des analogen Feldes mittels eines
Anti-Aliasing Filters, wie es bei herkömmlichen zeitlichen Abtastungsproblemen gemacht wird, nicht möglich.

Wir verwenden verschiebungsinvariante Räume als Modell für physikalische Felder. Basierend auf diesem
Modell entwickeln wir ein System für die Abtastung- und Rekonstruktion von zeitvarianten, nicht bandbe-
grenzten Feldern aus unregelmäßigen Abtastwerten. Unsere Rekonstruktion basiert auf einer Least-Squares-
Schätzung der Modellkoeffizienten. Als Generatorfunktionen für die verschiebungsinvariante Räume verwen-
den wir solche mit kompaktem Träger, insbesondere verwenden wir B-splines. Diese bieten exzellente Interpo-
lationseigenschaften und erlauben eine Rekonstruktion des Feldes mit reduziertem Berechnungsaufwand, d.h.
mit einer Komplexität, die linear mit der Anzahl der Knoten zunimmt. Zudem erlaubt die Verwendung von Gen-
eratorfunktionen mit kompaktem Träger die Partitionierung der Sensorknoten in Cluster und die Unterteilung
der Rekonstruktion in kleinere Probleme, die voneinander unabhängig innerhalb der einzelnen Cluster gelöst
werden können. Innerhalb von zu Clustern gehörenden überlappenden Teilgebieten können Schätzwerte für
das Feld für eine bessere Rekonstruktionsqualität gemittelt werden. Wir erweitern und verallgemeinern ver-
schiebungsinvariante Räume durch die Verwendung von unterschiedlichen Generatorfunktionen innerhalb der
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einzelnen Cluster und führen damit hybride verschiebungsinvariante Räume ein. Diese erlauben eine bessere
Anpassung des Feldmodells an die lokalen Eigenschaften des zu rekonstruierenden Feldes. Für zeitvariante
Felder zeigen wir, dass die Verwendung von iterativen Lösungsverfahren, die mit der Lösung aus dem vorherge-
henden Zeitschritt initialisiert werden, große Einsparungen beim Berechnungsaufwand erlauben. Wir unter-
suchen außerdem die Auswirkungen von Lokalisierungsfehlern der Sensorknoten auf den mittleren quadratis-
chen Fehler des rekonstruierten Feldes. Numerische Simulationen veranschaulichen die Leistungsfähigkeit
unseres Rekonstruktionssystems und zeigen, dass es gegenüber Fehlern bei der Lokalisierung von Sensor-
knoten weniger empfindlich ist als bandbegrenzte Rekonstruktionsverfahren und den Berechnungsaufwand für
die Rekonstruktion erheblich reduziert.

Für das von uns vorgestellte Rekonstruktionssystem führen wir ein auf Amplify-and-Forward basieren-
des Verfahren für die Übertragung der Messwerte der Sensorknoten zum Fusion Center (oder Cluster Head)
ein. Wir leiten die optimale Zuteilung der Sendeleistung an die Sensorknoten für den minimalen quadratis-
chen Fehler bzw. die minimale Gesamtsendeleistung her. In beiden Fällen zeigt sich, dass das optimale
Zuteilungsproblem ein konvexes Optimierungsproblem darstellt, das sich numerisch effizient lösen lässt. Für
den Spezialfall von kritischer Abtastung leiten wir geschlossene Lösungen für die konvexen Optimierungsprob-
leme her. Mittels numerischer Simulationen vergleichen wir die Leistungsfähigkeit der hergeleiteten Zu-
teilungsverfahren miteinander sowie mit einer gleichförmigen Zuteilung der Sendeleistung an die Sensor-
knoten.

Zusammengefasst präsentieren wir eine robuste drahtlose Sensornetzarchitektur für die Abtastung und
Rekonstruktion von nicht bandbegrenzten, zeitvarianten Feldern, das ausgezeichnete Rekonstruktionsqualität
bei gleichzeitiger geringer Berechnungskomplexität und geringem Kommunikationsaufwand erlaubt. Die ent-
sprechende optimale Zuteilung der Sendeleistung an die Sensorknoten nimmt Rücksicht auf die Positionen der
Sensorknoten und bewahrt dadurch eine stabile Rekonstruktion.
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during my visit at the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) in Castelldefels, Spain. I
thank them very much for the friendly and generous reception as well as for the kind working environment that
allowed me to make giant leaps in my work in little time. My gratitude especially goes to Carles Antón-Haro for
agreeing to act as a referee and for contributing his broad perspective in refining the ideas in this dissertation.

I am grateful to all my former and current colleagues at the Institute of Telecommunications of the Vienna
University of Technology, in particular the people of my research group, for providing a truly amicable and
enriching environment and for helping me to solve occasional technical and mathematical problems. They
made my days at the institute interesting, exciting, and enjoyable.

Moreover I want to thank my friends outside of the University environment for keeping me in the mood for
my work and for being there to help me whenever I needed them.

Last, but far from least, I would like to express my deep gratitude to my parents and siblings. Their
encouragement, support, and confidence in me through all the years of my life have meant more than I could
ever express.

xiii





Contents

Abstract ix

Kurzfassung xi

Acknowledgments xiii

1 Introduction 1

1.1 Scope of Work and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7

2.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Sensor Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Sensor Node Deployment and Network Topology . . . . . . . . . . . . . . . . . . . 10

2.1.4 Sensor Node Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Sensor Node Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Estimation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Classical Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xv



xvi

3 Distributed Field Reconstruction 19

3.1 Background and State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Wireless Sensor Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Field Model – Shift-Invariant Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Conventional Shift-Invariant Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Compactly Supported Generator Functions . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Hybrid Shift-Invariant Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Field Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Centralized Case – Global Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Clustered Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Diffusion-based Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Implementation of Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Matrix-Vector Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Efficient Solvers for the Sparse LS Problem . . . . . . . . . . . . . . . . . . . . . . 30

3.5.3 Algorithm Summary and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Sensor Node Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Sensor Node Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.2 Stable Sets of Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.3 Selective Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.4 Sensor Node Localization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7.1 Comparison of Bandlimited Reconstruction with Reconstruction using B-Splines . . 37

3.7.2 Averaging of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.3 Reconstruction of Time-varying Fields . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.4 Influence of Sensor Node Localization Error . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.B Calculation of Basis-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.B.1 Calculation Using Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.B.2 Cox-de Boor Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.C Example Calculation of Gg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



xvii

4 Optimal Power Allocation 53

4.1 Background and State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Field Reconstruction and Reconstruction Performance . . . . . . . . . . . . . . . . . . . . 56

4.4 Optimal Power Allocation: Minimization of Mean Square Error . . . . . . . . . . . . . . . 58

4.4.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Critical Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Optimal Power Allocation: Minimization of Transmit Sum Power . . . . . . . . . . . . . . 60

4.5.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.2 Critical Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Particular Cases and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Uniform Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.2 Uniform Mean Square Error (MSE) Target . . . . . . . . . . . . . . . . . . . . . . 62

4.6.3 Gaussian Channels and Identical Noise Variances . . . . . . . . . . . . . . . . . . . 63

4.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7.1 Minimization of the Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.2 Minimization of Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.A Optimization Problem Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusions and Outlook 71

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Acronyms 77

Notation 79

Bibliography 83



xviii



1
Introduction

THE interest in Wireless Sensor Networks (WSNs) has been steadily increasing in recent years since they
provide a solution to distributed inference problems in diverse application areas such as environmental

monitoring, safety and health, security and surveillance, and the military sector. A WSN consists of many
small devices, called sensor nodes. The basic idea is to use wirelessly connected sensor nodes that are spatially
distributed over the region to be monitored, in order to collect, process, and communicate information about a
phenomenon of interest.

Sensor nodes are typically deployed in remote areas. This complicates or even prevents maintenance tasks
and makes it desirable that the WSN works with a minimum of supervision. The sensor nodes are therefore
required to be durable so that they can withstand harsh environmental conditions.

Building WSNs became possible through fundamental advances in several enabling technologies. Minia-
turization of hardware allowed to build smaller devices and to include further and more complex functionalities
into the hardware components, making microcontrollers, Central Processing Units (CPUs), and memory, but
also radio equipment more powerful and their size suitable for usage in sensor nodes of WSNs. Downsizing
of the hardware components and the resulting reduced chip sizes are accompanied by reduced hardware costs
and a large decrease of the hardware’s power consumption. While the former are necessary to produce large
numbers of inexpensive sensor nodes, the latter is crucial for reasonable sensor node and network lifetime.
Technological advances resulted in small-sized, high-capacity batteries for reliable and enduring power supply
that can provide small amounts of current while having a negligible self-discharge rate.

There is a great deal of requirements for protocols and algorithms used in WSNs. They need to provide
scalability to allow small-scale as well as large-scale deployment of sensor nodes. In case of many sensor nodes,
their positions can hardly be engineered or predetermined so that the sensor placement will in the extreme case
be completely random which requires self-organization capabilities. Moreover, communication protocols and
computation algorithms used inWSNs need to be flexible and able to cope with communication errors or failure
of one or several sensor nodes while at the same time operating at modest computational complexity and low
communication overhead.
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2 Chapter 1. Introduction

1.1 Scope of Work and Contributions

In this dissertation our focus lies on algorithms for two specific problems in WSNs. In the first part we are
specifically concerned with the reconstruction of non-bandlimited physical fields from irregular samples pro-
vided by the sensor nodes of a WSN. For this application the sensor network needs to perform data acquisition
(i.e., sampling of the field), data transmission, and field reconstruction (either distributed or centralized). Our
focus is on the actual field reconstruction and we will thus assume simple models for the data acquisition and
transmission stages.

The sampling and reconstruction problem has been previously addressed in the literature under the often
unrealistic assumption that the field is spatially strictly bandlimited. In conventional temporal sampling appli-
cations, sufficient bandlimitation can be ensured by preceding the sampling with an analog anti-aliasing filter.
In the context of WSN this is inherently impossible since the analog field cannot be accessed or pre-processed.
At the same time, the assumption of a bandlimited field is too restrictive for many physical scenarios, e.g., elec-
trostatic fields, gravitation fields, or diffusion fields in liquids and gases. In order to use bandlimited reconstruc-
tion with non-bandlimited physical fields, significant oversampling is required to achieve small reconstruction
errors.

We pursue a new approach for the problem of sampling and reconstruction of non-bandlimited physical
fields. We build on the theory and algorithms that have been developed for shift-invariant spaces and provide
models for clustered sampling and reconstruction of smooth fields without the requirement of strict spatial band
limitation. Our approach exploits the locality of shift-invariant spaces in combination with generator functions
of compact support where we will in particular use Basis-splines (B-splines). This allows a flexible partitioning
of the sensor nodes into clusters and the distribution of the field reconstruction task among these clusters,
resulting in a robust and failsafe field reconstruction scheme. As a result, our approach is highly local in the
sense that reconstructing the field at a certain position requires only samples from a small spatial neighborhood
which leads to vast reductions in computational and communication complexity of field reconstruction. These
reductions lead to energy savings and in turn to extended lifetime of the WSN. The results of the first part of
the dissertation have in parts been previously published in [1–4].

In the second part of this dissertation we cover the problem of power allocation in WSNs. The general
goal of power allocation is to optimally assign transmit powers to the sensor nodes of the network. The power
allocation problem has been extensively investigated for linear scalar models in the context of distributed es-
timation in WSNs. Here, we consider the linear matrix-vector model used for our field reconstruction scheme
introduced in the first part of the dissertation, hence also taking into account the sensor node positions. We
pose the problems of optimal power allocation as convex optimization problems that can be solved numerically
in the general case and in closed-form for the special case of critical sampling. Here, optimality can be under-
stood with regard to two different parameters. Either the mean square estimation error is minimized subject to
a transmit sum-power constraint or the transmit sum power is minimized subject to an estimation error target.
The contributions of the second part of the dissertation are partly based on our previous work [5–7].

Our contributions can be summarized as follows.



1.1 Scope of Work and Contributions 3

Field Reconstruction in Wireless Sensor Networks

• Field reconstruction scheme based on shift-invariant spaces: We start the dissertation by introducing
a field reconstruction scheme for WSN based on shift-invariant spaces. The scheme is based on the work
of Aldroubi and Gröchenig [8] as well as Gröchenig and Schwab [9]. We modify and extend their work
to make it applicable for the reconstruction of Two-Dimensional (2-D) fields. Appropriately choosing
network architecture and generator functions allows the scheme to be used for distributed reconstruction
of non-bandlimited physical fields, which is in contrast to existing approaches.

• Generator functions of compact support: The presented field reconstruction scheme can be used with
arbitrarily chosen generator functions. In particular, we propose the use of generator functions of compact
support, which allows us to partition the reconstruction task among groups of sensor nodes. An especially
useful class of compactly supported generator functions are B-splines, i.e., sufficiently smooth piecewise
polynomial functions. B-splines are simple to construct, easy and accurate to evaluate, and show excellent
properties for interpolation tasks.

• Flexible partitioning and clustering of the reconstruction task: When using generator functions of
compact support, it is possible to partition the region over which the physical field is to be reconstructed
into subregions and to simultaneously partition the set of sensor nodes into corresponding clusters. We
show how the clusters can then reconstruct the associated subregions independently of each other, thereby
reducing the overall communication needed between sensor nodes and the computational efforts neces-
sary for reconstruction.

• Hybrid shift-invariant spaces: We extend the concept of shift-invariant spaces by allowing the use of
different generator functions in different subregions. We term the resulting spaces hybrid shift-invariant
spaces in contrast to conventional shift-invariant spaces. A special case uses B-splines of different order
in every cluster. In this way the reconstructed field can be better adapted to local smoothness properties
of the physical field.

• Reconstruction using direct and iterative solvers: The reconstruction algorithm consists of solving a
linear system of equations which can be solved using either direct or iterative solvers. For time-varying
fields we show that using an iterative solver is advantageous because a large part of the computational
complexity can be saved by using the solution from the previous time instant to initialize the iterative
solver. Then, a few iterations are sufficient, except for the case of large temporal deviations from the
previous field values.

• Averaging of estimates between clusters: Partitioning of the field region and clustering of the sensor
nodes of the WSN in general leads to overlapping subregions and sensor nodes being members of two or
more clusters. Within overlapping subregions, the field estimates can be averaged. This leads to better
estimates and augments the quality of the reconstructed field.

• Influence of sensor localization errors: The proposed field reconstruction scheme requires the knowl-
edge of the sensor node positions. Inaccurate knowledge of these positions, e.g., because of limited
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capabilities of the localization system used by the sensor nodes, will degrade the field reconstruction
quality. We analytically derive expressions that show the influence of sensor localization errors on the
field reconstruction quality and we analyze the different effects of these errors for different orders of
B-splines.

• Numerical performance analysis: To demonstrate the effectiveness of our reconstruction scheme, we
compare the reconstruction quality achieved with the bandlimited reconstruction and reconstruction using
B-splines for the example of diffusion fields for the unclustered as well as the clustered case. We compare
the impact of different sensor deployment strategies and sensor node measurement noise levels on the
reconstruction error. We show the capabilities of the proposed reconstruction scheme for time-variant
fields, proof the efficiency of averaging of field estimates, and evaluate the influence of sensor localization
errors on the reconstruction quality.

Power Allocation in Wireless Sensor Networks

• Field reconstruction performance: To evaluate the performance of the field reconstruction scheme
we augment it with a transmission model and analytically derive the MSE of the reconstructed field in
dependence of the factors influencing the reconstruction, such as the sensor node positions, the sensor
node measurements, and the channel gains.

• Optimal power allocation for minimal MSE: We derive a power allocation scheme with the goal of
minimizing the MSE of the reconstructed field under the side constraint of limited transmit sum power.
The optimization problem is shown to be a variation of the well-known A-optimal convex problem [10]
and can therefore be solved numerically in an efficient manner. We particularize the results for the op-
timal power allocation for minimal MSE to the special case of critical sampling. In that particular case
it is possible to calculate a closed-form solution. The optimal transmit powers can therefore be deter-
mined directly without the need to perform a numerical optimization which results in a large complexity
reduction.

• Optimal power allocation for minimal transmit sum power: With the goal of minimizing the transmit
sum-power we derive a power allocation scheme under the side constraint of a limited MSE allowance for
the reconstructed field. The optimization problem is again convex, allowing us to solve it numerically in
an efficient manner. For the optimal power allocation for minimal transmit sum power, a particularization
to the special case of critical sampling as well allows the calculation of a closed-form solution. Avoid-
ing the numerical optimization and instead directly calculating the transmit powers leads to significant
complexity savings.

• Uniform power allocation and power allocation for particular cases: As a benchmark, we com-
pare our power allocation schemes with the straight-forward solution of uniform power allocation. We
particularize the results for several special parameter sets, thereby gaining insight into the allocation
mechanisms.
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• Gaussian and Rayleigh-fading channels: For the channel coefficients influencing the power allocation
to the sensor nodes we assume two different channel models. First, we consider Gaussian channels
between the sensor nodes and the fusion center. Second, we consider Rayleigh-fading channels. The
performance under both channel models is illustrated by numerical simulations.

• Numerical performance analysis: We provide a comparison of the derived power allocation schemes,
showing their influence on the reconstruction quality for Gaussian channels and Rayleigh-fading chan-
nels, respectively.

1.2 Outline

We next give a short outline of the structure of the rest of this dissertation.

• In Chapter 2 we review a number of basic concepts and mathematical tools which will be used in the
subsequent chapters of this dissertation. We give an overview of the multitude of applications of WSNs
and a brief survey of the network topologies and communication strategies used in WSNs. We continue
with a short introduction to estimation theory and the theory of convex optimization.

• In Chapter 3 we introduce a novel field reconstruction scheme based on shift-invariant spaces. We use
B-splines as generator functions to construct a model for non-bandlimited fields and introduce a recon-
struction algorithm using nonuniform samples (taken by sensor nodes of a WSN) for the reconstruction
of the field. We present centralized as well as distributed reconstruction approaches and moreover in-
troduce an iterative reconstruction algorithm that allows time-variant fields to be reconstructed at low
complexity.

• In Chapter 4 we take a close look at the power allocation problem in WSN. Specifically, for the field
reconstruction scheme introduced in Chapter 3, we present optimal power allocation strategies for mini-
mum MSE and minimum transmit sum power, respectively. We compare the optimal strategies with the
optimal strategy for the special case of critical sampling and with uniform power allocation and investi-
gate which factors influence the power allocation schemes.

• In Chapter 5, finally, we summarize the main contributions of this dissertation, draw some conclusions,
and point out open issues and extensions for further research.
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Preliminaries

IN this Chapter we will review a number of basic concepts and mathematical tools which will be used in theremainder of this dissertation. We start with an introduction to Wireless Sensor Networks (WSNs), giving
an overview of the multitude of applications and the hardware used in sensor nodes followed by a brief survey
of the network topologies and communication strategies for WSNs. We continue with a short introduction to
estimation theory, shift-invariant spaces, Basis-splines, and the theory of convex optimization, which we will
use for the field reconstruction scheme presented in Chapter 3 and for the power allocation schemes presented
in Chapter 4.

2.1 Wireless Sensor Networks

WSNs consist of a large number of small devices, called sensor nodes, that collaborate with the goal to fulfill
a certain task, e.g., a monitoring task. Generally, WSNs are deployed in remote regions so that the sensor
nodes operate in areas that are difficult to access and energy recharge becomes impossible. This, together
with size constraints, poses severe restrictions on energy consumption, processing power and communication
capacity [11].

WSNs are similar to mobile ad hoc networks in many ways which makes it possible to reuse existing con-
cepts and solutions for ad hoc networks, e.g., self-organization techniques. However, there are some principal
differences between the two. While mobile ad hoc networks are set up to meet a communication need and are
designed to improve performance metrics such as throughput and delay, WSNs are tailored for specific appli-
cations, probably on a larger scale, with the major design goal of power conservation for improved network
lifetime [12]. In the following section we will give an overview of the different application areas of WSNs,
including some examples which will clarify the differences between WSNs and ad hoc networks.

7
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2.1.1 Applications

Based on sensor nodes with different sensing, computation, and communication capabilities, WSNs have a
wide range of applications. In the following we will list and briefly describe main application areas. Note that
the classification of the applications presented here is not unique and non-exhaustive. For a detailed overview
and real-world application examples, see [11–13] and the references therein.

• Environmental monitoring applications are as diverse as nature itself. WSNs could be used to monitor
environmental conditions, e.g., the weather, affecting flora and fauna to predict/detect incidents like
floods, forest fires, or severe environmental pollution. Sensor networks are moreover used to track the
movements of animals. On a larger scale, it is possible to monitor the Earth for earthquake and tsunami
warning applications.

• Safety and health applications: WSNs are able to work even if existing infrastructure has been de-
stroyed. They can be deployed for disaster relief and for tracking of and communication among rescue
units. In standard health services, tele-monitoring of patient’s physiological data, tracking and monitor-
ing of hospital personnel and patients as well as drug administration are typical applications.

• Security and surveillance applications: WSNs can be used for detection and monitoring of equipment
and facilities to prevent intrusion, theft, or damage.

• Military applications: The advantage of WSNs for military use is their robustness against hostile ac-
tions, i.e., destruction of (some) sensor nodes does not affect the functionality of the sensor network.
Military use of WSNs comprises the monitoring of forces, equipment, and ammunition, the reconnais-
sance and surveillance of the battlefield and the detection of nuclear, biological, and chemical warfare
agents.

• Other applications of WSNs could be environmental control in buildings, i.e., the control of air condi-
tion and heating, control of home appliances, and vehicle tracking. WSNs can also be used in logistics,
e.g., for packet tracking.

2.1.2 Sensor Hardware

The design and development of low-cost and low-power WSNs was enabled by advances in hardware minia-
turization, wireless communication, and digital electronics. A WSN consists of a large number of (usually
identical) small sensor nodes that can sense their environment, process data, and communicate with neighbor-
ing sensor nodes. The sensor nodes have to work autonomously and adapt to their environment, so that it is
possible to leave them unattended during operation [13]. The typical hardware components of a sensor node,
illustrated in Figure 2.1, are as follows [13, 14].

• The sensing unit provides the sensor node with the capability to gather information about the physical
world. The possible range of sensors is vast. They measure a physical quantity at the sensor node position
and deliver an analog signal which is then converted into digital data that is handed over to the processing
unit.
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Figure 2.1: Hardware components of a sensor node

• The processing unit is the computational heart of the sensor node. It may consist of a microcontroller, a
Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit (ASIC), or a Central
Processing Unit (CPU) and memory. It controls the other components of the sensor node to perform the
sensing operation, process the captured data, and collaborate with other sensor nodes through wireless
communication.

• The communication unit provides the wireless interface for the communication between sensor nodes.
For the communication, well known technologies, e.g., spread-spectrum communications or Ultra Wide
Band (UWB) can be used. Most of the WSNs use radio waves as communication media, but for certain
applications other means of communication can be used, e.g., optical communication or ultrasound.

• The power unit supplies the sensor node with the necessary energy. Usually the power unit is a battery,
but other energy sources are also possible. The battery has to provide high capacity at a small weight,
small size, and low price. Moreover, the battery’s self-discharge should be low. The power unit may be
complemented by a power generator, e.g., solar cells, to recharge the battery and extend sensor node
and network lifetime.

• The localization system determines the position of the sensor node, which is necessary in most sensor
network applications. See Section 2.1.5 for an overview of sensor node localization methods.

• Amobilizer (not shown in Figure 2.1) may be necessary for some applications to move the sensor node.

Depending on the application, further hardware units are possible. The most important concern for a WSN is
the energy consumption of its sensor nodes. For most applications the WSN is inaccessible or it is not feasible
to replace the power unit of the sensor nodes. In order to extend the network lifetime, which is the total time for
which the WSN is operational, all components of the sensor nodes and the algorithms used in the WSN have
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(a) (b) (c)

Figure 2.2: Network Topologies: (a) star network; (b) mesh-network (multi-hop); (c) hierarchical/cluster-tree
network

to be designed with the goal of a low power consumption [12]. Depending on the network topology, a trade-off
between computation and communication efforts has to be found to achieve energy efficiency. Since sensor
nodes are deployed once and are usually not recollected for reuse after their battery has drained, the production
costs of such sensor nodes have to be low in order to allow a WSN to be used reasonably in an application.

2.1.3 Sensor Node Deployment and Network Topology

The deployment of the sensor nodes in a WSN is crucial in terms of both communication and sensing. They
can either be placed one by one in the area of interest or they can be deployed in mass, e.g., by dropping them
from an airplane. In the latter case the position of each sensor will result random, which has to be borne in
mind for the design and development of WSN algorithms. In most cases, however, the application will impose
constraints on the deployment method for the sensor nodes.

As we will discuss in Chapter 3, the field reconstruction quality is not only influenced by the number
of sensor nodes used, as can be expected using noisy measurements, but also by their placement. Sensor
node deployment and placement moreover influences the communication between sensor nodes and the fusion
center. The condition of the terrain, the basics of radio communication, and the sensor nodes’ restricted transmit
power lead to a limitation on the feasible distance between a sender and a receiver. This results in a topology
of the network, which, in the sense of graph theory, can be defined as the sensor nodes that are available for
communication, i.e., the vertices, and the wireless links between these nodes used for communication, i.e., the
edges [12].

If single-hop communication between the sensor nodes and the fusion center is possible, we obtain a star
network (see Figure 2.2(a)). However, in case the limited communication distance prevents the simple and
direct communication between source and destination, other sensor nodes can be used as relays and data can be
transmitted to the destination via multiple hops. This can happen especially when the WSN covers a larger area
or operates in difficult radio environments with strong attenuation or large obstacles. Multi-hop communication
in addition to providing connectivity, can help to save energy for large distances between source and destination
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but wastes energy for small distances [13, 14]. Therefore, great care should be taken when applying multi-
hopping with the goal of improved energy efficiency. In addition to the energy efficiency, routing techniques
for WSNs [15] have to take into account changes of the topology during operation of the WSNs which may
happen due to node failures, energy shortage, or changes in the surrounding area [12]. Examples for multi-hop
communication topologies are mesh networks (see Figure 2.2(b)) or hierarchical networks (see Figure 2.2(c))
[11]. The latter, as the name implies, possess a hierarchical structure in which not all sensor nodes have the
same task assignments as the result of a clustering process. Clustered WSNs are covered in more detail in the
next section.

2.1.4 Sensor Node Clustering

Large sensor networks, consisting of hundreds or even thousands of sensor nodes require scalable architectural
and management strategies. In order to achieve the network scalability, sensor nodes can be grouped into
clusters. Every cluster has a leader, called the cluster head, that may be just one of the sensor nodes or a sensor
node provided with richer resources to fulfill additional tasks imposed by its function. Cluster heads can either
be defined by the sensor nodes after deployment or preassigned before.

Diverse clustering algorithms have been proposed in the literature for wired networks and ad-hoc networks
respectively. These algorithms mostly establish stable clusters and ensure node reachability and stability of the
routes to the fusion center but cannot be directly applied to WSNs with their unique deployment and opera-
tional characteristics, since critical design goals of WSNs, e.g., long network lifetime, are completely ignored.
Clustering algorithms specifically designed for WSNs have been proposed for a variety of applications. For an
overview and a comparison of algorithms and detailed descriptions see [16, 17] and the references therein.

Algorithms can be classified based on the network architectural and operational model as well as the clus-
tering objectives which are set in order to meet the applications’ requirements and are therefore as diverse as
the applications of WSNs themselves. The network architecture and the network operation depend on the type
of sensor nodes used and their deployment. In a heterogeneous WSN some sensor nodes are empowered with
distinct capabilities to act as cluster heads and are therefore pre-determined for that role. In a homogeneous
WSN, though, all sensor nodes have equal computation, communication, and power capacities, can therefore be
deployed randomly, and clustering and selection of cluster heads can be performed in a self-organizing manner.
Depending on the application and the nature of the phenomenon to sense or monitor, the WSN can either work
intermittently or continuously. Continuous monitoring requires periodic reporting and generates significant
traffic so that in the long term, rotation of the cluster heads is required in order to evenly load all sensors. If
the sensor nodes in the network are equipped with sufficient calculation power it is possible to perform data
aggregation and data fusion by combining data and removing redundancy from data of several sensors. By that,
the amount of transmitted data is reduced and hence substantial energy savings are obtained.

For many WSN applications the objectives of the clustering process are the same but their priority can vary
significantly. Important objectives are the balancing of communication and computation load among the sensor
nodes, optimization of network lifetime, robustness against the influences of the sometimes harsh environments
where the sensor nodes are deployed, and connectivity requirements. Other objectives may arise for more
special applications. Clustering should be performed such that computation and communication tasks of the
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WSN are distributed evenly over all the sensors. Distribution of the load among the sensor nodes is required
to avoid overcharging the limited capacities of single sensor nodes and to prevent premature exhaustion of
their energy supply and hence their dysfunction. It is therefore an important means to extend network lifetime.
Adaptive clustering, i.e., algorithms that adapt the clustering of the network over time to parameter changes,
additionally help to extend network lifetime. Moreover, robustness and fault-tolerance are enhanced. In harsh
environments, sensor nodes are exposed to increased risk of malfunction and physical damage which could
leave the WSN inoperable. In case of a sensor node malfunction that would harm the operability of the complete
network or parts of it, re-clustering of the network is possible. Since this will usually interrupt the operation
of the WSN one can define backup cluster heads that take over the function and recover the network from a
failure. An obvious connectivity requirement for the clustering algorithm is that all sensor nodes have to be
connected to the fusion center, but more sophisticated requirements could be imposed by limiting path lengths
or delays.

For successful reconstruction, the field reconstruction scheme presented in this dissertation requires a clus-
tering algorithm that yields clusters that establish stable sets of sampling. Further details about the requirements
are presented in Chapter 3.

2.1.5 Sensor Node Localization

For many applications, such as the field reconstruction scheme we will present later, the sensor measurement
data are useless without the location of the corresponding sensor node. Hence, (self-)localization capability
is a highly desirable characteristic for nodes in WSNs. Sensor networks vary significantly from traditional
cellular networks and Wireless Local Area Networks (WLANs) in that sensor nodes are assumed to be small,
inexpensive, cooperative and deployed in large quantities. These features of sensor networks present unique
challenges and opportunities for WSN localization.

Extensive research has been conducted on localization in wireless networks (see [14, 18–21] and the refer-
ences therein) and systems can be classified according to their properties, which we will summarize briefly in
the following.

Localization System Properties

A localization system can provide either physical or symbolic information. A physical position is, for instance,
expressed in a specific coordinate system, such as latitude and longitude using the WGS84 standard coordinate
frame for the Earth. In contrast, a symbolic location encompasses abstract ideas of where something is located,
e.g., in a city or next to a certain building. Depending on the resolution of a system, a physical position can
usually be augmented to provide corresponding symbolic location information. In the simplest case this can
be established by putting the physical positions of two objects in relation to derive, e.g., the symbolic location
that one is above, beneath or next to the other. An absolute location system uses a common reference grid
or coordinate system for all objects to be located. In a relative location system, however, each object can
have its own reference point. The discrimination between absolute and relative positions refers primarily to
the amount of information available at the different parts of the network. Knowing the absolute positions of
the reference points, relative positions of all objects can be derived. Depending on the application, different
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parts of the network need to know about the position of the objects in the network. In some cases, it may
be sufficient that the object’s position is only known to a cluster head or the fusion center, in other cases
it might be fundamental, e.g., due to privacy reasons, that only the objects themselves can determine their
position using the infrastructure provided by the network. The accuracy of a localization system describes the
resolution of the position information provided by the system. The corresponding precision as a measure of
reliability denotes how often the system can be expected to achieve that accuracy. The scale of a localization
system is the size of the area that is covered by the system and the number of objects it can locate. The
system costs for installation, administration, maintenance, sensor nodes, and infrastructure strongly depend
on the scale of the system. Depending on the infrastructure or the sensor nodes used, localization systems
possess inherent limitations and do not work under all circumstances. For example, Global Navigation Satellite
Systems (GNSSs) do not work indoors, in tunnels or under bridges. All these properties show that a localization
system has to be designed attentively with the applications in mind.

Localization Techniques

We will give a brief overview of the techniques used to determine the position of sensor nodes in WSNs.
Extensive surveys, comparisons, and detailed information about specific algorithms can be found in [18,22–24]
and the references therein.

Sensor network localization algorithms are based on the knowledge of the absolute position of a few sen-
sor nodes, called anchor nodes (or seed nodes). Their position is either known since they are deployed at
points with known coordinates, or it can be obtained by external systems such as a GNSS. All the other sensor
nodes, called non-anchor nodes, determine their position relative to the anchors. Non-anchor nodes can use
range-based measurement techniques if they are direct neighbors to a sufficient number of anchor nodes. Then,
estimates of the distance or the angles to their direct neighbors are used to calculate their position. Estimation of
distances and angles is accomplished by triangulation, i.e., by measuring angles (angulation) and side lengths
(lateration) of the triangles built by anchor nodes and non-anchor nodes and calculating the unknown lengths in
these triangles based on plane trigonometry. Angles of Arrival (AOAs) can be measured using the amplitude or
phase response of the sensor node’s antenna or by so-called subspace techniques, e.g., MUSIC (MUltiple SIg-
nal Classification), ESPRIT (Estimation of Signal Parameters by Rotational Invariance Techniques) and their
variations [18]. Distances between nodes can be measured indirectly from one-way or round-trip propagation
times of sent messages, based on the Time Of Arrival (TOA) or the Time Difference Of Arrival (TDOA). These
techniques are used in the IEEE 802.15.4a standard based on UWB [25, 26] to provide high precision local-
ization capabilities with centimeter accuracy, but require accurate clock synchronization between the nodes in
order to achieve high resolution positioning [27]. Distances between nodes can moreover be measured based
on the Received Signal Strength (RSS) and propagation properties. Hybrid measurements, i.e., a combination
of two or more of these measurements, are also possible in order to improve positioning accuracy [21, 28].

The above mentioned localization techniques are based on a strong Line-Of-Sight (LOS) between nodes and
anchor nodes. In case the LOS is obstructed or the measurements are contaminated by reflected or diffracted
signals, Non-Line-Of-Sight (NLOS) error mitigation has to be performed [22]. If a LOS cannot be ensured and
NLOS error mitigation is too complex, range-free localization techniques can be used which rely on connec-
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tivity information of the non-anchor nodes, i.e., which sensor node is connected to which other sensor nodes.
A sensor node being in the transmission range of another sensor node defines a proximity constraint which can
be exploited for localization.

2.2 Estimation Theory

The field reconstruction scheme that we will present in Chapter 3 is based on the estimation of channel coeffi-
cients from measurements of sensor nodes in a sensor network. We will therefore review a few basic concepts
of estimation theory [29].

Estimation theory deals with estimating parameters θ = (θ1 . . . θN )T from measured data
x = (x1 . . . xM)T . The parameter vector θ cannot be observed directly or not measured accurately, so that
it has to be inferred from the measured data vector x that depends on the parameters. The dependence is es-
tablished, for instance, by a physical phenomenon and must be known to some extent in order to be able to
estimate θ from x. The dependence can be either deterministic or stochastic. For a deterministic dependence
the observed data are modeled by a known function s(·) impaired by unknown deterministic errors w, i.e.,
x = s(θ) + w. Stochastic dependence is described by the Probability Density Function (pdf) of x, either
parameterized by θ (if the parameter is deterministic), i.e., f(x;θ), or conditioned on θ (if it is stochastic), i.e.,
f(x|θ). The parameter vector θ is either modeled as deterministic vector (classical estimation) or as a random
vector (Bayesian estimation). The estimator function θ̂(x) calculates an estimate θ̂ for the parameter vector θ
only from the measured data x. The design of the estimator function is based on the dependence between θ

and x, i.e., on s(·), f(x;θ) or f(x|θ) and f(θ) respectively. The goal of parameter estimation is to attain an
estimate θ̂ that is close to the true value θ, i.e., the estimation error e = θ̂ − θ or its square should be small in
a certain sense.

The estimation problem can be approached from two different perspectives, the classical estimation on the
one side and the Bayesian estimation on the other side. We will give a short overview of both approaches in the
following.

2.2.1 Classical Estimation

In classical estimation the parameter θ of interest is assumed to be deterministic but unknown. The as-
sumption of θ being deterministic follows from the fact that no prior statistical information about the pa-
rameters is available. The dependence of the random measured data x is described by a family of pdfs
f(x;θ) parameterized by θ. The interest typically lies in unbiased estimators, i.e., estimators for which
bias{θ̂} = E{e} = E{θ̂(x)} − θ = 0. TheMean Square Error (MSE) of the estimate θ̂ equals

ε
θ̂
(θ) =

1

M
E{‖e‖2} =

1

M
E{‖θ̂(x) − θ‖2} = var{θ̂}+

1

M
‖bias{θ̂}‖2,

which for an unbiased estimator equals var{θ̂} = 1
M E{‖θ̂(x) − E{θ̂}‖2}, i.e., the MSE equals the variance.

Among all unbiased estimators, the estimator with the minimum variance (and therefore the minimum MSE)
for all θ is called the Minimum Variance Unbiased (MVU) estimator.
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An unbiased classical estimator θ̂(x) is said to be efficient if its covariance matrix attains the Cramér-Rao
Lower Bound (CRLB), i.e., if

cov
θ̂
(θ) = J−1(θ).

Here, J(θ) is the Fisher information matrix (see [29] for definition and properties). If an efficient estimator
exists, it is the MVU estimator and the Maximum Likelihood (ML) estimator simultaneously. If an efficient
estimator does not exist, it is however still possible that an MVU estimator exists. Unfortunately, the existence
of the MVU estimator is not guaranteed or it often cannot be found. Therefore suboptimal but more practical
estimators, like the ML estimator or the Best Linear Unbiased Estimator (BLUE), are used.

The ML estimator chooses that θ that maximizes the likelihood function for the observed x, i.e.,

θ̂ML(x) ! argmax
θ

f(x;θ).

Sometimes, this maximization problem cannot be solved in closed form but only by numerical techniques. This
may be computationally too complex and it is therefore often reasonable to constrain the estimator to be a linear
function of the data x. The BLUE minimizes the variance under the constraint of unbiasedness and linearity.
Assuming a linear data model x = Hθ +w, the BLUE is given by

θ̂BLUE(x) = (HTC−1
w H)−1HTC−1

w (x− µw),

withCw being the covariance matrix and µw the mean of the random vector w.
Without any statistical model for the parameter θ or the data x, one assumes a deterministic model s(·) for

the dependence of the data on the parameter. The data model is deterministic up to a modeling or measurement
error w, i.e., x = s(θ) + w. The Least Squares (LS) estimator selects the θ for which s(θ) is closest to the
data x in a least squares sense,

θ̂LS(x) ! argmin
θ

‖x− s(θ)‖2 = (HTH)−1HTx = H#x.

Here, the matrix H# = (HTH)−1HT is the Moore-Penrose pseudo-inverse of H. In order to emphasize the
contributions of those data that are considered more reliable, weighting factors can be introduced in the error
criterion via a symmetric, positive definite weighting matrixW. We then get theWeighted Least Squares (WLS)
estimator

θ̂WLS(x) ! argmin
θ

‖x− s(θ)‖2W ! argmin
θ

(x−Hθ)TW(x−Hθ) = (HTWH)−1HTWx.

If statistical prior knowledge of the measurement error w (mean µw and covariance matrix Cw) is available,
the WLS estimator with data x′ = x − µw and weighting matrixW = C−1

w coincides with the BLUE. For a
linear-Gaussian model, the BLUE (as well as the WLS estimator) is the MVU and also equals the ML estimator.

2.2.2 Bayesian Estimation

In Bayesian estimation both the measured data x and the parameter θ are modeled as random. We use the
statistical information of x and θ, i.e., the pdf f(θ) and the conditional pdf f(x|θ) that characterizes the
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dependence of x on θ. Bayesian estimation aims at minimizing a suitable average measure of the estimation
error e = θ̂(x)− θ. The general Bayesian estimator is given by

θ̂B(x) ! argmin
θ̂

E{C(θ̂ − θ)} = argmin
θ̂

∫

θ

C(θ̂ − θ)f(x|θ)f(θ)dθ,

with a scalar-valued cost function C(·). Choosing the cost function to be quadratic, we obtain the Minimum
Mean Square Error (MMSE) estimator

θ̂MMSE(x) ! argmin
θ̂

E{‖θ̂ − θ‖2} =

∫

θ

θf(θ|x)dθ = E{θ|x}.

In general, this is a nonlinear function of the measurement data x and often it cannot be determined in closed
form or its implementation is computationally costly. It is therefore sometimes reasonable to constrain the
estimator to be a linear function of the data. The resulting Linear Minimum Mean Square Error (LMMSE)
estimator

θ̂LMMSE(x) = µθ +CT
x,θC

−1
x (x− µθ),

with the covariance matrixCx of x and the cross-covariance matrixCx,θ = E{xθT } of x and θ, is suboptimal
in general, but can always be calculated in closed form. For jointly Gaussian x and θ, the LMMSE estimator is
equal to the MMSE estimator.

Using a Bayesian estimator with the cost function

C(e) =







1, ‖e‖ > δ

0, ‖e‖ ≤ δ,

in the limit for threshold δ → 0 gives the Maximum A Posteriori (MAP) estimator

θ̂MAP(x) = argmax
θ

f(θm|x),

that maximizes the posterior pdf of the vector θ.
An unbiased Bayesian estimator θ̂(x) is said to be efficient if its error covariance matrix attains the CRLB,

i.e., if
cov{e} = L−1.

Here, L is the Bayesian information matrix (see [30] for the definition and properties). If an efficient estimator
exists, it is the MAP estimator and the MMSE estimator simultaneously. An efficient Bayesian estimator exists
if and only if the posterior pdf f(θ|x) is Gaussian.

2.3 Convex Optimization

In this section we will introduce a few basic concepts used in mathematical optimization in general and in
convex optimization in particular. Convex optimization is widely used in application areas such as control,
circuit design, economics and finance, networking, and statistics and machine learning. We will only give
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a short introduction in order to be able to understand the basic terms used in Chapter 4. For an extensive
introduction to optimization problems with a strong focus on convex optimization see [10, 31].

In general, a mathematical optimization problem, or just optimization problem, has the form [10]

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

(2.1)

The equivalent dual maximization problem can be solved by minimizing the negative objective function. Here,
the vector x = (x1 . . . xn)T is the optimization variable of the problem, the function f0 : Rn → R is the
objective function or cost function, the functions fi : Rn → R, i = 1, . . . ,m, are the inequality constraint
functions, and the functions hi : Rn → R, i = 1, . . . , p, are the equality constraint functions. If there are no
constraints, the problem is called unconstrained. The domain of the problem is the set of points for which the
objective function and all constraint functions are defined, i.e.,

D =
m
⋂

i=0

dom fi ∩
p
⋂

i=1

dom hi.

A point x ∈ D is feasible if it satisfies the inequality and equality constraints. The set of all feasible
points is called the feasible set. The solution of the optimization problem (2.1) is the optimal vector x"

that attains the smallest objective value among all vectors in the feasible set. Hence, for any z ∈ D with
f1(z) ≤ 0, . . . , fm(z) ≤ 0, we have f0(z) ≥ f0(x").

Convex optimization problems are a class of mathematical optimization problems, characterized by par-
ticular forms of the objective and constraint functions. Specifically, for a convex optimization problem, the
objective function and the inequality constraints must be convex and the equality constraint functions must be
affine. For a mathematical optimization problem, the property of convexity is of high importance because it
allows to formulate first order optimality criteria that are sufficient for a global optimum.

The feasible set of a convex optimization problem is a convex set, which is a set C that contains every point
on the line segment connecting any two points in C, i.e., for any x,y ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx+ (1− θ)y ∈ C.

A function fi : Rn → R is a convex function if its domain domf is a convex set and if for all x, y ∈ domf ,
and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ) f(y).

A fundamental property of convex optimization problems is that if any locally optimal point exists, then it
is also globally optimal. This fact simplifies the optimization and allows for very effective solution methods.
Unlike many general optimization problems, most convex optimization problems can be efficiently solved, both
in theory and practice. Usually the difficulty lies in recognizing and formulating convex optimization problems
after which solving them often is straight forward in principle.
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Distributed Field Reconstruction

We use the theory and algorithms developed for so-called shift-invariant spaces to develop a novel distributed
architecture for sampling and reconstruction of time-varying non-bandlimited physical fields inWireless Sensor
Networks (WSNs). We introduce hybrid shift-invariant spaces, that generalize conventional shift-invariant
spaces and can adapt to local smoothness properties of the field. Using shift-invariant spaces with compactly
supported generator functions allows us to split the global reconstruction into several smaller local problems
that can be solved independently. Capitalizing on the sparsity of the matrices involved in the reconstruction, we
propose direct and iterative reconstruction algorithms whose complexity per time slot scales only linearly with
the number of sensor nodes. We furthermore analyze the impact of sensor node localization errors on the mean
square error of the reconstructed field. Numerical simulations illustrate that the proposed field reconstruction
scheme performs as good as bandlimited reconstruction and is less sensitive to sensor node location errors while
providing a significant reduction in computational complexity.

19
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3.1 Background and State of the Art

The problem of sampling and reconstruction of physical fields has been previously addressed in the literature
under the often unrealistic assumption that the field is spatially strictly bandlimited. An efficient scheme for
the reconstruction of bandlimited fields using a trade-off between spatial oversampling and sensor quantizer
resolution was presented in [32]. The accuracy of linear bandlimited reconstruction in WSN with non-uniform
sampling was studied in [33] using random matrix theory. In temporal sampling applications, sufficient band-
limitation can be ensured by preceding the sampling with continuous-time anti-aliasing filters. This is in stark
contrast to WSN where spatial anti-aliasing filtering is inherently impossible since the continuous-space field
cannot be accessed or pre-processed. At the same time the assumption of a bandlimited field is too restrictive
for many physical scenarios. In fact, non-wave fields (e.g., electrostatic fields, gravitation fields, diffusion fields
in liquids and gases) cannot be assumed to be strictly bandlimited (see e.g. [34]). In [35] it was shown that sig-
nificant oversampling is required to achieve small reconstruction errors when using bandlimited reconstruction
for non-bandlimited fields.

In this chapter we introduce new schemes for reconstructing non-bandlimited spatio-temporal fields in
WSN. We propose to use shift-invariant spaces [8] instead of bandlimited spaces as models for the sensing of
smooth spatio-temporal fields and we further introduce an extension termed hybrid shift-invariant spaces that
allows the amount of smoothness of the field to be adapted locally. We extend and adapt the One-Dimensional
(1-D) reconstruction algorithm from [9] to the Two-Dimensional (2-D) case. Our approach is highly local in the
sense that reconstructing the field at a certain position requires only samples from a small spatial neighborhood.
A theoretical analysis provides insights regarding the sensor node (i.e., sampling) density required for perfect
reconstruction to be feasible. We develop a clustered WSN architecture that is matched to the localized nature
of our field models. Within each cluster, a cluster head collects measurements from all sensor nodes within
the cluster and performs local field reconstruction. This architecture allows for a graceful transition between
fully centralized field reconstruction (one cluster and a fusion center) and completely decentralized operation
(each sensor node is a cluster head and performs the same tasks). Depending on the application context, the
communication and computational burden can thus be distributed among the sensor nodes in a flexible manner.
We discuss various implementations of the actual field reconstruction algorithm using either direct or iterative
solvers for the underlying sparse linear system of equations. It turns out that in all cases the computational
complexity scales only linearly with the number of sensor nodes. Iterative solvers are particularly attractive for
tracking time-varying spatial fields since here the number of iterations can be significantly reduced by using
the solution obtained in the previous time-step as initialization. We further show that ill-conditioned systems of
equations result from regions with too low sensor node density. Excluding these regions from the reconstruction
improves the reconstruction quality in the rest of the field. We study how quantization and measurement
noise affect the stability and the quality of the field reconstruction. Furthermore, we provide semi-analytical
and numerical investigations of the impact of sensor node localization errors on the performance of our field
reconstruction method. It turns out that shift-invariant interpolation is much more robust to localization errors
than bandlimited interpolation. Finally, we provide extensive numerical simulations to illustrate the excellent
reconstruction performance of the proposed scheme under a variety of operating conditions.
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Our scheme is highly attractive since it is flexible, features very low computational complexity, requires low
communication overhead, is robust against quantization and localization errors, and requires only the sensor
node positions to be known. We note that due to the favorable computational and communication requirements
of our method, consensus- or diffusion-based implementations (e.g., [36–39]) that distribute the computational
complexity across sensor nodes at the expense of increased communication overhead are less interesting in our
context.

3.2 System Model

3.2.1 Wireless Sensor Network Architecture

We consider a WSN consisting of I sensor nodes, which are deployed over a given region A to monitor a 2-D
spatio-temporal physical field h(x, y; t). Here, x and y denote the spatial coordinates and t denotes time. The
position of sensor node i is given by (xi, yi) and its measurement during the nth sampling period is denoted by
hi(n). In this chapter we will mostly be concerned with spatial interpolation/estimation of the field h(x, y; t)
for fixed time t; temporal interpolation can be performed using a variety of methods for smooth temporal
models [40]. We consider a clustered system architecture (see Figure 3.1) where the sensor nodes are grouped
into M clusters Cm of cardinality Im, m = 1, . . . ,M , that monitor the subregions Am (

⋃M
m=1 Am = A).

These subregions may overlap and may have different areas. For simplicity of exposition, however, we assume
disjoint subregions Am in the following. In case the Am are not disjoint, our method can be augmented by
averaging the local field reconstruction results in the overlapping regions (see Section 3.4.3 for more details).

In each cluster Cm there is one node, termed the cluster head, which reconstructs the field h(x, y;nT ) for
(x, y) ∈ Am according to the algorithm outlined in Section 3.4. To this end, it collects the measurements hi(n)
and the corresponding positions (xi, yi) of all sensor nodes within the cluster. This requires that each sensor
node has determined its own position (see Section 2.1.5 for more details about sensor node localization). We
note that as an alternative, the cluster heads can forward intermediate results to a fusion center, which then
globally reconstructs the field.

The choice of the WSN clusters and cluster heads has a crucial impact on the performance of the sensor
network. Since the cluster heads performs all the computations necessary for the reconstruction and may be
required to transmit their results to a global fusion center, they consume more energy than the other sensor
nodes who only transmit the measured data to the cluster head. This imbalance in energy consumption can
be overcome by letting all sensor nodes act as cluster heads in a round robin fashion, thereby distributing the
computation and communication load uniformly over all nodes in a cluster. Besides improved energy efficiency,
WSN clustering offers additional advantages like reduced channel contention and fewer packet collisions. For
our field reconstruction scheme it is desirable to choose the clusters such that they form stable sampling sets [8]
and increase the network lifetime by reducing the communication overhead. More information about grouping
WSN nodes into clusters and identifying cluster heads can be found in Section 2.1.4.

We note that local field reconstruction within a cluster, i.e., without requiring data from the other clusters, is
possible due to the localized nature of the proposed non-bandlimited field model (see Section 3.3.1 for details).
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Figure 3.1: Illustration of clustered WSN architecture for field reconstruction (not all clusters shown). The field
is reconstructed locally within every subregion (solid lines) by the respective sensor node cluster. If desired, the
result is forwarded to a fusion center. The local field reconstruction involves samples from the slightly larger
subregions (circumscribed by dashed lines).

The advantages of our clustered WSN architecture are its scalable distributed nature that entails reduced com-
munication and computational complexity, and improved ability to locally adapt the field model (see Section
3.3.3). In addition, poor field reconstruction quality within the regionAm corresponding to cluster Cm is a local
effect that does not degrade the reconstruction quality within A\Am.

3.2.2 Measurement Model

In practice, the sensor node measurements are impaired by measurement and quantization noise. The measure-
ments taken by the sensor nodes are quantized noisy samples of the physical field h(x, y; t). The quantized
measurements are therefore given by hi(n) = Q{h(xi, yi;nT ) + wi(nT )}, where Q{·} represents the action
of the quantizer, T is the temporal sampling period, and wi(nT ) denotes measurement noise. For simplicity, we
assume that each sensor node uses a uniform quantizer with a resolution of B bits and dynamic range ±hmax.
We assume that the dynamic range is large enough to avoid clipping, i.e., h(x, y; t) ∈ [−hmax, hmax]. The
maximum magnitude of the quantization error in this case is given by 2−Bhmax. The quantizer resolution B

not only determines the field reconstruction quality but also the communication requirements for transmitting
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the measurements to the cluster heads. Since typically many measurements will be taken over time and repeated
transmission of a large number of bits can consume a significant fraction of a sensor node’s battery power, the
choice of B can strongly influence network lifetime.

3.3 Field Model – Shift-Invariant Spaces

We first introduce conventional shift-invariant spaces (e.g., [8, 41]) as mathematical models for the spatio-
temporal field h(x, y; t). Our terminology is adapted to the WSN setup and our discussion is restricted to the
2-D case throughout the dissertation. This basic model will afterwards be extended to hybrid shift-invariant
spaces in order to locally adapt the model to the field to be reconstructed.

3.3.1 Conventional Shift-Invariant Spaces

Wemodel the smooth spatio-temporal field via a shift-invariant space, i.e., we assume h(x, y; t) ∈ V (g), where
V (g) is a linear subspace of L2(R2) comprising all functions that can be represented as weighted superposition
of spatial translates of some generator function g(x, y) ∈ L2(R2), i.e.,

V (g) !






f ∈ L2(R2) : f(x, y) =

∑

(k,l)∈Z2

ck,l g(x− kDx, y − lDy)






,

where ck,l ∈ l2(Z2). Here,

L2(R2) =

{

f(x, y) :

∫∫

R2

|f(x, y)|2dx dy < ∞

}

stands for the space of square-integrable 2-D functions and

l2(Z
2) =






ck,l :

∑

(k,l)∈Z2

|ck,l|2 < ∞







denotes the space of square-summable 2-D sequences. Without loss of generality, we will assume Dx = Dy =

1 throughout the dissertation, which can always be ensured by appropriately rescaling the spatial coordinates
x and y. To guarantee the stability of the representation above, we further assume that the set of translates
{g(x− k, y − l)}(k,l)∈Z2 forms a Riesz basis for V (g) [9, 42].

Bandlimited spaces are a special case of shift-invariant spaces, obtained with the separable sinc-type gen-
erator function

gBL(x, y) !
sin(Bxπx)

Bxπx

sin(Byπy)

Byπy
(3.1)

where Bx and By denote the spatial bandwidths. Since gBL(x, y) decays very slowly, the corresponding space
V (gBL) is highly non-local, i.e., the field value h(x, y;nT ) ∈ V (gBL) depends on samples that are arbitrarily far
away from (x, y). This is clearly undesirable and makes the space of bandlimited functions often unsuitable for
numerical implementation. Moreover, physical fields that are measured in applications tend to have components
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that decay for higher frequencies, but these functions are not bandlimited in the strict sense. This motivates the
advantageous use of non-bandlimited models that retain some of the simplicity and structure of bandlimited
models but are more amenable to numerical implementation and are more flexible in the approximation of real
data. Shift-invariant spaces using generator functions with compact support, such as Basis-splines (B-splines),
to be introduced in Section 3.3.2, are such models. They can be modified to be even more flexibly adaptable
to the physical field, as we will show in Section 3.3.3. Sampling in non-bandlimited shift-invariant spaces is
a suitable and realistic model for many applications, e.g., for taking into account real acquisition and recon-
struction devices, for modeling signals with smoother spectrum than is the case with bandlimited functions, or
for numerical implementation. The application requirements can often be met by choosing appropriate gen-
erator functions g(x, y). This may mean that the functions g(x, y) have a shape corresponding to a particular
impulse response of a device, that they are compactly supported, or that they have a smoothly decaying Fourier
transform [8].

3.3.2 Compactly Supported Generator Functions

The undesirable non-local nature of band-limited spaces motivates us to propose the use of shift-invariant spaces
with a compactly supported generator function. The support of g(x, y) is defined as

S ! cl
{

(x, y) ∈ R
2 : |g(x, y)| > 0

}

,

where cl{·} denotes topological closure. Hence the support is the closure of the set of points (x, y) where the
function g(x, y) is non-zero. A particularly useful class of compactly supported generator functions is given by
B-splines that are piecewise-polynomial functions having minimal support with respect to a given degree and
are commonly used for interpolation purposes [43]. The advantage of polynomials is that they can be evaluated,
differentiated, and integrated easily and in finitely many steps using only basic arithmetic operations [43, 44].
Specifically, we will use 2-D spline functions in the following, constructed as

bN (x, y) = b̃N (x)b̃N (y), (3.2)

where the 1-D splines of order N (see Figure 3.2) are defined via the N -fold convolution

b̃N (x) ! Π(x) ∗Π(x) . . . ∗ Π(x)
︸ ︷︷ ︸

N times

. (3.3)

Here, the rectangular function Π(x) = b̃0(x) is defined as

Π(x) !







1, −1
2 ≤ x < 1

2 ,

0, else.

Alternatively, the B-splines can be accurately calculated using the Cox-de Boor recursion [44]. Both methods
for the calculation of B-splines are discussed in more detail in Appendix 3.B. The support of the 2-D splines
is given by S = [−(N+1)/2, (N +1)/2] × [−(N+1)/2, (N +1)/2]. In our application context, the most
important implication of the compact support of bN (x, y) is the strongly localized nature of V (bN ). According
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Figure 3.2: Illustration of 1-D B-splines of order N ∈ {0, 1, 2, 3}. The support is shown in gray shade.

to the representation f(x, y) =
∑

k,l ck,l bN (x− k, y − l), the field f(x, y) at any position (x, y) depends only
on the (N + 1)2 coefficients ck,l for which (x − k, y − l) ∈ S . Due to the compact support of bN (x, y), the
shift-invariant spaces V (bN ) are not strictly bandlimited. However, the elements of V (bN ) are smooth, with
the degree of smoothness increasing with growing N (see Figure 3.2).

3.3.3 Hybrid Shift-Invariant Spaces

With the clustered WSN architecture described in Section 3.2, the region A is divided intoM subregions Am.
This motivates us to model the spatio-temporal field using potentially different generator functions in every
subregion. To this end, we introduce the hybrid shift-invariant spaces

V (G) !






f ∈ L2(R2) : f(x, y) =

M
∑

m=1

∑

(k,l)∈Am

ck,l gm(x− k, y − l)






, (3.4)

where G = {gm(x, y)}m=1,...,M , Am = Z2 ∩ (Am + S), and ck,l ∈ l2(Z2). This defines a linear subspace
of L2(R2) that comprises all fields that can be represented as weighted superposition of spatial translates of
the generator functions gm(x, y). Using different generator functions gm(x, y) in the subregions Am allows us
to locally adapt the smoothness properties of the field. Conventional shift-invariant spaces correspond to the
special case with identical generators, i.e., g1(x, y) = g2(x, y) = · · · = gM (x, y). Similar to conventional
shift-invariant spaces, we assume that the set

⋃M
m=1 {gm(x− k, y − l)}(k,l)∈Am forms a Riesz basis for V (G)

in order to guarantee stability of (3.4).
For the time-varying fields considered in this chapter, we will assume that h(x, y; t) ∈ V (G) for all time

instants t. Since we keep the generator functions constant over time, this means that the field coefficients ck,l
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Figure 3.3: Clustering options for the proposed reconstruction scheme: (a) centralized setup with one cluster
and a fusion center; (b) clustered architecture with several cluster heads; (c) diffusion-based reconstruction
with every sensor node acting as cluster head.

in (3.4) become time-dependent. Even though we do not impose an explicit model on the temporal evolution
of the coefficients ck,l(t), we will implicitly assume that their time-variation is slow.

3.4 Field Reconstruction

In the following sections, we describe three variants of our field reconstruction scheme that range from fully
centralized to completely distributed and apply to different cluster granularities (i.e., one cluster, several clus-
ters, I clusters). The actual reconstruction algorithm is scalable and is identical for all three variants. However,
these variants differ in how the computations are distributed among the sensor nodes and in the underlying
communication protocol.

3.4.1 Centralized Case – Global Reconstruction

By extending [9] to two dimensions, we next show how the field h(x, y;nT ) ∈ V (g) can be reconstructed
within A from the I (noisy) samples provided by the sensor nodes. In this section, we assume a centralized
setup with one cluster consisting of all sensor nodes (see Figure 3.3(a)). Here, the cluster head serves as a
global fusion center. We assume that the fusion center knows the measurements hi(n) and the positions (xi, yi)
of all sensor nodes as well as the generator function g(x, y).

For every time instant nT , the fusion center first aims at determining least-squares (LS) estimates of the
field coefficients by solving the minimization problem

ĉk,l(n) = argmin
ck,l

I
∑

i=1

∣
∣
∣

∑

(k,l)∈A

ck,l g(xi−k, yi−l)− hi(n)
∣
∣
∣

2
, (3.5)

where A = Z2 ∩ (A + S). The problem (3.5) leads to a system of linear equations (see Section 3.5) which
has a unique solution only if there are more sensor nodes (spatial samples) than unknown coefficients, i.e.,
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I ≥ J ! |A|. Once the LS coefficient estimates ĉk,l(n) have been computed, the field within A can be
reconstructed according to

ĥ(x, y;nT ) =
∑

(k,l)∈A

ĉk,l(n) g(x− k, y − l). (3.6)

In this centralized setup, the sensor nodes send their measurements along with their positions to the fusion
center that uses these data to solve the LS problem (3.5) and subsequently reconstruct the field according to
(3.6). In Section 3.5, we will show that the compact support of the generator functions leads to extremely
efficient solvers1.

The solution to the field reconstruction problem is initially known only to the fusion center, which is suffi-
cient in many applications. For applications where the result has to be known throughout the WSN, the fusion
center could communicate the solution of (3.5) to the sensor nodes which can then reconstruct the field (locally
or globally). The centralized scheme requires a large amount of communication to transmit the data (directly
or via multi-hop) to the fusion center. In exchange, the sensor nodes can be very simple (i.e., with low compu-
tational power) since they only need to take measurements and forward them to the fusion center. Obviously,
a failure of the fusion center would tie up the operation of the whole sensor network. Moreover, if the sensor
node placement does not result in a stable sampling set (e.g., too large gaps between some of the sensor nodes,
see Section 3.6), the global reconstruction is likely to fail completely.

3.4.2 Clustered Reconstruction

We now consider the case of several clusters (M > 1), depicted in Figure 3.3(b), and we use a hybrid shift-
invariant space to model the unknown field, i.e, h(x, y;nT ) ∈ V (G). In each cluster Cm there is a cluster
head that performs local field reconstruction by using only the measurements and positions of the sensor nodes
within that cluster. In order for local reconstruction within each subregion Am to be feasible, we assume
B-spline generator functions that have compact support S . In this case, reconstruction within Am only requires
estimates of the coefficients ck,l(n) that lie within Am = Z2 ∩ (Am + S). These coefficients are estimated by
solving the LS problem

ĉ(m)
k,l (n) = argmin

ck,l

∑

i∈Cm

∣
∣
∣
∣
∣
∣

∑

(k,l)∈Am

ck,l bN(m)(xi−k, yi−l)− hi(n)

∣
∣
∣
∣
∣
∣

2

. (3.7)

Here, bN(m)(x, y) is a B-spline whose order N(m) depends on the cluster indexm. The corresponding system
of linear equations (see below for details) has a unique solution only if Im ≥ Jm ! |Am|, i.e., if there are more
sensor nodes in the cluster than unknown coefficients in the associated region. We note that this condition tends
to be harder to meet for largerM . For bandlimited field reconstruction, this condition can never be met due to
the infinite support of the generator function gBL(x, y), i.e., clustering and local reconstruction is impossible
in this case. Hence, bandlimited fields necessitate the centralized architecture presented in Section 3.4.1, i.e., a
single “cluster” comprising all sensor nodes.

1Reconstruction is possible also for generators that are not compactly supported but with significantly higher computational com-
plexity.
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Using the optimum coefficients ĉ(m)
k,l (n) in (3.7), the field within Am is reconstructed as

ĥ(x, y;nT ) =
∑

(k,l)∈Am

ĉ(m)
k,l (n) bN(m)(x−k, y−l), for (x, y) ∈ Am. (3.8)

The cluster-based local reconstruction is similar to the global reconstruction scheme described in Section 3.4.1,
the difference being that the reconstruction problem is divided into smaller parts that are solved independently
by the individual clusters. We re-iterate that this clustering approach is only possible with generator functions
gm(x, y) of compact support. This cluster-based scheme requires the sensor nodes to communicate their mea-
surements to their cluster head who solves the LS problem (3.7) and reconstructs the field according to (3.8)
within the subregion Am. The resulting solution to the field reconstruction problem in the subregions is known
only to the respective cluster head. However, a reconstruction of the complete field is possible if the cluster
heads communicate their local solutions to each other or to a fusion center. In case of overlapping subregions
Am, several cluster heads compute estimates ĉ

(m)
k,l (n) for a specific coefficient. A refined estimated of ck,l(n)

can here be obtained by a subsequent averaging, described in more detail in the next section.
The clustered architecture further simplifies the use of different compactly supported generator functions

in each cluster, e.g., B-splines of different order N(m), according to the field model based on hybrid shift-
invariant spaces (see Section 3.3.3). This allows the model to be adapted to the local smoothness properties
of the underlying field h(x, y; t). Furthermore, the clustered scheme reduces the communication requirements
since only the sensor nodes within a cluster need to send their positions and measurements to their cluster head
(i.e., fewer long-distance transmissions). Moreover, the reconstruction is more robust because the failure of a
cluster head or a poor sensor node placement deteriorate only the result in the subregion Am without affecting
the reconstruction in the other subregions.

3.4.3 Diffusion-based Reconstruction

Increasing the number of clusters to the extreme case M = I results in a fully distributed architecture in
which each sensor node acts as cluster head for an associated subregion (see Figure 3.3(c)). The subregion
corresponding to each cluster head has to be chosen larger than the support S of the generator function, which
corresponds precisely to the region containing the coefficients ck,l(n) that directly influence the measurement
of that sensor node. In its role as cluster head, every node estimates the field (within the generator function’s
support) by solving the LS problem (3.7) using the measurements of the sensor nodes within its corresponding
subregion. Since the same coefficient ck,l is estimated by a multitude of sensor nodes, the influence of the
measurement and quantization noise can be reduced by computing a refined estimated by averaging those
initial estimates ĉ(m)

k,l (n) withm such that (k, l) ∈ (xm, ym)+S . The relevance and reliability of the individual
estimates (both of which depend on the distance of the coefficient’s position from the cluster heads) can be
taken into account in the averaging scheme by an appropriate weighting.

The distributed averaging can be implemented using algorithms like randomized gossip [37], average con-
sensus [39], and consensus propagation [38]. The sensor nodes can subsequently use the averaged coefficients
to reconstruct the field according to (3.8) within its neighborhood. This two-stage approach can be viewed as
a diffusion scheme, i.e., the sensor nodes calculate local updates for their estimates based on the information
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obtained from exchanging initial estimates with their neighbors. In this way, the observations of all sensor
nodes diffuse through the whole network over time, regardless of the specific network topology.

3.5 Implementation of Reconstruction Algorithm

In this section, we describe how the solutions to the LS problem (3.7) can be obtained in an efficient manner
(note hat (3.5) is a special case of (3.7) obtained with M = 1). It will be seen that under the assumption of
compactly supported generators, the computational complexity of the resulting algorithm scales linearly with
the number of sensor nodes.

3.5.1 Matrix-Vector Formulation

We first reformulate the field reconstruction problem in terms of matrices and vectors. Since all clusters perform
reconstruction independently of each other, it is sufficient to focus on one cluster, say clusterm. For simplicity,
we restrict to B-splines as generator functions and to rectangular subregionsAm. Let (k0, l0) and (k1, l1) denote
the index pair in the lower-left and upper-right corner of Am, respectively, such that the number of unknown
coefficients within Am equals Jm = K(l1 − l0 + 1) withK ! k1 − k0 + 1. We define the Im × Jm matrix

[G(m)]j,p ! bN(m)(xij − kp, yij − lp), (3.9)

where ij , j = 1, . . . , Im, denotes the indices of the sensor nodes located in Am (i.e., Cm = {i1, . . . , iIm}),
kp = k0 + ((p−1) modK), and lp = l0 +

⌊p−1
K

⌋

. Here, +p, denotes the largest integer not larger than p. We
emphasize that the compact support of bN(m)(x, y) implies thatG(m) is a sparse matrix whenever Am is larger
than S . Specifically, [G(m)]j,p = bN(m)(xij − kp, yij − lp) -= 0 only if (xij − kp, yij − lp) ∈ S , which can
happen for at most +|S|, = +N(m) + 1,2 of the Jm elements in each row. Thus, only a fraction of roughly
|S|/|Am| of the elements in each row ofG(m) is non-zero.

Similar to (3.9), the measurements and unknown coefficients within the subregion under consideration are
arranged into respective vectors h(m)(n) and c(m)(n), i.e.,

[h(m)(n)]j ! hij (n), [c(m)(n)]p ! c(m)
kp,lp

(n). (3.10)

With these definitions, we cast the minimization problem (3.5) as

ĉ(m)(n) = argmin
c

‖G(m)c− h(m)(n)‖2, (3.11)

whose solution is given by
ĉ(m)(n) = (G(m)HG(m))−1G(m)Hh(m)(n). (3.12)

We note that this unique LS solution requires G(m) to have full column rank which in turn presupposes Im >

Jm and guarantees the Gram matrixG(m)HG(m) to be nonsingular (more specifically, positive definite). This
is just another consequence of the requirement that there have to be enough appropriately spaced samples
available. Technically, the sensor node positions (xij , yij), ij ∈ Cm, have to form a stable sampling set (see



30 Chapter 3. Distributed Field Reconstruction

Section 3.6.2 for further details). Rather than computing ĉ(m)(n) according to (3.12), it is advantageous to
exploit the sparsity ofG(m) by solving the associated normal equations [45]:

G(m)HG(m) ĉ(m)(n) = G(m)Hh(m)(n). (3.13)

Efficient direct and iterative solvers for these equations are discussed in Section 3.5.2.

3.5.2 Efficient Solvers for the Sparse LS Problem

In order to keep memory and complexity as low as possible, a solver for the normal equations (3.13) should
capitalize on the sparsity of the matrixG(m). Solving the normal equations by explicitly computing the Gram
matrixG(m)HG(m) is known to suffer from the squaring of the condition number ofG(m) [46].

An introduction to sparse direct solvers and an extensive numerical evaluation of different algorithms can
be found in [47] and [48] respectively. In our context, an attractive method for solving (3.13) that exploits the
sparsity of G(m) and does not explicitly compute the Gram matrix is based on the sparse QR decomposition.
Here, G(m) is factored according toG(m) = Q(m)R(m) where Q(m) is an Im × Jm matrix with orthonormal
columns and R(m) is a Jm × Jm upper triangular matrix. Using the fact thatG(m)HG(m) = R(m)HR(m) (the
Cholesky factorization of the Gram matrix) and defining h̄(m)(n) ! G(m)Hh(m)(n), (3.13) can be rewritten as

R(m)HR(m) ĉ(m)(n) = h̄(m)(n),

which can be solved efficiently by successively applying forward elimination and backward substitution, re-
spectively, to the two triangular systems of equations

R(m)H c̃(m)(n) = h̄(m)(n), R(m) ĉ(m)(n) = c̃(m)(n).

The complexity of this scheme will be shown below to scale linearly with the number of sensor nodes. The
direct method is robust and provides an effective means for solving our field reconstruction problem for sensor
node measurements from multiple time instances because the QR factorization needs to be performed only once
(as long as the sensor node positions and therefore the matrixG(m) do not change).

Iterative methods for solving the LS problems generate a sequence of approximate solutions ĉ(m)
q (n), q =

1, 2, 3, . . .. The complexity of these schemes is dominated by the multiplication of certain intermediate vectors
with the matricesG(m) orG(m)H and hence have the advantage of directly exploiting the sparsity ofG(m). The
iterations are terminated either when a certain accuracy has been achieved or a prescribed maximum number
of iterations is reached. The latter can have a regularizing effect which is desirable for highly irregular sensor
node placements and noisy field measurements. Effective iterative methods for the LS problem in our context
are Generalized Minimal RESidual method (GMRES) [49] and LSQR [50]. For time-varying fields, iterative
methods have the additional advantage of being able to use the coefficient estimate from the previous time slot as
initialization. This typically results in a significant reduction of the number of required iterations, in particular
if the field does not change too fast between subsequent sampling instants. Iterative methods furthermore are
better suited to the case of moving sensor nodes since here only an updated version of G(m) has to be used
without the need of repeatedly computing a QR factorization.
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3.5.3 Algorithm Summary and Complexity

In the following, we summarize all algorithmic steps necessary to perform field reconstruction and we provide
estimates for their computational complexity.

Preprocessing

Iterative methods only require to determine the matrix G(m) according to (3.9). Due to the sparse nature
of G(m), this requires at most Im(N(m)+1)2 function evaluations. The direct method proposed above (see
3.5.2), additionally requires a sparse QR factorization whose complexity scales asO(Im(N(m)+1)4) [45]. The
computation of the matrix G(m) and its sparse QR factorization needs to be done only once. Since it requires
only the sensor node positions and the generator function to be known, these steps can be performed by the
cluster head during the initialization phase of the WSN, i.e., before any measurements hi(n) are obtained.

Coefficient Estimation

Once measurements have been collected, the matrix-vector multiplications h̄(m)(n) = G(m)Hh(m)(n) need to
be performed. Due to the sparsity ofG(m), this calculation can be achieved withO(Im(N(m)+1)2) operations.
With the iterative solvers, O(Im(N(m) + 1)2) operations per iterations accrue from similar matrix-vector
multiplications involving G(m). With the direct solvers, the forward elimination and backward substitution
require O(Im(N(m) + 1)2) operations as well.

Field Reconstruction

The field can finally be reconstructed at any point (x, y) ∈ Am according to (3.6). This requiresO((N(m) + 1)2)

operations per spatial point.

Overall Complexity

Adding up the operation counts for all clusters, we conclude that the overall complexity of our scheme scales
as O(IN4

max) (Nmax denotes the maximum spline order used), i.e., linearly with the number of sensor nodes
and to the fourth power of the support area of the generator functions. Many small clusters appear desirable
in order to distribute computations as much as possible and to reduce the communication requirements. With
small clusters, however, the condition Im ≥ Jm tends to be violated more often, possibly causing reconstruction
to fail locally.

3.6 Sensor Node Placement

3.6.1 Sensor Node Deployment

The field reconstruction quality depends on the quality of the sensor node measurements, the number of sensors
used and their placement. Here, we consider three different types of sensor node placement and their influence
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(a) (b)

(c) (d)

Figure 3.4: WSN deployments: (a) regular sensor placement, (b) 2-D jittered sensor placement, (c) 1-D jittered
sensor placement (line sampling), (d) random sensor placement.

on the reconstruction algorithm and the quality of its results. The strictest requirements for the deployment of
the sensor nodes are imposed by a uniform placement on the rectangular lattice (see Figure 3.4(a))

(xi, yi) ∈

(

dx 0

0 dy

)

Z
2.

As will be seen later, such a deployment is desirable performance-wise. A less demanding deployment corre-
sponds to a jittered version of a rectangular spatial lattice (see Figure 3.4(b)), i.e.,

(xi − λx,i, yi − λy,i) ∈

(

dx 0

0 dy

)

Z
2,

where (λx,i,λy,i) is a random 2-D position jitter (e.g., uniformly distributed within [−dx/4, dx/4] × [−dy/4,

dy/4]). If the sensor nodes are placed on lines on one spatial dimension, we obtain the special case of so-called
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line sampling (see Figure 3.4(c)) [4]. Further relaxation of the positioning requirements will be modeled by a
uniformly distributed random placement of the sensor nodes within A (see Figure 3.4(d)), corresponding to a
2-D homogeneous Poisson point process.

3.6.2 Stable Sets of Sampling

The feasibility and accuracy of the LS field reconstruction problem (3.5) depend crucially on the rank and
condition number of the matrix G. Technically, the sensor node positions need to form a stable sampling set.
We say that a set of points {(xi, yi)}i=1,...,I is a set of stable sampling for the shift-invariant space V (g) if there
exist positive constants A1, A2 > 0, such that

A1‖f‖22 ≤
I
∑

i=1

|f(xi, yi)|2 ≤ A2‖f‖22 for all f ∈ V (g) .

When restricted to the finite-dimensional subspace of functions f(x, y) =
∑

(k,l)∈A ck,l g(x − k, y − l), then
the above inequality implies that the condition number of the matrixG is upper bounded by

√

A2/A1.
For the 1-D case and for B-spline generators, stable sampling sets are well understood (see, e.g., [9, 51]).

For the 2-D case, the stability is a difficult mathematical problem whose general solution is still unknown.
Our numerical simulations indicate thatG is well-conditioned whenever the sensor node positions are well dis-
tributed in each cluster. In the following we provide some mathematical guarantees that support these numerical
observations.

We first formulate a deterministic result for line sampling [4] in a 2-D shift-invariant space with a spline
generator bN (x, y). We assume that the sensor node positions are distributed along lines at points (xj, yj,k) ∈
R2 with j, k ∈ Z, such that xj < xj+1 and yj,k < yj,k+1. Note that the sensor nodes may be distributed
non-uniformly on each line and the lines themselves may be non-uniformly spaced. The proof of the following
theorem is given in Section 3.A.

Theorem 1. Suppose that dx ! supj∈Z(xj+1 − xj) < 1 and dy ! supj,k∈Z(yj,k+1 − yj,k) < 1. Then the set
(xj , yj,k) ∈ R2 is a set of stable sampling for V (bN ).

Observe that the case of line sampling includes uniform rectangular sensor node placement as special
case. The theorem therefore describes the minimum sampling density required for field reconstruction to be
feasible. We note that previously existing qualitative results guaranteed the stability only with (unspecified)
large oversampling factor (e.g., [52]).

For highly non-uniform sampling, even in the bandlimited case only probabilistic statements are available.
The following result from [53, Thm. 6.1] estimates the condition number of G for the case of bandlimited
reconstruction.

Theorem 2. Let (xj , yj) ∈ R2 be independent identically distributed random variables that are uniformly
distributed over A. Then there exist constants a, b, c > 0, such that for all µ ∈ (0, 1) the condition number of

the matrixG is upper bounded by c (1+µ)
(1−µ) with probability at least 1− ae−bI µ2

1+µ .

This result confirms the intuition that the reconstruction tends to become more and more stable as the
number I of sensor nodes increases.
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3.6.3 Selective Dimension Reduction

The Least Squares (LS) solution (3.12) includes the pseudo-inverse G(m)# = (G(m)HG(m))−1G(m)H of the
matrix G(m). Calculation of the pseudo-inverse involves the inversion of G(m)HG(m), which is the Gram
matrix of the column vectors ofG(m). The inversion of the matrix causes problems whenG(m)HG(m) is close
to singularity, i.e., if det(G(m)HG(m)) is almost zero. Since G(m)HG(m) is a positive semidefinite matrix its
determinant can be upper bounded via Hadamard’s inequality as

det(G(m)HG(m)) ≤
Jm∏

i=1

[G(m)HG(m)]ii =
Jm∏

i=1

‖fi‖2,

where fi are the column vectors of the matrix. To help preventG(m)HG(m) from being singular one can delete
those columns fi that have zero norm. Zero norm of a column implies that we don’t have any information about
the corresponding coefficient because no sensor lies within an area of the size of the support S around the co-
efficient’s position. Also, for ill-conditioned matrices, removing columns fi with small norm helps to improve
the condition number of the Gram matrix G(m)HG(m). Deleting columns corresponds to excluding the corre-
sponding coefficients from the estimation/reconstruction process, thereby selectively reducing the dimension
of the system of linear equations and consequently the complexity of solving it.

3.6.4 Sensor Node Localization Error

We next investigate the impact of sensor node localization errors in the absence of other impairments, restrict-
ing for simplicity to the 1-D case. While the actual sensor node positions equal xi, the sensors report estimated
positions x̃i to the cluster heads. Due to localization errors, x̃i differs from xi. We assume that the local-
ization errors δi ! x̃i − xi are independent and uniformly distributed between −∆0 and ∆0. For notational
convenience, we drop the time index n and the cluster index m and assume that the actual field is given by
h(x) = cTg(x) where g(x) = (g(x − k))Tk∈Z∩A and c is the vector with the true field coefficients. The latter
are assumed to be i.i.d. with zero mean and variance σ2

c .
The reconstructed field is given by ĥ(x) = ĉTg(x) where ĉ denotes the coefficients estimated according

to (the 1-D version of) (3.11) with the measurements given by h̃i = h(x̃i) = h(xi + δi). Clearly, sensor node
localization errors cause a mismatch between the sensor node positions and the sensor node measurements
used for the reconstruction. Since the measurement value originates from a different position it comprises a
measurement error that depends on the sensor node localization error. The mean-square reconstruction error
within A can now be developed as

ε ! E







∫

A

(

ĥ(x)− h(x)
)2

dx






= E







∫

A

(

(ĉ− c)Tg(x)
)2

dx







=

∫

A
gT(x) E

{

(ĉ− c)(ĉ − c)T
}

g(x) dx =

∫

A

tr
{

Cĉ−cg(x)g
T(x)

}

dx

= tr






Cĉ−c

∫

A

g(x)gT(x)dx






= tr {Cĉ−cGg} , (3.14)
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where the expectation is with respect to the localization errors δi and the field coefficients c. In the last expres-
sion, we introduced the GramianGg =

∫

A g(x)gT(x) dx and the matrix Cĉ−c = E
{

(ĉ− c)(ĉ− c)T
}

which
is the correlation matrix of the coefficient errors ĉ − c. The Gramian Gg can easily be shown to be a sym-
metric banded Toeplitz matrix (the band structure results from the compact support of the B-spline generator
functions). Since the coefficient error can be written as (see (3.11))

ĉ− c = G#h̃−G#h = G#e with e = h̃− h,

its correlation matrix equals

Cĉ−c = G#Ce(G
#)T , where Ce = E{e eT }. (3.15)

Here, h̃ and h are vectors that aggregate h̃i and hi, respectively. The element ei of e, i.e., the measurement
error at sensor node i caused by the localization error δi, reads

ei = h̃i − hi =
∑

k

ck ∆g(xi−k, δi),

where ∆g(x, δ) = g(x + δ) − g(x). Using the statistical independence of the field coefficients ck and the
localization error δi, it follows that the (i, j)th element of Ce equals

[Ce]i,j =E{eiej}

=







σ2
c

∑

k E{∆2
g(xi−k, δi)}, i=j,

σ2
c

∑

k E{∆g(xi−k, δi)}E{∆g(xj−k, δj)}, i -=j,

where the expectation now is with respect to the location error δi only.
By specializing the above expressions for a given generator, the mean square reconstruction error can be

calculated for a given WSN deployment. As an example, we provide the results for a B-spline of order N = 1,
i.e.,

b̃1(x) =







1− |x|, |x| ≤ 1,

0, else.

Here, the first row of the symmetric Toeplitz matrixGg equals
[
∫

A b̃21(x) dx
∫

A b̃1(x)b̃1(x−1) dx 0 . . . 0
]

=
[

2
3

1
6 0 . . . 0

]

. (3.16)

Furthermore, denoting the integer closest to xi by ki and the distance of xi from the closest integer by x̄i =

ki − xi, the (normalized) variance of the field measurement error is obtained as

E{e2i }
σ2
c

=







2∆2
0

3 |x̄i| ≥ ∆0,

2∆2
0

3 − 3∆0|x̄i|
2 + 3x̄2i −

3|x̄i|3

2∆0
|x̄i| < ∆0,

(3.17)

and the correlations equal
E{eiej} = ρijσ

2
c p(x̄i) p(x̄j) (3.18)
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with

p(z) =







z2

4∆0
− |z|

2 + ∆0

4 |z| < ∆0,

0 else.

Here, the coefficients ρij are given by

ρij =



















6, ki = kj ,

−4, |ki − kj | = 1,

1, |ki − kj | = 2,

0, |ki − kj | ≥ 3.

The derived formulae (3.14) and (3.15) allow, together with the results forGg andCe (e.g., (3.16), (3.17), and
(3.18) when using a B-spline of order N = 1), to calculate the MSE of a reconstructed field for a deployed
sensor network, where the sensor node positions are known but impaired by a jitter of maximum value ∆0.

3.7 Numerical Simulations

We present numerical results to illustrate the performance of our distributed sampling and reconstruction
scheme. We verify the suitability of hybrid shift-invariant spaces as field models for non-bandlimited phys-
ical fields by considering diffusion fields over the region A = [0, 20] × [0, 20]. Figure 3.5 shows an example
for such a diffusion field and illustrates the partitioning of the region A into four disjoint square subregions
Am of equal size with corresponding sensor node clusters Cm. The diffusion field was generated by P sources
whose strength, position, and activation time are denoted by Ap, (xp, yp), and tp, respectively. The resulting
2-D diffusion field can then be written as

h(x, y; t) =
P
∑

p=1

ApK(x− xp, y − yp; t− tp) (3.19)

with the heat kernel
K(x, y; t) = H(t)

1

4πκt
e−

x2+y2

4κt .

Here, H(t) denotes the unit step function which equals 1 for t ≥ 0 and 0 for t < 0, and κ is the diffusion
coefficient (e.g., thermal conductivity in the case of a temperature field).

In the following, unless stated otherwise, we used source positions (xp, yp) uniformly distributed over A,
amplitudes Ap uniformly distributed in the interval [−10, 10], and κ = 0.1. For the bandlimited reconstruction
we use the generator function in (3.1) with spatial bandwidths Bx = By = 1, while for the non-bandlimited
reconstruction we use our clustered scheme with B-splines of order N = 0, . . . , 8. The average sensor node
density will be denoted by D ! I

|A| . The quality of the field reconstruction will be measured in terms of the
normalized Mean Square Error (MSE)

ε =
E{‖ĥ − h‖2}
E{‖h‖2}

, (3.20)

which is empirically estimated using Monte Carlo simulations.
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Figure 3.5: Example for a diffusion field h(x, y; t0) and illustration of the partitioning of the region A into
four disjoint square subregions A1, . . . ,A4 of equal size and of the sensor nodes (drawn as circles) into corre-
sponding clusters C1, . . . , C4.

3.7.1 Comparison of Bandlimited Reconstruction with Reconstruction using B-
Splines

We first compare the bandlimited reconstruction with our reconstruction scheme using B-splines for the static
case (we drop the time dependence for the static setup for sake of notational simplicity). Here, the spline
order was optimized either locally or globally. We used P = 40 sources activated at time instants that were
Poisson distributed in the interval [−10T,−T ]. The field was reconstructed from non-quantized sensor node
measurements impaired by measurement noise only. We compare the reconstruction results for the sensor node
placements described in Section 3.6.1.

Figure 3.6 shows the results for M = 4 and M = 16 identical but disjoint square subregions Am for the
case of no measurement noise. Figure 3.7 shows the results for the same setup but with a measurement SNR of
15dB. For both cases, it can be seen in all subfigures that a higher sensor node density is advantageous for the
reconstruction quality. A higher sensor node density assures a better estimation of the coefficients and therefore
a better reconstruction of the entire field. Whereas in the noiseless case with regular sensor node placement (see
Figure 3.6(a)) only little gains can be achieved by increasing the sensor node density, in the case of jittered (see
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*

(a)

*

(b)

(c)

Figure 3.6: Reconstruction of diffusion fields: MSE versus sensor node density achieved with centralized
bandlimited reconstruction, centralized B-spline reconstruction, and clustered B-spline reconstruction using 4
and 16 non-overlapping subregions for the case of no measurement noise: (a) sensor node placement on square
lattice, (b) square lattice with jitter, (c) random sensor node placement.
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(a)

(b)

(c)

Figure 3.7: Reconstruction of diffusion fields: MSE versus sensor node density achieved with centralized
bandlimited reconstruction, centralized B-spline reconstruction, and clustered B-spline reconstruction using 4
and 16 non-overlapping subregions for 15dB measurement SNR: (a) sensor node placement on square lattice,
(b) square lattice with jitter, (c) random sensor node placement.
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Figure 3.6(b)) and random sensor node placement (see Figure 3.6(c)) higher sensor node density results in a
smaller distance between neighboring sensor nodes and therefore better reconstruction quality. In the presence
of measurement noise (see Figure 3.7), a larger number of sensor nodes additionally helps to average out the
influence of the noise.

It can be seen in all subfigures of Figures 3.6 and 3.7, that in these scenarios bandlimited reconstruction
achieves only slightly better reconstruction quality than B-splines at the cost of much higher computational
complexity. Introducing clustering (4 and 16 clusters respectively) leads to a penalty in the reconstruction,
where the penalty gets larger for a higher number of clusters. The penalty can be partly tackled by allowing
reconstruction in hybrid shift-invariant spaces, i.e., by allowing the use of different spline orders for reconstruc-
tion within the clusters. We compare reconstruction in hybrid shift-invariant spaces using the locally optimal
spline order for each cluster and reconstruction in conventional shift-invariant spaces using the globally optimal
spline order for all clusters, where the spline orders were optimized empirically. Different spline orders within
the clusters allow to better adapt to the local smoothness properties of the field and therefore leads to a lower
reconstruction error, which is reflected in Figures 3.6 and 3.7.

In the examples above the bandlimited reconstruction shows slightly better reconstruction quality compared
to reconstruction in shift-invariant spaces using B-splines. This is not the case in general and strongly depends
of the type of the underlying field to be reconstructed. In particular, if we consider source fields constructed as
elements of a shift-invariant space V (ḡ) induced by a Gaussian generator function, i.e.,

ḡ(x, y) = e−λ2(x2+y2),

our reconstruction scheme outperforms the bandlimited reconstruction not only in complexity but also in re-
construction quality. Note that the elements of the space V (ḡ) are as well diffusion fields with sources that
are positioned on the integer lattice and that are simultaneously activated. Figure 3.8 shows the results using a
Gaussian generator function ḡ(x, y) with λ = 1.33 and i.i.d. normally distributed field coefficients in absence
of measurement noise. This example shows the dependence of the reconstruction quality of the two compared
reconstruction schemes on the underlying field. However, the reconstruction scheme based on shift-invariant
spaces using B-splines as generator functions provides lower reconstruction complexity in any case and more-
over allows the overall reconstruction problem to be partitioned into smaller problems.

3.7.2 Averaging of Coefficients

To illustrate the gains possible by averaging the coefficient estimates from different overlapping clusters we
used a simple setup with M = 2 overlapping subregions A1 = [0, 403 ] × [0, 20], A2 = [203 , 20] × [0, 20] with
respective sensor node clusters C1 and C2. The field coefficients for the two subregions were estimated inde-
pendently by the two clusters using B-splines of order N = 3. Afterwards those coefficients in the overlapping
area that influence the field only in this area were averaged. In our example, this amounts to 63 (out of 441)
coefficients being averaged (roughly 15%). The resulting averaged coefficients are then used to reconstruct
the field. Figure 3.9 shows the gain that can be obtained by averaging the coefficient estimates without mea-
surement noise. It can be seen that for all sensor node placements, averaging of coefficient estimates between
clusters leads to lower reconstruction errors than simply using the estimates of one cluster for the overlapping
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(a)

(b)

(c)

Figure 3.8: Reconstruction of fields from V (ḡ): MSE versus sensor node density achieved with centralized
bandlimited reconstruction, centralized B-spline reconstruction, and clustered B-spline reconstruction using 4
and 16 non-overlapping subregions for the case of no measurement noise: (a) sensor node placement on square
lattice, (b) square lattice with jitter, (c) random sensor node placement.
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(a)

(b)

(c)

Figure 3.9: Averaging of coefficient estimates between two clusters for the measurement noise-less case and (a)
uniform placement on a square lattice, (b) square lattice with jitter, (c) random placement.
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Figure 3.10: Number of LSQR iterations required to obtain a normalized square error of -10 dB versus time n
for each of the four clusters. Solid blue lines correspond to proposed LSQR initialization and dashed red lines
correspond to standard LSQR initialization. The activation times of the sources are marked with " at the top
of each plot.

area and achieves the quality of unclustered reconstruction. Averaging of coefficients is therefore a means to
compensate for the penalty introduced by clustering. Note, however, that it is not possible to do coefficient av-
eraging if different spline orders are used in the clusters, i.e., using hybrid shift-invariant spaces in combination
with averaging is not possible in general.

3.7.3 Reconstruction of Time-varying Fields

We illustrate the performance of the reconstruction using the iterative LSQR algorithm for a time-varying
diffusion field. The sensor node measurements were constructed according to (3.19) with P = 15 sources
activated at time instants tp Poisson distributed over the interval [0, 50T ]. TheWSN consisted of I = 302 = 900

sensor nodes deployed regularly on a square grid over the region A. For the reconstruction, we used B-spline
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Figure 3.11: Mean square error (MSE) versus maximal localization error ∆0 for bandlimited reconstruction
and for field reconstruction using B-spline orders N ∈ {1, 3, 5, 7}.

generator functions whose order was empirically optimized within each cluster. Figure 3.10 shows for each
of the four clusters the number of LSQR iterations required to obtain a normalized squared error of −10 dB.
We note that before the first source becomes active, the sensor node measurements are all zero and therefore
no reconstruction is performed, in which case the number of iterations equals 0. We compare LSQR with the
standard initialization (an all-zero vector) and LSQR initialized using the field coefficients estimated in the
previous time-slot. The activation times of the sources are marked with " at the top of each plot. It can be seen
that, as expected, the proposed initialization indeed leads to a significantly smaller number of iterations than
with the standard initialization. Furthermore, the number of LSQR iterations is quite small most of the time.
Only if a source becomes active in a given cluster so that the field changes noticeable, the corresponding cluster
head needs to perform a larger number of iterations. Note that source activation mostly affects only a single
cluster, e.g., at time n = 19 a source becomes active in cluster C2 and only the corresponding cluster head has
increased workload whereas the other cluster heads need to perform only very few updates at this time instant
to track the diffusion process.

3.7.4 Influence of Sensor Node Localization Error

We compare the impact of uniformly distributed localization errors on the reconstruction quality for different
spline orders and for bandlimited reconstruction. The source field was taken from the shift-invariant space
V (bN ) and V (gBL) respectively. Field reconstruction was performed using the correct spline order (therefore
avoiding a systematic mismatch) but incorrect sensor node positions. Localization errors were uniformly dis-
tributed in the interval [−∆0,∆0] with ∆0 ranging from 0 to 0.5. Figure 3.11 shows the MSE obtained for
different B-spline orders versus the maximal localization error ∆0. It is seen that all B-spline reconstructions
are less sensitive to localization errors than bandlimited reconstruction. In this scenario, B-spline order N = 0
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(not shown) is actually completely insensitive against sensor node localization errors (i.e., there is no recon-
struction error). For N > 0, the reconstruction MSE decreases with increasing order, i.e., large spline orders
are less sensitive to localization errors. This can be attributed to the fact that the spline curvature about the
origin is smaller for larger spline order.

3.8 Conclusions

We proposed a cluster-based sensor network architecture for sampling and reconstruction of non-bandlimited
fields. Our approach builds on recent progress regarding non-uniform sampling in shift-invariant spaces and
allows excellent reconstruction quality while requiring low communication overhead and low computational
complexity that is linear in the number of sensor nodes. We showed that a placement of the sensor nodes on a
regular grid is preferable to jittered and random placement, but deploying more sensor nodes, i.e., significant
oversampling, can make up for the difference and allows the same reconstruction quality. We introduced the
concept of hybrid shift-invariant spaces which allow to better adapt our model to the source field and attain
better reconstruction quality. Furthermore, our scheme allows centralized reconstruction using a fusion center
as well as clustered-based and diffusion-based reconstruction. In the latter two cases the reconstruction prob-
lem is partitioned and distributed over the sensor network, thereby reducing the communication overhead and
computational complexity. We showed that the penalty introduced by clustering can be tackled by averaging the
estimation results between overlapping clusters, which allows to attain the reconstruction quality of the unclus-
tered, centralized scheme. Complexity of the reconstruction of time-varying fields can be reduced significantly
by initializing an iterative solver with the field coefficients estimated in the previous time-slot. We analytically
and numerically investigated the sensitivity of our scheme to sensor node localization errors and showed that it
is less sensitive than bandlimited reconstruction, irrespective of the spline order used.
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3.A Proofs

In the appendix we outline the proof of Theorem 1. The proof is based on the corresponding 1-D result in [51].
For the 1-D case, we sort the sensor node positions in increasing order xj < xj+1 and assume that there is a
lower bound on their distance, xj+1 − xj ≥ s > 0. If the maximum gap supj∈Z(xj+1 − xj) = δx < 1 is
strictly smaller than 1, then there exist constants A1, A2 > 0 depending only on the maximum gap δx and the
separation constant s, such that

A1‖f‖22 ≤
∑

j∈Z

|f(xj)|2 ≤ A2‖f‖22 for all f ∈ V (b̃N ) . (3.21)

In the 2-D case, every f ∈ V (bN ) can be written as

f(x, y) =
∑

k,l∈Z

ck,lb̃N (x− k)b̃N (y − l) (3.22)

for some coefficients ck,l. For fixed x, the function y → f(x, y) is

f(x, y) =
∑

l∈Z

(∑

k∈Z

ck,lb̃N (x− k)
)

b̃N (y − l) ,

is in the shift-invariant space V (b̃N ) with respect to the variable y. One checks that the coefficients al =
∑

k∈Z ck,lb̃N (x − k) are indeed in )2(Z). Similarly, for fixed y, the function x → f(x, y) is a function in the
shift-invariant space V (b̃N ) of the variable x. Since the 1-D estimates of equation (3.22) depend only on the
maximum gap δx (and the separation s), we obtain for all j ∈ Z

A2
1

∫ ∞

−∞
|f(xj, y)|2dy ≤

∑

k∈Z

|f(xj, yjk)|2 ≤ A2
2

∫ ∞

−∞
|f(xj , y)|2 dy

Equation (3.22) yields for all y

A2
1

∫ ∞

∞
|f(x, y)|2dx ≤

∑

j∈Z

|f(xj, y)|2 ≤ A2
2

∫ ∞

−∞
|f(x, y)|2 dx

With a combination of these two estimates we arrive at

A4
1

∫ ∞

−∞

∫ ∞

−∞
|f(x, y)|2 dxdy

≤ A2
1

∫ ∞

−∞

(
∑

j∈Z

|f(xj , y)|2
)

dy

≤
∑

j,k∈Z

|f(xj, yjk)|2

≤ A4
2

∫ ∞

−∞
|f(x, y)|2.
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3.B Calculation of Basis-Splines

We present two equivalent (analytical) methods to calculate B-splines. Here, we only consider 1-D B-splines
b̃N (x); their 2-D equivalents bN (x, y) can be constructed according to (3.2).

3.B.1 Calculation Using Convolution

We start with the B-spline of order N = 0, which equals the rectangular function, i.e.,

b̃0(x) = Π(x) !







1, −1
2 ≤ x < 1

2 ,

0, else.

The higher order B-splines are obtained by N -fold convolution of the rectangular function. We get

b̃1(x) = b̃0(x) ∗ Π(x) =
∫ ∞

−∞
b̃0(x

′)b̃0(x− x′)dx′ =











∫ x+1/2
−1/2 1dx′ = x′|x+1/2

−1/2 = x+ 1, −1 ≤ x ≤ 0,
∫ 1/2
x−1/2 1dx

′ = x′|1/2x−1/2 = 1− x, 0 ≤ x ≤ 1,

0, else,











= 1− |x| for − 1 ≤ x ≤ 1;

b̃2(x) = b̃1(x) ∗ Π(x) =



















x2

2 + 3x
2 + 9

8 , −3/2 ≤ x < −1/2,

−x2 + 3
4 , −1/2 ≤ x < 1/2,

x2

2 − 3x
2 + 9

8 , 1/2 ≤ x ≤ 3/2,

0, else;

b̃3(x) = b̃2(x) ∗ Π(x) =

























x3

6 + x2 + 2x+ 4
3 , −2 ≤ x < −1,

−x3

2 − x2 + 2
3 , −1 ≤ x < 0,

x3

2 − x2 + 2
3 , 0 ≤ x < 1,

−x3

6 + x2 − 2x+ 4
3 , 1 ≤ x ≤ 2,

0, else;

b̃4(x) = b̃3(x) ∗ Π(x) =































x4

24 + 5x3

12 + 25x2

16 + 125x
48 + 625

384 , −5/2 ≤ x < −3/2,

−x4

6 − 5x3

6 − 5x2

4 − 5x
24 + 55

96 , −3/2 ≤ x < −1/2,

x4

4 − 5x2

8 + 115
192 , −1/2 ≤ x < 1/2,

−x4

6 + 5x3

6 − 5x2

4 + 5x
24 + 55

96 , 1/2 ≤ x < 3/2,

x4

24 − 5x3

12 + 25x2

16 − 125x
48 + 625

384 , 3/2 ≤ x ≤ 5/2,

0, else.

Further convolution with the rectangular function leads to B-splines of higher orders.
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3.B.2 Cox-de Boor Algorithm

An alternative for the calculation of B-splines is the Cox-de Boor algorithm, which we will use to obtain the
B-splines of the next higher orders. The algorithm is based on an ordered set of numbers X = {x0, . . . , xM},
called knots, where x0 ≤ x1 ≤ . . . ≤ xM .

The B-splines consist of piecewise polynomials, where the mth polynomial of the order-N B-spline can
recursively be calculated by the Cox-de Boor recursion formula [54] as

Pm,N (x) =
x− xi

xi+N − xi
Pi,N−1(x) +

xi+N+1 − x

xi+N+1 − xi+1
Pi+1,N−1(x) (3.23)

with

Pm,0(x) =







1, xi ≤ x < xi+1

0, else.
(3.24)

The B-splines used in this dissertation are obtained by the Cox-de Boor recursion formula for an integer
knot sequence, i.e., xm ∈ Z, followed by appropriately shifting the resulting polynomials to get zero-centered
B-splines. The results for the orders N = 1, . . . , 4 equal those presented in Section 3.B.1, which is why we
continue to list the results for the remaining orders N = 5, . . . , 8 used in this dissertation:

b̃5(x) =





































x5

120 + x4

8 + 3x3

4 + 9x2

4 + 27x
8 + 81

40 , −3 ≤ x ≤ 2,

−x5

24 − 3x4

8 − 5x3

4 − 7x2

4 − 5x
8 + 17

40 , −2 ≤ x ≤ −1,

x5

12 + x4

4 − x2

2 + 11
20 , −1 ≤ x ≤ 0,

−x5

12 + x4

4 − x2

2 + 11
20 , 0 ≤ x ≤ 1,

x5

24 − 3x4

8 + 5x3

4 − 7x2

4 + 5x
8 + 17

40 , 1 ≤ x ≤ 2,

− x5

120 + x4

8 − 3x3

4 + 9x2

4 − 27x
8 + 81

40 , 2 ≤ x ≤ 3,

0, else;

b̃6(x) =













































x6

720 + 7x5

240 + 49x4

192 + 343x3

288 + 2401x2

768 + 16807x
3840 + 117649

46080 , −7/2 ≤ x < −5/2,

− x6

120 − 7x5

60 − 21x4

32 − 133x3

72 − 329x2

128 − 1267x
960 + 1379

7680 , −5/2 ≤ x < −3/2,

x6

48 + 7x5

48 + 21x4

64 + 35x3

288 − 91x2

256 + 7x
768 + 7861

15360 , −3/2 ≤ x ≤ −1/2,

−x6

36 + 7x4

48 − 77x2

192 + 5887
11520 , −1/2 ≤ x ≤ 1/2,

x6

48 − 7x5

48 + 21x4

64 − 35x3

288 − 91x2

256 − 7x
768 + 7861

15360 , 1/2 ≤ x ≤ 3/2,

− x6

120 + 7x5

60 − 21x4

32 + 133x3

72 − 329x2

128 + 1267x
960 + 1379

7680 , 3/2 ≤ x ≤ 5/2,

x6

720 − 7x5

240 + 49x4

192 − 343x3

288 + 2401x2

768 − 16807x
3840 + 117649

46080 , 5/2 ≤ x ≤ 7/2,

0, else;
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b̃7(x) =



















































x7

5040 + x6

180 + x5

15 + 4x4

9 + 16x3

9 + 64x2

15 + 256x
45 + 1024

315 , −4 ≤ x < −3,

− x7

720 − x6

36 − 7x5

30 − 19x4

18 − 49x3

18 − 23x2

6 − 217x
90 − 139

630 , −3 ≤ x < −2,

x7

240 + x6

20 + 7x5

30 + x4

2 + 7x3

18 − x2

10 + 7x
90 + 103

210 , −2 ≤ x < −1,

− x7

144 − x6

36 + x4

9 − x2

3 + 151
315 , −1 ≤ x < 0,

x7

144 − x6

36 + x4

9 − x2

3 + 151
315 , 0 ≤ x < 1,

− x7

240 + x6

20 − 7x5

30 + x4

2 − 7x3

18 − x2

10 − 7x
90 + 103

210 , 1 ≤ x < 2,

x7

720 − x6

36 + 7x5

30 − 19x4

18 + 49x3

18 − 23x2

6 + 217x
90 − 139

630 , 2 ≤ x < 3,

− x7

5040 + x6

180 − x5

15 + 4x4

9 − 16x3

9 + 64x2

15 − 256x
45 + 1024

315 , 3 ≤ x < 4,

0, else;

b̃8(x) =

























































x8

40320 + x7

1120 + 9x6

640 + 81x5

640 + 729x4

1024 + 6561x3

2560 + 59049x2

10240 + 531441x
71680 + 4782969

1146880 , −9/2 ≤ x < −7/2,

− x8

5040 − 3x7

560 − x6

16 − 131x5

320 − 209x4

128 − 5123x3

1280 − 1465x2

256 − 146051x
35840 − 122729

143360 , −7/2 ≤ x < −5/2,

x8

1440 + x7

80 + 3x6

32 + 119x5

320 + 207x4

256 + 1127x3

1280 + 195x2

512 + 1457x
5120 + 145167

286720 , −5/2 ≤ x < −3/2,

− x8

720 − x7

80 − 3x6

80 − 7x5

320 + 9x4

128 − 7x3

1280 − 363x2

1280 − x
5120 + 64929

143360 , −3/2 ≤ x < −1/2,

x8

576 − x6

64 + 43x4

512 − 289x2

1024 + 259723
573440 , −1/2 ≤ x < 1/2,

− x8

720 + x7

80 − 3x6

80 + 7x5

320 + 9x4

128 + 7x3

1280 − 363x2

1280 + x
5120 + 64929

143360 , 1/2 ≤ x < 3/2,

x8

1440 − x7

80 + 3x6

32 − 119x5

320 + 207x4

256 − 1127x3

1280 + 195x2

512 − 1457x
5120 + 145167

286720 , 3/2 ≤ x < 5/2,

− x8

5040 + 3x7

560 − x6

16 + 131x5

320 − 209x4

128 + 5123x3

1280 − 1465x2

256 + 146051x
35840 − 122729

143360 , 5/2 ≤ x < 7/2,

x8

40320 − x7

1120 + 9x6

640 − 81x5

640 + 729x4

1024 − 6561x3

2560 + 59049x2

10240 − 531441x
71680 + 4782969

1146880 , 7/2 ≤ x < 9/2,

0, else.
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3.C Example Calculation of Gg

We calculate the elements of the GramianGg =
∫∫

A g(x, y)gT(x, y) dxdy of the vector [g]p(x, y) = bN (x −
kp, y − lp) with kp = k0 + ((p−1) modK), and lp = l0 +

⌊p−1
K

⌋

.

[Gg]p,p′ =

∫∫

A
bN (x− kp, y − lp)bN (x− kp′ , y − lp′)dxdy

=

∫∫

A
b̃N (x− kp)b̃N (y − lp)b̃N (x− kp′)b̃N (y − lp′)dxdy

=

∫

Ax

b̃N (x− kp)b̃N (x− kp′)dx

∫

Ay

b̃N (y − lp)b̃N (y − lp′)dy.

The matrixGg is symmetric and has block-Toeplitz structure

Gg =















B0 BT
1 BT

2 . . . BT
L

B1 B0 BT
1 . . . BT

L−1

B2 B1 B0 . . . BT
L−2

...
...

... . . . ...
BL−1 BL−2 BL−3 . . . BT

1

BL BL−1 BL−2 . . . B0















with banded blocks B0, . . . ,BL ∈ RK×K that have Toeplitz structure as well. For N = 1 we get

[B0]p,p′ =

∫

Ax

b̃1(x− kp)b̃1(x− kp′)dx

∫

Ay

(

b̃1(y − lp)
)2

dy

=







4
9 , if |p− p′| ≤ 1,

0, else,

[B1]p,p′ =

∫

Ax

b̃1(x− kp)b̃1(x− kp′)dx

∫

Ay

b̃1(y − lp)b̃1(y − lp − 1)dy

=







4
9 , if |p− p′| ≤ 1,

0, else,

[B2]p,p′ = . . . = [BL]p,p′ = 0,

where the detailed calculation for each case can be found below. Note that although the matrices Bl are equal
for N = 1, this is not the case in general.
For p = p′ we have:

[B0]p,p =

∫ kp+1

kp−1
b̃21(x− kp)dx

∫ lp+1

lp−1
b̃21(y − lp)dy

=

∫ +1

−1
b̃21(x)dx

∫ +1

−1
b̃21(y)dy =

∫ +1

−1
(1− |x|)2dx

∫ +1

−1
(1− |y|)2dy

=

(∫ 0

−1
(1 + x)2dx+

∫ 1

0
(1 − x)2dx

)(∫ 0

−1
(1 + y)2dy +

∫ 1

0
(1− y)2dy

)
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=

(∫ 0

−1
(x2 + 2x+ 1)dx+

∫ 1

0
(x2 − 2x+ 1)dx

)2

=

(
(
x3

3
+ x2 + x

)∣
∣
∣
∣

0

−1

+

(
x3

3
− x2 + x

)∣
∣
∣
∣

1

0

)2

=

(
1

3
+

1

3

)2

=
4

9
;

[B1]p,p =

∫ kp+1

kp−1
b̃21(x− kp)dx

∫ lp+2

lp−1
b̃1(y − lp)b̃1(y − lp − 1)dy

=
2

3

∫ +2

−1
b̃1(y)b̃1(y − 1)dy =

2

3

∫ +1

0
(1− y)(1 + y)dx

=
2

3

∫ +1

0
(1− y2)dx =

2

3
(y −

y3

3
)

∣
∣
∣
∣

1

0

=
4

9
.

For |p− p′| = 1 we have:

[B0]p,p′ =

∫ kp+2

kp−1
b̃1(x− kp)b̃1(x− kp − 1)dx

∫ lp+1

lp−1
b̃1(y − lp)b̃1(y − lp)dy =

4

9
;

[B1]p,p′ =

∫ kp+2

kp−1
b̃1(x− kp)b̃1(x− kp − 1)dx

∫ lp+2

lp−1
b̃1(y − lp)b̃1(y − lp − 1)dy =

4

9
.

For |p− p′| ≥ 2:

[B0]p,p′ =

∫ kp+3

kp−1
b̃1(x− kp)b̃1(x− kp − 2)dx

∫ lp+1

lp−1
b̃1(y − lp)b̃1(y − lp)dy = 0,

[B1]p,p′ =

∫ kp+3

kp−1
b̃1(x− kp)b̃1(x− kp − 2)dx

∫ lp+2

lp−1
b̃1(y − lp)b̃1(y − lp − 1)dy = 0.
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4

Optimal Power Allocation

ON the basis of the distributed field reconstruction scheme for Wireless Sensor Networks (WSNs) based
on shift-invariant spaces, which we developed in the previous chapter, we introduce optimal power allo-

cation schemes. We start with establishing an Amplify-and-Forward (AF) scheme for the transmission of the
sensor node measurements to the fusion center. We then derive the Mean Square Error (MSE) of the recon-
structed field as a function of the measurement noise at the sensor nodes, the channel gains between sensor
nodes and fusion center, the receiver noise variance, and the sensor node positions. We take a closer look at two
optimization scenarios and formulate them as convex optimization problems that can be solved numerically.
First, we impose a transmit sum-power constraint and formulate the MSE-optimal power allocation. Second,
we impose an upper bound on the MSE of the reconstructed field and formulate the optimal power allocation
for minimum transmit sum power. For the case of critical sampling we derive closed-form expressions for the
optimal power allocation for both optimization scenarios. For Gaussian channels and Rayleigh fading channels,
we compare the performance of the proposed power allocation schemes and of uniform power allocation using
numerical simulations.

53
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4.1 Background and State of the Art

We take a closer look at the problem of power allocation for the field reconstruction scheme presented in
Chapter 3. We consider a centralized setup in which each sensor node sends its observation to a fusion center
where a global estimation for the field is made. With analog observations of the sensor nodes, one can transmit
the measurements from the sensor nodes to the fusion center using either analog or digital communication.
For analog communication, the sensor node measurement is transmitted using an analog modulation scheme
for the signal transmission, which is commonly known as Amplify-and-Forward (AF) approach1. For digital
communication, the sensor node measurements are quantized and converted to bits, possibly channel coded,
and transmitted to the fusion center using digital modulation schemes.

The goal of power allocation is to optimally assign transmit powers to the sensor nodes of the WSN, either
in order to minimize the mean square estimation error subject to a transmit sum-power constraint or in order
to minimize the transmit power subject to an estimation error target. Such problems have been extensively
investigated in the literature for linear scalar models. In [55] it was shown that for a Gaussian source, an uncoded
AF transmission over a Gaussian coherent Multiple-Access Channel (MAC) outperforms the best approach
using separated source and channel coding (cf. source-channel coding separation theorem [56, Chapter 7]),
attaining a larger decay rate of the estimation error and leading to an optimal asymptotic scaling behavior.
Asymptotic optimality, however, is achieved only if distributed synchronization of the sensor node signals can
be arranged. A more realistic and hence widely used assumption is the case of orthogonal channels from the
sensor nodes to the fusion center, e.g., by using Time Division Multiple Access (TDMA), Frequency Division
Multiple Access (FDMA), or Code Division Multiple Access (CDMA).

A Decentralized Estimation Scheme (DES) usually requires knowledge of the sensor node measurements’
Probability Density Functions (pdfs), which can be difficult to characterize for large-scale networks. In an
effort to discard the need of pdfs, [57] proposed a universal DES in which the sensor nodes send discrete
messages of different length. The length of messages only depends on the local Signal-to-Noise Ratio (SNR)
and hence carries information about the reliability of the measurement. The power scheduling for transmission
using uncoded Quadrature Amplitude Modulation (QAM) based on this universal DES was studied in [58]. In
[59,60], an uncoded AF scheme for estimation inWSNwas employed to transmit the sensor node measurements
to the fusion center over orthogonal channels and the optimal power allocation was derived for minimization
of the mean square estimation error and the transmit power, respectively. In both cases, the optimal power
allocation is similar to water-filling, i.e., sensor nodes with poor channel gains or noisy observations remain
inactive to save power. The work of [60] was extended to the case of distributed estimation of a random field
in [61]. A suboptimal power allocation scheme for the estimation of a random parameter in the presence of
noisy links was proposed in [62].

We investigate the problem of power allocation in a WSN using AF transmission to the fusion center as
in [60]. However, rather than a scalar model, we consider the linear matrix-vector model used in Chapter 3 for
field reconstruction based on shift-invariant spaces. Different from [60], our model makes the optimal power
allocation depend on the sensor node positions. We formulate the optimal (in the mean square estimation error

1Although AF is well known in relaying scenarios we want to point out that here we are not using a relaying setup.
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sense as well as in the transmit sum-power sense) power allocation as a convex optimization problem that
can be solved numerically using standard techniques and derive closed-form solutions for the special case of
critical sampling. Finally, we compare the derived power allocation schemes with uniform power allocation in
numerical simulations.

4.2 Signal Model

For the power allocation we augment our signal model introduced in Chapter 3 with a model for the transmission
from the sensor nodes to the fusion center. The WSN consists of I sensor nodes deployed over a given region
A to monitor a Two-Dimensional (2-D) physical field h(x, y). Here, x and y denote the spatial coordinates,
the position of sensor node i is given by (xi, yi) and its measurement reads h(xi, yi) + vi, where vi denotes
spatially white measurement noise with variance σ2

vi . We assume that the physical field has mean power σ
2
h and

moreover h(x, y) ∈ V (bN ), i.e.,

h(x, y) =
∑

(k,l)∈A

ck,l bN (x− k, y − l),

where A = Z2 ∩ (A + S). As before, reconstruction of h(x, y) from the measurements thus amounts to
determining the coefficients ck,l.

We adopt an Amplify-and-Forward (AF) transmission strategy [59,63] were each sensor node transmits the
scaled measurement √pi

(

h(xi, yi) + vi
)

to the fusion center. The average transmit power of sensor node i thus
equals

Pi = pi
(

σ2
h + σ2

vi

)

.

The transmit sum power is
I
∑

i=1

Pi =
I
∑

i=1

pi
(

σ2
h + σ2

vi

)

.

We assume that the individual sensor nodes transmit over orthogonal channels (e.g., using TDMA, FDMA, or
CDMA) so that the signals received by the fusion center are given by

ri =
√
γi
√
pi
(

h(xi, yi) + vi
)

+ wi =
√
γipih(xi, yi) + zi. (4.1)

Here, γi is the channel gain from sensor node i to the fusion center, which will be used in the following to
model Gaussian channels and flat Rayleigh fading channels2. For a Gaussian channel, all channel power gains
γi = 1, whereas for Rayleigh fading, the channel power gains γi are exponentially distributed random variables
with mean µγ , i.e., the pdf of the channel power gains is3

f(γi) =
1

µγ
e
−

γi
µγ .

2Not that this transmission model assumes pairwise synchronization between transmitter and receiver.
3No notational distinction is made between the random variable and its realization.
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Furthermore, wi is white receiver noise with variance σ2
w and

zi =
√
γipivi + wi (4.2)

denotes the aggregated noise with variance

σ2
zi = γipiσ

2
vi + σ2

w.

We next formulate the system model using matrices and vectors. To this end, let (k0, l0) and (k1, l1) denote
the smallest and largest indices inA, respectively, such that J = KLwithK ! k1−k0+1 and L ! (l1−l0+1).
We define the block-banded I × J matrixG with elements

[G]i,p = bN (xi − kp, yi − lp),

the length I vectors r, z, and length J vector c with elements

[r]i = ri, [z]i = zi, and [c]p = ckp,lp ,

where kp = k0 + ((p−1) modK), lp = l0 +
⌊p−1

K

⌋

, and +p, denotes the largest integer not greater than p.
Accordingly, the receive signals in (4.1) can be rewritten in matrix-vector form as

r = AGc+ z = G̃c+ z, (4.3)

where
A ! diag {

√
γipi},

G̃ ! AG,

and the aggregate noise vector z has covariance matrix (see (4.2))

Cz = diag
{

γipiσ
2
vi + σ2

w

}

.

4.3 Field Reconstruction and Reconstruction Performance

We determine the field coefficients c in the linear system model (4.3) using the Best Linear Unbiased Estimator
(BLUE) (which for our assumptions equals the Weighted Least Squares (WLS) estimator, see Section 2.2.1)
with the noise covariance matrix Cz as weight, i.e.,

ĉ ! argmin
c

‖G̃c− r‖2
C−1

z

= (G̃TC−1
z G̃)−1G̃TC−1

z r. (4.4)

Note, that in contrast to the reconstruction in Chapter 3, the computation of the coefficient estimates ĉ requires
not only the matrix G̃ (i.e., the sensor node positions and channel gains) but also the noise statistics Cz to be
known at the fusion center. For a solution to exist, the matrix G̃ must have full rank, which in turn requires
I ≥ J. Technically, the sensor node positions (xi, yi) have to form a stable sampling set (see Section 3.6.2).



4.3 Field Reconstruction and Reconstruction Performance 57

With the optimal coefficient estimates (4.4), the field can be reconstructed for (x, y) ∈ A according to
(3.6). To assess the quality of the field reconstruction, we next derive the mean square field reconstruction error
ε within A. (Note that this is the generalization of Equation (3.14) to the 2-D case.)

ε = E







∫∫

A

(

ĥ(x, y)−h(x, y)
)2

dx dy






= E







∫∫

A

(

(ĉ− c)T g(x, y)
)2

dx dy







=

∫∫

A

gT(x, y) E
{

(ĉ− c) (ĉ− c)T
}

g(x, y)dx dy =

∫∫

A

tr
{

Cĉ−cg(x, y)g
T(x, y)

}

dx dy

= tr

{

Cĉ−c

∫∫

A

g(x, y)gT(x, y) dx dy

}

= tr {Cĉ−cGg} . (4.5)

Here, the expectation was taken with respect to the noise and we used the length-J vector g(x, y) defined via
its elements

[g]p(x, y) = g(x − kp, y − lp),

with kp and lp as in Section 4.2. Furthermore,

Gg =

∫∫

A
g(x, y)gT (x, y) dx dy

denotes the Gramian of g(x, y) and

Cĉ−c = E
{

(ĉ− c)(ĉ − c)T
}

is the correlation matrix of the field coefficient error ĉ− c. When using Basis-splines (B-splines) as generator
functions, the Gramian Gg can be shown to be a symmetric block-banded Toeplitz matrix4, where the band
structure results from the compact support of the B-spline functions and their bandwidth depends on the size of
the support. For our system architecture, the correlation matrix (which is equal to the covariance matrix here
because z is zero-mean) of the estimation error can be developed as

Cĉ−c = cov
{

(G̃TC−1
z G̃)−1G̃TC−1

z z
}

= (G̃TC−1
z G̃)−1 = (GTATC−1

z AG)−1 = (GTDG)−1. (4.6)

Here, we used the diagonal matrix
D ! ATC−1

z A = diag{di} (4.7)

with
di !

1

σ2
vi +

σ2
w

γipi

.

Inserting (4.6) and (4.7) into (4.5), we finally obtain the MSE as

ε = tr {Cĉ−cGg} = tr
{

(GTDG)−1Gg

}

. (4.8)

This expression captures the dependence of the reconstruction MSE on the channel gains γi, the sensor node
positions (xi, yi), the AF power scaling factors pi, and the noise variances σ2

vi and σ
2
w.

4For a Toeplitz matrixA we have [A]i,j = [A]i−1,j−1. A symmetric block-banded Toeplitz matrix is a symmetric Toeplitz matrix
consisting of blocks that are banded and have Toeplitz structure as well.
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4.4 Optimal Power Allocation: Minimization of Mean Square Error

4.4.1 General Case

We aim at allocating the power scaling factors pi such that the reconstruction MSE in (4.8) is minimized subject
to a transmit sum-power constraint. Defining the length-I vectors p = (p1 . . . pI)T and q = (q1 . . . qI)T with
qi = σ2

h + σ2
vi allows us to write the transmit sum power as

I
∑

i=1

pi(σ
2
h + σ2

vi) = pTq.

Recalling that PT is the maximal transmit sum power, we thus have

minimize
p∈RI

+

tr
{

(GTD(p)G)−1Gg

}

subject to pTq ≤ PT,

(4.9)

where we made the dependence of D on p explicit by writing D(p). The power allocated to sensor node i
depends on the local measurement noise variance σ2

vi , the channel gain γi, and (through the matrix G) the
sensor node positions.

The optimization problem (4.9) is a variation of the well-known A-optimal convex problem (see Ap-
pendix 4.A for more details). While in general this problem has no closed-form solution, it can be solved
numerically in an efficient manner.

4.4.2 Critical Sampling

In some applications the numerical solution of the power allocation problem may still be too expensive for a
low-complexity and low-energy fusion center. Thus, we next study in more detail the special case of critical
sampling, i.e., I = J, for which we show that the power allocation problem has a closed-form solution. We
assume that the I = J sensor nodes form a stable sampling set such that G and D are square matrices. This
allows us to simplify (4.8) as

ε = tr
{

(GTDG)−1Gg

}

= tr
{

G−1D−1(GT )−1Gg

}

= tr
{

D−1(GT )−1GgG
−1
}

=
I
∑

i=1

1

di
gi =

I
∑

i=1

σ2
vigi +

I
∑

i=1

σ2
wgi
γipi

, (4.10)

where we defined gi !
[

(GT )−1GgG
−1
]

ii
and used that D−1 = diag{d−1

i } with d−1
i =

(

σ2
vi +

σ2
w

γipi

)

(see (4.7)). The first sum in (4.10) is independent of the power scaling factors pi and can therefore not be
influenced by the power allocation. It therefore represents a lower bound on the MSE, i.e.,

ε ≥ lim
pi→∞
i=1,...,I

ε =
I
∑

i=1

σ2
vigi,
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that cannot be attained under the constraint of limited transmit sum power. Since the first sum in (4.10) is
independent of the power scaling factors pi, the optimization problem in (4.9) simplifies to

minimize
p∈RJ

+

J
∑

i=1

σ2
wgi
γipi

subject to pTq ≤ PT.

(4.11)

The Lagrangian associated to this problem equals

L(p,λ) =
I
∑

i=1

σ2
wgi
γipi

+ λ
(

pTq− PT
)

=
I
∑

i=1

(
σ2
wgi
γipi

+ λpiqi

)

− λPT

and the Lagrangian dual function reads

g(λ) = L(p",λ) = inf
p

L(p,λ) = inf
p

J
∑

i=1

(
σ2
wgi
γipi

+ λpiui

)

− λPT =
I
∑

i=1

inf
pi

(
σ2
wgi
γipi

+ λpiqi

)

− λPT

=
I
∑

i=1

(
σ2
wgi
γip"i

+ λp"i qi

)

− λPT = 2σw
√
λ

I
∑

i=1

√
giqi
γi

− λPT,

where

p"i = arg inf
pi

(
σ2
wgi
γipi

+ λpiqi

)

=

√

σ2
wgi

λγiqi
.

We therefore have the Lagrange dual problem

maximize
λ

2σw
√
λ

I
∑

i=1

√
giqi
γi

− λPT

subject to λ ≥ 0,

whose solution is given by

λ" =
σ2
w

(
∑I

i=1

√
giqi
γi

)2

P 2
T

.

For our convex problem, the Karush-Kuhn-Tucker (KKT) conditions [10, Chapter 5] hold, which is a sufficient
condition for strong duality. With the dual optimal solution λ", the optimal solution for the primal problem
equals L(p",λ") = g(λ") with the primal feasible minimizer

p"i = PT

√
gi
γiqi

I
∑

j=1

√
gjqj
γj

= PT

√
gi

γi(σ2
h+σ2

vi
)

I
∑

j=1

√

gj(σ2
h+σ2

vj
)

γj

. (4.12)

It can be seen from (4.12) that every sensor node is allocated non-zero power. This ensures that the stable
sampling set is preserved. With the definitions

αi !
βi

∑I
j=1 βj

(4.13)
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and

βi !

√

gi(σ2
h + σ2

vi)

γi
(4.14)

the optimal sensor node transmit powers can be written as

P "
i = p"i (σ

2
h + σ2

vi) = αiPT.

Here, αi is the fraction of power used by sensor node i. This fraction is large if gi is large, which means that
sensor node i is rather isolated, or if the associated channel gain γi is small. Hence, the optimal power allocation
compensates for poor channel or sampling conditions. It is worth noting that the power fraction αi becomes
large also when the associated measurement noise variance σ2

vi is large. As can be verified from (4.12), the
optimal power scaling p"i in this case is small, i.e., the large transmit power is solely due to the fact that the
power of the measurement is already large.

4.5 Optimal Power Allocation: Minimization of Transmit Sum Power

4.5.1 General Case

We aim at allocating the power scaling factors pi such that the transmit sum power is minimized subject to an
MSE target in (4.8). With p and q as defined in Section 4.4.1 we thus have

minimize
p∈RI

+

pTq

subject to tr
{

(GTD(p)G)−1Gg

}

≤ εmax,

(4.15)

where we made the dependence of D on p explicit by writing D(p). The power allocated to sensor node i
depends on the local measurement noise variance σ2

vi , the channel gain γi, and (through the matrix G) the
sensor node positions. The optimization problem is convex and has no closed-form solution in general, but it
can be solved numerically in an efficient manner.

4.5.2 Critical Sampling

As in Section 4.4.2, we study the special case of critical sampling in more detail again, for which we show that
the power allocation problem has a closed-form solution. With the assumption of I = J we use the expression
for the MSE from (4.10). Then the optimization problem in (4.15) simplifies to

minimize
p∈RJ

+

pTq

subject to
I
∑

i=1

σ2
vigi +

I
∑

i=1

σ2
wgi
γipi

≤ εmax.

(4.16)

Note that the MSE target εmax cannot be chosen arbitrarily small. In fact, even with infinite transmit powers
the MSE is lower bounded by

∑I
i=1 σ

2
vigi. Hence the MSE target has to be large enough to ensure

ε′max ! εmax −
I
∑

i=1

σ2
vigi > 0
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to yield a solution to the optimization problem in (4.16). Here, ε′max is the part of the MSE target affected by
the power allocation.

The Lagrangian associated to the problem (4.16) equals

L(p,λ) = pTq+ λ

(
I
∑

i=1

σ2
wgi
γipi

− ε′max

)

=
I
∑

i=1

(

piqi + λ
σ2
wgi
γipi

)

− λε′max

and the Lagrangian dual function reads

g(λ) = L(p",λ) = inf
p

L(p,λ) = inf
p

I
∑

i=1

(

piqi + λ
σ2
wgi
γipi

)

− λε′max

=
I
∑

i=1

inf
pi

(

piqi + λ
σ2
wgi
γipi

)

− λε′max =
I
∑

i=1

(

p"i qi + λ
σ2
wgi
γip"i

)

− λε′max

= 2σw
√
λ

I
∑

i=1

√
giqi
γi

− λε′max,

where

p"i = arg inf
pi

(

piqi + λ
σ2
wgi
γipi

)

=

√

λσ2
wgi

γiqi
.

We therefore have the Lagrange dual problem

maximize
λ

2σw
√
λ

I
∑

i=1

√
giqi
γi

− λε′max

subject to λ ≥ 0,

whose solution is given by

λ" =
σ2
w

(
∑I

i=1

√
giqi
γi

)2

(ε′max)
2

.

Again, it can be shown that the KKT conditions [10, Chapter 5] hold, so that strong duality is fulfilled. With
the dual optimal solution λ", the optimal solution for the primal problem equals L(p",λ") = g(λ") with the
primal feasible minimizer

p"i =
σ2
w

ε′max

√
gi
γiqi

I
∑

j=1

√
gjqj
γj

=
σ2
w

ε′max

√
gi

γi(σ2
h + σ2

vi)

I
∑

j=1

√

gj(σ2
h + σ2

vj )

γj
. (4.17)

The optimal sensor node transmit powers can then be written as

P "
i = p"i (σ

2
h + σ2

vi) =
σ2
w

ε′max

√

gi(σ2
h + σ2

vi)

γi

I
∑

j=1

√

gj(σ2
h + σ2

vj )

γj
.

Inserting (4.17) into (4.10) and with the definitions of αi from (4.13) and βi from (4.14), we get for the optimal
MSE

ε" =
I
∑

i=1

σ2
vigi +

I
∑

i=1

σ2
wgi
γip"i

=
I
∑

i=1

(

σ2
vigi + αiε

′
max

)
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=
I
∑

i=1



σ2
vigi + αi



εmax −
I
∑

j=1

σ2
j gj







 =
I
∑

i=1

εi = εmax, (4.18)

i.e., the optimal power allocation achieves the MSE target εmax with equality. Here, in the critical sampling
case, the overall MSE can be split up into the contributions εi of the individual sensor nodes. Each sensor node
contributes a part εi = σ2

vigi + αiε′max to the overall MSE, where the fraction αi of the eligible MSE ε′max

that corresponds to a sensor node is large if gi is large (which means that sensor node i is rather isolated) or if
the associated channel gain γi is small. As a result, sensor nodes with the better measurement quality, i.e., the
lower σ2

vi , are assigned a larger pi, i.e., a smaller transmit power Pi, than those with poor measurement quality.
Also, the placement of the sensor node, reflected by the factor gi, plays a role in the power allocation. Those
sensor nodes that are necessary to retain a stable sampling set, i.e., those with a large gi, are allowed a higher
contribution to the overall MSE than others.

4.6 Particular Cases and Benchmarks

In the following subsections we mention some special cases which we will either use for comparison in the
numerical simulations or which give insight to the mechanisms of power allocation for our field reconstruction
scheme.

4.6.1 Uniform Power Allocation

In the numerical simulations we will compare the power allocation strategies presented above with a uniform
power allocation that assigns the same power to all sensor nodes, regardless of the measurement noise and
channel conditions they experience. A uniform power allocation is therefore given by

pi =
PT

I(σ2
h + σ2

vi)
,

where PT is the maximal allowed transmit sum power for the sensor nodes. Obviously, a uniform power
allocation is not optimal in general but it serves as a benchmark for the strategies presented above and shows
the possible performance gains that come with their use.

4.6.2 Uniform MSE Target

In contrast to the critical sampling case presented in Section 4.5.2, the overall MSE target cannot be partitioned
into separate contributions of the single sensor nodes in the general case. This fact prohibits a uniform assign-
ment of the MSE target to the sensor nodes. In the case of critical sampling though, the MSE target can be split
up to a sum of uniform MSE contributions

εi =
εmax

J
.

The sensor nodes can then calculate their power scaling factor according to

pi =
Jσ2

wgi
(

εmax −
∑J

i=1 σ
2
vigi
)

γi
=

Jσ2
wgi

ε′maxγi
, (4.19)

thereby meeting the MSE constraint with equality.
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4.6.3 Gaussian Channels and Identical Noise Variances

We next make some stringent assumptions that lead to a special case for which it is easier to calculate the MSE
and to asses its dependence on the individual parameters. If we assume Gaussian channels, i.e., γi = 1 for all i,
identical measurement noise variance σ2

vi = σ2
v at all sensor nodes, and uniform power allocation to the sensor

nodes, i.e., pi = PT

I(σ2
h+σ2

v )
=

P ′

T
I , it follows thatD = dI with

d !
1

σ2
v +

σ2
wI
P ′

T

,

and therefore (4.8) simplifies to

ε = tr
{

(GTdIG)−1Gg

}

=
1

d
tr
{

(GTG)−1Gg

}

=

(

σ2
v +

σ2
wI

P ′
T

)

tr
{

(GTG)−1Gg

}

.

It can be seen that under the above assumptions the MSE is a product of two terms. The first one is completely
determined by the measurement and receiver noise and by the per-sensor node transmit power and the second
term depends only on the generator function and the sensor node placement (via G). Note that in spite of
identical channel gains and noise variances, the uniform power allocation still is suboptimal in this case because
it does not take into account the influence of the sensor node positions on the reconstruction error.

Using the same assumptions for the optimal power allocation schemes for the critical sampling case pre-
sented above, we get from (4.13)

αi =

√
gi

∑I
j=1

√
gj
.

Here, the power allocation is not uniform unless all gi are identical, i.e., unless the sensor nodes are regularly
placed on an integer lattice with arbitrary offset.

4.7 Numerical Simulations

We next present numerical results to illustrate the performance of our power allocation strategies. We consider
a shift-invariant space using a B-spline of order N = 3 and normalize the field such that the average power
equals σ2

h = 1. The region being sensed is A = [0, 5] × [0, 5], corresponding to a number of J = 36 field
coefficients. We used a WSN deployment with I ≥ 36 sensor nodes, where the first J sensor nodes (the number
for critical sampling) are placed on a square grid and the remaining I − J sensor nodes are randomly placed
according to a spatially uniform distribution over the region A. Since the first J sensor nodes form a stable
sampling set, the entire WSN of I sensor nodes does so too. The measurement noise variance at the different
sensor nodes was chosen according to a uniform distribution, i.e., σ2

vi = Unif {0.01, 0.1}. This corresponds to
measurement SNRs between 10 dB and 20 dB. For the Gaussian channel case we set the channel gains γi = 1,
whereas for the Rayleigh-fading channel we generated exponentially distributed γi with mean µγ = 1. For each
scenario, we chose the receiver noise variance as σ2

w = Unif {0.01, 0.1}, corresponding to an SNR between
10 dB and 20 dB.
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4.7.1 Minimization of the Mean Square Error

We first compare the optimal power allocation schemes minimizing the MSE derived in Section 4.4 with a
uniform power allocation. We consider setups with

(a) low transmit sum power of PT = 10 and with

(b) high transmit sum power of PT = 100.

Using the parameters specified above, our simulations compare three sensor node power allocation schemes:

(i) the numerically evaluated optimal power allocation scheme according to (4.9);

(ii) power allocation according to the closed-form expression (4.12) for the first 36 sensor nodes and zero
power for the remaining sensor nodes;

(iii) a baseline scheme with uniform power allocation, i.e., Pi = PT/I .

Figure 4.1 displays the normalized field reconstruction MSE ε
J|A| versus the number of sensor nodes I for both

sum power levels. It is seen that the optimal power allocation performs best for all numbers of sensor nodes
and that its performance advantage over the other two schemes rises with increasing I. The performance of
the power allocation (4.12) for the critical sampling case is independent of I since only the first J = 36 sensor
nodes have non-zero power, i.e., the remaining sensor nodes stay silent. This power allocation is superior
to uniform power allocation at low transmit sum power but tends to be inferior to uniform allocation at high
transmit sum power, specifically for larger I.

Figure 4.2 depicts an example of how the sensor node powers Pi are allocated in the case of Gaussian
channels and I = 64. We divide the sensor nodes into two groups (sensors 1–36 and 37–64) and sort the
sensor nodes within each group according to increasing noise variance σ2

vi . That way, the impact of the sensor
node positions is easier to identify. The power allocation for the critically sampled case (using only sensors
1–36) and low transmit sum power is shown in Figure 4.2(a). Clearly, higher measurement noise power tends
to scale up the transmit power (even if the power scaling factor pi is smaller). However, the power increase
is not monotonic due to the additional impact of the sensor node position. For low transmit sum power, the
optimal power allocation is shown in Figure 4.2(b). The largest part of power is again allocated to sensor nodes
1–36 due to their good localization on a regular grid. In this power-limited regime, only few sensor nodes in
the second group (those with favorable position and measurement noise) have non-negligible power. For the
high power scenario shown in Figure 4.2(c), power is allocated more evenly to all sensors even though a large
fraction of the sum power is still allocated to the first group of sensor nodes.

A similar example for the power allocation is depicted in Figure 4.3. Here, the power is again allocated to
the sensor nodes for the case of Gaussian channels and I = 64, but for equal measurement noise variances σ2

vi =

σ2
v so that the power allocation only depends on the importance of the sensor nodes’ position for maintaining
a stable set of sampling for the field reconstruction. The size of the circles marking the sensor node positions
corresponds to the fraction of the power αi assigned to the sensor nodes. The power allocation for the critically
sampled case (using only sensors 1–36) and low transmit sum power is shown in Figure 4.3(a). All the regularly
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(a)

(b)

Figure 4.1: Comparison of the reconstruction performance for various sensor power allocation schemes in
terms of normalized MSE versus numbers of sensor nodes I in Gaussian and Rayleigh fading channels: (a) low
transmit sum power PT = 10, (b) high transmit sum power PT = 100.

placed sensor nodes are allocated the same power as their location is crucial for the reconstruction. The other
sensor nodes (visible as small points) are not considered by the allocation scheme. For low transmit sum power,
the optimal power allocation is shown in Figure 4.3(b). As in the critical sampling case, the largest part of power
is allocated to sensor nodes 1–36 due to their good localization on a regular grid. Only few sensor nodes off
the regular grid have non-negligible power. For the high power scenario shown in Figure 4.3(c), power is
allocated more evenly to all sensors even though most of the power is still allocated to the sensor nodes on the
regular grid. The optimal power allocation scheme establishes stable sets of sampling by not allowing large
gaps between neighboring sensor nodes.
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(a)

(b)

(c)

Figure 4.2: Example for the sensor power allocation in a WSN with I = 64 sensors and Gaussian channels.
The plots display the fraction of power αi versus sensor number for (a) optimal power allocation for the first
group of 36 sensors and low transmit sum power PT = 10; (b) optimal allocation for low transmit sum power
PT = 10, and (c) optimal allocation for high transmit sum power PT = 100. The sensors within each group
(sensors 1–36 and 37–64) are sorted according to increasing noise variance σ2

vi .
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(a) (b) (c)

Figure 4.3: Example for the sensor power allocation in a WSN with I = 64 sensors, Gaussian channels, and
equal measurement noise σ2

v . The plots display the sensor node positions over the region A for (a) optimal
power allocation for the first group of 36 sensor nodes and low transmit sum power PT = 10; (b) optimal
allocation for low transmit sum power PT = 10, and (c) optimal allocation for high transmit sum power
PT = 100, where the size of the circles marking the sensor node position corresponds to the fraction of power
αi assigned to the sensor nodes. As all sensor nodes experience the same measurement noise variance σ2

v , the
power allocation is only based on the sensor nodes’ positions.

4.7.2 Minimization of Transmit Power

We next compare the optimal power allocation schemes minimizing the transmit power derived in Section 4.5.
We consider setups with

(a) low normalized MSE target εmax

J|A| = 0.01 and with

(b) high normalized MSE target εmax

J|A| = 0.1.

Using the parameters specified above, our simulations compare three sensor node power allocation schemes:

(i) the numerically evaluated optimal power allocation scheme according to (4.15);

(ii) power allocation according to the closed-form expression (4.17) for the first 36 sensor nodes and zero
power for the remaining sensor nodes;

(iii) a scheme with uniform power allocation for the first 36 sensor nodes and zero power for the remaining
sensor nodes according to (4.19).

Figure 4.4 displays the optimal transmit power versus the number of sensor nodes I for both MSE targets. It
is seen that the optimal power allocation performs best for all numbers of sensor nodes and that its performance
advantage over the other two schemes rises with increasing I . The performance of the power allocation (4.12)
is independent of I since only the first J = 36 sensor nodes have non-zero power, i.e., the remaining sensor
nodes stay silent. For Gaussian channels, this power allocation performs identical to uniform power allocation
but tends to be superior to uniform allocation for the case of Rayleigh fading channels.
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(a)

(b)

Figure 4.4: Comparison of the reconstruction performance for various sensor power allocation schemes in
terms of transmit sum power PT versus numbers of sensor nodes I in Gaussian and Rayleigh fading channels:
(a) small normalized MSE target εmax

J|A| = 0.01, (b) large normalized MSE target εmax

J|A| = 0.1.

Figure 4.5 plots the relation between the minimal transmit sum power over the MSE target for the derived
power allocation schemes for I = 100 sensor nodes. For Gaussian channels and large MSE target, all power
allocation schemes perform equally and optimally. For small MSE target the performance advantage of the
optimal power allocation scheme for all sensor nodes over the other allocation schemes increases with decreas-
ing MSE target. For Rayleigh fading channels and all MSE targets, the optimal power allocation for all sensor
nodes outperforms the optimal power allocation for critical sampling. Uniform power allocation shows the
weakest performance and requires up to 3dB more power compared to the optimal power allocation.
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Figure 4.5: Minimal transmit sum power versus MSE target for I = 100 sensor nodes for Gaussian and
Rayleigh fading channels.

4.8 Conclusions

We considered field reconstruction in WSN based on shift-invariant spaces and an AF protocol for the trans-
mission of sensor node measurements to the fusion center. We derived the MSE achieved by this scheme and
developed both an MSE-optimal and a transmit sum-power-optimal scheme for power allocation to the sensor
nodes. For the case of critical sampling, the optimal power allocation was expressed in closed form. Numeri-
cal simulations for Gaussian and Rayleigh fading channels demonstrated how power is allocated to the sensor
nodes and how this impacts the overall field reconstruction quality.

Applying the optimal power allocation scheme for the critically sampled case by using only J ≤ I sensor
nodes is clearly suboptimal since many sensor node measurements remain unused. This drawback can be
circumvented by splitting the WSN into sub-WSNs of size J , i.e., considering stable sampling subsets of the
I sensor nodes and applying the power allocation for critically sampling to each sub-WSNs. One option then
is to impose a round-robin (serial) scheduling where the sub-WSNs are alternately used for reconstruction.
This reduces the energy consumption because inactive sensor nodes can temporarily be switched off while it
is assured that over time all sensor nodes are used in the reconstruction process. The second option is to use a
parallel scheduling, i.e., the sub-WSNs simultaneously contribute to the reconstruction by allocating the power
to the sensor nodes of the sub-WSN according to (4.12) and by averaging the results obtained by the different
sub-WSNs (see [4]). That way, all sensor nodes are active all the time, achieving a better reconstruction quality
at the expense of larger energy consumption. Serial and parallel schedules could as well be combined to achieve
a trade-off between energy consumption and reconstruction quality.
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4.A Optimization Problem Revisited

The matrixGg is positive definite and can hence be factorized as

Gg = G
1/2
g G

1/2
g ,

whereG1/2
g is again positive definite and hence invertible [64]. The MSE of the reconstructed field in (4.8) can

thus be rewritten as

ε = tr
{

(GTDG)−1Gg

}

= tr
{

(GTDG)−1G
1/2
g G

1/2
g

}

= tr
{

G
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}
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,

where gi denotes the columns ofGT and ui = G
−1/2
g gi. Further using the one-to-one correspondence

pi =
σ2
wdi

γi(1− σ2
vidi)

and introducing the slack variable
s = (s1 . . . sJ)

T ,

the problem in (4.9) can be cast as [10]

minimize
s,d

1Ts

subject to

[∑I
i diuiu

T
i ep

eTp sp

]

/ 0, p = 1, . . . , J

d / 0,

σ2
w

I
∑

i=1

di(σ2
h + σ2

vi)

γi(1− σ2
vidi)

≤ PT,

di −
1

σ2
vi

≤ 0.

(4.20)

Here ep is the pth unit vector and the last inequality ensures pi ≥ 0.
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Conclusions and Outlook

WE finally summarize the most important aspects and results of our work, present some conclusions, and
provide ideas and suggestions for further research.

In this dissertation we used shift-invariant spaces to model physical fields and presented a scheme for field
reconstruction from irregular samples based on this model. Our scheme allows the reconstruction of bandlim-
ited fields as well as non-bandlimited fields, depending on the generator functions used. We used generator
functions of compact support, in particular Basis-splines (B-splines), that provide excellent interpolation prop-
erties and allow us to reduce the computational overhead of the reconstruction. Moreover, they enable to
partition the sensor nodes of the Wireless Sensor Network (WSN) into clusters that reconstruct smaller parts
of the field independently. We introduced hybrid shift-invariant spaces that allow (compared to conventional
shift-invariant spaces) better adaption to local smoothness properties of the field to be reconstructed by using
different orders of B-splines within the various sensor node clusters. For the reconstruction of time-varying
fields, we used iterative solvers in the field reconstruction scheme to further reduce the computational com-
plexity. For clusters with corresponding overlapping subregions, we showed that averaging of the results of the
field reconstruction leads to better reconstruction quality. To study the impact of imperfect sensor locations on
the field reconstruction quality we analytically derived the influence of sensor localization errors on the Mean
Square Error (MSE) of the reconstructed field and compared it for several B-spline orders.

For the system model used in the field reconstruction scheme we introduced an Amplify-and-Forward
(AF) scheme for the transmission of sensor node measurements to the fusion center. Based on that model,
we derived the optimal power allocation for minimal MSE and minimal transmit sum power, respectively.
In both cases the problem of power allocation can be posed as convex optimization problems which can be
solved numerically. For the special case of critical sampling we derived closed-form solutions for these convex
problems. In numerical simulations we compared the performance of the optimal power allocation schemes,
the optimal schemes for the case of critical sampling, and uniform power allocation.

71



72 Chapter 5. Conclusions and Outlook

5.1 Conclusions

Based on the results in the previous chapters, we can draw the following conclusions.

• The field reconstruction scheme based on shift-invariant spaces introduced in this dissertation allows
reconstruction of both bandlimited and non-bandlimited functions while other schemes assume or require
either (strict) band limitation or significant oversampling of the function to be reconstructed. The field
model can be adapted to the underlying function by smartly choosing the generator functions that span
the shift-invariant space.

• The use of generator functions with compact support, in our case B-splines, renders the reconstruction
problem sparse, hence leading to a reduced computational complexity of the reconstruction scheme.

• Compact support of the generator functions allows flexible partitioning of the WSN into sensor node
clusters that can in parallel and independently reconstruct smaller parts of the field. This leads to a
reduced communication overhead and a more robust reconstruction.

• Hybrid shift-invariant spaces are a generalization of conventional shift-invariant spaces. In a clustered
WSN, they can be used to better adapt to local smoothness properties of the field to be reconstructed and
yields better reconstruction quality.

• The MSE of the reconstructed field depends on the correlation matrix of the estimation error of the field
coefficients and the Gramian of the generator functions. For an AF transmission strategy the correlation
matrix of the estimation error of the field coefficients depends on the sensor node positions, the sen-
sor measurement noise, the receiver noise, the transmission channel coefficients, and the power scaling
factors.

• We analyzed the influence of sensor localization errors on the MSE of the reconstructed field and com-
pared it for different orders of B-splines and for bandlimited reconstruction, i.e., a sinc-type generator
function. Reconstruction using B-splines is less sensitive to errors in the sensor position estimates than
reconstruction using the sinc-type generator function. For zero-order B-splines, there is literally no in-
fluence on the reconstruction quality, as long as the magnitude of the localization error is less than half
the support of the zero-order B-spline. Among all B-spline generator functions, the order N = 1 shows
the maximal influence on the localization error which decreases monotonically for increasing B-spline
order. The reason for that behaviour is the curvature of the particular generator functions around the zero
point.

• For time-varying fields, it is advantageous to use iterative algorithms to solve the system of linear equa-
tions underlying the field reconstruction scheme. Using the results of previous time-slots for initial-
ization, iterative solvers allow vast savings in the computational complexity of our field reconstruction
scheme.

• Within overlapping subregions corresponding to neighboring sensor node clusters, the quality of the
reconstructed field can be enhanced by appropriately averaging the estimates for the field coefficients.
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• The optimal sensor node power allocation for an AF transmission scheme depends on the sensor mea-
surement noise, the receiver noise, the transmission channel coefficients, the power scaling factors, and
the sensor node positions. This position reflects the sensor node’s importance to render the sampling set
stable.

• For our field reconstruction scheme, the constrained MSE-optimal and the transmit sum-power optimal
power allocation schemes for AF transmission are convex problems that have no closed-form solution,
but can be efficiently solved numerically.

• For the special case of critical sampling, the convex problems for the constrained MSE-optimal and the
transmit sum-power optimal power allocation schemes for AF transmission allow to calculate closed-
form solutions. These solutions can also be used for the non-critical sampling case, where they provide
good approximations for the optimal solution, but the quality of the approximation decays with increasing
number of sensor nodes.

5.2 Outlook

There remain several open points and possible extensions for further research. We provide a brief and by no
means exhaustive discussion in the following.

• Optimal B-spline order: In order to adapt the field model to the physical field to be reconstructed,
the order of the B-splines used within each sensor node cluster has to be selected carefully. We only
compared different orders and empirically determined the optimal one. Our field reconstruction scheme
lacks an algorithm for the automatic B-spline order selection based on the properties of the underlying
field. Such a scheme could be based on using a large fraction (e.g., 95 percent) of the sensor nodes for
the reconstruction and the rest for assessment of the reconstruction quality.

• Extensions of the field model: It is possible to extend the field model in several ways. For example, a
spatial scaling of the generator functions, e.g., inversely proportional to the sensor node density, could
be incorporated. Moreover, the shift-invariant space model could not only be used for the spatial domain
but also be extended to the time domain to appropriately model the temporal field evolution.

• Adaptive clustering algorithm: We assumed appropriate partitioning of the WSN into clusters that
perform field reconstruction independently, where we performed clustering only manually. A suitable,
self-organizing algorithm for clustering has to be robust against sensor node failures, has to balance
communication and computation load among the sensor nodes, and, most importantly, establish stable
sets of sampling within the clusters as this is necessary for successful reconstruction. Existing approaches
for WSN presented in [16] could be modified to incorporate the requirement for a stable sampling set.

• Distributed computation of coefficients: Our scheme allows distribution of the field reconstruction
problem to the sensor nodes only on the basis of clusters, where the field is reconstructed by the cluster
head of each cluster. For a complete distribution of the reconstruction task among all sensor nodes of the
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WSN, message-passing algorithms, such as belief propagation or gossip algorithms, could be properly
adapted for the computation of the field coefficients.

• Trade-off between number of sensor nodes and number of temporal snapshots: The idea for this
trade-off is motivated by the bit-conservation principle presented in [32]. The possibility to trade off
between the Analog-to-Digital (A/D) quantization precision per sensor node sample and the average
sampling rate allows to flexibly assign a certain bit budget per Nyquist-period to either one of these
domains. With respect to the reconstruction quality, a similar trade-off can be expected between the
number of sensor nodes and the number of temporal snapshots, i.e., between the spatial and temporal
sampling density.

• Transmission model: In addition to the analog AF transmission model in Chapter 4 the resource allo-
cation problem for a Compress-and-Forward (CF) transmission model can be derived. In a CF model,
the sensor node measurement data are quantized and digital messages are transmitted to the fusion cen-
ter that uses these messages for field reconstruction. A resource allocation scheme based on this digital
transmission model would assign a bit budget for the messages transmitted by each sensor node as a
function its measurement quality and location in the WSN.

• Algorithms and performance limits: Motivated by [65], one could investigate further algorithms and
their performance limits for cooperative multi-terminal inference, e.g., two terminals measure distributed
but correlated data and cooperate to transmit information to a fusion center which detects or estimates
parameters. Note that the setup for cooperative multi-terminal inference is different to the setups treated
in [65], in that we neither aim to recover data symbols like in classical cooperative communications nor
do we want to reproduce source signals like in distributed source coding. Moreover, it is different from
classical multi-terminal inference where cooperation seems not to have been considered up to now.

• Secrecy aspects: In a WSN without a fusion center, utilizing completely distributed algorithms, we
might be interested in the protection of secret information. Two correlated parts of the data may then
be coded in a way that allows transmission of the one part to the receiver within a prescribed distortion
tolerance while keeping the other part as secret as possible from the receiver or wiretappers. For this
purpose, the ideas of [66], where this source coding problem with multiple constraints was studied for a
one-way communication system, can be extended to the multi-terminal communication case prevailing
in WSN.
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Acronyms

1-D One-Dimensional
2-D Two-Dimensional
A/D Analog-to-Digital
AF Amplify-and-Forward
AOA Angle of Arrival
ASIC Application Specific Integrated Circuit
B-spline Basis-spline
BLUE Best Linear Unbiased Estimator
CDMA Code Division Multiple Access
CF Compress-and-Forward
CPU Central Processing Unit
CRLB Cramér-Rao Lower Bound
DES Decentralized Estimation Scheme
ESPRIT Estimation of Signal Parameters by Rotational Invariance Techniques
FDMA Frequency Division Multiple Access
FPGA Field Programmable Gate Array
GMRES Generalized Minimal RESidual method
GNSS Global Navigation Satellite System
GPS Global Positioning System
KKT Karush-Kuhn-Tucker
LMMSE Linear Minimum Mean Square Error
LOS Line-Of-Sight
LS Least Squares
MAC Multiple-Access Channel
MAP Maximum A Posteriori
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSE Mean Square Error
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MUSIC Multiple Signal Classification
MVU Minimum Variance Unbiased
NLOS Non-Line-Of-Sight
pdf Probability Density Function
QAM Quadrature Amplitude Modulation
RSS Received Signal Strength
SNR Signal-to-Noise Ratio
TDMA Time Division Multiple Access
TDOA Time Difference Of Arrival
TOA Time Of Arrival
UWB Ultra Wide Band
WLAN Wireless Local Area Network
WLS Weighted Least Squares
WSN Wireless Sensor Network



Notation

The following notation is used throughout the thesis. Scalars are denoted by italic letters, e.g., x orX. Boldface
letters are used for vectors and matrices, e.g., x and X, respectively. Moreover, [x]m denotes the mth element
of the vector x and [X]m,l denotes the element in rowm and column l of the matrixX. Calligraphic upper-case
letters, e.g.,A, refer to sets. Furthermore, no notational distinction is made between random variables and their
realizations. Additional notational conventions are:

I Identity matrix, unit matrix
g(x, y) Generator function
gBL(x, y) Bandlimited sinc-type generator function
bN (x, y) Two-Dimensional (2-D) Order N B-spline
b̃N (x) One-Dimensional (1-D) Order N B-spline
h(x, y; t) Physical field
A Spatial region
Am Spatial subregion
Cm Sensor node cluster
ck,l Field coefficient
ĉk,l Field coefficient estimate
I Number of sensors
M Number of subregions/clusters
S Support
Im = |Cm| Number of sensors in cluster Cm
Jm Number of coefficients ck,l in Am

Z Set of integer numbers
A = Z2 ∩ (Am + S) Set of integer numbers in region A
R Set of real numbers
R+ Set of positive real numbers
(x, y) Spatial Coordinates
(xi, yi) Position of sensor node i
t Time (continuous case)
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n Time index (discrete case)
h(xi, yi; t) Measurement of sensor node i
T Temporal sampling period
Dx,Dy Spatial lattice period
·T Transpose
·# Moore-Penrose generalized inverse
·−1 Matrix inverse
tr{·} Trace of a matrix
max Maximum value
min Minimum value
argmin Minimizing argument
argmax Maximizing argument
! Equal by definition
E{·} Expectation
supp Support
‖ · ‖ Euclidean norm
diag{·} Diagonal matrix with elements of the argument vector on the main diagonal
√

· Square root
lim Limit
| · | Absolute value of a number
× Cartesian product
+p, Largest integer not greater than p
< or ≤ Less (equal)
> or ≥ Greater (equal)
∈ Set-theoretic set membership
/∈ Set-theoretic denial of set membership
∪ Set-theoretic union
∩ Set-theoretic intersection
⊂ or ⊆ Set-theoretic (proper) subset operator
D = domf Domain of a function f
Π(x) Rectangular function
∗ Convolution
cov{·} Covariance
var{·} Variance
bias{·} Bias
J(θ) Fisher matrix
L Bayesian information matrix
C(·) Cost function
V (g) Shift-invariant space with generator function g(x, y)
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λx,λy Sensor node position jitter
N B-spline order
Nmax Maximum B-spline order
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