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Abstract

In this correspondence, a computationally efficient method that combines the subspace and projection

separation approaches is developed for R-dimensional (R-D) frequency estimation of multiple sinusoids,

where R ≥ 3, in the presence of white Gaussian noise. Through extracting a 2-D slice matrix set from

the multidimensional data, we devise a covariance matrix associated with one dimension, from which the

corresponding frequencies are estimated using the root-MUSIC method. With the use of the frequency

estimates in this dimension, a set of projection separation matrices is then constructed to separate all

frequencies in the remaining dimensions. Root-MUSIC method is again applied to estimate these single-

tone frequencies while multidimensional frequency pairing is automatically attained. Moreover, the mean

square error of the frequency estimator is derived and confirmed by computer simulations. It is shown that

the proposed approach is superior to two state-of-the-art frequency estimators in terms of accuracy and

computational complexity.

Index Terms

Multidimensional frequency estimation, subspace method, projection separation.

EDICS: SAS-STAT, DSP-TFSR, IMD-MDSP

I. INTRODUCTION

The topic of R-dimensional (R-D) frequency estimation, where R ≥ 3, has received extensive attention

for its widespread applications in numerous fields such as MIMO wireless channel sounding [1], mobile

communications [2], MIMO radar [3], sonar, seismology and nuclear magnetic resonance spectroscopy [4].

Many high-resolution subspace-based parameter estimation techniques have been proposed to solve this

problem such as multidimensional folding (MDF) [1], unitary ESPRIT [5], improved MDF (IMDF) [6],

MUSIC [7], rank reduction estimator (RARE) [8], decoupled root-MUSIC [9] and higher-order singular
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value decomposition (HOSVD) [10] methods. Unitary ESPRIT, MDF and IMDF techniques are based on

the conventional ESPRIT approach where it is difficult to directly utilize the original multidimensional data.

Typically, they require to enlarge the received data to construct a 2-D matrix with larger size, and then employ

the ESPRIT-based method to obtain the desired frequency pairs. Consequently, their computational burden

is very heavy particularly when the data size is large. The RARE algorithm vectorizes the observed data to

exploit the Vandermonde structure and matrix polynomials are constructed to find the frequencies of each

dimension. However, computing the polynomial coefficients is a highly demanding job. In the decoupled root-

MUSIC algorithm, R-D harmonic retrieval is decomposed into R 1-D problems by tensor decomposition [11],

[12], which significantly reduces the computational load, but pairing of the R-D frequencies is required. On

the other hand, the HOSVD method utilizes the structure inherent in the received data at the expense of a high

computational complexity. In this work, our main contribution is to devise an accurate and computationally

efficient estimator for multidimensional frequencies in the presence of white Gaussian noise with the use of

the subspace and projection separation techniques.

The rest of this correspondence is organized as follows. The development of the proposed estimator

is presented in Section II. There are two basic estimation steps as follows. We first extract a 2-D slice

matrix set from the R-D signal to construct a covariance matrix associated with the first dimension, from

which the corresponding frequencies are estimated using the root-MUSIC method. With the use of the

frequency estimates in the first dimension, a set of projection separation matrices is then devised to separate

all frequencies in the remaining dimensions. Root-MUSIC method is again utilized to find these single-

tone frequencies while multidimensional frequency pairing is automatically attained. In Section III, the

computational complexity and mean square error (MSE) of the devised estimator are analyzed. Since our

method exploits covariance matrices whose size is characterized by the number of sinusoids, its computational

requirement is small when compared with the conventional schemes. Section IV includes numerical examples

for validating the theoretical findings and evaluating the proposed approach by comparing with the IMDF

[6] and HOSVD [10] methods as well as Cramér-Rao lower bound (CRLB). Finally, conclusions are drawn

in Section V.

II. PROPOSED METHOD

A. Signal Model

The observed R-D signal model is

xm1,m2,··· ,mR
= sm1,m2,··· ,mR

+ qm1,m2,··· ,mR
, mr = 1, 2, · · · ,Mr, r = 1, 2, · · · , R (1)

where

sm1,m2,··· ,mR
=

F∑
f=1

αf

R∏
r=1

ejωf,rmr (2)

with F being the number of sinusoids, which is assumed to be known a priori [13]. Here, αf is the

unknown complex amplitude of f th tone, ωf,r ∈ (−π, π) is the unknown frequency of f th component in
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the rth dimension. The qm1,m2,··· ,mR
is a R-D circular complex white Gaussian noise with mean zero and

unknown variance σ2
q . It is assumed that Mr ≥ F, r = 1, 2, · · · , R, and the frequencies are distinct in at

least one of the R dimensions. Given the M =
∏R

r=1Mr samples of xm1,m2,··· ,mR
, our task is to find the

RF unknown frequency parameters, namely, {ωf,r}, f = 1, 2, · · · , F , r = 1, 2, · · · , R.

B. Estimation in First Dimension

For ease of presentation but without loss of generality, we start frequency estimation in the first dimension

with the assumption that ωk,1 ̸= ωl,1, k ̸= l. In tensor form, (1) is

X = S +Q (3)

where {X ,S,Q} ∈ CM1×M2×···×MR , [X ]m1,m2,··· ,mR
= xm1,m2,··· ,mR

, [S]m1,m2,··· ,mR
= sm1,m2,··· ,mR

and

[Q]m1,m2,··· ,mR
= qm1,m2,··· ,mR

. That is, S and Q are the noise-free and noise components of X , respectively.

To reduce the dimension of X , we define X r1,r2 , which is a set of 2-D slice matrices extracting from X ,

as follows:

X r1,r2 =

{
X (m1, · · · ,mr1−1, :,mr1+1, · · · ,mr2−1, :,mr2+1, · · · ,mR)

}
(4)

where

mr = 1, 2, · · · ,Mr, r = 1, 2, · · · , R and r ̸= r1, r2[
X (m1, · · · ,mr1−1, :,mr1+1, · · · ,mr2−1, :,mr2+1, · · · ,mR)

]
mr1 ,mr2

= xm1,m2,··· ,mR
.

Similarly, S1,r is a noise-free 2-D matrix set extracting from S and each of the S(:, · · · ,mr−1, :

,mr+1, · · · ,mR) ∈ CM1×Mr has the form of

F∑
f=1

αf

R∏
n=2
n ̸=r

ejωf,nmn · ej(ωf,1+ωf,r) · · ·
F∑

f=1

αf

R∏
n=2
n̸=r

ejωf,nmn · ej(ωf,1+Mrωf,r)

F∑
f=1

αf

R∏
n=2
n̸=r

ejωf,nmn · ej(2ωf,1+ωf,r) · · ·
F∑

f=1

αf

R∏
n=2
n ̸=r

ejωf,nmn · ej(2ωf,1+Mrωf,r)

...
. . .

...
F∑

f=1

αf

R∏
n=2
n ̸=r

ejωf,nmn · ej(M1ωf,1+ωf,r) · · ·
F∑

f=1

αf

R∏
n=2
n̸=r

ejωf,nmn · ej(M1ωf,1+Mrωf,r)


. (5)

It is easy to verify that S(:, · · · ,mr−1, :,mr+1, · · · ,mR) can be written as

S(:, · · · ,mr−1, :,mr+1, · · · ,mR) = G1 Γ1,r(m2, · · · ,mr−1,mr+1, · · · ,mR)G
H
r (6)
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where

Gr =
[
g1,r, g2,r, · · · ,gF,r

]
, r = 1, 2, · · · , R (7)

gf,r =
[
af,r, a

2
f,r, · · · a

Mr

f,r

]T (8)

af,1 = ejωf,1 , af,r = e−jωf,r , r = 2, 3, · · · , R (9)

Γ1,r(m2, · · · ,mr−1,mr+1, · · · ,mR) = diag

(
α1

R∏
n=2
n̸=r

a−mn

1,n , α2

R∏
n=2
n ̸=r

a−mn

2,n , · · · , αF

R∏
n=2
n ̸=r

a−mn

F,n

)
(10)

with (·)H , (·)T and diag(a) being the conjugate transpose, transpose and diagonal matrix with vector a as

its main diagonal, respectively.

Define R̂1 as the sample covariance matrix for X 1,2, which is computed as

R̂1 =
M1M2

M

M3∑
m3=1

M4∑
m4=1

· · ·
MR∑

mR=1

X (:, :,m3, · · · ,mR)XH(:, :,m3, · · · ,mR). (11)

According to the structure of the slice matrix X (:, :,m3, · · · ,mR), the expected value of R̂1, denoted by

R1, is

R1 =
M1M2

M

M3∑
m3=1

· · ·
MR∑

mR=1

G1Γ1,2(m3, · · · ,mR)G
H
2 G2Γ

H
1,2(m3, · · · ,mR)G

H
1 + σ2

qIM1

=
M1M2

M
G1

(
M3∑

m3=1

· · ·
MR∑

mR=1

Γ1,2(m3, · · · ,mR)G
H
2 G2Γ

H
1,2(m3, · · · ,mR)

)
GH

1 + σ2
qIM1

= G1B1G
H
1 + σ2

qIM1
(12)

where

B1 =
M1M2

M

M3∑
m3=1

· · ·
MR∑

mR=1

Γ1,2(m3, · · · ,mR)G
H
2 G2Γ

H
1,2(m3, · · · ,mR) ∈ CF×F (13)

and IM1
is the M1 ×M1 identity matrix.

In order to circumvent the problem of degraded estimation performance in case of closely-spaced

frequencies in the same dimension, we further propose the forward-backward (FB) smoothing [14], [15]

covariance matrix of R̂1:

R̂FB
1 =

1

2

(
R̂1 + JM1

R̂∗
1JM1

)
(14)

where JM1
∈ CM1×M1 is the exchange matrix with ones on its antidiagnoal and zeros elsewhere.

The expected value of R̂FB
1 is

RFB
1 =

1

2

(
R1 + JM1

R∗
1JM1

)
= G1B̃1G

H
1 + σ2

qIM1
(15)

where

B̃1 =
1

2

(
B1 +D1B

∗
1D1

)
(16)

D1 = diag
(
e−jM1ω1,1 , e−jM1ω2,1 , · · · , e−jM1ωF,1

)
(17)
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On the other hand, R̂FB
1 can be decomposed using eigenvalue decomposition (EVD) as

R̂FB
1 = V̂1sΛ̂1sV̂

H
1s + V̂1nΛ̂1nV̂

H
1n (18)

where the column vectors of V̂1s ∈ CM1×F and V̂1n ∈ CM1×(M1−F ) are the eigenvectors that span the

signal and noise subspaces of R̂1, respectively, with the associated eigenvalues being the diagonal elements

of Λ̂1s and Λ̂1n.

Let

Ê1 = IM1
− V̂1sV̂

H
1s . (19)

Employing root-MUSIC method to estimate the frequencies based on Ê1, a null-spectrum function is

constructed as:

f1(z) = βT
1 (z

−1) Ê1 β1(z) (20)

where β1(z) =
[
z, z2, · · · , zM1

]T . The polynomial f1(z) has 2(M1 − 1) roots and the first dimension

frequency estimates {ω̂f,1} are obtained from the F largest-magnitude roots inside the unit circle according

to z = ejω.

C. Estimation in Remaining Dimensions

With the use of {ω̂f,1}, a set of projection matrices P̂⊥
f , f = 1, 2, · · · , F , is constructed to estimate all

F frequencies one by one [19] in each of the rth dimension, r = 2, 3, · · · , R. The P̂⊥
f is defined as

P̂⊥
f = IM1

−Hf (H
H
f Hf )

−1HH
f , f = 1, 2, · · · , F (21)

where

Hf =
[
h(ω̂1,1), · · · ,h(ω̂f−1,1),h(ω̂f+1,1), · · · ,h(ω̂F,1)

]
, (22)

h(ω̂k,1) =
[
ẑk,1, ẑ

2
k,1, · · · , ẑ

M1

k,1

]T
, ẑk,1 = ejω̂k,1 . (23)

Analogous to (4), we construct the 2-D slice matrices set X 1,r and then use the projection matrix

P̂⊥
f on X (:, · · · ,mr−1, :,mr+1, · · · ,mR) ∈ CM1×Mr to obtain X f,r(:, · · · ,mr−1, :,mr+1, · · · ,mR) which

contains only the information of {ωf,r} in the rth dimension associated with ω̂f,1.

The X f,r(:, · · · ,mr−1, :,mr+1, · · · ,mR) is defined as

X f,r(:, · · · ,mr−1, :,mr+1, · · · ,mR) = P̂⊥
f X (:, · · · ,mr−1, :,mr+1, · · · ,mR)

= P̂⊥
f G1 Γ1,r(m2, · · · ,mr−1,mr+1, · · · ,mR)G

H
r + P̂⊥

f Q(:, · · · ,mr−1, :,mr+1, · · · ,mR) (24)

where r = 2, 3, · · · , R, f = 1, 2, · · · , F .

Similar to (11), we define the covariance matrix R̂f,r

R̂f,r =
M1Mr

M

M2∑
m2=1

· · ·
Mr−1∑

mr−1=1

Mr+1∑
mr+1=1

· · ·
MR∑

mR=1

XH
f,r(:, · · · ,mr−1, :,mr+1, · · · ,mR) ·

X f,r(:, · · · ,mr−1, :,mr+1, · · · ,mR) (25)
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where r = 2, 3, · · · , R, f = 1, 2, · · · , F .

The expected value of R̂f,r is calculated as

Rf,r =
M1Mr

M

M2∑
m2=1

· · ·
Mr−1∑

mr−1=1

Mr+1∑
mr+1=1

· · ·
MR∑

mR=1

GrΓ
H
1,r(m2, · · · ,mr−1,mr+1, · · · ,mR) ·

GH
1 P⊥

f
H
P⊥

f G1Γ1,r(m2, · · · ,mr−1,mr+1, · · · ,mR)G
H
r + σ2

qIMr

= GrBf,rG
H
r + σ2

qIMr
(26)

where

Bf,r =
M1Mr

M

M2∑
m2=1

· · ·
Mr−1∑

mr−1=1

Mr+1∑
mr+1=1

· · ·
MR∑

mR=1

ΓH
1,r(m2, · · · ,mr−1,mr+1, · · · ,mR) ·

GH
1 P⊥

f
H
P⊥

f G1Γ1,r(m2, · · · ,mr−1,mr+1, · · · ,mR) ∈ CF×F ,

r = 2, 3, · · · , R, f = 1, 2, · · · , F (27)

and

P⊥
f G1 = [0,0, · · · , P⊥

f gf,1, · · · ,0]. (28)

with 0 being the M1 × 1 zero vector. Furthermore, the FB smoothing version of R̂f,r is

R̂FB
f,r =

1

2

(
R̂f,r + JMr

R̂∗
f,rJMr

)
(29)

The expected value of R̂FB
f,r is

RFB
f,r =

1

2

(
Rf,r + JMr

R∗
f,rJMr

)
= GrB̃f,rG

H
r + σ2

qIMr
(30)

where

B̃f,r =
1

2

(
Bf,r +DrB

∗
f,rDr

)
(31)

Dr = diag
(
ejMrω1,r , ejMrω2,r , · · · , ejMrωF,r

)
. (32)

Taking EVD on R̂FB
f,r yields

R̂FB
f,r = V̂f,rsΛ̂ f,rsV̂

H
f,rs + V̂f,rnΛ̂f,rnV̂

H
f,rn , r = 2, 3, · · · , R, f = 1, 2, · · · , F (33)

where the column vectors of V̂f,rs ∈ CMr×1 and V̂f,rn ∈ CMr×(Mr−1) are the eigenvectors that span the

signal and noise subspaces of R̂f,r, respectively, with the associated eigenvalues being the diagonal elements

of Λ̂ f,rs and Λ̂f,rn.

Define Êf,r of the form:

Êf,r = IMr
− V̂f,rsV̂

H
f,rs , r = 2, 3, · · · , R, f = 1, 2, · · · , F. (34)

We see that the root-MUSIC method can also be used to obtain the f th component in the rth dimension

frequency, ω̂f,r, which is automatically paired with ω̂f,1 with the use of P̂⊥
f . The corresponding null-spectrum

function is

ff,r(z) = βT
f,r(z

−1) Êf,r βf,r(z) (35)
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where βf,r(z) =
[
z, z2, · · · , zMr

]T . The polynomial ff,r(z) has 2(Mr − 1) roots and the rth dimension

frequency of f th component ω̂f,r is obtained from the largest-magnitude root inside the unit circle according

to z = e−jω, r = 2, 3, · · · , R, f = 1, 2, · · · , F.

To summarize, the steps in the overall estimation procedure are:

1) Compute R̂FB
1 in (14) and perform its EVD

2) Compute Ê1 using (19) and use (20) to compute ω̂f,1, f = 1, 2, · · · , F

3) Construct P̂⊥
f in (21) and compute R̂FB

f,r using (29)

4) Take the EVD on R̂FB
f,r , compute Êf,r according to (34) and use (35) to obtain ω̂f,r, r = 2, 3, · · · , R,

f = 1, 2, · · · , F

III. ALGORITHM ANALYSIS

A. Computational Complexity

The computational complexity of the proposed root-MUSIC algorithm is studied and the results are

provided in Table I. In summary, its complexity is O
(
M
(
M1 + F

∑R
r=2(M1 +Mr)

))
. On the other hand,

the computational requirement in the IMDF method [6] is about O
(
M3
)

and that of the HOSVD algorithm

[10] is at least O
(∏R

r=1(Mr − Lr + 1)L3
r

)
where Lr is the number of spatial smoothing subarrays in the

rth dimension, r = 1, 2, · · · , R. Clearly, the proposed method is more computationally attractive than [6]

and [10].

B. Mean Square Error

Analogous to (18) and (33), we define

RFB
1 = V1sΛ1sV

H
1s + σ2

q V1nV
H
1n (36)

RFB
f,r = λf,rsvf,rsv

H
f,rs + σ2

q Vf,rnV
H
f,rn (37)

where V1s = [v1,v2, · · · ,vF ], V1n = [vF+1,vF+2, · · · ,vM1
], Λ1s = [λ1, λ2, · · · , λF ] and Vf,rn =

[v
(2)
f,r,v

(3)
f,r, · · · ,v

(Mr)
f,r ]. Note that vf , f = 1, 2, · · · , F , is the signal subspace eigenvector of the first

dimension, λf are the associated eigenvalue with vf while V1n is the noise subspace of the first dimension.

Meanwhile, vf,rs and λf,rs are the eigenvector and eigenvalue of the signal subspace of the f th component

in the rth dimension frequency, respectively, and Vf,rn is the noise subspace corresponding to vf,rs.

Following [15], the MSEs of the first dimension frequency estimates are computed as

E
{
(ω̂f,1 − ωf,1)

2
}
=

M1M2

2M

σ2
q

F∑
f=1

λf

(λf − σ2
q )

2
|vH

f gf,1|2

dH
f,1V1nVH

1ndf,1
(38)

where df,1 = dgf,1/dωf,1, and E is the expectation operator.

June 13, 2012 DRAFT



8

On the other hand, the MSEs of the frequency estimates in the remaining dimensions are

E
{
(ω̂f,r − ωf,r)

2
}
=

M1Mr

2M

σ2
q

λf,rs

(λf,rs − σ2
q )

2
|vH

f,rsgf,r|2

dH
f,rVf,rnV

H
f,rndf,r

(39)

where df,r = dgf,r/dωf,r.

IV. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the frequency estimation performance of the

proposed approach for multiple 3-D and 4-D sinusoids in the presence of white Gaussian noise. The

algorithms without and with FB smoothing, denoted by root MUSIC and FB root MUSIC, are examined.

The average MSE of the rth dimension, denoted by AMSE r, is employed as the performance measure. All

results provided are averaged from 200 independent runs. Apart from CRLB [6], [17]–[18], the performance

of the proposed approach is compared with that of the IMDF [6] and HOSVD [10] algorithms. The signal

power is defined as σ2
s = (

∑M1

m1=1 · · ·
∑MR

mR=1

∣∣sm1,m2,··· ,mR

∣∣2)/M and qm1,m2,··· ,mR
is scaled to produce

different signal-to-noise ratio (SNR) where SNR = σ2
s/σ

2
q .

In the first test, we consider 3-D frequency estimation with M1 = M2 = M3 = 15 and the number of

tones is F = 3. The sinusoidal parameters are {αf} = {1, ej0.3π, ej0.5π}, {ω1,r} = {0.1π, 0.25π, 0.4π},

{ω2,r} = {0.25π, 0.4π, 0.1π} and {ω3,r} = {0.4π, 0.1π, 0.25π}. The results of AMSE r versus SNR are

plotted in Figures 1 to 3. It is observed that although the MSE of the proposed approach in the first dimension

is comparable with that of HOSVD scheme, the former is superior to [6] and [10], with performance close to

CRLB, in the remaining dimensions. The theoretical calculations of (38) and (39) also agree very well with

the simulation results for sufficiently high SNR conditions. The above test is repeated with identical frequency

scenario of {ω1,r} = {0.1π, 0.3π, 0.4π}, {ω2,r} = {0.25π, 0.3π, 0.4π} and {ω3,r} = {0.4π, 0.35π, 0.45π},

and the results are plotted in Figures 4 to 6. In this challenging case, the proposed method without FB

smoothing performs the worst because there are identical frequencies in two dimensions. Nevertheless, the

one with FB smoothing outperforms [6] and [10] for all dimensions and its performance attains CRLB in

the second and third dimensions.

In the second experiment, the average computational time of the investigated algorithms versus different

M1 with M1 = M2 = M3 in 3-D frequency estimation with F = 3 are plotted in Figure 7. It is seen that the

proposed approach is much more computationally efficient than the IMDF and HOSVD algorithms, which

aligns with the complexity analysis in Section III.

In the third experiment, AMSE r for different frequency separation by varying ω2,1 is studied. We consider

two 3-D tones with M1 = M2 = M3 = 15. The signal parameters are {αf} = {1, ej0.3π}, {ω1,r} =

{0.1π, 0.25π, 0.4π}, ω2,2 = 0.4π and ω2,3 = 0.1π while ω2,1 is varying from 0.1π to 0.6π. The corresponding

results at SNR = 10dB are shown in Figures 8 to 10. It is observed that the estimation performance of the

proposed approach is inferior to the IMDF and HOSVD schemes in the first dimension when the frequency

separation is less than 0.1π. Nevertheless, its performance is comparable to them in the other two dimensions.
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Finally, 4-D frequency estimation is studied and the results of AMSE r versus SNR are plotted in Figures

11 to 14. The number of sinusoids is F = 3 while M1 = 15,M2 = M3 = M4 = 7. The signal parameters

are {αf} = {1, ej0.3π, ej0.5π}, {ω1,r} = {0.1π, 0.25π, 0.4π, 0.1π}, {ω2,r} = {0.25π, 0.4π, 0.4π, 0.1π} and

{ω3,r} = {0.4π, 0.25π, 0.45π, 0.15π}. Again, the superiority of the proposed approach over [6] and [10] is

observed. Moreover, its MSE attains CRLB for the second to fourth dimensions at sufficiently high SNRs.

V. CONCLUSION

A new approach for frequency estimation of multidimensional sinusoids in additive white circular Gaussian

noise has been developed. The main idea in our methodology is to rearrange the R-D sinusoids as a series

of 2-D slice matrices and combine the subspace and projection separation techniques. The frequencies in

one dimension are first estimated using the root-MUSIC algorithm, which are then utilized to separate

the frequencies in the remaining dimensions. Using the separated data, the remaining frequencies are

then estimated one by one using the root-MUSIC method such that the multidimensional parameters are

automatically paired. It is shown that the proposed algorithm is superior to the IMDF and HOSVD methods

in terms of computational load and estimation performance.
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Construct R̂FB

1 M1 ×M1 M1M

EVD of R̂FB
1 M1 ×M1 25M3

1

Compute Ê1 M1 ×M1 M2
1F

Construct R̂FB
f,r Mr ×Mr FM(M1 +Mr)

EVD of R̂FB
f,r Mr ×Mr 25M3

rF

Compute Êf,r Mr ×Mr M2
rF

Total O
(
M

(
M1 + F

R∑
r=2

(M1 +Mr)
))
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Fig. 1: AMSE 1 versus SNR with distinct frequencies
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Fig. 2: AMSE 2 versus SNR with distinct frequencies
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Fig. 3: AMSE 3 versus SNR with distinct frequencies
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Fig. 4: AMSE 1 versus SNR with identical frequencies
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Fig. 5: AMSE 2 versus SNR with identical frequencies
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Fig. 6: AMSE 3 versus SNR with identical frequencies
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Fig. 7: Computational time versus M1
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Fig. 8: AMSE 1 versus frequency separation
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Fig. 9: AMSE 2 versus frequency separation
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Fig. 10: AMSE 3 versus frequency separation
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Fig. 11: AMSE 1 versus SNR for 4D Data
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Fig. 12: AMSE 2 versus SNR for 4D Data
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Fig. 13: AMSE 3 versus SNR for 4D Data
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Fig. 14: AMSE 4 versus SNR for 4D Data
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