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Abstract

It is proved that in a non-Bayesian parametric estimatiosbl@m, if the Fisher information matrix (FIM) is
singular, unbiased estimators for the unknown parametirnet exist. Cramér-Rao bound (CRB), a popular tool
to lower bound the variances of unbiased estimators, seeampplicable in such situations. In this paper, we show
that the Moore-Penrose generalized inverse of a singuldr ¢&in be interpreted as the CRB corresponding to the
minimum variance among all choices of minimum constraimicfions. This result ensures the logical validity of
applying the Moore-Penrose generalized inverse of an FIthagovariance lower bound when the FIM is singular.
Furthermore, the result can be applied as a performancedtmuthe joint design of constraint functions and unbiased
estimators.

Index Terms

Constrained parameters, Cramér-Rao bound (CRB), sin§igaer information matrix (FIM).

I. INTRODUCTION

An interpretation of the Moore-Penrose generalized irvgt$ of a singular Fisher information matrix (FIM) is
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presented in this paper, from the perspective of CramertiRaind (CRB). CRB is a lower bound on the covariance
matrix of any unbiased estimator in a non-Bayesian paracnettimation problem [2], [3], and is a popular tool to
evaluate the optimal mean-square error (MSE) performahestonators in various applications [4], [5]. The most
general form of CRB says that the covariance matrix of anyasdd estimator is lower bounded by the generalized
inverse of the Fisher information matrix [6]. This generairh of CRB holds for both singular and non-singular

FIMs.
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There are, however, facts in literature that render theiegupdn of CRB questionable when the FIM is singular.
Rothenberg proves in [7] that under some regularity coodj the non-singularity of the FIM is equivalent to the
local identifiability of the parameter to be estimate8toicaet al. prove in [8], [9] that unbiased estimators with
finite variances do not exist when the FIM is singular, exdeptsome “unusual”’ conditiorts If the parameter
to be estimated is locally non-identifiable, or all of the iasled estimators will have infinite variances, it seems
meaningless to discuss the performances of unbiased ¢stena

As mentioned in [10], one may change the nature of an estimatioblem to allow the existence of an estimator
with finite variance. There are three approaches. The firstageh is to introduce priori information about the
probability distribution of the parameter to be estimaiadhis way the estimation problem becomes a Bayesian one.
There are abundant literature on Bayesian statistics [dd]pmerformance bounds [12} priori information about
the probability distribution of the unknown parameter, lewer, is not always already known. The second approach
is to considebiasedestimators instead afnbiasedestimators. In [10], the necessary condition for the biation
to ensure the existence of an unbiased estimator with fimitance is derived. The authors of a recent paper derive
the bias function that leads to the minimum trace of the teguICRB, a lower bound on the total variances of
estimators [13]. There are a number of situations, howevleere biased estimators are not preferred. For example,
almost all estimation problems encountered in the desiga obmmunication system, including the estimation
of carrier phases and symbol timing for synchronizatior, &stimation of channel responses for equalization,
etc., require unbiased estimators. The third approach putoor to exploit some deterministic constraints on the
parameter to be estimated. The deterministic constraggsltrin a parametric estimation problem with reduced
dimension, where an unbiased estimator with finite variameg exist. We focus on the third approach in this
paper.

Take blind channel estimation problems for example [14F §bal of blind channel estimation is to estimate the
channel responsk from y = s x h + n, the convolution of the channel resporisend the input data sequensgge
corrupted by an additive noise. The unknown parameté £ (s, k) is not identifiable sincéas, Lh) and (s, h)
are observationally equivalent for any constang 0, so unbiased estimators do not exist. Practically thisasdled
scalar ambiguity problem is resolved by assigning a prerdghed value to one of the element®©{15]. That is,

a constraint functiory (@) £ s,, — ¢ = 0 is put on the parametet, wheres,, denotes thexith element ofs andc
is some pre-determined constant. This is exactly the thigt@ach mentioned above.

CRB for constrained parameters is already derived in [9],[[L7]. The value of the constrained CRB depends on
the choice of the constraint function; different constrdimctions lead to different values of the CRB. This bound
is useful when the constraint function is exogenously givmri there are situations where we are able to modify

the constraint function. Take blind channel estimationbpgms for example again. Suppose an engineer chooses

1A parameter is locally identifiable if there exists an open neighbourdh@ of @ such that no othe®’ ¢ © is observationally equivalent
to 6.

2The “unusual” conditions suggest that if the FIM is singutanly unbiased estimators for some functions of the unknpamameter, instead
of the unknown parameter itself, may exist with finite vaces
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the constraint function ag(8) £ s; — ¢ = 0 and designs an unbiased estimator corresponding to thistredrt
function, and finds the resulting MSE, although almost achgthe constrained CRB with respect to the constraint
function, is still unsatisfactory compared with the targalue. How can the engineer tell the unsatisfactory result
is caused by the inappropriate choice of the constrainttiomcor simply because the target value is not attainable
for any choice of the constraint function?

The main contribution of this paper is the following theoreiihe Moore-Penrose generalized inverse of a
singular FIM isthe constrained CRB corresponding to the minimum variano®reg all choices of minimum
constraint functionsAccording to the theorem, the logical validity of using tkl@ore-Penrose generalized inverse
of a singular FIM as a covariance lower bound for unbiaseichasbrs is justified, and a CRB for the joint design of
the unbiased estimator and the constraint function is néthiln addition to a performance bound, we also provide
a sufficient condition for a constraint function to achielre bound, which is an affine function of the parameter to
be estimated. The above results facilitate future researon the optimal joint design of constraint functions and
unbiased estimators.

A mathematical definition of minimum constraint functiondlvke given in Section IV-A, but the meaning is
conceptually easy to understand. In blind channel estimgtroblems, only a one-dimensional constraintfois
needed to resolve the scalar ambiguity, suclf@) = s,, — 1, and any constraint functiofi that is essentially a
one-dimensional constraint is a minimum constraint fuorcts long as the constrained CRB exists.

The rest of the paper is organized as follows. The necessaygbound knowledge is given in Section Il. Then
we show that the Moore-Penrose generalized inverse of eckh be viewed as a CRB for constrained parameters
with some constraint function in Section Ill. Section IV i&ided into two sub-sections. In the first sub-section
we give the definition of minimum constraint functions ansitity its meaning. In the second sub-section we prove
the main result of this paper, that the Moore-Penrose géredainverse of the FIM is the CRB corresponding to
the minimum variance among all choices of minimum constrinctions. Conclusions and some discussions are

presented in Section V.

Notation

Bold-faced lower case letters represent column vectorshald-faced upper case letters are matrices. Superscripts
vT, M~', and M denote the transpose, inverse, and the Moore-Penroseatjeaediinverse of the corresponding
vector or matrix. The vectdt [v] denotes the expectation of the random veetaandE [M] denotes the expectation
of the random matrixZ. The matrixcov(u,v) is defined agov(u,v) £ E [(u — E(u))(v — E(v))T], which is
the cross-covariance matrix of random vectarsand v. We use the notatiomd > B to mean thatA — B is a

nonnegative-definite matrix. The notatissnk M denotes the rank of the matrix.

Il. PRELIMINARIES

In this section, some background knowledge required torbégg discussions in the following sections is

presented. We restrict our attention to the casandfiased estimators for the unknown parameserthe theorems
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presented in this section may be simplified versions of tloyséhe original papers.

When we refer to th&€€RB for unconstrained parameterse mean the following theorem.

Theorem I1.1 (CRB for unconstrained parametersket  be an unbiased estimator of a real unknown parameter
6 based on real observatiog, which is characterized by its probability density funati¢pdf) p(y; 6). Then for
any suchd, we have

cov (é,é) > JT,

whereJ is the FIM defined as

s |OnpOlnp
J=E { 50 507 |- Q)
The equality is achieved if and only if
N Ologp
_9— g okt
06-6=J 20
in the mean square sense.
Proof: See [4]-[6]. [ ]

The above theorem is always correct given that unbiasedhatstis exist. Stoicat al, however, prove the

following theorem in [10].

Theorem I1.2. If the information matrixJ is singular, then there does not exist an unbiased estimatitr finite

variance.

Proof: See [10§. [
That is, there does not exist any finite unbiased estim@tibthe FIM is singular, so the CRB fails to provide
any useful information.

When we refer to th€€RB for constrained parameteraie mean the following theorem.

Theorem I1.3 (CRB for constrained parametersk)eté be an unbiased estimator of an unknown param@terR"
based on real observatiog, which is characterized by its pgf(y; #). Furthermore, we require the parametér

to satisfy a possibly non-affine constraint functipn R — R™, m < n,
f(6) =o0.

Assume thab f /007 is full rank. Choose a matrit/ with (n — m) orthonormal columns such that

of ..
WU — O.

If UTJU is nonsingular, then
cov (6,0) > U (UTJU) U,

SWhen we restrict our attention to unbiased estimators fer uhknown parameter only, the condition for the existencearofunbiased

estimator with finite variance in [10] becomdsJ = I, which is impossible for singular FIMs.
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whereJ is the FIM defined as in (1). The equality is achieved if and/anl

6-0- U(UTJU)‘lUTag)Ggp

in the mean square sense.

Proof: See [9]. [ ]

The following theorem gives a necessary and sufficient ¢mmdfor the existence of a finite constrained CRB.
Theorem 11.4. The constrained CRB is finite if and only if the mattiX' JU is non-singular.

Proof: See [9]. [ ]
Now we are able to discuss the relationship between the MBergose generalized inverse of an FIM and

constrained CRB.

1. Jt AS A CRBFORCONSTRAINED PARAMETERS

The main result of this section is the following theorem.

Theorem IIl.1. Let the FIMJ be singular with rank-, and let the singular value decomposition (SVD)Jobe
J= [ U U } =000 @)
"o o | | TN |

the diagonal elements & being nonzero. Thed' is a CRB for constrained parameters with constraint functio
Ff0)=T,0+C=0 3)
for some constant matrig'.

To prove the theorem, we first prove the following lemma.

Lemma Il.2. Let the SVD of a Hermitian matri¥ be the same as in (2). Then
Jt=u, (UrJu,) " Uy )

Proof: SubstituteJ asJ = U, XU! into (4). [
Now we are able to prove Theorem IlI.1.
Proof for Theorem Ill.1: By examining the lemma and Theorem 1.3, we can thinkJéfas a constrained

CRB with some constraint functiofi(9) such that

of
»=0. 5
SinceUfUT = 0 by the definition of SVD, a constraint functigfi that satisfies (5) can be chosen such that
of =t
oot ~Ur:
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The above equation can be satisfied by an affine constraiotifum
fO)=T.0+C =0,
and the theorem is proved. [ ]

Remark.In fact, any constraint function satisfying

of

9970 =0

leads to the same constrained CRB,

IV. INTERPRETATION OFJT AS A CRB FOR CONSTRAINED PARAMETERS

In this section we prove thal® is not only a CRB for constrained parameters, theé CRB corresponding to
the minimum variance among all choices of minimum condtfainctions We first give a definition of minimum

constraint functions, and then prove the claim.

A. Definition of Minimum Constraint Functions

Minimum constraint functions are defined as follows.

Definition IV.1. A differentiable constraint functiorf : R — R™, m < n, for a non-Bayesian parametric
estimation problem with a singular FIM is a minimum constraint if

1) of/067 is full rank,

2) UTJU is nonsingular, and

3) rank 0f/00T + rank J = n,

whereU is chosen as in Theorem I1.3.

The first requirement is to ensure thfitdoes not contain any redundant constraints [16], [17]. Téxosd
requirement is to ensure the existence of a finite CRB acegrth Theorem 11.4. The third requirement means
that f contains the minimum number of independent constraintke Tdind channel estimation problems as an
example. From discussions in Section | we know that once vemsd one symbol as a pilot symbol with some
pre-determined value, we eliminate the scalar ambiguitytans an unbiased estimator exists. Note that the nullity
of the FIM is also one [18], [19]. We can see the third requizatrholds.

Now we give a formal proof that if the first two requirementg aatisfied, then the third requirement ensures

that f contains the minimum number of independent constraints.

Theorem IV.1. For any constraint functiory in Definition V.1 that satisfies the first and the second resyaents,

minrank —= = n —rank J.

f 00T

Proof: First we show that in order to satisfy the first and the seceugiirements,

rank % >n —rank J, (6)
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and then we show that the equality is achievable.
If

rank % <n—rank J,

by the definition ofU (see Theorem I1.3)U is an-by-(rank U') matrix with
n > rank U > rank J. @)
By the fact that
rank UT JU < min{rank U, rank J}
<rank J <rank U,

where the last inequality follows by (7), and noting tliat JU is a(rank U)-by-(rank U) square matrix{U” JU
cannot be full-rank. Thus (6) is proved.
The achievability of equality in (6) is easy to prove. Chodse constraint functiorf as in (3), and we can see
such a constraint function satisfies all of the requiremeh®s minimum constraint function. [ ]
By the above theorem we can see the third requirement is trréaairingdf /007 to have the minimum rank.
The reason why such a constraint functiprcan be considered as the constraint function withimum constraints

can be found by the following theorem.

Theorem IV.2. Let A C R"™ be open and leff : A — R™, m < n, be a differentiable function such thatf /007

has rankm wheneverf(x) = 0. Then f(z) = 0 implicitly defines ann — m)-dimensional manifold iR".

Proof: See [20]. ]
Constraint functionsf with the minimumrank 9f/96" ensures that the resulting manifolds have the maximal

degree of freedom, so we call them minimum constraint fomsti

B. J' is the CRB corresponding to the minimum variance among alogs of minimum constraint functions.

In this sub-section, we prove the claim that is the CRB corresponding to the minimum variance among all
choices of minimum constraint functions. For convenietice jth largest eigenvalue of a matrix is denoted by
A:(M) in the following discussions.

The main result of this subsection is the following theorem.

Theorem IV.3. In Theorem II.3, iff is a minimum constraint function, then
tr (cov [OA,OAD > tr (JT) .
Furthermore, equality can be achieved by choosing the cainstfunction f as in Theorem I11.1.

Note that the trace of a covariance matrix is the sum of th@mees of the elements é In this way, we have
proved that the Moore-Penrose generalized inverse of thkeis-the CRB corresponding to the minimum variance

among all choices of minimum constraint functions.
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Theorem IV.3 is in fact a corollary of the following theorem.

Theorem IV.4. Let the SVD of am-by-n nonnegative definite matrid with rank r be

}20 U’
o ol|| T |’

T

J = [ U,
whereX is a diagonal matrix with nonnegative diagonal elementserh
NV (VIIV) T VT > AU, (UTJU,) T U
=NJN) Vi
for any matrixV with the same size &, such thatV’Vv = 1.
Proof: See Appendix. [ ]
If the above theorem holds, then Theorem IV.3 can be provddlimsvs.
Proof for Theorem IV.3:Note that the FIMJ is nonnegative definite, and the resultibtg(see Theorem 11.3)
for every minimum constraint functioffi should have the same size &s in Theorem V.4, so the above theorem

applies. Noting that/,. (UTTJUT)f1 U! = J' according to Lemma I11.2, the theorem follows because teapeals

to the sum of eigenvalues. ]
Remark.One may expect that the inequality
vivigv)y=tvT > gt

holds for matricesV and J defined as in Theorem IV.4, but in general this matrix ineiypaloes not hold. A

counterexample is when

1000 1 1
01 0 0 1l =1 =1
J: ’V:_
0000 20 1 1
00 0 0 1 -1

V. CONCLUSIONS ANDDISCUSSIONS

We have proved the main theorem in this paper: The MooreeBengeneralized inverse of a singular FIM is
the CRB corresponding to the minimum variance among allagdwbf minimum constraint functions. According
to the theorem, the logical validity of using the Moore-Res& generalized inverse of a singular FIM as a CRB
is justified, and a CRB for the joint design of the unbiasedhestbr and the constraint function is obtained. In
addition to a performance bound, we also derive the suffid@endition for a constraint function to achieve the
bound, which is an affine function of the parameter to be edttich The above results facilitate future researches
on the optimal joint design of constraint functions and askid estimators.

One possible extension of this study is to generalize theaonof a minimum constraint function to higher

dimensional cases. To be more precise, it may be possiblertsider the minimum CRB when the rank of the
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constraint functionf is larger than(n — rankJ) (cf. Definition 1V.1). This extension may be of practical en¢st
because the CRB, if derived, could be useful in the study ofi4dind channel estimation problems, where more

than one pilot symbols exist [21].
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APPENDIX

Observing that
N (v(viav) v =i (U (ulau) ol <o

forallie{r+1,r4+2,...,n}, and

A (V (vTav) VT) — N ((VTJV)’l) :

(U (Ulao) ol = (Ulao,) ),
forall i € {1,2,...,r}, it suffices to prove

N ((vTav) )z (Ofau,) )
forall j € {1,2,...,r}, or equivalently,
A (VIIV) <\ (UFJU,) (8)

forall k € {1,2,...,r}.
Noting that); (UTTJUT) = )\; (J) because they have the same firgtigenvalues, and by the fact that an FIM is

always Hermitian, we can see (8) is just a result of Poinsagaration theorem [1]. Therefore the theorem follows.
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