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Abstract

It is proved that in a non-Bayesian parametric estimation problem, if the Fisher information matrix (FIM) is

singular, unbiased estimators for the unknown parameter will not exist. Cramér-Rao bound (CRB), a popular tool

to lower bound the variances of unbiased estimators, seems inapplicable in such situations. In this paper, we show

that the Moore-Penrose generalized inverse of a singular FIM can be interpreted as the CRB corresponding to the

minimum variance among all choices of minimum constraint functions. This result ensures the logical validity of

applying the Moore-Penrose generalized inverse of an FIM asthe covariance lower bound when the FIM is singular.

Furthermore, the result can be applied as a performance bound on the joint design of constraint functions and unbiased

estimators.

Index Terms

Constrained parameters, Cramér-Rao bound (CRB), singular Fisher information matrix (FIM).

I. I NTRODUCTION

An interpretation of the Moore-Penrose generalized inverse [1] of a singular Fisher information matrix (FIM) is

presented in this paper, from the perspective of Cramér-Rao bound (CRB). CRB is a lower bound on the covariance

matrix of any unbiased estimator in a non-Bayesian parametric estimation problem [2], [3], and is a popular tool to

evaluate the optimal mean-square error (MSE) performance of estimators in various applications [4], [5]. The most

general form of CRB says that the covariance matrix of any unbiased estimator is lower bounded by the generalized

inverse of the Fisher information matrix [6]. This general form of CRB holds for both singular and non-singular

FIMs.
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There are, however, facts in literature that render the application of CRB questionable when the FIM is singular.

Rothenberg proves in [7] that under some regularity conditions, the non-singularity of the FIM is equivalent to the

local identifiability of the parameter to be estimated1; Stoicaet al. prove in [8], [9] that unbiased estimators with

finite variances do not exist when the FIM is singular, exceptfor some “unusual” conditions2. If the parameter

to be estimated is locally non-identifiable, or all of the unbiased estimators will have infinite variances, it seems

meaningless to discuss the performances of unbiased estimators.

As mentioned in [10], one may change the nature of an estimation problem to allow the existence of an estimator

with finite variance. There are three approaches. The first approach is to introducea priori information about the

probability distribution of the parameter to be estimated;in this way the estimation problem becomes a Bayesian one.

There are abundant literature on Bayesian statistics [11] and performance bounds [12].A priori information about

the probability distribution of the unknown parameter, however, is not always already known. The second approach

is to considerbiasedestimators instead ofunbiasedestimators. In [10], the necessary condition for the bias function

to ensure the existence of an unbiased estimator with finite variance is derived. The authors of a recent paper derive

the bias function that leads to the minimum trace of the resulting CRB, a lower bound on the total variances of

estimators [13]. There are a number of situations, however,where biased estimators are not preferred. For example,

almost all estimation problems encountered in the design ofa communication system, including the estimation

of carrier phases and symbol timing for synchronization, the estimation of channel responses for equalization,

etc., require unbiased estimators. The third approach is toput or to exploit some deterministic constraints on the

parameter to be estimated. The deterministic constraints result in a parametric estimation problem with reduced

dimension, where an unbiased estimator with finite variancemay exist. We focus on the third approach in this

paper.

Take blind channel estimation problems for example [14]. The goal of blind channel estimation is to estimate the

channel responseh from y = s ∗h+n, the convolution of the channel responseh and the input data sequences,

corrupted by an additive noisen. The unknown parameterθ , (s,h) is not identifiable since(αs, 1

α
h) and(s,h)

are observationally equivalent for any constantα 6= 0, so unbiased estimators do not exist. Practically this so-called

scalar ambiguity problem is resolved by assigning a pre-determined value to one of the element ofs [15]. That is,

a constraint functionf(θ) , sn − c = 0 is put on the parameterθ, wheresn denotes thenth element ofs and c

is some pre-determined constant. This is exactly the third approach mentioned above.

CRB for constrained parameters is already derived in [9], [16], [17]. The value of the constrained CRB depends on

the choice of the constraint function; different constraint functions lead to different values of the CRB. This bound

is useful when the constraint function is exogenously given, but there are situations where we are able to modify

the constraint function. Take blind channel estimation problems for example again. Suppose an engineer chooses

1A parameterθ is locally identifiable if there exists an open neighbourhood Θ of θ such that no otherθ′ ∈ Θ is observationally equivalent

to θ.

2The “unusual” conditions suggest that if the FIM is singular, only unbiased estimators for some functions of the unknownparameter, instead

of the unknown parameter itself, may exist with finite variances.
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the constraint function asf(θ) , s1 − c = 0 and designs an unbiased estimator corresponding to this constraint

function, and finds the resulting MSE, although almost achieving the constrained CRB with respect to the constraint

function, is still unsatisfactory compared with the targetvalue. How can the engineer tell the unsatisfactory result

is caused by the inappropriate choice of the constraint function, or simply because the target value is not attainable

for any choice of the constraint function?

The main contribution of this paper is the following theorem. The Moore-Penrose generalized inverse of a

singular FIM is the constrained CRB corresponding to the minimum variance among all choices of minimum

constraint functions. According to the theorem, the logical validity of using theMoore-Penrose generalized inverse

of a singular FIM as a covariance lower bound for unbiased estimators is justified, and a CRB for the joint design of

the unbiased estimator and the constraint function is obtained. In addition to a performance bound, we also provide

a sufficient condition for a constraint function to achieve the bound, which is an affine function of the parameter to

be estimated. The above results facilitate future researches on the optimal joint design of constraint functions and

unbiased estimators.

A mathematical definition of minimum constraint functions will be given in Section IV-A, but the meaning is

conceptually easy to understand. In blind channel estimation problems, only a one-dimensional constraint onθ is

needed to resolve the scalar ambiguity, such asf(θ) = sn − 1, and any constraint functionf that is essentially a

one-dimensional constraint is a minimum constraint function as long as the constrained CRB exists.

The rest of the paper is organized as follows. The necessary background knowledge is given in Section II. Then

we show that the Moore-Penrose generalized inverse of the FIM can be viewed as a CRB for constrained parameters

with some constraint function in Section III. Section IV is divided into two sub-sections. In the first sub-section

we give the definition of minimum constraint functions and justify its meaning. In the second sub-section we prove

the main result of this paper, that the Moore-Penrose generalized inverse of the FIM is the CRB corresponding to

the minimum variance among all choices of minimum constraint functions. Conclusions and some discussions are

presented in Section V.

Notation

Bold-faced lower case letters represent column vectors, and bold-faced upper case letters are matrices. Superscripts

vT , M−1, andM † denote the transpose, inverse, and the Moore-Penrose generalized inverse of the corresponding

vector or matrix. The vectorE [v] denotes the expectation of the random vectorv, andE [M ] denotes the expectation

of the random matrixM . The matrixcov(u,v) is defined ascov(u,v) , E
[

(u − E(u))(v − E(v))T
]

, which is

the cross-covariance matrix of random vectorsu andv. We use the notationA ≥ B to mean thatA − B is a

nonnegative-definite matrix. The notationrankM denotes the rank of the matrixM .

II. PRELIMINARIES

In this section, some background knowledge required to begin the discussions in the following sections is

presented. We restrict our attention to the case ofunbiased estimators for the unknown parameter, so the theorems

July 1, 2012 DRAFT



4

presented in this section may be simplified versions of thoseon the original papers.

When we refer to theCRB for unconstrained parameters, we mean the following theorem.

Theorem II.1 (CRB for unconstrained parameters). Let θ̂ be an unbiased estimator of a real unknown parameter

θ based on real observationy, which is characterized by its probability density function (pdf) p(y; θ). Then for

any suchθ̂, we have

cov

(

θ̂, θ̂
)

≥ J†,

whereJ is the FIM defined as

J , E

[

∂ ln p

∂θ

∂ ln p

∂θT

]

. (1)

The equality is achieved if and only if

θ̂ − θ = J† ∂ log p

∂θ

in the mean square sense.

Proof: See [4]–[6].

The above theorem is always correct given that unbiased estimators exist. Stoicaet al., however, prove the

following theorem in [10].

Theorem II.2. If the information matrixJ is singular, then there does not exist an unbiased estimatorwith finite

variance.

Proof: See [10]3.

That is, there does not exist any finite unbiased estimatorθ̂ if the FIM is singular, so the CRB fails to provide

any useful information.

When we refer to theCRB for constrained parameters, we mean the following theorem.

Theorem II.3 (CRB for constrained parameters). Let θ̂ be an unbiased estimator of an unknown parameterθ ∈ R
n

based on real observationy, which is characterized by its pdfp(y; θ). Furthermore, we require the parameterθ

to satisfy a possibly non-affine constraint functionf : Rn → R
m, m ≤ n,

f(θ) = 0.

Assume that∂f/∂θT is full rank. Choose a matrixU with (n−m) orthonormal columns such that

∂f

∂θT
U = 0.

If UTJU is nonsingular, then

cov

(

θ̂, θ̂
)

≥ U
(

UTJU
)−1

UT ,

3When we restrict our attention to unbiased estimators for the unknown parameter only, the condition for the existence ofan unbiased

estimator with finite variance in [10] becomesJJ
†
= I, which is impossible for singular FIMs.
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whereJ is the FIM defined as in (1). The equality is achieved if and only if

θ̂ − θ = U(UT JU)−1UT ∂ log p

∂θ

in the mean square sense.

Proof: See [9].

The following theorem gives a necessary and sufficient condition for the existence of a finite constrained CRB.

Theorem II.4. The constrained CRB is finite if and only if the matrixUTJU is non-singular.

Proof: See [9].

Now we are able to discuss the relationship between the Moore-Penrose generalized inverse of an FIM and

constrained CRB.

III. J† AS A CRB FOR CONSTRAINED PARAMETERS

The main result of this section is the following theorem.

Theorem III.1. Let the FIMJ be singular with rankr, and let the singular value decomposition (SVD) ofJ be

J =
[

Ur Ur

]





Σ 0

0 0









UT
r

U
T

r



 , (2)

the diagonal elements ofΣ being nonzero. ThenJ† is a CRB for constrained parameters with constraint function

f(θ) = U
T

r θ +C = 0 (3)

for some constant matrixC.

To prove the theorem, we first prove the following lemma.

Lemma III.2. Let the SVD of a Hermitian matrixJ be the same as in (2). Then

J† = Ur

(

UT
r JUr

)−1

UT
r . (4)

Proof: SubstituteJ asJ = UrΣUT
r into (4).

Now we are able to prove Theorem III.1.

Proof for Theorem III.1: By examining the lemma and Theorem II.3, we can think ofJ† as a constrained

CRB with some constraint functionf(θ) such that

∂f

∂θT
Ur = 0. (5)

SinceU
T

r Ur = 0 by the definition of SVD, a constraint functionf that satisfies (5) can be chosen such that

∂f

∂θT
= U

T

r .
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The above equation can be satisfied by an affine constraint function,

f(θ) = U
T

r θ +C = 0,

and the theorem is proved.

Remark.In fact, any constraint function satisfying

∂f

∂θT
Ur = 0

leads to the same constrained CRB,J†.

IV. I NTERPRETATION OFJ† AS A CRB FOR CONSTRAINED PARAMETERS

In this section we prove thatJ† is not only a CRB for constrained parameters, butthe CRB corresponding to

the minimum variance among all choices of minimum constraint functions. We first give a definition of minimum

constraint functions, and then prove the claim.

A. Definition of Minimum Constraint Functions

Minimum constraint functions are defined as follows.

Definition IV.1. A differentiable constraint functionf : R
n → R

m, m ≤ n, for a non-Bayesian parametric

estimation problem with a singular FIMJ is a minimum constraint if

1) ∂f/∂θT is full rank,

2) UTJU is nonsingular, and

3) rank ∂f/∂θT + rank J = n,

whereU is chosen as in Theorem II.3.

The first requirement is to ensure thatf does not contain any redundant constraints [16], [17]. The second

requirement is to ensure the existence of a finite CRB according to Theorem II.4. The third requirement means

that f contains the minimum number of independent constraints. Take blind channel estimation problems as an

example. From discussions in Section I we know that once we choose one symbol as a pilot symbol with some

pre-determined value, we eliminate the scalar ambiguity and thus an unbiased estimator exists. Note that the nullity

of the FIM is also one [18], [19]. We can see the third requirement holds.

Now we give a formal proof that if the first two requirements are satisfied, then the third requirement ensures

that f contains the minimum number of independent constraints.

Theorem IV.1. For any constraint functionf in Definition IV.1 that satisfies the first and the second requirements,

min
f

rank
∂f

∂θT
= n− rank J .

Proof: First we show that in order to satisfy the first and the second requirements,

rank
∂f

∂θT
≥ n− rank J , (6)
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and then we show that the equality is achievable.

If

rank
∂f

∂θT
< n− rank J ,

by the definition ofU (see Theorem II.3),U is a n-by-(rank U) matrix with

n ≥ rank U > rank J . (7)

By the fact that

rank UTJU ≤ min{rank U , rank J}

≤ rank J < rank U ,

where the last inequality follows by (7), and noting thatUTJU is a (rank U)-by-(rank U) square matrix,UTJU

cannot be full-rank. Thus (6) is proved.

The achievability of equality in (6) is easy to prove. Choosethe constraint functionf as in (3), and we can see

such a constraint function satisfies all of the requirementsof a minimum constraint function.

By the above theorem we can see the third requirement is in fact requiring∂f/∂θT to have the minimum rank.

The reason why such a constraint functionf can be considered as the constraint function withminimum constraints

can be found by the following theorem.

Theorem IV.2. Let A ⊂ R
n be open and letf : A → R

m, m ≤ n, be a differentiable function such that∂f/∂θT

has rankm wheneverf(x) = 0. Thenf(x) = 0 implicitly defines an(n−m)-dimensional manifold inRn.

Proof: See [20].

Constraint functionsf with the minimumrank ∂f/∂θT ensures that the resulting manifolds have the maximal

degree of freedom, so we call them minimum constraint functions.

B. J† is the CRB corresponding to the minimum variance among all choices of minimum constraint functions.

In this sub-section, we prove the claim thatJ† is the CRB corresponding to the minimum variance among all

choices of minimum constraint functions. For convenience,the ith largest eigenvalue of a matrixM is denoted by

λi(M) in the following discussions.

The main result of this subsection is the following theorem.

Theorem IV.3. In Theorem II.3, iff is a minimum constraint function, then

tr

(

cov

[

θ̂, θ̂
])

≥ tr
(

J†
)

.

Furthermore, equality can be achieved by choosing the constraint functionf as in Theorem III.1.

Note that the trace of a covariance matrix is the sum of the variances of the elements of̂θ. In this way, we have

proved that the Moore-Penrose generalized inverse of the FIM is the CRB corresponding to the minimum variance

among all choices of minimum constraint functions.
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Theorem IV.3 is in fact a corollary of the following theorem.

Theorem IV.4. Let the SVD of ann-by-n nonnegative definite matrixJ with rank r be

J =
[

Ur Ur

]





Σ 0

0 0









UT
r

U
T

r



 ,

whereΣ is a diagonal matrix with nonnegative diagonal elements. Then

λi(V
(

V TJV
)−1

V T ) ≥ λi(Ur

(

UT
r JUr

)−1

UT
r )

= λi(J
†) ∀i

for any matrixV with the same size asUr such thatV TV = I.

Proof: See Appendix.

If the above theorem holds, then Theorem IV.3 can be proved asfollows.

Proof for Theorem IV.3:Note that the FIMJ is nonnegative definite, and the resultingU (see Theorem II.3)

for every minimum constraint functionf should have the same size asUr in Theorem IV.4, so the above theorem

applies. Noting thatUr

(

UT
r JUr

)−1

UT
r = J† according to Lemma III.2, the theorem follows because traceequals

to the sum of eigenvalues.

Remark.One may expect that the inequality

V (V TJV )−1V T ≥ J†

holds for matricesV andJ defined as in Theorem IV.4, but in general this matrix inequality does not hold. A

counterexample is when

J =

















1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

















,V =
1

2

















−1 1

−1 −1

−1 1

−1 −1

















.

V. CONCLUSIONS ANDDISCUSSIONS

We have proved the main theorem in this paper: The Moore-Penrose generalized inverse of a singular FIM is

the CRB corresponding to the minimum variance among all choices of minimum constraint functions. According

to the theorem, the logical validity of using the Moore-Penrose generalized inverse of a singular FIM as a CRB

is justified, and a CRB for the joint design of the unbiased estimator and the constraint function is obtained. In

addition to a performance bound, we also derive the sufficient condition for a constraint function to achieve the

bound, which is an affine function of the parameter to be estimated. The above results facilitate future researches

on the optimal joint design of constraint functions and unbiased estimators.

One possible extension of this study is to generalize the concept of a minimum constraint function to higher

dimensional cases. To be more precise, it may be possible to consider the minimum CRB when the rank of the
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constraint functionf is larger than(n − rankJ) (cf. Definition IV.1). This extension may be of practical interest

because the CRB, if derived, could be useful in the study of semi-blind channel estimation problems, where more

than one pilot symbols exist [21].
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APPENDIX

Observing that

λi

(

V
(

V TJV
)−1

V T
)

= λi

(

Ur

(

UT
r JUr

)−1

UT
r

)

= 0

for all i ∈ {r + 1, r + 2, . . . , n}, and

λi

(

V
(

V TJV
)−1

V T
)

= λi

(

(

V TJV
)−1

)

,

λi

(

Ur

(

UT
r JUr

)−1

UT
r

)

= λi

(

(

UT
r JUr

)−1
)

,

for all i ∈ {1, 2, . . . , r}, it suffices to prove

λj

(

(

V TJV
)−1

)

≥ λj

(

(

UT
s JUs

)−1
)

for all j ∈ {1, 2, . . . , r}, or equivalently,

λk

(

V TJV
)

≤ λk

(

UT
r JUr

)

(8)

for all k ∈ {1, 2, . . . , r}.

Noting thatλi

(

UT
r JUr

)

= λi (J) because they have the same firstr eigenvalues, and by the fact that an FIM is

always Hermitian, we can see (8) is just a result of Poincaréseparation theorem [1]. Therefore the theorem follows.
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