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Abstract

This paper studies theinstantaneous ratemaximization and theweighted sum delayminimization prob-

lems over aK-user multicast channel, where multiple antennas are available at the transmitter as well as

at all the receivers. Motivated by the degree of freedom optimality and the simplicity offered by linear

precoding schemes, we consider the design of linear precoders using the aforementioned two criteria.

We first consider the scenario wherein the linear precoder can be any complex-valued matrix subject to

rank and power constraints. We propose cyclic alternating ascent based precoder design algorithms and

establish their convergence to respective stationary points. Simulation results reveal that our proposed

algorithms considerably outperform known competing solutions. We then consider a scenario in which

the linear precoder can be formed by selecting and concatenating precoders from a given finite codebook

of precoding matrices, subject to rank and power constraints. We show that under this scenario, the

instantaneous rate maximization problem is equivalent to arobust submodular maximization problem

which is strongly NP hard. We propose a deterministic approximation algorithm and show that it yields

a bicriteria approximation. For the weighted sum delay minimization problem we propose a simple

deterministic greedy algorithm, which at each step entailsapproximately maximizing a submodular set

function subject to multiple knapsack constraints, and establish its performance guarantee.
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I. INTRODUCTION

Next generation wireless networks will require a spectrally efficient physical layer multicasting scheme

in order to cater to important emerging applications such asreal-time video broadcast, wherein a common

information needs to be simultaneously transmitted to multiple users. The design of spectrally efficient

physical layer multicasting schemes viainstantaneous rate maximizationhas consequently received

significant recent attention. The seminal work of [1] considers the design of the instantaneous rate

maximizing transmit beamforming (a.k.a. rank-1 linear precoding) scheme for multicast and proves it to be

an NP-hard problem. Efficient albeit sub-optimal designs oftransmit beamforming (or equivalent rank-1

transmission schemes) for multicast have thus been proposed in [1], [4]. In addition, a hidden convexity

of the multicast beamforming problem under certain channelconditions has been recently discovered

in [14]. Another approach for designing beamforming vectors for multicast has been adopted in [12].

In particular, [12] assumes that users have been partitioned into non-overlapping user groups and then

proceeds to design beam vectors (one for each group) and their power levels. Several efficient heuristics

are suggested. This approach is further pursued in [11], where formation of groups is also considered and

transmissions pertaining to different groups are made orthogonal. Long-term beamforming for scenarios

where instantaneous channel state is unavailable at the transmitter has been addressed in [5]. On the

other hand, the optimal (i.e., instantaneous rate maximizing) linear precoding based multicasting scheme

without rank constraints can be obtained via convex optimization [6]. The scaling results derived in [6]

reveal that higher rank precoding is beneficial in the ubiquitous regime in which the number of users is

larger than the number of transmit antennas. Indeed in this regime an open loop scheme with identity

matrix precoder (whose size is equal to the number of transmit antennas) is asymptotically optimal.

This paper intends to address the main issue with such higherrank precoding for multicast, which is

the increase in the decoding complexity at each user, particularly when the rank exceeds the number of

its receive antennas. In particular, we consider the problem of designing linear precoders for multicast

subject to a given rank constraint, which allows us to address the trade off between spectral efficiency and

decoding complexity. Compared to an existing recursive design based approach for constructing linear

precoders for multicast [2] (see also [3]) which can also accommodate an input rank constraint, our

approach introduces auxiliary variables to reformulate the optimization problem and uses an alternating

optimization method [34] to achieve a Karush-Kuhn-Tucker (KKT) stationary point. We note that an

antenna subset selection scheme for multicast, which selects the optimal transmit antenna subset of a given

size (assuming identity matrix precoder of that size), has been analyzed in [7]. Furthermore, alternating

optimization based algorithms have been proposed for several multicast precoder design algorithms in
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[10] all of which involve the decoding mean squared error. Here we consider the achievable rate instead,

which involves introducing more auxiliary variables in thealternating optimization and the resulting proof

of convergence is also different.

In addition to the transmission rank constraint, in certainpractical systems each user needs to be

explicitly signaled about the choice of the precoder employed by the transmitter, thus necessitating the

choice to lie in a finite codebook. Instead of considering an optimal albeit unstructured finite codebook

design, we focus on a more practical setup entailing a lower memory footprint and signaling overhead,

wherein a higher rank precoder is constructed by concatenating codewords from a given (base) codebook

of precoding matrices. Under this scenario we show that the instantaneous rate maximization problem

falls in the realm of the robust submodular optimization [30] and is strongly NP-hard. We propose a

deterministic approximation algorithm and show that it yields a bicriteria approximation.

Another precoder design metric of interest for physical layer multicasting is theweighted sum delay.

The pertinent delay for each user is defined as the number of time intervals needed to accumulate

enough information for decoding a common message; and the weight assigned to a user is determined

by its priority in the multicasting system. Linear precoderdesign to minimize the weighted sum delay

is considered under rank and power constraints as well as under a finite codebook-constraint, for which

the alternating optimization and the submodularity, respectively, again become instrumental to develop

efficient algorithms. We note that sum delay minimization over a discrete codebook has been recently

considered in [15]. However, the innovative algorithms designed in [15] are based on an assumption

(which holds for strongly LOS channels) that each user can receive its data from only one beamforming

vector in the codebook and that all other vectors are essentially in the null space of that user’s channel,

i.e. transmission along any such vector will result in a negligible received signal strength at the user. In

contrast, we make no such assumption and indeed allow each user to accumulate its useful signal across

several intervals (where one or more precoders are employedfor transmission in each interval) till it

meets a threshold for reliable decoding.

The rest of the paper is organized as follows. Section II presents the system model and formulates

the two aforementioned precoder design problems. Efficientalgorithms for maximizing the instantaneous

rate are developed in Section III; while Section IV switchesto the weighted sum delay minimization

problem. The proposed algorithms are tested and compared numerically to other known approaches in

Section V and the conclusions are presented in Section VI.

Notation: Upper (lower) boldface letters will be used for matrices (vectors); (·)† denotes the complex-

conjugate transposition;Tr(·) the matrix trace; rank(·) the matrix rank;0 the all-zero matrix;‖ · ‖F the



IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 4

matrix Frobenious norm; and| · | the cardinality of a set as well as the determinant of a squarematrix.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a MIMO wireless physical layer multicasting system consisting of a base station (BS)

equipped withM transmit antennas andK users, where thekth user is equipped withNk receive antennas

for k = 1, . . . ,K. All the K users receive common information from the BS. We letxτ ∈ CM denote

the signal vector transmitted by the BS on slotτ ∈ Z+, where a slot denotes a resource unit in the code,

frequency or time domain. Further, letyτ
k ∈ CNk be the signal vector received by userk = 1, . . . ,K on

slot τ . Then, the input-output (I/O) relationship for thek-th user is modeled as

yτ
k = Hτ

kx
τ + zτk, ∀k (1)

whereHτ
k ∈ CNk×M is the channel matrix that models the channel seen by thek-th user from the

BS on slotτ , andzτk ∈ CNk is the additive complex Gaussian noise vector at thek-th user. The noise

vectors are assumed to be mutually independent (across slots) complex Gaussian vectors and without

loss of generality (Wlog) they are each assumed to be white, i.e., zτk ∼ CN (0, I). This is possible

via a whitening filter which can be absorbed into the channel matrix Hτ
k. A power budget is imposed

on the transmitted signal asE[‖xτ‖2] ≤ P , ∀τ ∈ Z+. It is further assumed that estimates of all the

channel matrices{Hτ
k} in (1) are available at the BS, possibly by exploiting reciprocity or feedback. In

this paper for simplicity we assume that error free estimates are available to the BS. Nonetheless, the

design methods presented in the sequel can be generalized tothe scenario where only imperfect channel

estimates are available. For example, one approach is to mimic the naive zero-forcing based precoding

design for multiuser MIMO and let the BS design the precodersafter assuming the channel estimates

available to it to be perfect. Another more sophisticated approach is also possible by explicitly modeling

the CSI errors; see for instance [8], [9].

Next, consider a simple communication scheme that uses linear transmit precoding at the BS. To this

end, supposed symbol streams are simultaneously transmitted by the BS on each slot and letsτ ∈ Cd

denote the coded and modulated symbol vector withWτ ∈ CM×d denoting the corresponding precoding

matrix. Thus, the transmitted signal at the BS becomesxτ = Wτsτ , and the Input/Output relationship

per userk is given by

yτ
k = Hτ

kW
τ sτ + zτk, ∀k. (2)

Wlog the encoded symbol vector is assumed to satisfyE[sτ sτ †] = I. Therefore, the achievable rate at
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the k-th user for the scheme (2) can be expressed as

Rτ
k(W

τ ) = log
∣

∣

∣
I+Hτ

kW
τWτ †H

τ †
k

∣

∣

∣
, ∀k. (3)

Then, given the multicast system (2) and some prescribed precoder codebookC (as detailed later), we

are interested in the problem of selecting the precoding matrix Wτ ∈ C under the following two goals.

The first design criterion is to achieve the best instantaneous throughput on each slotτ , or equivalently

maximize the minimum of the rates{Rτ
k} among all theK users. For simplicity, the slot indexτ can

be omitted under this scenario, and the problem of interest becomes

☛
✡

✟
✠

(P1) max
W∈C

min
k=1,...,K

Rk(W). (4)

Clearly, the precoder design problem (P1) focuses on the instantaneous throughput at each channel use

that can be achievable for all users. In some circumstances,it is more meaningful to look at a weighted

average performance across all theK users. Here, we consider a quasi-static fading scenario where in

each scheduling interval (defined over the time domain) the BS repeatedly transmits the same message

overL orthogonal slots. The BS continues transmitting across successive scheduling intervals till at every

user the accumulated information exceeds some thresholdΘ. The threshold rateΘ is chosen such that

enough information has been collected in order to reliably decode the transmitted message, for example

via rateless coding/decoding [31, Ch. 50]. Under this scenario, the incurred delay at thek-th user (in

terms of the number of scheduling intervals) to decode the transmitted message is given by

Dk({Wτ}) := min
{

t ∈ Z+ :
∑Lt

τ=1 R
τ
k(W

τ ) ≥ Θ
}

. (5)

Note that in (5) we have assumed a quasi-static fading setup,where within the time horizon of interest

the channel per userk remains invariant across all scheduling intervals, i.e.,HtL+ℓ
k = Hℓ

k, 1 ≤ ℓ ≤ L

and t ∈ Z+. This assumption is reasonable for instance over a widebandorthogonal frequency division

multiplexing based multiple-access (OFDMA) system, wherethe users have low mobility. There each

scheduling interval comprises of consecutive OFDM symbolsand several such scheduling intervals are

within the coherence time. Each slot in a scheduling interval is formed by a set of consecutive sub-carriers

and OFDM symbols, where the set of consecutive sub-carriersis well within the coherence bandwidth

so that each slot can be represented by one channel matrix. Then, the goal is to jointly design a sequence

of precoders{Wτ} which together minimize the weighted sum delay among all theK users; that is,
✓

✒

✏

✑
(P2) min

{Wτ∈C}

K
∑

k=1

µkDk({Wτ}) (6)
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where the weights{µk}Kk=1 determine each user’s priority. Furthermore, to specify the constraints on

the precoding matrices for both (P1) and (P2), two interesting codebook scenarios are introduced, as

explained below.

C1. Continuous codebook Cc. allows the precoderW to be any arbitrary complex-valued matrix

subject to norm and dimensionality constraints. As a resultof limited computational capability at

the users, the BS can afford to simultaneously transmit at most d ≥ 1 symbol streams, where

we note that a largerd increases the corresponding decoding complexity. Then, incorporating the

transmitter power constraint the continuous codebook can be specified as

Cc :=
{

W ∈ C
M×d

∣

∣

∣ ‖W‖2F ≤ P
}

. (7)

Note that the continuous codebook is applicable in a scenario where over each slot of every

scheduling interval, pilots precoded by the chosen precoder Wτ can be transmitted so that each

userk can directly estimateHτ
kW

τ .

C2. Discrete codebook Cd. Such a codebook is motivated by a practical scenario where precoded pilots

are not available and where the signaling overhead (needed to indicate the choice of precoder to the

users) is limited. In this case the BS can use a precoder that is formed by concatenating precoders

from a known base codebookW comprising of a finite number of matrix codewords. It is assumed

that ‖W′‖2F = 1, ∀W′ ∈ W. Let e = (W′, r, p) denote an element, whereW′ ∈ W, r equals to

the column dimension (and rank) ofW′ such thatW′ ∈ CM×r, andp determines the power level

by which W′ can be scaled. Further, letE = {e = (W′, r, p) : w ∈ W, r = rank(W′) ∈ Z+}
denote the ground set of all possible such elements, which isknown to the BS (and to all users)

in advance. For any such element inE we adopt the convention that

e = (W′, r, p) ⇒ We = W′ ; re = r ; pe = p . (8)

Thus, each precoder inCd corresponds to some subset of elementsU ⊆ E , as given by

Cd :=
{

W

∣

∣

∣ ∃ U ⊆ E ,W :=
[

{√peWe}e∈U
]

, rU ≤ d, pU ≤ P
}

(9)

where we follow the notational convention

U ⊆ E ⇒ rU =
∑

e∈U

re ; pU =
∑

e∈U

pe . (10)

As the counterpart of the matrix dimension constraint inCc, the sum dimension one of (9) ensures

at mostd streams are transmitted. In addition, the sum power constraint of (9) is akin to the

Frobenius norm one in (7). Note that the concatenation basedapproach of designingCd has a



IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 7

smaller memory footprint, facilitates simpler search algorithms for determining a suitable precoder

and can also reduce the signaling burden compared to a finite albeit unstructured codebook.

With these two codebook settings, the goal is to design the precoder matrix (matrices), bearing in mind

the aforementioned criteria in (P1) and (P2). The next section will address the first problem of maximizing

the instantaneous throughput. In what follows, we collect essential results that follow directly from known

results as lemmas (after proper citation) and collect the novel results in propositions.

III. M AXIMIZING THE INSTANTANEOUS THROUGHPUT

This section focuses on the one-snapshot problem (P1), which maximizes the minimum among the

rates achievable at all theK users for any given time instance. As mentioned earlier, in this whole section

the slot indexτ can be dropped for simplicity.

A. Continuous Codebook

Notice that the problem (P1) with the continuous codebookCc is an NP-hard problem since the

particular case withd = 1 is known to be NP-hard [1]. Then, to efficiently obtain sub-optimal solutions,

it is useful to first consider a simple linear decoding schemeat each user. To this end, denoteGk ∈ CNk×d

as the linear receive filter per userk. With the system model (2), the output of thek-th receive filter can

be expressed as

ŝk = G
†
kyk = G

†
kHkWs+G

†
kzk, ∀k, (11)

with the corresponding mean-squared error (MSE) matrix of estimating the signals given by

Ek(Gk,W) = E

[

(ŝk − s) (ŝk − s)†
]

=
(

G
†
kHkW − Id

)(

G
†
kHkW− Id

)†
+G

†
kGk. (12)

Interestingly, the MSE matrixEk(Gk,W) in (12) can be related to the achievable rateRk(W) of (4),

as detailed in the following lemma (cf. [16]).

Lemma 1: For a given precoding matrixW, the achievable rateRk(W) per userk in (4) can be

obtained by solving the optimal receive filter problem as follows:

Rk(W) = max
Gk

log
∣

∣E−1
k (Gk,W)

∣

∣ (13)

where its optimum is attained at the linear minimum MSE (LMMSE) filter for thek-th user; that is,

Ĝk =
(

HkWW†H
†
k + INk

)−1
HkW. (14)
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Unfortunately, the variables{Gk} andW together do not allow decomposing (4) into solvable sub-

problems. Consequently, we introduce more auxiliary variables which allow us to decompose (4) to

optimally solvable sub-problems. Towards that end, we state the following lemma which was proposed

and used to design precoders over the MIMO broadcast channel(with unicast transmissions) in [16] and

later for the MIMO interference channel in [8].

Lemma 2: For any given precoderW ∈ CM×d and any filterGk ∈ CNk×d, the MSE matrixEk(Gk,W)

is positive definite and the following holds

max
Sk∈Cd×d:Sk≻0

{−Tr(SkEk) + log |Sk|+ d} = log |Ek(Gk,W)−1|, (15)

where the optimum is attained atSk = Ek(Gk,W)−1.

It can be verified that for a given precoderW and any givenSk ≻ 0 the solution tominGk
Tr(SkEk(Gk,W))

is also achieved at (14). Then, to make the problem decomposable, using Lemma 2 introduce the (matrix)

slack variables{Sk ∈ Cd×d}Kk=1, one per userk. With the equivalence asserted in Lemmas 1 and 2, and

using the continuous codebookCc in (7), the instantaneous throughput maximization problem(P1) can

be reformulated as
✎

✍

☞

✌
max

‖W‖2
F

≤P

{Gk,Sk≻0}

min
k=1,...,K

− Tr[SkEk(Gk,W)] + log |Sk|+ d (16)

where the MSE matrixEk(Gk,W) is given by (12).

Interestingly, not only the reformulated problem (16) is equivalent to (P1), each stationary point of

(16) also yields a stationary point of (P1). The latter fact follows upon invoking the gradient expressions

given in [16] and is shown in the sequel. Further, the reformulated problem (16) also allows us to use

cyclic alternating ascent (CAA) algorithm to decompose it into sub-problems that are solvable. For a

fixed W, the problem in (16) can be be optimally solved over{Gk,Sk}. This is because upon further

fixing {Sk ≻ 0}, the problem in (16) reduces to that of minimizing the weighted MSE cost over linear

filter Gk per userk, with the closed-form solution given by (14); then using those{Ĝk}, it reduces to

the problem in Lemma 2, which admits closed-form solution(Ek(Ĝk,W))−1 = W†H
†
kHkW + Id. A

slightly more complicated sub-problem appears when solving the precoderW while fixing both {Gk}
and{Sk}. To tackle this sub-problem, consider its equivalent form given by

max
‖W‖2

F≤P
β (17a)

s.to −Tr[SkEk(Gk,W)] + log |Sk|+ d ≥ β, ∀k (17b)

where at the optimum of (17),β becomes equal to the minimum of achievable costs among allK

users. Furthermore, define the following Cholesky factorization per userk asSk = BkB
†
k, and thus the
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constraint (17b) can be cast as a quadratic cone one in terms of the variableW, and the sub-problem

for solving it becomes

max
‖W‖2

F≤P
β (18a)

s.to ck − β ≥
∥

∥

∥
B

†
k

(

G
†
kHkW − Id

)∥

∥

∥

2

F
, ∀k (18b)

where the constantck := log |Sk| + d − ‖GkBk‖2F . Notice that the other power constraint onW is a

quadratic one, hence, the sub-problem (18) for obtainingW while fixing the others is a second-order

cone program (SOCP), and thus can be solved efficiently usingsome off-the-shelf optimization tools,

e.g., the interior point optimization routine in SeDuMi [33].

These aforementioned sub-problems suggest an iterative CAA algorithm yielding successive estimates

of one of the two groups of variables –{Gk,Sk}, andW – with the remaining group fixed, as tabulated

in Algorithm 1. The convergence of Algorithm 1 in terms of theobjective value is guaranteed due to

the cyclic ascent nature of the algorithm that ensures a monotonically non-decreasing objective across

iterations. However, proving the convergence for the sequence of iterates is more involved. The following

convergence claim applies for Algorithm 1 when it is invokedwithout any limit on the number of

iterations. A similar CAA convergence result is outlined in[13], but for a different problem setup involving

MIMO interference channels.

Algorithm 1 : (P1) with Cc. Input the channel matrices{Hk}Kk=1, and an initial feasibleW. Output the

iterates upon convergence.
1: while the iterates converge or maximum number of iterations is reacheddo

2: for k = 1, . . . ,K do

3: Obtain the LMMSE optimal receive filter asGk ←
(

HkWW†H
†
k + INk

)−1
HkW .

4: Update the slack matrixSk ←W†H
†
kHkW + Id, with the MSE matrix calculated via (12).

5: end for

6: Obtain the precoder matrixW by solving the SOCP problem (18).

7: end while

Proposition 1: Either the sequence of iterates generated by Algorithm 1 converges to a stationary point

or each of its accumulation points is a stationary point of (P1), and the objective is non-decreasing as

the iterations proceed.

Proof: The proof is given in Appendix A.
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B. Discrete Codebook

From the definition ofCd in (9), each valid precoder corresponds to a subsetU ⊆ E . Thus, the

achievable rate for userk in (3) can be considered as a set functionRk : 2E → R+ given by

Rk(U) = log

∣

∣

∣

∣

∣

∣

I+
∑

e∈U

peHkWeW
†
eH

†
k

∣

∣

∣

∣

∣

∣

, ∀k (19)

for all U ⊆ E . We offer the following useful result.

Proposition 2: The set functionRk(·) in (19) is a submodular set function, i.e.,

Rk(U ∪ {e})−Rk(U) ≥ Rk(U ′ ∪ {e})−Rk(U ′), ∀k, (20)

for all U ⊆ U ′ ⊆ E and e ∈ E . Further, it is also monotonic asRk(U) ≤ Rk(U ′), ∀U ⊆ U ′, and

normalizedRk(∅) = 0 where∅ denotes the empty set.

Proof: The proof is given in Appendix B.

Thus, (P1) with the discrete codebookCd in (9) becomes a robust submodular function maximization

problem, given by
☛
✡

✟
✠

max
U⊆E

min
k=1,...,K

Rk(U) s.to rU ≤ d, pU ≤ P (21)

For general submodular set functions, maximizing a robust criterion with even one constraint has been

shown to be strongly NP hard [30]. Here, we show that for the particular submodular set functions given

in (19), the robust rate maximization problem in (21) with only the power constraint, i.e., the problem

☛
✡

✟
✠

max
U⊆E

min
k=1,...,K

Rk(U) s.to pU ≤ P (22)

is also strongly NP hard, as asserted in Proposition 3. Note that an instance of the problem in (22)

comprises of: the number of usersK along with their channel matrices{Hk}Kk=1, the setE (specified via

a base code bookW of precoders and a power level for each precoder inW) as well as the power budget

P . In particular, we show that (22) is NP hard even over instances where we restrictK = O(|E|∆) for

any arbitrarily fixed positive integer∆ ≥ 2.

Proposition 3: Unless P=NP, there cannot exist any polynomial time approximation algorithm for(22).

More precisely: If there exists a positive functionγ : Z+ → R+ and an algorithm that, for all|E| and

P , in time polynomial in|E|, is guaranteed to find a subsetU ′ satisfying the power constraintP such

that

min
k

Rk(U ′) ≥ γ(|E|) max∑
U⊆E pU≤P

min
k

Rk(U), (23)

then P=NP.

Proof: The proof is given in Appendix C.
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Proposition 3 manifests the hardness of the discrete precoder design problem, and that polynomial-

complexity algorithms cannot approximate the optimal ratewithin a bound that is only determined by

|E|. In the following, we consider the problem (22) and adopt a bicriterion optimization approach. We

leverage theSubmodular Saturation algorithm(SSA) developed in [30], which considers the general

robust submodular minimization problem but can offer guarantees only for integral valued submodular

functions. Since the submodular functions that are of interest to us are not integral valued, we modify the

SSA by using recent results for the submodular set-cover problem, wherein the submodular cost function

can be real-valued [28].

Following the SSA, the proposed algorithm exploits the ideaof the bisection method which is applied

to the following equivalent formulation of (22):

{ĉ, Û} := arg max
c,U ⊆E

c, s.to Rk(U) ≥ c, ∀k and pU ≤ P. (24)

The equivalence between (24) and (22) holds, since at the optimum of (24), the valuêc will always be

equal to the minimum of{Rk(Û)} across all theK users. Now suppose that there exists an algorithm

that, for any given valuec, solves the following optimization problem

Û c := arg min
U ⊆E

pU , s.to Rk(U) ≥ c, ∀k = 1, . . . ,K, (25)

then the power associated with the optimum setÛ c can be used to decide the relationship between the

prescribed valuec and the optimum̂c in (24). Specifically, if it turns out thatpÛc

≤ P , thenc is feasible

for (24) and it must hold thatc ≤ ĉ. Otherwise, the chosen valuec is infeasible for (24) and we have

c > ĉ. Hence, an iterative binary search onc would then allow us to find the maximum value that is

feasible to (24). However, the problem (25) is not exactly solvable, but can only be approximated as

shown below.

To illustrate this, consider any feasible valuec and the truncated functionRk,c(U) := min{Rk(U), c}.
Let R̄c(U) := (1/K)

∑K
k=1Rk,c(U) be their average function, which is also submodular and monotonic

(follows from a result in [30]). With these definitions, we have R̄c(E) = c, and the constraint in (25)

holds if and only ifR̄c(U) = c, which establishes the equivalence between (25) and the following one

Û c := arg min
U ⊆E

pU , s.to R̄c(U) = R̄c(E). (26)

Interestingly, the reformulated problem (26) is an instance of thesubmodular covering problems. A greedy

algorithm has been proposed in [35] to approximately solve such problems but that algorithm yields a

useful guarantee only for integral valued submodular functions. Recall that the submodular functions

{Rk(.)} in (19) are not integral-valued. Consequently, we employ a variation of the greedy algorithm

proposed in [28] and given here in Algorithm 2.
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Algorithm 2 : (26) with a feasiblec. Input the channel matrices{Hk}, δ ∈ (0, 1) and the ground setE .

Output the greedy solution̂UG to (26).

Initialize ÛG = ∅.
while R̄c(ÛG) < c(1− δ) do

UpdateÛG ← ÛG ∪
{

argmaxe∈E\Û
G

R̄c(ÛG∪{e})−R̄c(ÛG)
pe

}

.

end while

The following lemma follows from Theorem 1 of [28] when the latter is invoked using submodular

set functionR̄c(.), thresholdc (which we note is feasible for̄Rc(.), i.e., R̄c(E) ≥ c) and a gapcδ, where

δ ∈ (0, 1).

Lemma 3: With a monotonic real-valued submodular function̄Rc(.), any δ ∈ (0, 1) and a (feasible)

value c, Algorithm 2 finds a set̂UG such thatR̄c(ÛG) ≥ c(1 − δ) and pÛG

≤ pÛc

(1 + ln(1/δ)), where

Û c is an optimal solution to(26).

Note that the greedy Algorithm 2 can only approximate the optimal solutionÛ c. This prevents from

implementing the bisection method based on the equivalencebetween (22) and (24), since solving the

latter requires to find the exact optimal solution̂U c to (25) per bisection iteration for any givenc.

Therefore, we need to adapt the original binary search procedure in order to accommodate the greedy

approximation algorithm. In particular, for any specifiedδ ∈ (0, 1), the binary search criteria budget per

iteration is scaled toP (1 + ln(1/δ)), and the corresponding decision rule is also changed as follows: if

Algorithm 2 outputspÛc

> P (1+ ln(1/δ)), the chosen valuec is infeasible to (24) andc > ĉ; otherwise,

the outputÛ c is a feasible solution to a relaxed version of (24) with budget P (1 + ln(1/δ)), and will

be kept as the best current solution to it. Such adapted bisection method is tabulated in Algorithm 3

which is polynomial time (for any fixedǫ) and has the following optimality, as asserted in the following

proposition.

Proposition 4: For any power budgetP and givenδ, ǫ ∈ (0, 1), Algorithm 3 finds a solution̂U such that

min
k

Rk(Û) ≥ (1−Kδ) max
U :pU≤P

min
k

Rk(U)− ǫ(1−Kδ) (27)

and pÛ ≤ P (1 + ln(1/δ)).

Proof: The proof is given in Appendix D.

Remark 1: In practice Algorithm 3 gives good results when invoked withδ = 0 but where the condition

pÛG

> P (1 + ln(1/δ)) is replaced bypÛG

> P . In addition, simple enhancements such as replacing the

search spacee ∈ E \ ÛG in Algorithm 2 with e ∈ E \ ÛG : pe∪Û
G

≤ P (when the latter is invoked by

Algorithm 3) also improve performance.
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Algorithm 3 : (24) with Cd. Input the channel matrices{Hk}, δ, toleranceǫ and the ground setE . Output

the setÛ .

Initialize cmin = 0, cmax = mink Rk(E), andÛ = ∅.
while cmax − cmin > ǫ do

Setc← (cmin + cmax)/2, and defineR̄c(U) := (1/K)
∑K

k=1min{Rk(U), c}.
Use Algorithm 2 with inputδ to obtain the greedy solution̂UG.

if pÛ
G

> P (1 + ln(1/δ)) then

Updatecmax ← c.

else

Updatecmin ← c and Û ← ÛG.

end if

end while

Finally, it is useful to derive an upper bound for (22) to benchmark the performance of Algorithm 3,

as given by

max
{xe}e∈E ,β

β

log

∣

∣

∣

∣

∣

∣

I+
∑

e∈E

pexeHkWeW
†
eH

†
k

∣

∣

∣

∣

∣

∣

≥ β, ∀ k,

∑

e∈E

xepe ≤ P0 ≤ xe ≤ 1, ∀ e ∈ E . (28)

Notice that (22) and (28) are equivalent if we enforce stricter constraintsxe ∈ {0, 1}, ∀ e ∈ E in (28).

Then, an important observation that can be made using [22] pp. 74, is that for each1 ≤ k ≤ K, the

function log
∣

∣

∣
I+

∑

e∈E pexeHkWeW
†
eH

†
k

∣

∣

∣
is jointly concave in[pe]e∈E ∈ R

|E|
+ . Consequently, it follows

that (28) is a convex optimization problem that can be efficiently solved.

IV. M INIMIZING THE WEIGHTED SUM DELAY

A different precoder design criterion is considered in thissection. Specifically, in contrast to focusing

on the minimum instantaneous throughput among the users as in Section III, a weighted performance in

terms of decoding delay across theK users (P2) becomes the subject of interest. In order to make (P2)

more tractable, first consider a different expression for the decoding delay given by

Dk({Wτ}) := 1 +

∞
∑

t=1

[

1− 11
(

∑Lt
τ=1 R

τ
k(W

τ )/Θ
)]

, ∀k (29)
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where the function11(·) defined as11(χ) = 1 if χ ≥ 1 and 0 if0 ≤ χ < 1, indicates whether the threshold

Θ has been reached for the accumulated rate per userk. (Notice that the function value for negative

χ can be disregarded, since the achievable rate is always non-negative.) Clearly, in (29) the delayDk

simply counts the number of scheduling intervals that are needed for the non-decreasing accumulated rate

to crossΘ and the common message to be reliably decoded. Although the delay Dk can be expressed

as an analytical function of the precoder matrices as in (29), the indicator function11(·) still makes the

problem (P2) difficult to solve. In the following, we will first consider optimizing (P2) over the continuous

codebook and then the optimization over the discrete codebook.

A. Continuous Codebook

We consider solving (P2) with the continuous codebook{Cc}. Notice that the indicator function11(χ)

is discontinuous at the pointχ = 1 and this discontinuity in the cost as a function of the accumulated

rate will render it difficult to optimize the precoding codewords. Even upon employing an alternating

optimization approach as in Section III-A, the resultant sub-problems are non-convex and not easily

solvable. As the difficulty lies in the discontinuity, we propose to relax the indicator function as

11r(χ) =







χ if 0 ≤ χ ≤ 1

1 otherwise
= min{χ, 1} ∀ χ ≥ 0. (30)

Since the accumulated rate is never negative, the weighted sum delay minimization problem (P2), with

the delayDk({Wτ }) lower bounded by substituting the relaxed11r(·) of (30) into (29), is relaxed to
✓

✒

✏

✑
(P2′) :

K
∑

k=1

µk + min
{Wτ∈Cc}

K
∑

k=1

∞
∑

t=1

µk

[

1−min
{

∑Lt
τ=1 R

τ
k(W

τ )/Θ, 1
}]

. (31)

We offer the following result.

Proposition 5: Suppose that for each userk : 1 ≤ k ≤ K the input channel set{Hτ
k}Lτ=1 has at-least

one non-zero channel matrix and further suppose thatΘ is finite. Then,∃ t̂ <∞ such that any optimal

solution {Wτ
opt} to (P2′) can be truncated by settingWτ

opt = 0 for all τ > Lt̂, without sacrificing

optimality.

Proof: The proof is given in Appendix E.

We emphasize that̂t in Proposition 5 can be determined as a function of only the given input channel set

and the threhold. Clearly the truncation can be done withoutloss of optimality by by settingWτ
opt = 0

for all τ > Lt′, for any t′ ≥ t̂, as well. Further, note that Proposition 5 implies that without loss of

optimality (P2′) can be regarded as a finite dimensional optimization problem in which the set of feasible

solutions is compact. Next, in order to solve the relaxed problem (P2′), we adopt the following approach.
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We start by considering a particular choicet̃ for the number of scheduling intervals and pose the following

problem ✓

✒

✏

✑
(P2′′) max

{Wτ∈Cc}

K
∑

k=1

t̃
∑

t=1

µk min
{

∑Lt
τ=1R

τ
k(W

τ )/Θ, 1
}

. (32)

Then, to solve (P2′′) we leverage the same approach as in Section III-A and decompose it into optimally

solvable sub-problems. To this end, we introduce the linearfilters {Gτ
k ∈ CNk×d}Lt̃τ=1 with corresponding

MSE matrices{Eτ
k(G

τ
k,W

τ )}Lt̃τ=1 as in (12) and the matrix slack variables{Sτ
k ∈ Cd×d}Lt̃τ=1, per user

k. Invoking Lemmas 1 and 2, the problem (P2′′) can be written as✓

✒

✏

✑
max

{Wτ∈CM×d:‖Wτ‖2
F≤P},{Gτ

k},{S
τ
k≻0}

K
∑

k=1

t̃
∑

t=1

µk min

{

1

Θ

Lt
∑

τ=1

[−Tr [Sτ
k Eτ

k(G
τ
k,W

τ )] + log |Sτ
k|+ d] , 1

}

.

(33)

Hence, the CAA algorithm is applicable to the relaxed problem (33). Fixing{Wτ}, the problem in (33)

can be optimally solved over{Gτ
k,S

τ
k}, using Lemmas 1 and 2. It now remains to update all the precoders

{Wτ}, while fixing the other variables,{Gτ
k} and{Sτ

k}. Using{αt
k}t̃t=1 to denote the minimum between

the accumulated normalized rate and the unit threshold for each userk, the aforementioned sub-problem

for {Wτ } is equivalent to

max
{Wτ∈CM×d:‖Wτ‖2

F≤P},{αt
k}

K
∑

k=1

t̃
∑

t=1

µkα
t
k (34a)

s.to Θαt
k ≤

Lt
∑

τ=1

{−Tr [Sτ
k Eτ

k(G
τ
k,W

τ )] + log |Sτ
k|+ d} (34b)

αt
k ≤ 1, ∀k, t (34c)

Furthermore, defining the Cholesky factorization per userk and slotτ asSτ
k = Bτ

k(B
τ
k)

†, the problem

(34) can be reformulated as

max
{Wτ∈CM×d:‖Wτ‖2

F≤P},{αt
k,β

τ
k}

K
∑

k=1

t̃
∑

t=1

µkα
t
k (35a)

s.to Θαt
k ≤

Lt
∑

τ=1

{

−‖Gτ
kB

τ
k‖2F − βτ

k + log |Sτ
k|+ d

}

(35b)

βτ
k ≥

∥

∥

∥
(Bτ

k)
†
[

(Gτ
k)

†Hτ
kW

τ − Id

]∥

∥

∥

2

F
, ∀k, τ (35c)

αt
k ≤ 1, ∀k, t. (35d)

Thus, the constraint (34b) is represented by the linear constraint in (35b) together with a series of

quadratic cone constraints in (35c). Notice that other constraints on the power of eachWτ are also
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quadratic. Hence, the sub-problem (35) for obtaining{Wτ} while fixing the remaining variables is also

an SOCP, and can be solved efficiently as mentioned earlier.

These aforementioned sub-problems with their optimal solutions suggest an iterative CAA algorithm

to solve (P2′′). However, upon convergence the accumulated rates of some users could be belowΘ in

which case we can incrementt̃ and repeat the process. This procedure is tabulated in Algorithm 4. Notice

we have assumed that a set of precoders{W̆(ℓ) ∈ Cc}Lℓ=1 yielding a rate vector∆ ≻ 0 (componentwise

strictly greater than zero) over any scheduling interval isprovided as an input. Such a set can be found by

using the CAA algorithm of Section III-A on the input channelmatrices{Hℓ
k}, 1 ≤ ℓ ≤ L, 1 ≤ k ≤ K.

Indeed, an admission control module can be implemented in which the group of users to receive a

common message is decided by verifying whether the instantaneous rate optimizing algorithm of Section

III-A when used over that group can achieve a strictly positive (or a large enough) value for the minimum

instantaneous rate.

Algorithm 4 : To approximately solve (P2′). Input t̃, the channel matrices{Hτ
k}, 1 ≤ τ ≤ L, 1 ≤ k ≤ K,

a feasible set of precoders{W̆(ℓ)}Lℓ=1 yielding rate vector∆ ≻ 0. Output the final iterates.
while For at-least one userk the accumulated rate is belowΘ−∆k do

Increment̃t← t̃+ 1 and initialize{Wτ}Lt̃τ=1

repeat

for k = 1, . . . ,K do

for τ = 1, . . . , Lt̃ do

Given the precoderWτ at slot τ , update the LMMSE optimal receive filter asGτ
k ←

[

Hτ
kW

τ (Wτ )†(Hτ
k)

† + INk

]−1
Hτ

kW
τ .

Update the slack matrixSτ
k ← (Wτ )†(Hτ

k)
†Hτ

kW
τ + Id.

end for

end for

Obtain the precoder matrices{Wτ} by solving the SOCP problem (35).

until Convergence

end while

Let {Wτ}Lt̃τ=1 be the iterate upon convergence or an accumulation point. Output it if accumulated rate

of each user is no less thanΘ, else augment{Wτ}Lt̃τ=1 by {WLt̃+ℓ = W̆(ℓ)}Lℓ=1 and output it.

Suppose that a simple initialization, that comprises repeating {W̆(ℓ)}Lℓ=1 over t̃ scheduling intervals,

is employed in each outer iteration of Algorithm 4. We can then prove that the algorithm terminates in
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a finite number steps even for this simple initialization by employing arguments similar to those in the

proof of Proposition 5, along with the fact that the alternating optimization procedure employed by the

algorithm to sub-optimally solve (P2′′) monotonically improves the objective function value. A stronger

result is stated in the following which holds for any feasible initialization.

Proposition 6: The output upon termination of Algorithm 4 is a stationary point of (P2′).

Proof: The proof is given in Appendix F.

Notice that each successive outer iteration of Algorithm 4 involves optimizing over a larger number

of variables since the number of scheduling intervals is incremented by one. One variation that can

substantially reduce complexity is to only optimize the transmit precoders{Wτ} for L(t̃−1)+1 ≤ τ ≤ Lt̃

(which correspond to the last scheduling interval) in each outer iteration, and fix the other precoders

to their respective values obtained in the previous iterations. It can be proved that this variation also

terminates in a finite number of iterations but its output need not be a stationary point of (P2′).

B. Discrete Codebook

In this section, we consider the discrete codebook version of (P2) given by
✓

✒

✏

✑
(P2D) min

{Wτ∈Cd, ∀ τ}

K
∑

k=1

µkDk({Wτ}) (36)

We assume that a set{W̆(ℓ) ∈ Cd}Lℓ=1 is available which achieves a rate-vector∆ ≻ 0 over any

scheduling interval. We will show that (P2D) can be reformulated and sub-optimally solved by using

existing algorithms from [17], [18] but at a high complexity. We first propose a novel and non-trivial

modification to an algorithm from [18], which can significantly reduce the complexity and also offer a

performance guarantee. This modified algorithm is presented here as Algorithm 5. Notice that Algorithm

5 involves maintaining an ordered stackS to which a set of codewords is added in each iteration. Upon

termination, the set first added toS is used in the first scheduling interval, the set added secondis

used in the second interval and so on. Further, notice that each iteration of Algorithm 5 also involves

(approximately) solving a maximization problem (37a) by invoking Algorithm 6.

The submodular property of the rate functions is utilized again to sub-optimally solve (37a) in Algorithm

6. We next explain how this algorithm was obtained and then state its performance guarantee. Since

in (37a) the precoders{W(ℓ)}Lℓ=1 across allL slots are design variables, it is necessary to define a

concatenated ground set,F , as

F := {(e, ℓ)| e ∈ E & ℓ ∈ {1, · · · , L}} . (38)
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Algorithm 5 : To approximately solve (P2D). Input the channel matrices{Hτ
k}, 1 ≤ τ ≤ L, 1 ≤ k ≤ K,

a feasible set of precoders{W̆(ℓ)}Lℓ=1 yielding rate vector∆ ≻ 0. Output the final iterates.

Set stackS = φ, t = 1,I = {1, · · · ,K} andθk = 0, ∀ k.

repeat

Using Algorithm 6 sub-optimally solve:

max
{W(ℓ)∈Cd}L

ℓ=1

{

∑

k∈I

µk min

{

1,

∑L
ℓ=1 R

ℓ
k(W

(ℓ))

Θ(1− θk)

}}

(37a)

and obtain{W̃(ℓ)}Lℓ=1.

Augment stackS by adding{W(t−1)L+ℓ = W̃(ℓ)}Lℓ=1 to it, updateθk = θk +
∑

L

ℓ=1 R
ℓ
k(W̃

(ℓ))
Θ , ∀ k,

t← t+ 1 andI ← I \ {k ∈ {1, · · · ,K} : θk ≥ 1}.
until I = φ or θk ≥ 1−∆k, ∀ k
Output S if accumulated rate of each user is no less thanΘ, else augmentS by {W(t−1)L+ℓ =

W̆(ℓ)}Lℓ=1 and output it.

Then, for any given subsetI ⊆ {1, · · · ,K} and any scalarsθk ∈ [0, 1) ∀ k ∈ I, we define the set

function f : 2F → R+, as

f(V) =
∑

k∈I

µk min







1

Θ(1− θk)

L
∑

ℓ=1

log

∣

∣

∣

∣

∣

∣

I+
∑

(e,ℓ′)∈V:ℓ′=ℓ

peH
ℓ
kWeW

†
e(H

ℓ
k)

†

∣

∣

∣

∣

∣

∣

, 1







(39)

for anyV ⊆ F . The problem in (37a) can now be cast as
✎

✍

☞

✌
max
V⊆F

f(V) s.to
∑

(e,ℓ′)∈V :ℓ′=ℓ

re ≤ d,
∑

(e,ℓ′)∈V:ℓ′=ℓ

pe ≤ P, ∀ ℓ = 1, . . . , L. (40)

The following proposition states an important property possessed by the set functionf(·).
Proposition 7: The functionf(·) in (39) is a monotonic submodular set function over the ground setF .

Proof: The proof is given in Appendix G.

In order to take advantage of recently developed submodularfunction maximization algorithms, the

rank and power constraints in (40) need to be cast into the form of linear packing (knapsack) constraints.

This can be accomplished readily by associating each element in F with a unique index in1, · · · , |F|,
where we note|F| = L|E|, and for each subsetV ⊆ F letting xV denote a binary ({0, 1}) valued vector

of lengthL|E| that has ones in positions indexed by the indices corresponding to elements inV and zeros

elsewhere. Then, the2L constraints in (40) can be represented asAxV ≤ b, whereA is a 2L × L|E|
matrix whose rows correspond to the constraints and whose columns correspond to the elements ofF .
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Thus, (40) can be re-cast as
☛
✡

✟
✠

max
V⊆F

f(V) s.to AxV ≤ b. (41)

There are some parameters fromA andb, that are worth pointing out and are important for characteriz-

ing the approximation factors of the algorithms proposed below. First,δ := minm,j{bm/Am,j : Am,j > 0}
is defined as thewidth of all the packing constraints and note thatδ ≥ 1. Secondly, there are onlyk = 2

non-zero entries per column ofA. Thus, the constraints in (41) are column-sparse ones and hence (41)

can be solved using an algorithm for submodular maximization under column sparse knapsack constraints,

proposed in [20]. This algorithm (whose complexity scales polynomially in |E|L) involves randomized

rounding combined with alteration and guarantees an constant approximation factor which does not

depend onL. However, since that randomized algorithm is computationally demanding to implement,

here we employ an algorithm from [19], designed for approximately solving submodular maximization

under arbitrary knapsack constraints, instead and tabulate it in Algorithm 6. Note that in Algorithm 6

we assume thatM(v) returns the index corresponding to any elementv ∈ F . Further, an expansion

step (which is important to establish a performance guarantee for Algorithm 5) is added as the last step

of Algorithm 6. To explain this expansion, we first definẽCd to be a subset ofCd comprising of all

maximal precoding matrix codewords inCd, i.e., no precoding matrix iñCd can be expanded by adding

any element fromE without violating the rank or power constraints. Then, in the last step in Algorithm

6 we ensure that̂V is expanded so that each one of its corresponding set ofL codewords{W(ℓ)}Lℓ=1

lies in C̃d. Notice that since eachRℓ
k(.) is a monotonic set function overE , any arbitrary expansion will

improve the value of the objective function.

The following result, which holds even when no expansion is employed in the last step of Algorithm

6, follows upon invoking Theorem 1 from [19].

Lemma 4: Algorithm 6 is a deterministic polynomial-time algorithm that attains an approximation ratio

of Ω(1/(2L)1/δ). In other words, its final output̂V is feasible, i.e.,AxV̂ ≤ b and also achieves a

constant approximation guarantee

f(V̂) ≥ Ω
(

1/(2L)1/δ
)

max
V:AxV≤b

f(V). (42)

Before we establish a performance guarantee for Algorithm 5we offer the following result which will

be invoked later.

Proposition 8: The problem in (P2D) can be further constrained without lossof optimality by enforcing

that each precoder used must lie in the setC̃d and no more than⌈ Θ
mink ∆k

⌉ scheduling intervals can

employ an identical set of maximal precoding matrix codewords.



IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 20

Algorithm 6 : To approximately solve (41). Input the channel matrices{Hℓ
k}, A andb as in (41) and

an update factorλ ∈ R+. Output a subset̂V.

Initialize V ′ = ∅;
for m = 1, . . . , 2L do

Set the variableωm ← 1/bm.

end for

while
∑2L

m=1 bmωm ≤ λ, andV ′ 6= F do

Find v̂ = argminv∈F\V ′

[

∑2L
m=1 Am,M(v)ωm/(f(V ′ ∪M(v))− f(V ′))

]

and let î =M(v̂) denote

its corresponding index.

UpdateV ′ ← V ′ ∪ v̂.

for m = 1, . . . , 2L do

Updateωm ← ωmλAm,̂i/bm .

end for

end while

if AxV′ ≤ b then

Set V̂ = V ′.
else if f(V ′ \M(̂i)) ≥ f(M(̂i)) then

Set V̂ = V ′ \M(̂i).

else

Set V̂ =M(̂i).

end if

ExpandV̂ if needed and output it.

We are now ready to establish the performance guarantee for Algorithm 5. The proof of Proposition

8 as well as the one below are given in Appendix H.

Proposition 9: The solution returned by Algorithm 5 guarantees a weighted sum delay that is no greater

thanΓ ln(1/ǫ) times that of the optimal solution to (P2D), whereΓ is a fixed constant and the scalarǫ

is dependent on the input set of channel matrices, as

ǫ = min
k∈{1,··· ,K}

min
{W(ℓ)∈C̃d}L

ℓ=1:
∑

L

ℓ=1 R
ℓ
k(W

(ℓ))>0

{

L
∑

ℓ=1

Rℓ
k(W

(ℓ))

}

(43)

Note thatǫ represents the smallest positive rate that can be achieved by using maximal codewords

over a scheduling interval.
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V. NUMERICAL EXAMPLES

In this section, the effectiveness of the proposed algorithms is shown through numerical tests, where

independently and identically distributed Rayleigh fading between the BS and each user is assumed.

Test Case 1:The MISO channel from the BS to each single antenna user is considered with the number

of transmitting antennas beingM = 2 andM = 4, respectively. Fig. 1 plots the maximum achievable

rate of different schemes with respect to (wrt) the number ofusersK, which increases from 1 to 64,

both in the logarithmic scales. The power budget is set toP = 10, such that the equivalent transmit

signal-to-noise ratio (SNR) is 10dB. The proposed CAA algorithm with number of streamsd = 2 is

compared with three other schemes. The optimal scheme with number of streamsd = M is obtained

by solving a semi-definite program (SDP) using SeDuMi [33], whereas the open-loop precoder refers to

the case whereW is a scaled identity matrix. Moreover, the recursive designproposed in [2] by setting

d = 2 is also compared, and used to initialize the CAA algorithm besides a random initialization. Note

that both the recursive design and CAA are constrained byd = 2 so that neither can achieve the optimal

scaling whenM = 4. Nevertheless, even in this case the CAA algorithm with bothinitializations keeps

on exhibiting near-optimal performance, especially considering the fact that the optimal scheme with

d = M = 4 provides the non-achievable upper bound. This clearly shows the near-optimal performance

of the proposed CAA algorithm and its insensitivity to initializations.

Test Case 2:The system settings are the same as those in Test Case 1, except for the number of receive

antennasNk = 2,∀ k so that each user has a MIMO channel. For this case, the optimal precoder design

is no longer an SDP problem, but the open-loop scheme still has the same scaling wrtK as the optimal

one. As seen in Fig. 2, the CAA algorithm fails to achieve the optimal scaling whenM = 4. However,

inspite of being constrained byd = 2, CAA algorithm still outperforms the open-loop one withd = 4

when the number of users is less than 32, and its advantage over an intuitive extension of recursive design

(referred to as Rec-type design) wherein the channel matrixto the worst user is used as the transmit

precoder after appropriate scaling, becomes more evident.For clarity a sub-figure in the linear scale has

also been plotted.

Test Case 3:The minimum weighted sum delay problem (P2) is now considered over a system in which

the BS hasM = 4 antennas and there areK = 8 users and the transmit precoders are constrained to

have rank no greater than two (i.e.,d = 2). In addition, the rate thresholdΘ is set to be 10, while for

simplicity the number of orthogonal slots per interval is set asL = 1. The CAA-based Algorithm 4 which

jointly optimizes all the precoding matrices is compared with two other schemes, where in each interval

(or equivalently here in each slot) the same precoder is employed and this precoder in turn is either
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obtained by the recursive design or by Algorithm 1, respectively, as detailed in Test Cases 1 and 2. The

greedy Algorithm 4 corresponds to the reduced complexity scheme which involves solving forWt̃ after

fixing all precoders prior to slot̃t. Further, two approaches for initializing Algorithm 4 are considered:

(i1) upon incrementing to slot̃t augmenting withWt̃ = Ŵ while fixing all precoders obtained prior

to this slot; and (i2) at each slot increment simply settingWτ = Ŵ, ∀1 ≤ τ ≤ t̃, whereŴ is the

solution obtained using Algorithm 1. Both the per-user MISOchannel (Nk = 1, ∀ k) and the MIMO

channel (Nk = 2, ∀ k) are considered with uniform weightsµk = 1/K,∀ k. In addition, unequal user

weights are also considered for theNk = 2 case by settingµκ = 0.9 for the userκ := argmink Rk as

determined by the solution of Algorithm 1, andµk = 0.1/(K − 1) for any other userk 6= κ. The exact

weighted sum delay which is the objective in (P2) and the relaxed one associated with (P2′) are plotted

versus the power budget (per slot)P , in Fig. 3. Clearly, the joint optimization schemes of Algorithm

4 yield improvement over the other ones, particularly so when unequal weights assigned, as expected.

Meanwhile, the curves of greedy Algorithm 4 are quite close to the ones of the original Algorithm 4,

which greatly advocates the use of the reduced complexity scheme in practice. Interestingly, the relaxed

delay curves exhibit the same relative behavior as their exact delay counterparts, which justifies using

the relaxed problem (P2′) to design transmit precoders that reduce the weighted sum delay.

Test Case 4:We now examine optimization using the discrete codebookCd. We consider the rate

optimization in (22) over a system with five users, withNk = 2, ∀ k receive antennas and where the base

station hasM = 4 transmit antennas. The rank one LTE codebook comprising of16 unit-norm vectors

[36] formed the base codebookW and for each codeword an identical set of four power levels isallowed,

which together specify the set ground setE . In Fig. 4 we plot the achieved throughputs for different

values of transmit SNR. In particular, we have plotted the throughput upper bound obtained obtained by

solving (28), as well as that yielded by Algorithm 3 when the latter is invoked withδ = 0, ǫ = .08 along

with its practical refinements discussed in Section III-B. For comparison, we also plot the throughput

yielded by a simple greedy algorithm, which at each step selects the element fromE yielding the largest

increase in the instantaneous rate subject to the transmit power constraint. Note that at moderate values

of SNR Algorithm 3 yields a good improvement over the simple greedy baseline. The gains are lower at

high SNRs since in that regime the transmit power constraintbecomes increasingly irrelevant (i.e., most

of the codebook can be selected). We emphasize that the upperbound which relaxes the binary-value

constraints need not be achievable, particularly at low SNRs.
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VI. CONCLUSIONS AND FUTURE WORK

We considered the design of linear precoders for multicast by using instantaneous rateandweighted

sum delayas the design criteria. The linear precoders were allowed tobe any complex valued matrices

subject to rank and power constraints (a.k.a. the continuous codebook case). Alternatively, the linear

precoders could be constructed by selecting and concatenating codewords from a given finite codebook

of precoding matrices (a.k.a. the discrete codebook case).For the former case, cyclic alternating ascent

(CAA) based algorithms were proposed, whereas for the latter case greedy algorithms that exploit

submodularity of the rate function were proposed. The proposed algorithms were shown to possess

certain desirable properties such as satisfying KKT conditions and offering worst-case guarantees.

The CAA based algorithms offer good performance but their complexities can be deemed high for

some implementations, since they involve solving an SOCP ineach step. An interesting avenue for future

work would be to determine whether explicit solutions can beobtained for special instances and then

leverage them. On the other hand, the greedy algorithms for the discrete codebook case are simple to

implement. However, the performance guarantee obtained for the weighted sum delay minimization might

be weak and the design of approximation algorithms with better guarantees is an open problem.

Furthermore, recall that the quasi-static assumption adopted for the weighted sum delay minimization

problem allowed us to use any arbitrary number of schedulingintervals to ensure that the threshold for

each user is achieved. In problems where a strict limit on thenumber of intervals is present, we would

require an admission control module to select a multi-cast group of users and/or to set an appropriate

threshold to ensure that decoding at all users can be achieved. Extending our proposed techniques to

design such a module is an interesting open problem. Finally, developing robust versions of the results

developed in this paper, by adopting a bounded CSI error model (as in [8], [9]) is also an interesting

problem. While such an extension is not difficult for the continuous codebook case, its discrete counterpart

seems challenging since the submodularity property may no longer hold for the worst-case (over all error

realizations) per-user rate.

APPENDIX A

PROOF OFPROPOSITION1

To proceed, define the objective for the inner minimization in (16) as

rk (W,Gk,Sk) = −Tr[SkEk(Gk,W)] + log |Sk|+ d, 1 ≤ k ≤ K (44)
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and the one for the outer maximization as

g (W, {Gk,Sk}) = min
k=1,...,K

rk (W,Gk,Sk) . (45)

Moreover, leti ∈ Z+ be the iteration index for the while-loop in Algorithm 1, andit is initialized with

the input precoderW(0). Further, denote the maximal objective values achieved before and after the

precode update at thei-th iteration as

gi = g (W(i − 1), {Gk(i),Sk(i)}) ,

ζi = g (W(i), {Gk(i),Sk(i)}) ∀i ∈ Z+ . (46)

The ascent nature of the iterations in Algorithm 1 ensures the sequence{gi} is monotonically non-

decreasing and hence convergent, and alsogi ≤ ζi ≤ gi+1, ∀i ∈ Z+ . Due to the boundedness of

{‖W(i)‖} ensured by the norm constraint in (16), there exists a subsequenceI such thatW(i)→ W̄,

i ∈ I. Line 3 of Algorithm 1 indicates thatGk(i+ 1) is obtained from an analytical function ofW(i),

thus it follows that for anyk, Gk(i+1)→ Ḡk, i ∈ I. Similar argument holds for eachSk(i+1)→ S̄k,

i ∈ I. Consequently, the convergence for the objective value sequence follows, as

gi+1 → ḡ := g
(

W̄, {Ḡk, S̄k}
)

, i ∈ I. (47)

Note that since the sequence{gi}i∈I converges and it is a subsequence of the convergent sequence

{gi}i∈Z+
, we must have thatgi → ḡ, i ∈ Z+. Further, the monotonicity of{gi}i∈Z+

and the relation

gi ≤ ζi ≤ gi+1 ensures thatζi → ḡ, i ∈ I as well asζi+1 → ḡ, i ∈ I.

Next, we want to show that
(

W̄, {Ḡk, S̄k}
)

constitutes a fixed point for the CAA iterations. Since the

updates ofGk andSk are both closed-form for anyk, it is easy to see that

Ḡk =
(

HkW̄W̄†H
†
k + INk

)−1
HkW̄ (48)

S̄k = W̄†H
†
kHkW̄ + Id. (49)

Thus, it remains to prove that̄W ∈ W({Ḡk, S̄k}), where the later represents the optimal solution set of

the SOCP problem (18) given the inputsGk = Ḡk andSk = S̄k. Recall that the subsequence{ζi+1}i∈I
converges to the limit point̄g. Therefore, if it can be shown that

ζi+1 → g
(

U, {Ḡk, S̄k}
)

, i ∈ I, (50)

for someU ∈ W({Ḡk, S̄k}), then we can deduce thatg
(

U, {Ḡk, S̄k}
)

= ḡ from which it follows that

W̄ ∈ W({Ḡk, S̄k}). To show (50), consider the following sequence of functionsin W

hi+1(W) := g (W, {Gk(i+ 1),Sk(i+ 1)}) , ∀i ∈ I (51)
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whereζi+1 = hi+1(W(i + 1)) = maxW:‖W‖2
F≤P hi+1(W). Since each functionrk is quadratic inW

(with Gk andSk given), andhi+1 is the minimum of a finite number of suchrk ’s, it can be shown that

the sequence of functions{hi+1(·)}i∈I converges point-wise to the following function

h̄(W) := g
(

W, {Ḡk, S̄k}
)

. (52)

Further, since only the compact set defined by the norm ball‖W‖2F ≤ P is of interest, point-wise

convergence in{hi+1(·)}i∈I leads to the uniform convergence; that is, for anyǫ > 0, there exists an

iteration indexi′ ∈ I such that|hi+1(W) − h̄(W)| ≤ ǫ, ∀i ∈ I, i ≥ i′, and‖W‖2F ≤ P . From this

uniform convergence, it holds that

ζi+1 = max
W:‖W‖2

F≤P
hi+1(W) ≤ max

W:‖W‖2
F≤P

[

h̄(W) + ǫ
]

= max
W:‖W‖2

F≤P
h̄(W) + ǫ, ∀i ∈ I, i ≥ i′, (53)

and similarly

ζi+1 = max
W:‖W‖2

F≤P
hi+1(W) ≥ max

W:‖W‖2
F≤P

[

h̄(W)− ǫ
]

= max
W:‖W‖2

F≤P
h̄(W)− ǫ, ∀i ∈ I, i ≥ i′, (54)

and this leads to the following convergence

ζi+1 → max
W:‖W‖2

F≤P
h̄(W) = g

(

U, {Ḡk, S̄k}
)

, i ∈ I, (55)

for someU ∈ W({Ḡk, S̄k}), which is sufficient for claiming (50) and completing the proof that
(

W̄, {Ḡk, S̄k}
)

is a fixed point for the CAA iterations. With
(

W̄, {Ḡk, S̄k}
)

in hand the remaining

part of the proposition follows by first noting that

[

−Tr(S̄kEk(Ḡk,W)) + log |S̄k|+ d
] ∣

∣

W=W̄
= log |I+HkWW†H

†
k|

∣

∣

W=W̄
. (56)

Then, specializing the gradient formulas in [16] to our casewe get that

∇W

[

−Tr(S̄kEk(Ḡk,W)) + log |S̄k|+ d
]

= H
†
kHkWEk(Ḡk,W)S̄kEk(Ḡk,W) (57)

and

∇W log |I+HkWW†H
†
k| = H

†
kHkW(I+W†H

†
kHkW)−1 (58)

so that

∇W

[

−Tr(S̄kEk(Ḡk,W)) + log |S̄k|+ d
] ∣

∣

W=W̄
= ∇W log |I+HkWW†H

†
k|

∣

∣

W=W̄
(59)

Using (56) and (59) we can conclude that
(

W̄, {Ḡk, S̄k}
)

satisfy the KKT conditions of (P1) as well.

�
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APPENDIX B

PROOF OFPROPOSITION2

Consider any subsetsU ⊆ U ′ ⊆ E such thatU ′ = U∪V. Note that it suffices to considere′ ∈ E\U ′ since

the proposition is trivially true fore ∈ U ′. Define a functionfk(A) =
∑

e∈A peHkWeW
†
eH

†
k, ∀A ⊆ E .

Then, for any elemente′ ∈ E \ U ′ we have

Rk(U ′ ∪ {e′})−Rk(U ′) = log |I+ fk({e′}) + fk(U ′)| − log |I+ fk(U ′)|

=Rk(U ∪ {e′})−Rk(U) + log

∣

∣

∣

∣

∣

∣

I+
∑

e∈V

peW
†
eH

†
k

(

I+ fk({e′}) + fk(U)
)−1

HkWe

∣

∣

∣

∣

∣

∣

− log

∣

∣

∣

∣

∣

∣

I+
∑

e∈V

peW
†
eH

†
k (I+ fk(U))−1

HkWe

∣

∣

∣

∣

∣

∣

. (60)

Note that(I+ fk({e′}) + fk(U))−1 � (I+ fk(U))−1, where� denotes the positive semi-definite order-

ing, sincefk({e′}), fk(U) are both positive semi-definite matrices, from which we can deduce that

log

∣

∣

∣

∣

∣

∣

I+
∑

e∈V

peW
†
eH

†
k

(

I+ fk({e′}) + fk(U)
)−1

HkWe

∣

∣

∣

∣

∣

∣

≤ log

∣

∣

∣

∣

∣

∣

I+
∑

e∈V

peW
†
eH

†
k (I+ fk(U))−1

HkWe

∣

∣

∣

∣

∣

∣

.

(61)

Substituting (61) in (60) leads to (20). The remaining partscan be readily verified to be true. �

APPENDIX C

PROOF OFPROPOSITION3

To show the hardness of the discrete precoder design problem(22), consider an instance of thehitting

set problem, which is among Karp’s 21 NP-complete problems [27]. Specifically, with a collection ofK̃

subsets{Sk}K̃k=1 of a ground setS, and a positive integerP ′, the goal is to find whether there exists

a hitting set S ′ of size P ′ or less, that is, a subsetS ′ ⊆ S such that|S ′| ≤ P ′ and S ′ ∩ Sk 6= ∅,
∀k = 1, . . . , K̃. For convenience, given any elements ∈ S, let the indices of those subsets thats belongs

to form the setK(s) ⊆ {1, . . . ,K}, such thats ∈ Sk, ∀k ∈ K(s), ands /∈ Sk, ∀k /∈ K(s). Furthermore,

we restrict our attention to instances constrained to satisfy K̃ = O(|S|∆) for any arbitrarily fixed positive

integer∆ ≥ 2. We note that the hitting set problem remains NP hard even under such restriction [27].

To map this hitting set instance to one instance of (22), wloglet K = K̃ and assume that each user

k is equipped with one antenna; i.e.,Nk = 1, ∀k. Let the number of transmit antennasM = K, and set

the channel gain vectors{Hk} to be orthonormal such thatHkH
†
l = δk,l, where the later represents the

Kronecker delta operator. For the discrete codebookCd, consider a flat power profile for each codeword
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aspe = 1, ∀e ∈ E . Moreover, for any elements ∈ S and its companion setK(s), there exists an element

g(s) = e ∈ E , such that the corresponding codeword has rank 1, in the formof

We =
1

√

|K(s)|
∑

k∈K(s)

H
†
k. (62)

Notice that any elements with K(s) = ∅ can be included as a special case for this codeword setting,

which simply renders the correspondingWe = 0. Under this codeword definition, the achievable rate at

userk as a set function in (19) becomes

Rk(U) = log

∣

∣

∣

∣

∣

∣

1 +
∑

e∈U

Hk





1
√

|K(g−1(e))|
∑

l∈K(g−1(e))

H
†
l









1
√

|K(g−1(e))|
∑

l∈K(g−1(e))

Hl



H
†
k

∣

∣

∣

∣

∣

∣

, ∀k.

(63)

If there exists somee′ ∈ U such that its correspondings′ = g−1(e′) ∈ Sk, then it holds

Rk(U) ≥ log

∣

∣

∣

∣

∣

∣

1 +Hk





1
√

|K(s′)|
∑

l∈K(s′)

H
†
l









1
√

|K(s′)|
∑

l∈K(s′)

Hl



H
†
k

∣

∣

∣

∣

∣

∣

= log
(

1 + 1/|K(s′)|
)

≥ log(1 + 1/K) (64)

where the last inequality comes from|K(s′)| ≤ K. Otherwise, if for anye′ ∈ U , the corresponding

s′ /∈ Sk, then it can also be shown thatRk(U) = 0. Therefore, for each setSk, the set function

Rk(U ′) ≥ log(1 + 1/K) if the subsetS ′ = {g−1(e) : e ∈ U ′} ⊆ S corresponding to all codewords inU ′

intersectsSk, and 0 otherwise. If we assume an optimal solution to the hitting set instance isS∗ of size

no greater thanP ′, then for the corresponding setU∗ we havemink Rk(U∗) ≥ log(1 + 1/K). For any

otherS ′ that is not a hitting set, we have the correspondingmink Rk(U ′) = 0.

Now consider the precoder design problem (22) under the current settings. Due to the flat power profile,

pU ≤ P is equivalent to a cardinality constraint|U| ≤ ⌊P ⌋. To establish the connection to the hitting

set problem, let⌊P ⌋ = P ′. If there were an algorithm for (22) with approximation guaranteeγ(|E|), it

would select a setU ′ of size |U | ≤ P ′ with

min
k

Rk(U ′) ≥ γ(|E|)
[

min
k

Rk(U∗)

]

= γ(|E|) log(1 + 1/K) > 0. (65)

This impliesmink Rk(U ′) ≥ log(1 + 1/K), and thus the subsetS ′ ⊆ S corresponding toU ′ would be

a hitting set. Accordingly, this approximation algorithm would be able to decide, whether there exists a

hitting set of sizeP ′, contradicting the NP-hardness of the hitting set problem [27]. �
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APPENDIX D

PROOF OFPROPOSITION4

Note that Algorithm 3 clearly converges and letĉ denote the value ofc obtained upon convergence.

Invoking Lemma 3 we can conclude that

R̄ĉ(Û) ≥ ĉ(1− δ) (66)

with pÛ ≤ P (1 + ln(1/δ)). Further since that valuêc + ǫ cannot be achieved by Algorithm 2 without

exceeding the budgetP (1+ ln(1/δ)), from Lemma 3, (26) and (25) we can also deduce thatpÛ
ĉ+ǫ

> P

so that

max
U :pU≤P

min
k

Rk(U) < ĉ+ ǫ. (67)

Next, expandingR̄ĉ(Û) = (1/K)
∑K

k=1min{Rk(Û), ĉ} and using (66), we can show via contradiction

that we must have

Rk(Û) ≥ ĉ(1−Kδ), ∀ 1 ≤ k ≤ K. (68)

(67) and (68) together prove the proposition. �

APPENDIX E

PROOF OFPROPOSITION5

We first assume that for the given input channel set there exists a set of feasible precoding matrices

{W̆(ℓ)}Lℓ=1 such that
∑L

ℓ=1R
ℓ
k(W̆

(ℓ))/Θ > ∆, for all users1 ≤ k ≤ K and for some∆ > 0. Note that

this assumption is not satisfied only if one or more users havemutually orthogonal input channels, i.e.
∑L

ℓ=1(H
ℓ
k)

†Hℓ
j = 0 for somek 6= j. In that case users can be partitioned into multiple groups with each

group satisfying the aforementioned assumption and the arguments given below can be used separately

over each group. Then, sinceΘ is finite, a feasible solution to ensure that each user decodes the common

message is to repeat{W̆(ℓ)}Lℓ=1 over ⌈Θ∆⌉ scheduling intervals which then yields a finite value for the

objective function in (P2′), denoted henceforth byG. Letting {Wτ
opt} be any optimal solution, we can

deduce that the optimal objective function value for (P2′) yielded by it is clearly finite and no greater

thanG. By contradiction, it can then be argued that for each userk,
∑Lt

τ=1R
τ
k(W

τ
opt)/Θ ≥ 1 −∆ for

all t ≥ G
∆mink µk

. Then, since{W̆(ℓ)}Lℓ=1 achieves a normalized rate no less than∆ for each user in a

scheduling interval, invoking the optimality of{Wτ
opt} we must have that

∑Lt
τ=1 R

τ
k(W

τ
opt)/Θ ≥ 1 for

all t > t̂ = 1 + G
∆mink µk

. Consequently, without loss of optimality the given optimal solution can be

truncated afterLt̂. �
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APPENDIX F

PROOF OFPROPOSITION6

Supposẽt is the value for the number of scheduling intervals returnedupon termination of the while−do

loop and let{Wτ}Lt̃τ=1 denote the iterate returned by it. Then, using arguments similar to those made

to prove Proposition 1 it can be shown that{Wτ}Lt̃τ=1 is a stationary point of (P2′′) (evaluated for that

t̃). Thus,{Wτ}Lt̃τ=1 must be feasible, i.e.,Wτ ∈ Cc, ∀ τ and also satisfy the other KKT conditions

for (P2′′). Let Aτ
k(W

τ ),B(Wτ ) denote the derivatives ofRτ
k(W

τ ) and ‖Wτ‖2F (with respect to the

precoding matrix argument) evaluated atWτ , respectively. Further, letCk = max{t ∈ {0, 1, · · · , t̃} :
∑tL

τ=1 R
τ
k(W

τ ) < Θ}, ∀ k, where we note thatCk = 0 if
∑L

τ=1 R
τ
k(W

τ ) ≥ Θ. Then invoking the KKT

conditions for (P2′′), after some manipulations we can deduce that there must exist non-negative scalars

δτ , 1 ≤ τ ≤ Lt̃ such that

∑

k:Ck≥⌈ τ

L
⌉

Aτ
k(W

τ )µk

(

Ck − ⌈
τ

L
⌉+ 1

)

= δτB(Wτ ), 1 ≤ τ ≤ Lt̃. (69a)

Clearly using this{Wτ}Lt̃τ=1, the accumulated rate of each userk after t̃ scheduling intervals is no less

thanΘ−∆k. We only consider the case where at-least one user’s accumulated rate is less thanΘ since

the remaining one can be proved in a similar manner. Then, letting T = max{t̂, t̃+ 1}, where we recall

t̂ was implicitly defined in Proposition 5, we consider the KKT conditions for the following problem
✓

✒

✏

✑
min

{Wτ∈Cc}

K
∑

k=1

T
∑

t=1

µk

[

1−min
{

∑Lt
τ=1R

τ
k(W

τ )/Θ, 1
}]

. (70)

Note that any optimal solution of (P2′) (truncated without loss of optimality after intervalT ) must satisfy

the KKT conditions for (70). Now consider the augmented set{Ŵτ}LTτ=1, where

Ŵτ =



















Wτ , If 1 ≤ τ ≤ Lt̃

W̆(τ−Lt̃), ElseIf Lt̃+ 1 ≤ τ ≤ L(1 + t̃)

0 Otherwise

Letting Ĉk = max{t ∈ {0, 1, · · · , T} : ∑tL
τ=1R

τ
k(Ŵ

τ ) < Θ}, ∀ k, a key observation is that̂Ck = Ck ≤
t̃, ∀ k. This fact along with (69a) allows us to conclude that

∑

k:Ĉk≥⌈ τ

L
⌉

Aτ
k(Ŵ

τ )µk

(

Ĉk − ⌈
τ

L
⌉+ 1

)

= δτB(Ŵτ ), 1 ≤ τ ≤ LT, (71a)

which suffices to satisfy the KKT conditions for (70) and hence those for (P2′). �
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APPENDIX G

PROOF OFPROPOSITION7

The monotonicity off(.) can be readily verified. Consider the set functiongk : 2F → R+ for any

k ∈ I defined as

gk(V) = log

∣

∣

∣

∣

∣

∣

I+
∑

(e,q)∈V

peH
q
kWeW

†
e(H

q
k)

†

∣

∣

∣

∣

∣

∣

, (72)

which from Proposition 2 can be deduced to be a submodular setfunction overF . From this fact, it

follows that the functionsgk,ℓ(V) = gk(V ∩ Fℓ), ∀ V ⊆ F , for 1 ≤ ℓ ≤ L are all submodular set

functions, where

Fℓ := {(e, ℓ)| e ∈ E}} . (73)

so that{F ℓ}Lℓ=1 form a partition ofF . Consequently, the set function

g̃k(V) =
1

Θ(1− θk)

L
∑

ℓ=1

gk,ℓ(V), ∀ V ⊆ F , (74)

being a linear combination of submodular set functions in which the combining coefficients are all positive

constants, is a submodular set function overF . Next, since truncation preserves submodularity, we can

conclude thatfk(V) = min{g̃k(V), 1}, ∀ V ⊆ F is a submodular set function overF . Finally, we can

expandf(·) in (39) as

f(V) =
∑

k∈I

µkfk(V), ∀ V ⊆ F , (75)

which again being a linear combination of submodular set functions (with positive and constant combining

weights) is thus a submodular set function overF . �

APPENDIX H

PROOF OFPROPOSITIONS8 AND 9

We will first prove Proposition 8. Here, the fact that eachRτ
k(.), 1 ≤ k ≤ K,∀ τ is a monotonic set

function overE suffices to assert that the problem in (P2D) can be further constrained without loss of

optimality by enforcing that each precoder used must lie in the setC̃d. Further, without loss of generality,

we can assume that each codeword in the given set{W̆(ℓ)}Lℓ=1 is maximal since otherwise the set can

always be arbitrarily expanded. Suppose now that an optimalsolution involves employing an identical

set of maximal precoding matrix codewords,{Ŵ(ℓ) ∈ C̃d}Lℓ=1, for more thanQ = ⌈ Θ
mink ∆k

⌉ scheduling

intervals. Consider the firstQ scheduling intervals over which the set{Ŵ(ℓ) ∈ C̃d}Lℓ=1 is used. Note
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that upon using that set overQ scheduling intervals, each userk for whom the accumulated rate is less

thanΘ must satisfy
∑L

ℓ=1R
ℓ
k(Ŵ

(ℓ)) < minj ∆j. As a result, all further uses of the set{Ŵ(ℓ) ∈ C̃d}Lℓ=1

can be replaced without loss of optimality by those of the set{W̆(ℓ) ∈ C̃d}Lℓ=1, since in any scheduling

interval the latter set can simultaneously achieve a largerrate than{Ŵ(ℓ) ∈ C̃d}Lℓ=1 for each remaining

user. Finally, no more thanQ uses of the set{W̆(ℓ) ∈ C̃d}Lℓ=1 are needed to ensure an accumulated rate

of at-leastΘ for each user.

We now prove Proposition 9. Towards this end, let us now construct a matrixR havingK rows, one for

each user. To build the columns ofR, enumerate all possible sets of maximal codewords{W(ℓ) ∈ C̃d}Lℓ=1

and repeat each set⌈ Θ
mink ∆k

⌉ times. Next, add a column inR for each such set, where the column contains

the rates (in a scheduling interval) achieved upon using that set for allK users. Clearly, then the sum

of each row ofR is at-leastΘ. Further, after this reformulation upon invoking Proposition 9, we can

deduce that the problem (P2D)is in-fact equivalent to finding a permutation of the columnsof the matrix

R that minimizes the weighted sum cover time over the rows, where the cover time of each row is the

smallest column index for which the partial sum on that row isat leastΘ. The latter problem is an

instance of theranking with additive valuationsproblem considered in [17]. It has been shown in [17]

that solving a linear program (LP) followed by a randomized rounding procedure can give rise to a

column permutation solution which achieves a weighted sum cover time no greater than a constant times

the optimal one. However, the number of constraints in the pertinent LP here grows exponentially with

the number of columns inR which requires additional processing to avoid exponentialcomplexity, but

still renders this method prohibitively complex. Another deterministic algorithm with a weaker guarantee

has also been proposed for the ranking problem [18]. Howevera direct adaptation of this algorithm to

(P2D) will yield Algorithm 5 albeit where the maximization in (37a) must be optimally solved over

{W(ℓ) ∈ C̃d}Lℓ=1. The latter optimization problem is hard to solve (indeed itis NP-hard) which can

dramatically increase the complexity due to the potentially large cardinality|C̃d|L. The key modification

introduced in Algorithm 5 is to sub-optimally and efficiently solve (37a) over a larger set{W(ℓ) ∈ Cd}Lℓ=1

instead, after recognizing it to be a submodular maximization problem subject to knapsack constraints.

Then, since (37a) is approximately solved with a constant-factor approximation guarantee by Algorithm

6, which we note also returns a set of maximal codewords, a careful verification of the proof in [18]

reveals that Algorithm 5 retains theO(ln(1/ǫ)) performance guarantee of the direct adaptation. Indeed,

the effect of sub-optimally solving (37a) is that the constant Γ in Proposition 9 is larger (by a factor

Ω(1/(2L)1/δ)) compared to the case when (37a) is optimally solved.
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Fig. 1. The maximum achievable rates, with (a)M = 2 and (b)M = 4 transmitting antennas andN = 1 receive antenna,

versus number of usersK for different schemes (P = 10 andd = 2).
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Fig. 2. The maximum achievable rates, with (a)M = 2 and (b)M = 4 transmitting antennas andN = 2 receive antennas,

versus number of usersK for different schemes (P = 10 andd = 2).
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Fig. 3. The weighted sum delay withM = 4 transmit antennas and (a)N = 1 receive antenna with equal user weights and

(b) N = 2 receive antennas with equal user weights and (c)N = 2 receive antennas with unequal user weights, versus the

transmit power for different schemes.
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