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Abstract

In this paper, we address the optimal source, relay, and receive matrices design for linear non-

regenerative uplink multiuser multiple-input multiple-output (MIMO) relay communication systems. The

minimum mean-squared error (MMSE) of the signal waveform estimation at the destination node is

adopted as our design criterion. We develop two iterative methods to solve the highly nonconvex joint

source, relay, and receiver optimization problem. In particular, we show that for given source precoding

matrices, the optimal relay amplifying matrix diagonalizes the source-relay-destination channel. While

for fixed relay matrix and source matrices of all other users, the source matrix of each user has a

general beamforming structure. Simulation results demonstrate that the proposed iterative source and

relay optimization algorithms perform much better than existing techniques in terms of both MSE and

bit-error-rate.

Index Terms

MIMO relay, Two-hop relay, MMSE, Multiuser.

I. INTRODUCTION

In next generation wireless systems, multiple users equipped with multiple antennas will transmit

simultaneously to the base station with multiple receive antennas and vice versa [1], [2]. Transceiver
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design for multiuser MIMO systems has been studied in [1]. The capacity of multiuser MIMO systems

was investigated for flat fading channels in [2] using real channel measurement data.

Incorporating relays in a MIMO network can significantly extend the coverage and improve the link

reliability of the network [3], [4]. MIMO relaying schemes can be categorized into two general groups:

non-regenerative and regenerative schemes [3]. Compared with regenerative schemes, non-regenerative

scheme has lower computational complexity and less delay, thus it has attracted much research interest

[4]-[11]. The capacity of a single-user non-regenerative MIMO relay channel has been studied in [4].

In [5] and [6], the optimal relay amplifying matrix maximizing the mutual information (MI) between

source and destination was derived assuming that the source covariance matrix is an identity matrix. In

[7] and [8], minimum mean-squared error (MMSE)-based approaches for MIMO relay systems have been

studied. In [9], an iterative tri-step source precoder, relay amplifying matrix and destination equalizer

design algorithm has been proposed for a single-user MIMO relay system with channel uncertainties. A

unified framework was developed in [10] and [11] to jointly optimize the source precoding matrix and

the relay amplifying matrices for a broad class of frequently used objective functions in MIMO relay

system design.

For a multiuser MIMO relay system, the achievable sum rate has been derived in [12] using non-

regenerative relaying scheme. In [13], both non-regenerative and regenerative relays have been considered

in a multiuser MIMO network without optimizing the power loading schemes at the relay and the source

nodes. An adaptive relay power allocation algorithm has been developed in [14] to mitigate the self-

interference. An MMSE-based joint filter design has been proposed for a multiuser non-regenerative

MIMO relay system in [15]. All these works [12]-[15] assume that each user is equipped with a single

antenna. Several recent works have addressed multiuser MIMO relay systems where users also have

multiple antennas. In [16], the optimal source and relay matrices were developed to maximize the

source-destination MI. The non-regenerative MIMO relay technique has been applied to multi-cellular

(interference) systems in [17]. The joint source and relay optimization problem has been addressed in [18]

for multiple-antenna users using the MMSE criterion. The authors in [19] addressed the joint transceiver

and relay design problem in a downlink (broadcast) multiuser system.

The main contribution of this paper is the joint source, relay, and receiver optimization for multiuser

MIMO relay communication systems under the MMSE criterion where all nodes (users, relay, and

destination) are equipped with possibly different number of multiple antennas. In contrast to [19], we

consider an uplink (multiaccess) multiuser MIMO relay system. Note that although we consider the joint

transceiver design problem for an uplink system, transceivers in a downlink system can be obtained by
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exploiting the uplink-downlink duality of MIMO relay channel [20], [21]. This problem has not been

addressed in [3]-[17]. In particular, [3]-[11] considered the transceiver and/or relay design problems for

single-user MIMO relay systems whereas [12]-[15] considered multiuser MIMO relay design problems

with single-antenna transmitters. The problems addressed in [16] and [17] are also different from our

problem. In this paper, we derive the optimal structure of the source precoding matrix of each user and the

relay amplifying matrix to jointly minimize the MSE of the signal waveform estimation at the destination

node in a multiuser MIMO relay system. The original optimization problem is highly nonconvex and a

closed-form solution is intractable. To overcome this difficulty, we develop a Tri-Step iterative algorithm

to jointly optimize the source, relay, and receive matrices through solving convex subproblems. It is

shown that this algorithm is guaranteed to converge to (at least) a locally optimal solution. Note that the

Tri-Step algorithm is not presented in [18].

To reduce the computational complexity of the Tri-Step algorithm, we develop a simplified Bi-Step

algorithm, where the source and relay matrices are optimized in an alternating fashion. The receive

matrix is not updated in each iteration, and instead, it is obtained as an MMSE receiver after the

convergence of the Bi-Step algorithm. We show that for given source precoding matrices, the optimal

relay amplifying matrix diagonalizes the source-relay-destination channel. While for fixed relay matrix

and source matrices of all other users, the source matrix of each user has a beamforming structure.

Simulation results demonstrate that both the proposed Tri-Step and Bi-Step iterative algorithms perform

much better than existing techniques in terms of both MSE and bit-error-rate (BER). Moreover, it is shown

that compared with the Tri-Step algorithm, the Bi-Step algorithm requires less number of iterations till

convergence with only a small degradation in MSE and BER. Such performance-complexity tradeoff is

very important for practical multiuser MIMO relay communication systems. We would like to mention

that such Bi-Step algorithm is not considered in [19].

The rest of this paper is organized as follows. In Section II, the system model of a multiuser MIMO

relay network is introduced. The iterative source, relay, and receive matrices optimization algorithms are

developed in Section III. Section IV shows the simulation results which justify the significance of the

proposed algorithms under various scenarios. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a two-hop multiuser MIMO relay communication system as illustrated in Fig. 1 where

K users transmit information to the same destination node with the aid of one relay node. The ith

user, i = 1, · · · ,K, the relay and the destination nodes are equipped with Ni, Nr, and Nd antennas,
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respectively. We denote Nb =
∑K

i=1Ni as the total number of independent data streams from all users,

and assume that Nb ≤ min(Nr, Nd), since otherwise the system cannot support Nb independent data

streams simultaneously. For simplicity, as in [5]-[16], a linear non-regenerative strategy is applied at the

relay node to process and forward the received signal.

We assume that the relay node works in the practical half-duplex mode. Thus, the communication

between the users and the destination is completed in two time slots. In the first time slot, the Ni × 1

modulated signal vector si is linearly precoded at the ith user by the Ni ×Ni source precoding matrix

Bi. The precoded signal vector

xi = Bisi (1)

is transmitted to the relay node from the ith user. The received signal vector at the relay node can be

written as

yr =

K∑
i=1

Hixi + nr (2)

where Hi is the Nr ×Ni MIMO channel matrix between the ith user and the relay, yr and nr are the

received signal and the additive Gaussian noise vectors at the relay node, respectively. Substituting (1)

into (2), we have

yr =

K∑
i=1

HiBisi + nr = H̄s+ nr (3)

where H̄ , [H1B1, · · · ,HKBK ] is the equivalent multiaccess MIMO channel matrix of the source-relay

link, s ,
[
sT1 , · · · , sTK

]T is the equivalent transmitted signal vector, and (·)T denotes matrix (vector)

transpose. We assume that E
[
ssH

]
= INb

, where In is an n × n identity matrix, (·)H denotes matrix

(vector) Hermitian transpose, and E[·] stands for the statistical expectation.

In the second time slot, the users remain silent and the relay node multiplies (linearly precodes) the

received signal vector yr by an Nr ×Nr relay amplifying matrix F and transmits the signal vector

xr = Fyr (4)

to the destination node. The received signal vector at the destination node can be written as

yd =Gxr + nd (5)

where G is the Nd ×Nr MIMO channel matrix between the relay and the destination nodes, yd and nd

are the received signal and the additive Gaussian noise vectors at the destination node, respectively.
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Substituting (3) and (4) into (5), we obtain

yd =GF

K∑
i=1

HiBisi +GFnr + nd

= [GFH1B1, · · · ,GFHKBK ] s+GFnr + nd = Hs+ n (6)

where H , [GFH1B1, · · · ,GFHKBK ] = GFH̄ is the equivalent MIMO channel matrix of the source-

relay-destination link, and n , GFnr+nd is the equivalent noise vector at the destination. We assume that

the channel matrices Hi, i = 1, · · · ,K, and G are all quasi-static, i.e., the channel matrices are constant

throughout a block of transmission and known to the relay and the destination nodes. In practice, the

channel state information (CSI) of G can be obtained at the destination node through standard training

method. The relay node can have the CSI of Hi, i = 1, · · · ,K, through channel training, and obtain the

CSI of G by a feedback from the destination node. The quasi-static channel model is valid in practice

when the mobility of all communicating nodes is relatively slow. As a result, we can obtain the necessary

CSI with a reasonably high precision during the channel training period. The relay node calculates the

optimal source matrices {Bi} , {Bi, i = 1, · · · ,K}, and the relay matrix F, and forwards Bi to the ith

source node and forwards F and Hi, i = 1, · · · ,K to the destination node. Note that individual users do

not require any channel knowledge. This is a very important assumption for multiuser communication

since in a multiuser scenario the users are distributed and cannot cooperate. We assume that all noises

are independent and identically distributed (i.i.d.) complex circularly symmetric Gaussian noise with zero

mean and unit variance.

Due to its simplicity, a linear receiver is used at the destination node to retrieve the transmitted signals.

Denoting W as an Nd ×Nb weight matrix, the estimated signal vector ŝ is given by

ŝ = WHyd . (7)

III. PROPOSED SOURCE, RELAY, AND RECEIVE MATRICES DESIGN ALGORITHM

In this section we develop the optimal source precoding matrices {Bi}, the relay amplifying matrix

F, and the destination receive matrix W to minimize the MSE of the signal waveform estimation. Using

(6) and (7), the MSE of the signal waveform estimation at the destination is given by

MSE = tr
{
E
[
(ŝ− s)(ŝ− s)H

]}
= tr

{(
WHH− INb

) (
WHH− INb

)H
+WHCnW

}
(8)

where tr{·} is the trace of a matrix, and Cn is the equivalent noise covariance matrix given by

Cn = E
[
nnH

]
= E

[
(GFnr + nd) (GFnr + nd)

H
]
= GFFHGH + INd

.
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From (4), the power of the signal transmitted by the relay node can be expressed as

tr
{
E
[
xrx

H
r

]}
= tr

{
F

(
K∑
i=1

HiBiB
H
i HH

i + INr

)
FH

}
. (9)

From (8) and (9), the joint source, relay, and receive matrices optimization problem for the linear

non-regenerative multiuser MIMO relay system can be formulated as

min
{Bi},F,W

tr
{(

WHH− INb

) (
WHH− INb

)H
+WHCnW

}
(10)

s.t. tr

{
F

(
K∑
i=1

HiBiB
H
i HH

i + INr

)
FH

}
≤ Pr (11)

tr
{
BiB

H
i

}
≤ Pi, i = 1, · · · ,K (12)

where (11) and (12) are the constraints for the transmission power at the relay and the ith user, respectively,

and Pr > 0, Pi > 0 are the power budget available at the relay and the ith source node, respectively.

The optimization problem (10)-(12) is highly nonconvex and a closed-form solution to this problem is

intractable. In the following, we develop two iterative algorithms namely the Tri-Step and the Bi-Step

algorithms to optimize the source, relay, and receive matrices. In the Tri-Step algorithm, the source,

relay, and receive matrices are optimized iteratively through solving convex sub-problems. In the Bi-

Step algorithm, the source and relay matrices are optimized alternatingly and the MMSE receive matrix

is calculated after the convergence of the source and relay matrices. In particular, the relay matrix is

optimized by the Lagrange multiplier method in the Tri-Step algorithm, and by the majorization theory

in the Bi-Step algorithm. The optimal source matrices are obtained by solving semi-definite programming

(SDP) problem in the Bi-Step algorithm, and by solving quadratically constrained quadratic programming

(QCQP) problem in the Tri-Step algorithm.

A. Iterative optimization of source, relay, and receive matrices (Tri-Step Algorithm)

This algorithm starts at a random F and {Bi} satisfying (11) and (12). In each iteration, the source,

relay, and receive matrices are updated alternatingly through solving convex subproblems. Firstly, with

given F and {Bi}, the optimal W is obtained by solving the unconstrained convex problem (10), since

W does not appear in constraints (11) and (12). The solution is the well-known MMSE receiver given

by [22]

W =
(
HHH +Cn

)−1
H (13)

where (·)−1 denotes matrix inversion.
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Secondly, with given W and {Bi}, F can be updated by solving the following problem

min
F

tr
{(

ḠFH̄− INb

)(
ḠFH̄− INb

)H
+ ḠFFHḠH

}
(14)

s.t. tr
{
F
(
H̄H̄H + INr

)
FH
}
≤ Pr (15)

where Ḡ , WHG is the equivalent relay-destination MIMO channel. Using the Lagrange multiplier

method, we obtain F from (14)-(15) as

F = ḠH(ḠḠH + µINb
)−1H̄H(H̄H̄H + INr

)−1 (16)

where µ ≥ 0 is the Lagrange multiplier associated with the power constraint (15). Interestingly, (16)

can be viewed as F = F2F1, where F1 = H̄H(H̄H̄H + INr
)−1 is the weight matrix of the MMSE

receiver for the equivalent first-hop multiaccess MIMO channel at the relay node given in (3), and

F2 = ḠH(ḠḠH +µINb
)−1 can be viewed as the transmit precoding matrix for the effective second-hop

MIMO system y = ḠF2x + v, where x is the transmitted signal vector with E[xxH ] = INb
, and v is

the noise vector with covariance matrix Cv = E[vvH ]. In this MIMO system, the MSE of estimating x

is given by tr
{
E[(y − x)(y − x)H ]

}
= tr

{(
ḠF2 − INb

)(
ḠF2 − INb

)H
+ Cv

}
. The optimal F2 that

minimizes the MSE can be obtained by solving the following problem

min
F2

tr
{(

ḠF2 − INb

)(
ḠF2 − INb

)H}
s.t. tr

{
F2F

H
2

}
≤ Px

where Px is the transmission power constraint. Using the Lagrange multiplier method to solve the problem

above, we obtain F2 = ḠH(ḠḠH + µINb
)−1.

The Lagrange multiplier µ in (16) can be found from the following complementary slackness condition

µ
(
tr
{
F
(
H̄H̄H + INr

)
FH
}
− Pr

)
= 0. (17)

Assuming µ = 0, we have the following F from (16)

F = ḠH(ḠḠH)−1H̄H(H̄H̄H + INr
)−1. (18)

Since in this case (17) is already satisfied, if F in (18) satisfies the constraint (15), then (18) is the

solution to the problem (14)-(15). Otherwise, there must be µ > 0, and from (17) we can see that

tr
{
F
(
H̄H̄H + INr

)
FH
}

= Pr must hold. In this case, µ can be obtained from (15) by solving the

following nonlinear equation

tr
{
ḠH(ḠḠH + µINb

)−1H̄H(H̄H̄H+INr
)−1H̄(ḠḠH+µINb

)−1Ḡ
}
= Pr. (19)

August 2, 2012 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

Let us now define the singular value decomposition (SVD) of Ḡ , UΛVH , where the dimensions of

U, Λ, V are Nb ×Nb,Nb ×Nr, and Nr ×Nr, respectively. Then we have from (19) that

tr
{
Λ(Λ2 + µINb

)−1UHH̄H(H̄H̄H + INr
)−1H̄U(Λ2 + µINb

)−1Λ
}
= Pr. (20)

Denoting Φ , UHH̄H(H̄H̄H + INr
)−1H̄U, (20) can be equivalently written as

Nb∑
i=1

λ2
iΦi,i(

λ2
i + µ

)2 = Pr (21)

where λi and Φi,i are the ith main diagonal elements of Λ and Φ, respectively. Since the left-hand side

of (21) is a monotonically decreasing function of µ > 0, it can be efficiently solved using the bisection

method [23].

Thirdly, with given W and F, we reformulate the problem (10)-(12) as a QCQP problem [23] to update

bi, i = 1, · · · ,K, where bi = vec(Bi) stands for a vector obtained by stacking all column vectors of Bi

on top of each other. Let Ai , WHGFHi and Aii be a matrix containing the
(∑i−1

j=1Nj + 1
)
-th to(∑i

j=1Nj

)
-th rows of Ai. Using the identity of vec(ABC) = (CT⊗A)vec(B) [24], where ⊗ denotes

the matrix Kronecker product, we obtain that

tr
{
WHGFHiBiB

H
i HH

i FHGHW
}
= tr

{
AiBiB

H
i AH

i

}
= bH

i

(
INi

⊗ (AH
i Ai)

)
bi, i = 1, · · · ,K

tr
{
WHGF[H1B1, · · · ,HKBK ]

}
= tr{[A1B1, · · · ,AKBK ]} =

K∑
i=1

tr{AiiBi} =

K∑
i=1

(
vec(AT

ii)
)T

bi.

Thus the MSE in (8) can be expressed as

MSE = tr

{
WHGF

(
K∑
i=1

HiBiB
H
i HH

i

)
FHGHW −WHGF[H1B1, · · · ,HKBK ]

−
(
WHGF [H1B1, · · · ,HKBK ]

)H
+ INb

+WH(GFFHGH + INd
)W

}
=

K∑
i=1

bH
i

(
INi

⊗ (AH
i Ai)

)
bi −

K∑
i=1

(
vec(AT

ii)
)T

bi −
K∑
i=1

bH
i vec(AH

ii ) + t

, bHAb− cHb− bHc+ t (22)

where t , tr{INb
+ WH(GFFHGH + INd

)W}, A , bd
(
IN1

⊗(AH
1A1), · · · , INK

⊗(AH
KAK)

)
, b ,[

bT
1 , · · · ,bT

K

]T , and c ,
[(
vec(AH

11)
)T

, · · · ,
(
vec(AH

KK)
)T ]T , and bd(·) forms a block-diagonal matrix.

Now the MSE in (22) can be equivalently rewritten as

MSE = bHA
1

2A
1

2b− cHA− 1

2A
1

2b− bHA
1

2A− 1

2 c+ cHA− 1

2A− 1

2 c− cHA−1c+ t

=
(
bHA

1

2 − cHA− 1

2

)(
A

1

2b−A− 1

2 c
)
− cHA−1c+ t
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where A
1

2A
1

2 = A and A
1

2 = A
H

2 . Note that we can ignore the term t− cHA−1c while optimizing b

with given W and F, since it is free of the optimization variable b. Assuming Ci , FHi, i = 1, · · · ,K,

the relay transmit power constraint in (11) can be rewritten as

bHCb ≤ Pr − tr
{
FFH

}
where C , bd

(
IN1

⊗ (CH
1 C1), · · · , INK

⊗ (CH
KCK)

)
. Thus the optimization problem (10)-(12) can be

equivalently rewritten as the following QCQP problem

min
b

(
A

1

2b−A− 1

2 c
)H(

A
1

2b−A− 1

2 c
)

(23)

s.t. bHCb ≤ Pr − tr
{
FFH

}
(24)

bHDib ≤ Pi, i = 1, · · · ,K (25)

where Di , bd
(
D̃i1, D̃i2, · · · , D̃iK

)
with D̃ii = INi

and D̃ij = 0, j = 1, · · · ,K, j ̸= i. The QCQP

problem (23)-(25) can be efficiently solved by the disciplined convex programming toolbox CVX [25]

where interior-point method-based solvers such as SeDuMi and SDPT3 are called internally. Since all

subproblems (10), (14)-(15), and (23)-(25) are convex, the solution to each subproblem is optimal. Thus,

the value of the objective function (10) decreases (or at least maintains) after each iteration. Moreover,

the objective function is lower bounded by at least zero.

Now, assuming that W0, {Bi,0}, and F0 are the optimal solution for each subproblem, we have

tr{∇WJ(X0)
T (W −W0)} ≥ 0 (26)

tr{∇Bi
J(X0)

T (Bi −Bi,0)} ≥ 0 (27)

tr{∇FJ(X0)
T (F− F0)} ≥ 0 (28)

where X0 , [W0, {Bi,0},F0] and ∇AJ(X0) is the gradient of the objective function (10) along the

direction of A ∈ {W, {Bi},F} at X0. Summing up (26)-(28), we obtain tr{∇J(X0)
T (X−X0)} ≥ 0,

indicating that X0 is a stationary point of (10). Moreover, it can be seen that X0 must be on the edge

of the feasible set specified by inequalities in (11) and (12) (i.e., (11) and (12) must be satisfied with

equality at X0, since otherwise, one can simply scale F0 and Bi,0 such that the value of (10) is decreased

without violating (11) and (12)). This indicates that X0 cannot be a saddle point and is indeed the local-

optimal solution. Therefore, the proposed iterative algorithm monotonically converges to (at least) a

locally optimal solution. The procedure of solving the problem (10)-(12) using the proposed Tri-Step

iterative algorithm is listed in Table I, where ∥ · ∥1 denotes the matrix maximum absolute column sum

norm, ε is a small positive number close to zero and the superscript (n) denotes the number of iterations.
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B. Simplified source and relay matrices design (Bi-Step Algorithm)

In this subsection, we propose an iterative source and relay matrices design algorithm which has

a smaller computational complexity than the Tri-Step algorithm developed in the previous subsection.

In particular, using the MMSE receiver (13) at the destination node, the MSE of the signal waveform

estimation (8) becomes a function of {Bi} and F as

MMSE = tr
{[

INb
+HHC−1

n H
]−1
}
. (29)

Thus, the joint source and relay optimization problem is given by

min
{Bi},F

tr
{[

INb
+HHC−1

n H
]−1
}

(30)

s.t. tr

{
F

(
K∑
i=1

HiBiB
H
i HH

i + INr

)
FH

}
≤ Pr (31)

tr
{
BiB

H
i

}
≤ Pi, i = 1, · · · ,K. (32)

In this Bi-Step algorithm, we update the source and the relay matrices in an alternating fashion. In each

iteration, for given source matrices {Bi} satisfying (32), we optimize the relay matrix F by solving the

following problem

min
F

tr
{[

INb
+HHC−1

n H
]−1
}

(33)

s.t. tr

{
F

(
K∑
i=1

HiBiB
H
i HH

i + INr

)
FH

}
≤ Pr. (34)

Then using this F, we solve the problem (30)-(32) (with only {Bi} as the optimization variables) to

obtain optimal source precoding matrices {Bi}. Finally, the receive matrix W is obtained as (13) using

the value of {Bi} and F at the convergence point.

Let us now define the following SVDs

H̄ = UsΛsV
H
s , G = UrΛrV

H
r

where the dimensions of Us, Λs, Vs are Nr ×Nr, Nr ×Nb, Nb ×Nb, respectively, and the dimensions

of Ur, Λr, Vr are given as Nd×Nd, Nd×Nr, Nr×Nr, respectively. We assume that the main diagonal

elements of Λs and Λr are arranged in a decreasing order. Based on Theorem 1 in [10], the optimal

structure of F obtained from solving the problem (33)-(34) is given by

F = Vr,1ΛfU
H
s,1 (35)
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where Λf is an Nb ×Nb diagonal matrix, Vr,1 and Us,1 contain the leftmost Nb columns from Vr and

Us, respectively.

It can be seen from (35) that the optimal F diagonalizes the equivalent source-relay-destination MIMO

channel H. Substituting (35) back into (33) and (34), we obtain the problem of optimizing Λf as

min
{λf,i}

Nb∑
i=1

(
1 +

λ2
s,iλ

2
r,iλ

2
f,i

1 + λ2
r,iλ

2
f,i

)−1

(36)

s.t.

Nb∑
i=1

λ2
f,i(λ

2
s,i + 1) ≤ Pr, λf,i ≥ 0, i = 1, · · · , Nb (37)

where λs,i, λf,i, and λr,i are the ith main diagonal elements of Λs, Λf , and Λr, respectively. The problem

(36)-(37) has a water-filling solution which is given by

λf,i =
1

λr,i

 1

λ2
s,i + 1

 λs,iλr,i[
(λ2

s,i + 1)ν
] 1

2

− 1

+
1

2

, i = 1, · · · , Nb (38)

where for a real-valued number x, (x)+ , max(x, 0), and ν > 0 is the solution to the nonlinear problem

of
Nb∑
i=1

1

λ2
r,i

 λs,iλr,i[
(λ2

s,i + 1)ν
] 1

2

− 1

+ = Pr. (39)

Since (39) is a monotonically decreasing function of ν, it can be efficiently solved using the bisection

method [23].

Using the identity of tr
{[

Im +Am×nBn×m

]−1}
= tr

{[
In +Bn×mAm×n

]−1}
+m− n, for a given

feasible F, the objective function (29) can be rewritten as

MMSE = tr
{[

INd
+HHHC−1

n

]−1
}
+Nb −Nd

= tr

{[
INd

+C
− 1

2
n HHHC

− 1

2
n

]−1
}
+Nb −Nd

= tr


[
INd

+C
− 1

2
n GF

K∑
i=1

HiBiB
H
i HH

i FHGHC
− 1

2
n

]−1
+Nb −Nd

= tr


[
INd

+

K∑
i=1

H̃iQiH̃
H
i

]−1
+Nb −Nd

where H̃i , C
− 1

2
n GFHi and Qi = BiB

H
i is the source covariance matrix of the ith user. In the

following, we focus on optimizing Qi. Once we obtain the optimal Qi, the optimal Bi is calculated as

Bi = ΘiΛ
1

2

i Φi, where ΘiΛiΘ
H
i is the eigenvalue decomposition (EVD) of Qi, and Φi is an arbitrary
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Ni × Ni unitary matrix. Considering the transmission power constraints in (31) and (32), the source

covariance matrices {Qi} , {Qi, i = 1, · · · ,K} can be optimized by solving the following problem

min
{Qi}

tr


[
INd

+

K∑
i=1

H̃iQiH̃
H
i

]−1
 (40)

s.t. tr

{
K∑
i=1

QiΨi

}
≤ P̄r (41)

tr{Qi} ≤ Pi, Qi ≽ 0, i = 1, · · · ,K (42)

where Ψi , HH
i FHFHi, P̄r , Pr − tr{FFH}, and for a matrix A, A ≽ 0 means that A is a positive

semi-definite (PSD) matrix.

Let us now introduce a PSD matrix X that satisfies[
INd

+

K∑
i=1

H̃iQiH̃
H
i

]−1

≼ X (43)

where for two matrices A and B, B ≽ A means that B−A ≽ 0. By using (43) and the Schur complement

[23], the problem (40)-(42) can be equivalently converted to the following SDP problem

min
{Qi},X

tr {X} (44)

s.t.

 X INd

INd
INd

+
∑K

i=1 H̃iQiH̃
H
i

 ≽ 0 (45)

tr

{
K∑
i=1

QiΨi

}
≤ P̄r (46)

tr{Qi} ≤ Pi, Qi ≽ 0, i = 1, · · · ,K . (47)

We use the CVX software package [25] to solve the problem (44)-(47). Now the original source and relay

matrices optimization problem (30)-(32) can be solved by an iterative technique as shown in Table II.

Since the problem (36)-(37) is a convex optimization problem, the conditional update of F(n) will

not increase (36) and hence the objective function (30). Similarly, the problem (44)-(47) is also convex,

and the conditional update of Q
(n)
i cannot increase (44) and hence the value of (30). Therefore, each

conditional update of F(n) and Q
(n)
i may either decrease or maintain but cannot increase the objective

function (30). Note that the constraints in the problem (30)-(32) are always satisfied with every conditional

update. Similar to the justification for the Tri-Step algorithm, a monotonic convergence of F(n) and Q
(n)
i

towards (at least) a locally optimal solution follows directly from this observation.
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The numerical solution to the problem (44)-(47) does not provide sufficient insight to the structure of

the optimal Qi. Interestingly, by solving the problem (40)-(42) applying the Lagrange multiplier method,

we obtain the following theorem for the structure of the optimal Qi.

THEOREM 1: The optimal source covariance matrix Qi for the ith user as the solution to the problem

(40)-(42) has the following general beamforming structure

Qi = Vhi
Λ−1

hi,1
UH

hi,1(ViJiV
H
i −Di)

†Uhi,1Λ
−1
hi,1

VH
hi
, i = 1, · · · ,K (48)

where Di , INd
+
∑K

j=1,j ̸=i H̃jQjH̃
H
j , (·)† stands for the projection to the set of Nd×Nd PSD matrices,

H̃i = [Uhi,1 Uhi,2
][Λhi,1 0 ]TVH

hi
and K−1

i H̃H
i = Ui[Σi 0 ]VH

i are the SVDs of H̃i and K−1
i H̃H

i ,

respectively, and Ji , bd(Σi,∆i,2). Here KiK
H
i = λ1Ψi + λ2INi

, λ1 ≥ 0, λ2 ≥ 0 are the Lagrange

multipliers, and ∆i,2 is an (Nd −Ni)× (Nd −Ni) diagonal matrix.

PROOF: See Appendix A. �
The unknown Lagrange multipliers λ1 and λ2 in (48) can be found by solving the dual optimization

problem associated with the problem (49)-(51) in Appendix A. Note that the optimal structure of the

source covariance matrices in (48) can be viewed as Qi = H̃♯
iΛi

(
H̃♯

i

)H
, i = 1, · · · ,K, where (·)♯ denotes

matrix pseudo-inverse and Λi , (ViJiV
H
i −Di)

† is the power-loading matrix. Note that (48) indicates

that the power distribution at each user needs to be adapted to the current power levels of all other users.

The pseudo-inverse in Qi, i = 1, · · · ,K, indicates that the source covariance matrix of the ith user needs

to match the corresponding source-relay-destination channel.

In summary, matrices W, F, and {Bi} are optimized in each iteration of the Tri-Step algorithm, where

the major computation task lies in solving the QCQP problem (23)-(25). The amount of computation

required for updating W and F is negligible compared with that of solving the QCQP problem. The

complexity order of solving the problem (23)-(25) using the interior point method [26] is O
(
(
∑K

i=1N
2
i )

3
)
.

In each iteration of the Bi-Step algorithm, F and {Bi} are optimized. Here the major computation

task is solving the SDP problem (44)-(47), which has a complexity order of O
(
(
∑K

i=1N
2
i )

3.5
)

using the

interior point method [26]. Therefore, the per iteration computational complexity of the Bi-Step algorithm

is slightly higher than that of the Tri-Step algorithm. However, the overall computational complexity of

both iterative algorithms also depends on the number of iterations they need till convergence, which will

be studied in Section IV (see Table III).

IV. SIMULATIONS

In this section, we study the performance of the proposed optimal multiuser MIMO relay algorithms

through numerical simulations. For simplicity, we consider a system with two users. The extension to
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K > 2 users is straight-forward. The two users, relay and destination nodes are all equipped with multiple

antennas. We simulate a flat Rayleigh fading environment where the channel matrices have entries with

zero mean and variances σ2
g/Nr, σ2

h,i/Ni, for G, Hi, i = 1, 2, respectively. We define

SNRr−d ,
σ2
gPrNd

Nr
, SNRsi−r ,

σ2
h,iPiNr

Ni
, i = 1, 2

as the signal-to-noise ratio (SNR) of the relay-destination and user-i-relay links, i = 1, 2, respectively. For

simplicity, we assume N1 = N2 = Ns and SNRs1−r = SNRs2−r = SNRs−r throughout the simulations.

All simulation results are averaged over 1000 independent channel realizations.

We compare the performance of the proposed Tri-Step and Bi-Step algorithms with the naive amplify-

and-forward (NAF) algorithm, and the pseudo match-and-forward (PMF) algorithm in terms of both

MSE and BER. For the Tri-Step algorithm, the procedure in Table I is carried out to obtain the optimal

relay and source matrices, whereas for the Bi-Step algorithm, the steps defined in Table II are followed.

For both algorithms, we use the CVX Matlab toolbox for disciplined convex programming [25] to find

the optimal source precoding matrices. For the NAF scheme, we use Bi =
√

Pi/Ni INi
, i = 1, 2, and

F =
√

Pr/tr{H̄H̄H + INr
} INr

. For the PMF algorithm, the same Bi in the NAF algorithm is taken

and F =
√

Pr/tr{(H̄G)H(H̄H̄H + INr
)H̄G} (H̄G)H . Both the NAF and the PMF algorithms use the

MMSE receiver at the destination node.

In the first two examples, we compare the performance of the proposed algorithms with the other two

approaches in terms of MSE normalized by the number of data streams (NMSE) for Ns = 2, Nr = 4, and

Nd = 4. Fig. 2 shows the MSE performance of all tested algorithms versus SNRs−r with SNRr−d = 20dB,

whereas Fig. 3 illustrates the MSE performance of tested algorithms versus SNRr−d for an SNRs−r fixed

at 20dB. Our results clearly demonstrate the better performance of the proposed iterative joint source and

relay optimization algorithms. It can be seen that the proposed optimal algorithms consistently yield the

lowest MSE over the entire SNRs−r and SNRr−d region. The NAF and PMF algorithms have much higher

MSE compared with the proposed schemes even at very high SNR. Note that the MSE performance of

both the Tri-Step algorithm and the Bi-Step algorithm are almost similar to each other.

In the next example, we compare the performance of the four algorithms in terms of BER. QPSK

signal constellations are used to modulate the transmitted signals. We set Ns = 3, Nr = 6, Nd = 6, and

transmit 3000 randomly generated bits from each user in each channel realization. Fig. 4 shows the BER

performance of all algorithms versus SNRs−r for SNRr−d = 20dB.

In the fourth example, we compare the BER performance of the algorithms varying the SNR in the

relay-destination channel. This time we set Ns = 2, Nr = 6, Nd = 8, and transmit 3000 randomly
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generated bits from each user in each channel realization using QPSK signal constellations. Fig. 5 shows

the BER performance of the algorithms versus SNRr−d for SNRs−r = 20dB. Note that in contrast to

other three schemes, the PMF algorithm requires Nb = Nd, and thus, its performance cannot be included

in Fig. 5.

It can be seen from Fig. 4 and Fig. 5 that the proposed joint source and relay optimization algorithms

obtain the lowest BERs compared with the other approaches. Interestingly, the BER performance of the

Tri-Step algorithm is slightly better than that of the Bi-Step algorithm, especially at the high SNR region.

The reason is that in the Tri-Step algorithm, we update the receiver weight matrix at each iteration

in addition to the source and relay matrices. Although the Tri-Step algorithm performs better than the

Bi-Step algorithm, the former algorithm requires a larger number of iterations than the latter one to

converge to the same ε. For comparison, the number of iterations both algorithms require in a typical

run to converge up to ε = 10−3 are listed in Table III. Here we set Ns = 2, Nr = 6, Nd = 6

and SNRr−d = 20dB. Therefore, based on the per iteration complexity of two algorithms discussed in

Section III and the number of iterations they need to converge, the overall computational complexity

of the Bi-Step algorithm is smaller than that of the Tri-Step algorithm when the number of antennas

at each user is small (which is the case in practical uplink multiuser communication systems). Such

performance-complexity tradeoff is very important for practical multiuser MIMO relay communication

systems.

In the last example, we compare the BER performance of the proposed algorithms for different number

of antennas at the relay and the destination nodes with a fixed number of antennas at the source nodes.

Fig. 6 compares the BER performance of the proposed algorithms versus SNRr−d for SNRs−r = 20dB

with different number of antennas. It can be clearly seen from Fig. 6 that as we increase the number

of antennas at the relay and/or destination node(s), the performance of the proposed algorithms improve

significantly.

V. CONCLUSIONS

We developed the optimal structure of the source precoding matrices and the relay amplifying matrix

in a multiuser MIMO relay network to jointly minimize the MSE of the signal waveform estimation. We

proposed two iterative algorithms to optimize the source, relay, and receive matrices. Simulation results

demonstrate that the proposed algorithms outperform the existing techniques in terms of both MSE and

BER.
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APPENDIX A

PROOF OF THEOREM 1

To determine the structure of the optimal source covariance matrix Qi for the ith user, we rewrite the

problem (40)-(42) with given Qj , j = 1, · · · ,K, j ̸= i as

min
Qi

tr

{[
Di + H̃iQiH̃

H
i

]−1
}

(49)

s.t. tr{QiΨi} ≤ P̃r (50)

tr{Qi} ≤ Pi, Qi ≽ 0 (51)

where P̃r , P̄r − tr
{∑K

j=1,j ̸=iQjΨj

}
. The Lagrangian function associated with the problem (49)-(51)

is given by

L = tr

{[
Di + H̃iQiH̃

H
i

]−1
}
+ λ1

(
tr{QiΨi} − P̃r

)
+ λ2 (tr{Qi} − Pi)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers. Making the derivative of L with respect to Qi

be zero, we obtain

∂L
∂Qi

= −H̃H
i

(
Di + H̃iQiH̃

H
i

)−2
H̃i + λ1Ψi + λ2INi

= 0. (52)

By introducing an invertible matrix Ki with KiK
H
i = λ1Ψi + λ2INi

, (52) becomes

K−1
i H̃H

i

(
Di + H̃iQiH̃

H
i

)−2
H̃iK

−H
i = INi

. (53)

Obviously, (53) is valid if and only if

K−1
i H̃H

i = Pi

(
Di + H̃iQiH̃

H
i

)
(54)

where Pi is an Ni ×Nd semi-unitary matrix with PiP
H
i = INi

.

Let us introduce the following SVD and EVD

K−1
i H̃H

i = Ui[Σi 0 ]V
H
i , Di + H̃iQiH̃

H
i = [Li,1 Li,2 ]bd(∆i,1,∆i,2)L

H
i (55)

where the dimensions of Ui, Vi, Li are Ni × Ni, Nd × Nd, and Nd × Nd, respectively, Li,1 and Li,2

contain the leftmost Ni columns and the rightmost Nd −Ni columns of Li, respectively, and Σi, ∆i,1,

∆i,2 are Ni×Ni, Ni×Ni, and (Nd−Ni)× (Nd−Ni) diagonal matrices, respectively. Substituting (55)

back into (54), we have

Ui[Σi 0 ]V
H
i = [PiLi,1∆i,1 PiLi,2∆i,2 ]L

H
i . (56)
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Equation (56) holds if and only if Pi = UiL
H
i,1, ∆i,1 = Σi, and Li = Vi. Thus, from (55) we have that

Di + H̃iQiH̃
H
i = ViJiV

H
i (57)

where Ji , bd(Σi,∆i,2). Let us introduce the SVD of H̃i as

H̃i = [Uhi,1 Uhi,2
][Λhi,1 0 ]

TVH
hi

(58)

where the dimensions of Uhi,1, Uhi,2, Vhi
are Nd × Ni, Nd × (Nd − Ni), and Ni × Ni, respectively,

Λhi,1 is an Ni×Ni diagonal matrix. By substituting (58) back into (57) and solving (57) for Qi, we have

Qi = Vhi
Λ−1

hi,1
UH

hi,1
(ViJiV

H
i −Di)Uhi,1Λ

−1
hi,1

VH
hi

. Finally, taking into account the constraint (51), we

obtain (48).
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TABLE I

PROCEDURE OF SOLVING THE PROBLEM (10)-(12) BY THE TRI-STEP ALGORITHM

1) Initialize the algorithm with B
(0)
i =

√
Pi/Ni INi , i = 1, · · · ,K, and F(0)=

√
Pr/tr{H̄H̄H + INr} INr ; Set n = 0.

2) Update W(n) using {B(n)
i } and F(n) as in (13).

3) Update F(n+1) as in (16) using given W(n) and {B(n)
i }.

4) Solve the subproblem (23)-(25) using known F(n+1) and W(n) to obtain B
(n+1)
i , i = 1, · · · ,K.

5) If maxi

∥∥B(n+1)
i −B

(n)
i

∥∥
1
≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2.

TABLE II

PROCEDURE OF SOLVING THE PROBLEM (30)-(32) BY THE BI-STEP ALGORITHM

1) Initialize the algorithm with Q
(0)
i = Pi/NiINi , i = 1, · · · ,K; Set n = 0.

2) Solve the subproblem (33)-(34) using given Q
(n)
i , i = 1, · · · ,K, to obtain F(n) as in (35).

3) Solve the subproblem (44)-(47) using known F(n) to obtain Q
(n+1)
i , i = 1, · · · ,K.

4) If maxi

∥∥Q(n+1)
i −Q

(n)
i

∥∥
1
≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2.

TABLE III

ITERATIONS REQUIRED TILL CONVERGENCE IN THE PROPOSED ALGORITHMS

SNRs−r (dB) 0 5 10 15 20

Bi-Step algorithm 2 3 3 5 6

Tri-Step algorithm 6 6 10 19 22
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Fig. 1. Block diagram of a K-user linear non-regenerative MIMO relay communication system.

0 5 10 15 20
10

−1

10
0

SNR(dB):Source−Relay Link

N
M

S
E

 

 

PMF Algorithm
NAF Algorithm
Bi−Step Algorithm
Tri−Step Algorithm

Fig. 2. Example 1: Normalized MSE versus SNRs−r. Ns = 2, Nr = 4, Nd = 4, SNRr−d = 20dB.
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Fig. 3. Example 2: Normalized MSE versus SNRr−d. Ns = 2, Nr = 4, Nd = 4, SNRs−r = 20dB.
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Fig. 4. Example 3: BER versus SNRs−r. Ns = 3, Nr = 6, Nd = 6, SNRr−d = 20dB.
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Fig. 5. Example 4: BER versus SNRr−d. Ns = 2, Nr = 6, Nd = 8, SNRs−r = 20dB.

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB):Relay−Destination Link

B
E

R

 

 

Bi−Step Algorithm
Tri−Step Algorithm

N
s
 = 2, N

r
 = 6, N

d
 = 8

N
s
 = 2,  N

r
 = 6,  N

d
 = 6

N
s
 = 2, N

r
 = 4, N

d
 = 4

Fig. 6. Example 5: BER versus SNRr−d. Varying number of antennas, SNRs−r = 20dB.
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