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Abstract—This paper presents a novel differential energy de- in the literature: 1) through an ubiquitous connection te th
tection scheme for multi-carrier systems, which can form fatand  database, 2) a dedicated standardised channel to broadcast
reliable decision of spectrum availability even in very lowsignal- a beacon signal, 3) spectrum sensing [3]. Recently, Federal
to-noise ratio (SNR) environment. For example, the proposk L2 . T :
scheme can reac)0% in probability of detection (PD) and 10% Commu_nlcatlon_Com.mltte.-e (FCC) [4] considered database
in probability of false alarm (PFA) for the SNRs as low as—21 connection for inclusion in the IEEE 802.22 standard [5].
dB, while the observation length is equivalent toe2 multi-carrier ~ However, it has been shown in [6] that the geo-location
symbol duration. The underlying initiative of the proposed database solution might incur additional costs, e.qg.,aligy
scheme is applying order statistics on the clustered diffemtial  ,\6rhead, scheduling complexity and database maintenance
energy-spectral-density (ESD) in order to exploit the chanel oo “Novertheless, spectrum sensing, thanks to itsveiat
frequency diversity inherent in high data-rate communicaions. = » SPp - > 9 )
Specifically, to enjoy a good frequency diversity, the clugring 0w infrastructure cost, still receives more and more diben
operation is utilized to group uncorrelated subcarriers, while, the  Therefore, proposed by the Office of Communications (Ofcom)
differential operation applied onto each cluster can effetively [7] a complementary application of both spectrum sensing
remove the noise floor and consequently overcome the impact g gatabase connection can provide a practical solution fo
of noise uncertainty while exploiting the frequency divergy. bli t ilabilit itori
More importantly, the proposed scheme is designed to allow enabling spec rum aya|a ||y_mon| orl.ng_. _
robustness in terms of both, time and frequency offsets. Inmler Spectrum sensing is a traditional topic in the scope of $igna
to analytically evaluate the proposed scheme, PFA and PD for processing for mobile communications. It is quite mature ye
Rﬁy'e'ghrad'”g l"h.a‘””‘;'. arg de”"ed'hT he C'Os.ed‘forrp eXp'&s'O';S for carrier sense multiple access (CSMA) [8] based random
show a clear relationship between the sensing performancen S ” o
the cluster size, which is an indicator of the dive.rsitly gain aclcess netV\r/10r|||<S, l.e., I'Séen bs;‘ore ta”f C?mmun'capmo' )
Moreover, we are able to observe up tol0 dB gain in the COIS. Newc allenges and problems arise for spectrum sgnsin

in flexible networks, e.g., cognitive radio, where it is reqd

performance compared to the state-of-the-art spectrum sesing
schemes. to meet the following three requirements.

Index Terms—Differential, energy detection, low signal-to-

. . i . ! « Fast spectrum sensingSince it is not possible to trans-
noise ratio (SNR), multi-carrier, spectrum sensing.

mit and sense simultaneously at a particular frequency
band, sensing has to be interleaved with data transmission.
Hence, the required observation time (or window) should
be as short as possible in order to maximise the overall
throughput.

« High accuracy. The spectrum sensing device identifies
vacant spectrum bands by detecting presence of primary
signal, i.e., by performing a binary hypothesis test. With

I. INTRODUCTION

PPORTUNISTIC SPECTRUM ACCESS (OSA) [1], first
coined by Mitolaet al. [2] under the term “spectrum
pooling” in cognitive radio terminology, promises tremend

gain in improving spectral efficiency. The main objective  5ise and fading available in any communication system,
of OSA is to offer the ability of identifying and exploiting sensing errors are inevitable. For example, false alarm
the under-utilized spectrum in an instantaneous manner in a . rs when an idle channel is detected as busy, and miss
wireless device, without any user intrusion. This allows th detection occurs when an occupied channel is declared as
wireless devices to rapidly change their modulation scheme e |n the occasion of a false alarm a transmission oppor-
and communication protocol so as to better and more efficient tunity is overlooked, resulting in waste of the spectrum,

communication. The initial requirement of any OSA device is e miss detection leads to collision with primary users
to determine the spectrum availability. There are thresiptes and hence, interference.

solutions for monitoring the spectrum availability propds
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o Low complexity. The computational complexity of the

sensing device should be kept as low as possible in
order to reduce the signal processing time, device energy
consumption as well as the infrastructure cost.

In addition, it is becoming increasingly demanding for
delivering reliable spectrum sensing in very low signal-to
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can be identified.



A. Related Work significantly when signals are approximately Gaussian.
Entropy-based spectrum sensing can be thought of as

_ Spectrum sensi_ng has been quite well investigated in the an approach which also benefits from this property [22].
literature, for which there are many approaches reported. Tpe hropanility space is partitioned into fixed dimensions

:jn_ %er;jeral thﬁ ex'smg spectru.m §ensmg approaches can be and the Shannon entropy is employed as the information
lvided Into three main categories: measure of the received signal, acting as the test statistic

« Exploiting energy difference. The most well-known A complete survey on the existing spectrum sensing tech-
spectrum sensing approach developed under this categqiues can be found in [23]-[25].
is the energy detection [9]. The energy detection is |t js realized that existing schemes can hardly meet the
recognized as a blind sensing scheme with advantaggguirements of a fast and accurate spectrum sensing partic
such as low complexity and low latency. However, ifjjarly in very low SNR range, (considering that the target
is very sensitive to the noise uncertainty such that i&SNR for a reliable spectrum sensing sensitivity is abeR
performance is limited by the SNR wall [10]. In thegp [5]) without introducing high complexity to the system.
last four decades since the publication of [9], manyhis observation motivates us to develop a new local spectru
solutions have been developed to make energy detectigthsing scheme, which can significantly improve the sthte-o

more robust in terms of SNR wall (e.g., [11]-[13])the-arts and provides a practical solution.
yet the noise uncertainty problem in spectrum sensing

approaches based on the energy difference still exists. .

« Exploiting stationarity difference. The initial works B- Contribution
of spectrum sensing through stationarity difference canThe key contribution presented in this paper is a novel
be traced back to work of Dandawaét al. in [14], spectrum sensing scheme namely, cluster-based diffalemnti
where second order cyclostionarity is employed. Thergy detection. It has several distinctive features inicigdow
cyclostationarity based scheme can trade latency wititency, high accuracy reasonable computational contylexi
high sensing reliability. It is less sensitive to the noisas well as robustness to very low SNR. For example, the
uncertainty, provided the knowledge of the signals cycligroposed scheme can reagh’ in probability of detection
frequency [15]. The wavelet scheme is able to perfor@®D) and 10% in probability of false alarm (PFA) for an
wide-band sensing with the aid of edge detection [LEBNR as low as—21 dB, while the observation window is
It is particularly useful for fast coarse spectrum sensingguivalent to2 multi-carrier symbol duration. The proposed
based on a number of non-stationary samples, hensgheme at this stage is specially designed for sensing-multi
making use of the signals non-stationarity features. Fiarrier sources but we would argue that most of the current
spectrum sensing is further required in order to determiaed future mobile networks are multi-carrier based systems
the vacancy of specified frequency bands. In additiomnd thus it has a wide implication for practical application
the Wigner-Ville based spectrum sensing [17] derives The key idea of the proposed scheme is to exploit the
a greyscale image of the time-frequency description channel frequency diversity inherent in high data-rate com
the received signal through the Wigner-Ville transfornrmunications using the clustered differential ordered gyer
and, similar to wavelet based detection, with the aispectral density (ESD). Specifically, after the ESD computa
of edge detection is able to detect occupied frequentign, the clustering operation is utilized to group unctated
bands. Matched-filtering pilot based detection, given theubcarriers based on the coherence bandwidth to enjoy a good
knowledge of pilot symbols, reasonably good timing anftequency diversity. The knowledge of coherence bandwidth
frequency synchronizations, exploits the cyclostatipnadoes not need to be very accurate (in this paper we employ
property of the pilot symbols to deliver fast and reliabl¢he reciprocal of the maximal channel delay). Furthermore,
sensing [18]. Furthermore, the eigenvalue-based detectimaking use of order statistics of the estimated ESD, we éarth
scheme exploits orthogonality between the signal suberease the reliability of the sensing algorithm.
space and noise subspace using second order stationarity order to exploit the second order moment diversity of the
features to offer highly reliable spectrum sensing [19bserved signal, a differential operation is performed foa t
However, it often needs the support of multiple antennaank ordered ESD. When the channel is frequency selective
and the subspace decomposition costs cubic complexigynd the noise is white, the differential process can effebti

« Exploiting the distribution difference. Given that in al- remove the noise floor resulting in elimination of the noise
most all communication system models, noise is assumedcertainty impact which is the main factor making energy
to be additive, white and Gaussian, one can determine tihetection reluctant [10]. At the final stage of the proposed
vacancy of a particular frequency band by observing tleeheme, the differential rank ordered ESD within different
difference of the received signals distribution and that afusters are linearly combined in order to further reduae th
the additive white Gaussian noise (AWGN). An exampleffect of impulse/spike noise. Binary hypothesis testisg i
of such approaches would be the kurtosis-type schertteen applied on either the maximum or the extremal quo-
which exploits the non-Gaussianity of communicatiotient (maximum-to-minimum ratio) depending on the wireles
signals [20] [21]. This scheme features excellent accuraclgannel characteristics of the sensed environment. More im
at the price of large latency, due to higher-order statistiportantly, the proposed spectrum sensing scheme is designe
A critical point is that the sensing performance degradés allow robustness in terms of both, time and frequencyetbffs



In order to analytically evaluate the proposed scheme, bathd non-linear distortions due to imperfect electro congms
PD and PFA are derived for Rayleigh fading channels. TH28]. But in this paper, we will focus on those major physical
closed-form expression shows a clear relationship betwedistortions, (i.e., frequency selective channel, noisging and
the sensing performance and the cluster size, i.e., chanfnetiuency offsets) in order not to diverge the presentatibn
coherence bandwidth, which is an indicator of the diversithe key concept.
gain. Computer simulations are carried out in order to extalu  Given that the spectrum sensing device knows some key
the effectiveness of the proposed approach and to comppagameters of the operating air-interface such as the block
the performance of the proposed scheme with state-of-thength.J, the number of subcarriefd, and the block duration
art spectrum sensing schemes where upl@odB gain in 7T, the received continuous-time signal is sampled at the

performance can be observed. sampling period ofl; = (7})/(J). Hence, the timing offset
The rest of this paper is organised as follows, in Sectiagran be expressed into two parts: the integer timing offset
Il, the system model and problem formulation for practicale = |(¢/7y)] and the fractional timing offsete — n.),

multi-carrier communication environment are providedeThwhere |-| denotes the floor operator. It is understood that
proposed differential energy detection scheme is predentbe fractional timing offset can be incorporated into the
in Section Il along with possible solutions for overcominghannel impact. Hence, the discrete-time equivalent fofm o
physical impairments and further discussions. The thamlet the received signal is [29]

analysis of the proposed technique in terms of two classical r
metrics, PFA and PD, are prowde(_:i in section IV foIIOW(_ad Vi = QnZhKXkJ-Q—n—é—ne + v, 3)
by numerical results and computational complexity. Sectio —o

\% presents th(_e simulation results, and finally conclusiaes Qvheres denotes the upper bound of channel order(.J —
drawn in Section VI.

M), Q" £ exp (£272¢), and the block index = [(n)/(J)].

Consider anJ x 1 Vectoryx = [Yrst1,Yes+2, s Yei+J] s

Il. SYSTEM MODEL AND PROBLEM FORMULATION where ()7 stands for the matrix transpose, then (3) can be
A. Multi-Carrier Systems expressed as the matrix form
1) Transmitted Sgnal: A general framework of multi- Vi = Qu(A(n)xy + V(no)xp_1) + vy, (4)
carrier systems has been presented in [26]. The transmitted —

signal can be expressed in the matrix fosy,= ¥s;, where B

X is an J x 1 transmitted signal blocks;, is an M x 1 Where§, £ diag{Q*/+D) Q*k/+2) - QkI+NL 4 is the
information-bearing symbol block with the covariane#l,, corresponding noise vecta\(n.) is a lower triangle channel
(M stands for the number of subcarriers, ahg for the matrix, andV(n.) is a upper triangle channel matrix. The
identity matrix of sizeM), ¥ is an.J x M (J > M) tall detailed layout of both channel matrices depends on the
pre-coding matrix with full column rank, and subscriptis timing offsetn., and the termV (n.)x;_; is the inter-block
the block index. There are two conventional approaches foterference (IBI).
implementing the pre-coding matrik, i.e.,

B. Effect of Second Order Moment

T
CP: ¥ 2 [.’Fg) .’FH] P 1) The second-order moments ¢f in (4) can be computed
as below
A \I:é[}'H O}Té ) Hy_ o HAH
S E(yryi )= 0s Ane) ¥ W™ AT (ne)
whereF is the M x M normilized discrete Fourier transform +02V (n) @O VH (n.) + NI, (5)

(DFT) matrix [27], ., in (2) is formed by collecting the last where N, is the noise power. It is observed that the above

(J — M) columns of F, ® is an M x M full rank matrix. : ; .
This paper is focused on the cyclic prefix (CP) based systeanSUIt Is constant with respect to the block indexand the

since it has been widely deployed in practical networks oue €' frequ(_ency offset (CFO) impact has been completely
; NN . removed. This means that the second-order moments, of
its advantages, e.g., eliminating inter-symbol intenfiereand

handling multi-path channels [28]. Nevertheless, it isvamo has.a period Of;{' Furthermore, highly likely the dlago_nal
. ; . entries ofE(y.y, ), forn =1,2,...,J, are not constant with
in Section 11I-C how the proposed spectrum sensing scheme . o

ect to the index due to the frequency selectivity nature

. ) es
can be easily extended to the zero-padding (ZP) based sys{)err}ﬂe communication channels in high data rates.

in (2)‘. : : . . Remark: In practice, the processing (5), i.e., ensemble
2) Sgnal Analysis at the Sensing Device: Consider a . ' : ' '
ﬁ\éerage, is replaced by the time average

wireless device sensing a particular frequency band, in t
absence of the multi-carrier signal, the device can onlgivec 1 &=L

noise, otherwise, it receives a signal distorted by theufeegy- YEYk y K YeYk )

selective channel (denoted by, timing offset (denoted by), k=0

frequency offset normalized by the subcarrier spacinggtégh where K is the number of observation windows agg- is
by ¢), and additive white Gaussian noise (denoted )y an J x J matrix. The above substitution is due to limited
Indeed, there are many other distortions such as phase ngisgcessing time available. This would result in fluctuatain



the ESD of AWGN (generation of impulse or heavily taileddenoted byh,,). Let q&fT to be themth row vector of ®.
noise). Hence, affecting the performance of any spectrurs-seHence, thenth diagonal entry ofzg reads as

ing algorithms regardless of what scheme is being employed.

C. Satement of The Spectrum Sensing Problem

The general problem of spectrum sensing is modelled
the binary hypothesis testing with hypothesisks; when the
signal is absent; an@{;, when the signal is present.

The specific problem of interest in this paper is: given thﬁe
noisevy to be white Gaussian, and independent of the muly-
carrier signalx; which is second-order cyclostationary with
the period of N, what is the efficient way to determine the
presence of the signal formulated in (3) specifically, in low
SNR range?

[&g}m - 0.52|ilm|2”¢)m”2 +N0? m = 1725' c ,M

(11)

where||-||? denotes the Frobenius norm. Note that the above ex-
%rsession is equivalent to the ESD computation. In many multi
carrier systems such as OFDM, multi-carrier code division
multiple access (MC-CDMA), and single-carrier frequency
division multiple access (SC-FDMA), the terip,, ||? is
ormalized [28]. Therefore, thge,, | term in (11) can be
|bnored leading to

[ég} = 052|;Lm|2 _|_N0’ m=1,2---,M. (12)

Based on (12), we propose a cluster-based differential en-

It is understood that the random sequence has the €rgy detection technique with the following steps. An ovemw
property E(x,xf) = E(xz+nxl, ) due to its cyclosta- of the propo:sed technique is illustrated in Fig. 1.
tionary property [27], and the random sequengesatisfies S1) Group[Cy]m,, for m = 1,2,..,M, into B = M/L

E(vivH) = Np. In other words, in the absence of signal,
i.e., Ho, the random sequence of observatign. } is a white
process, otherwise, i.e*{;, a second-order cyclostationary
process. Furthermore, as mentioned in Section II-B, making
use of second-order moment{f;, } results in overcoming the
CFO phenomenon. Hence employing second order moment
yields the hypothesises

2
XQK’

X3 (2NA0—1) . Hi 0

E(yryr) = Cy° ~ {

and
A =2 An )OI AE (n) + 02V (n. ) @OEVH (n,) (8)

whereX, and X3, (a) denote a central Chi squared distribu-
tion with 2K degrees of freedom, and non-central Chi squared
with non-centrality factow respectively. Thus, if the SNR of
the received signal, i.e.N%, was fairly high the hypothesis
test in (7) will be trivial. The problem of interest in this er

is to consider spectrum sensing in very low SNR which, given
(7), is a rather challenging problem.

IIl. CLUSTER-BASED DIFFERENTIAL ENERGY DETECTION

A. Sensing of CP-Based Multi-Carrier Sgnals

Form an M x M matrix é;“ by collecting the lastM
columns and rows of < defined in (6). Consider the special
case where the timing offset = 0, i.e.,C?,. Due to the effect
of CP, the second term at the right hand of (5) vanishes, i.e.,
IBI is removed, and the residual term can be written as

whereC,, is anM x M circulant channel matrix defingd in
[26]. Then, anM-point DFT operation is performed oﬁg

leading to
égé .’F@S, = 02Dy @S DY, + N1y, (10)

whereD,; £ FCyF isanM x M diagonal matrix, whose
diagonal entries are in fact the channel frequency response

clusters with each cluster having elements. The math-
ematical form of each cluster can be expressed by

qi £ [[ng]lv [ng]i+37"' ) [cg]i+(L—l)B]T7 i=1,2,.,B.

(13)
The grouping criteria are: c1) elements within each cluster
are statistically uncorrelated or weakly correlated; dR) a
clusters are almost identical or strongly correlated in the
noiseless case, i.eqy = q2 = ... = qg. The criterion
cl) is to assure that the channel gain within each cluster
is sufficiently selective since the proposed differential
energy detection technique aims to take advantage of
the spectrum fluctuation induced by channel frequency
selectivity. The criterion ¢2) is mainly for the purpose of
de-noising through linear combination of all clusters on
the step S3). Here, the noise is mainly referred to the
residual noise after the second-order statistics (6).
In order to fulfil the criteria c1) and c2), we first di-
vide the whole frequency band intb sub-bands with
each accommodating subcarriers. The mathematical
form of the ith sub-band is_ expressible agy
([CY)—1)B+1: [Col -1y B2 s [CYliB]T, 1= 1,2, L.
When the bandwidth of each sub-band is smaller than
the channel coherence bandwidth, all elementp;imre
highly correlated or approximately identical. Moreover,
we can configure the paramet@isuch that the bandwidth
of the grouplp/’, [Cy]iz+1]" is larger than the coherence
bandwidth such that any two adjacent sub-bands are
weakly correlated or even statistically independent. With
the above configuration to be satisfied, the clusier
can be generated through block wise interleaving of
pi, 1=1,2,.. L.
The above statement implicitly indicates that the cluster-
ing process requires the knowledge of the coherence band-
width which can be computed assuming the availability
of accurate channel models. In case the accurate channel
models are not available at the sensing device, we can
use the upper bound of channel ordeto approximately
estimate the coherence bandwidth (for instance we can let
B = | M/L] since the coherence bandwidth is generally



Fig. 1.
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Block diagram of the cluster-based differential rggedetection algorithm.

inversely proportional to the channel order). Although,
there is no optimal approach proposed to configure the
parameterB, our simulation results in Section V demon-
strate excellent performance when using the configuration
B=|M/L].

It might also be worth mentioning that the idea of sub-
carrier clustering has recently received a lot of interests
particularly for improving the communication quality and
spectral efficiency in cognitive communications [30]-[33]
However, in our work, the subcarrier clustering is for
improving the performance of spectrum sensing.

S2) Sortq, in an ascending manner, and apply differentiation

on each cluster respectively. This can be viewed as a
rank conditioned rank selection process [34], where the
order can change in an adaptive manner from zero to
L. Advantages of such filtering process would be the
insensitivity towards heavy tailed noise and impulsive
noise while preserving the edge information [34]-[36].
The sorting operation allows smoothing of the input
without affecting the statistics of the overall input. Fur-
thermore, the differential operation allows us to observe
the available second order moment diversity.

As it can be observed from (12), the sorting function will
not have an effect ifi{, scenario given thad;|Ho = No.
When considering a more practical scenario, i.e., limited
number of samples, (ensemble aver&{e replaced by
the time average (6)) we will experience noise power
fluctuations. Thusg;,|Ho will no longer be constant and
will follow the distribution described in (7). Given that
the input signal at this stage, is independent (due to
the clustering operation performed in the previous stage)
and identically distributed (i.i.d), with cumulative detys
function Fy (q), the probability density function of the
output of the sorting operation is given by [37]

) = (D) @ (- R o), @9

wherer (1 < r < L) is the rth value returned after

the sorting operation, anfi,(q) is the input probability
density function. It can be observed from (14) that
fa... (@) is the product of the density function of the
input, i.e., f;(q), and the function

(@) = (L) Fra) (1 Fyfa))

T
It can be concluded that (15) is equivalent to beta proba-
bility density function [27]. Hence, the sorting operation
is equivalent to multiplication of the input distribution
function with a beta function, with shape parameters
equal tor and L — r + 1. Replacingu = F,(q), the
expression of the expected value of #ié& value of the
output can be calculated using

san=r()) [ o @0 F@)"
_ /01 Fql(u)r(f)u”u — Wt du, (16)

Wi.r (u)

(15)

wherqu—l(u) = q (since F, is increasing in addition

to being continuous) an®,.., (u) is the sorting function
corresponding teth highest value from set containirig
elements. The above equation reveals that the expected
value after sorting operation is the integral of the product
between the sort functio®V,...,(v), and the inverse distri-
bution function. Fig. 2 shows the sorting function and the
input distribution superimposed and further demonstrates
how sorting operations allows focusing on a particular
region. Thus, the sorting operation will reduce the effect
of noise power fluctuation through smoothing the sudden
changes by focusing on a specific region of the input
density function out one time, this can be particularly
useful when dealing with impulse/spike noise hence,
having a direct effect on the error probability.

The sorting problem has attracted a great deal of re-
search and since early 1950s many sorting algorithm



1.4

T T T
Sort Function forr=7
= = = Gumbel Distribution
1.2} = = Rayleigh Distribution
Exponential Distribution

0.8

06F e gl

0.4r

0.2} Ph

Fig. 2. Effect of the sort function on the output, fa¥ = 50 and

r = 7 on various distributions. This figure illustrates how thetso
function focuses on a particular point of a distributiondzh®n the
value of r. Furthermore the shape difference for various distrilsutio
all having a mean value df.42 is also shown in this figure.

S3) Perform linear combination ef; for : = 1,2,..., B for

have been introduced in the literature, e.g., bucket sort,
counting sort, spread sort. A comprehensive description

the purpose of de-noising, and then the following test

T, B
1
Test I: max B Z q;] 2%; A1 (18)
L =1 1
max [ 27 o
Test 11 : - L>Miy,,  (19)
. 1 B /7 <H0
min | 53,7, qz'L

where the threshold;, As should be carefully configured

to manage the PD and PFA, which will be discussed
in the performance analysis (see Section IV). The test
metrics presented in (18) and (19) represent the maximum
and the maximum to minimum ratio of the clustered
ESD respectively, which have been widely used for sub-
optimum decision making with low computational cost
[40]. It is shown in Section IV-C that the proposed dif-
ferential energy detection technique can offer comparable
performance to the optimal detector in Neyman-Pearson
sense [41], however, the latter requires the knowledge of
channel gain, noise power and signal power, which are
often not available in practice for the spectrum sensing
application.

of various search algorithms can be found in [38]. Hencg, Overcoming Timing Offset

sorting operation in this step can be implemented using

one of many developed sorting algorithm based on theAs mentioned in Section |I-B the effect of CFO has been
memory/efficiency trade-off the spectrum sensing deviedready solved through employment of second-order staist
requires. Therefore, the device does not need to perfoNow, our main concern is to overcome the timing offset. In
the operations explained in (14)-(16) to sort the data. fact, the special case af. = 0 can be hardly captured due
The main objective of the differential operation, which iso the lack of timing synchronization mechanism before the
further performed in this stage, is to remove the constagpectrum sensing component. In order to handle the problem
noise floor, i.e.,\p, contained in allg; elements. The of unknown timing offset effectively, we propose aoné

output of differentiation is denoted ag, with its /th
element given by

0, Ho

A2 gl =l = - -
[Qi; = [aili—[di]i-1 { Crg (|hi,l|2—|hi,l71|2), H,y
17)

It is clear that[q;]; is zero for alll in the absence o
the signal, and undergoes a fluctuation in the presence of
the signal due to the channel frequency selectivity. Th
distinctive feature motivates the test statistics presint
in S3) and allows us to overcome the noise uncertainty
problem inherent in the conventional energy detection.
Furthermore, this stage is intended to exploit the second
order moment diversity of the input signal distribution.
Fig. 2 illustrates the shape/feature difference [39] (in

ballot veto” policy to reject the hypothesig{,. The policy
is stated as follows:

S1) Form

J X 1 vectors, Yk.6 =

[VkJ+148, YhT+24+8 5 » VhJ+J+8) s k=01, K, Where§
denotes the offset in time,

¢ S2) ComputeC{"~® £ E(ysyf;) according to (5), for

§=0, (J=M), 2(J = M), ..., M;

%3) Apply the cluster-based differential energy detectan

plained in Section III-A orcg,”s_‘s), vé. If for any value

of ¢ the test statistic satisfigg; criterion it is understood
that the signal is present and the cluster-based diffedenti
energy detection algorithm would not be applied on the
input after detecting the first value «ﬁ(y"f‘s) meeting
the H, condition.

terms of inverse CDF) which exists between variouBhe underlying idea is, in the presence of a signal, therg®xi
distributions. All three distributions in this figure havesuch as fulfilling the condition|n. — | < J — M, and under
equal mean value, yet regions exist where the distrilitis condition, the proposed spectrum sensing scheme can

tions are very distinct from one an other. In the cassuccessfully reject the IBI. In the absence of sigﬁéﬂs

of no shape/feature difference, the performance of tlie approximately constant with respect &p due to constant
proposed technique will degrade. Since today’s high daéaergy of AWGN throughout the spectrum. Most certainlys thi
rate communications always leads to frequency selectistage will add to the overall complexity of the algorithm wini
channel, we will experience shape difference and consesuld be shown in Section IV-D. However, in order to increase

quently second order moment diversity.

the reliability of the sensing device, implementation oisth
stage is necessary.



C. Extension to the ZP-Based System A. Probability of False Alarm

Let us start from the special caseref= 0. Using the result ~ Mathematically, the probability of false alarm is defined by
in [26], we can easily justify that the second term at the trigi®] .
hand of (5) vanishes due to the implementation of ZP, i.¢., (2 PFA=Pr (7 > A | Ho) (23)

Therefore, (5) can be expressed by where.7 denotes the test statistics. It reflects the probability of

E(yryi)= o2 A(n) @87 AH (n.) + Nol, (20) an event where the spectrum sensing device reports an alarm

— o2C, wWHCH L N, 21 when the signal is actually not being transmitted.
s 7 Ny (1) Let's consider the special case of = 0. It is understood
PerformingJ-point DFT on (21) yields that elements of; (see (13)) under the hypothe$ig follow

independent and identical central Chi squared distribstio
with 2K degrees of freedom [24], i.e.,

whereW¥ £ F ;¥ F;is anJ x J DFT matrix normalized by 1

the factor(1)/(v/J), C is anJ x J circulant channel matrix Saio (0, K) = SFT(K) o exp(—a/2)  (24)
with D; formed by the corresponding channel frequency )

response. It is easy to observe that (22) has the same fo¥Rerel’(.) represents the Gamma function [27]. Hence, after
as (10). Therefore, the three step spectrum sensing aHgDritthe differentiation (ignoring the effect of the sorting ogton),

proposed in Section IlI-A for the CP-based system can, Hee! th element ofq; based on Appendix A follows the p.d.f.

FiEyryYF= 2D, 907 DY + NjI;,  (22)

straightforwardly, applied on (21). (l)K o ~Lexp (_g)
Furthermore, the “one ballot veto” policy can be applied f[q”lm[)(a) ~ 22 7N 2 (25)

on the ZP-based system to handle the problem of unknown (K -1

timing offset. The linear combinatiory, 2 37 | [q}]; employed in (18)-

(29) will result in the following MGF
D. Knowledge of Key Parameters

The proposed spectrum sensing technique requires the
knowledge of several key parameters about the operating air ,
interface as well as channel models (i.e.,, the block length It can be_ ot_)ser.ved that the random varialai§;|#, has an
the number of subcarrier/, the sampling ratdy, as well as Erlang distribution [27] with the shape a_md rate parameter
the upper bound of channel ordg). Those knowledge of pa-8dual 0@ = KB andn = 0.5. Hence, its p.d.f is given
rameters are very commonly assumed in almost all estimatiBY1 @
and detection techniques including spectrum sensing, ie.g. S (@) = %(a)w_l exp(—na) (27)

[9] [14] [42] [43]. Lack of these parameters knowledge would (@ —1)!

result in performance degradation for all spectrum sensiAgcordingly for Test Il (see Appendix B), we can derive the
techniques. Practically, it is possible to obtain the mmd p.d.f. of the ratio[q'];/[@'];|Ho, V1 < 1,5 < L andj # I,
parameters through accessing a geo-location database. fFmring in mind that the values @f are non-negative, as [27]
example, the new Ofcom regulations [7] allow for sensing o fdlz

devices to access Iocatl(_)n_-alded databases for obtairpg k f[a’]z/[a’hlﬂo(z):/ / S /@, o (gg,q;.) dg, dq}
parameters about local air-interfaces and channel poway de o Jo

B _
M hiHo)= T M) = (1 —207%) " (26)

=1

profiles (PDPs). Design and maintenance of location-aided _ /OO Dt i 120 (@02, 7)) A7,
databases is an ongoing research activity in both Europe and LHalq]s o A% A1 TR
US [4], [44]. Surely, the impact of imperfect knowledge of 2717 (2w)

g . = (28)
air-interface parameters on the spectrum sensing perfarena T(@)2(1+2)**

is of interest to telecommunication engineers, howevehis t _. I i d . d .
paper we would focus onto the main technical problem due Egnally, app ying (27) and (28) into (52) and (56) respeely
the limited page budget. we can obtain the PFA as

L
Test I: PFA =1 — <M) (29)
IV. PERFORMANCEANALYSIS I'(w=)
_ _ _ Test 11 :PFA =
Conv_ent|0nally, the metrics of interests for performance NPT (2w)o Fy ([w, 2], B+ 1, —X2) }.“
evaluation of spectrum sensing are mainly the PFA, PD, and 1—-(1- = T(w)? 0)

computational complexity. The PFA is often formulated for

the AWGN case since it would not be affected by the channghere ¢y = (5) G(.,.) is the lower Gamma incomplete
fading. However, the PD is related to the channel fadirfgnction, and2Fi([a,b],c,d) is the Gauss hypergeometric
behaviour, and in this paper we are interested in the Rdyleifynction [45].

fading scenario. In addition to the PFA and PD analysis, we The PFA formulas above indicate the probability where the
will present numerical results as well as the computationsdcond order moment diversity observed from the noise only
complexity of the proposed approach. input is higher than the test statistic. It can be observenhfr



(30) that Test Il can only be applied and is meaningful if thB. Probability of Detection

channel order is[. > 3. Hence, given the maximum channel

order one can choose which test to employ. Furthermore, it

can be concluded from (29) and (30) that the PFA of proposedThe probability of detection is defined by
schemes is a function of the cluster sizethe number of clus- A
ters, B, and sample complexityx, as well as the thresholds PD = Pr(7 2 A | H) (33)

A1, A2. Specifically, it is exponentially related to the inversg reflects the probability of an event: the spectrum sensing
of the channel delay, i.eL, implying that the performance device reports an alarm when the signal is indeed therel&imi

is exponentially effected by the frequency selectivity bét to the analysis for PFA, we start the analysis of PD from the
environment. This was expected as the key idea behind $éneral model (7). It has been proved that the random variabl

proposed spectrum sensing approach is to make a decisipfy, follows non-central Chi squared distribution with the
based on the observed second order moment diversity reguli d f. [9]

from the frequency selective channel. Furthermore, PFA wil i

be reduced dramatically @ — oo. Given that for practical _ a\ 7 2v; +« :
applications, the PFA is often given a fixed value, such dgiri (@) =05 (2%) eXPp (_ 2 T -1(v27ia)
10% as per the FCCs requirement [4], (29) and (30) can be (34)
employed to determine the appropriate threshalds\, for a whereZ(.) denotes the modified Bessel’s function of the first
given air interface, channel order and the required obsierva kind, and~; the SNR affecting they; value.

length, i.e.,F"(A) = 1 — PFA. The exact effect of threshold Furthermore, we consider an interesting case when the

value on the performance of the proposed approach is Shoé’lQR ~, follows an independent and identical exponential
in Section IV-C. o

distribution )
Remark: In the derivation of (25), we ignored the effect fy(a) = = exp (_g) , (35)
of the sorting operation. This is mainly because the exact v v

probability density function of therth order statistic from where7 denotes the SNR mean.

any continues population is rather difficult to deal withgse R k. In fact, modelling the SNR as an i.i.d. exponen-

(14)) and in most cases requires numerical evaluation of.a ~. . . U7 L .
L . . tial distribution implies that the communication chanrelai
nontrivial integral [37]. Since the earliest known bounds f

the expected value of highest order statistic with was éelrivRayle'gh fading channel. Rayleigh fading is consideredras o

by Gumbel and Hartley and David, many work has been doﬁgthe most practical models for tropospheric and ionospher

on statistical properties of order statistics. The sumnadry S'r%r;: g;?/ﬁigirarffr:l:SnV\;Ziljiissl;o:\;r;s g;ef;i()fhr;zgi\glyigtui;t)s
which can be found in [37]. Despite all the work carried out 9 - ~aylelg 9

on the area of the order statistics still the only effectivayw gpphcab!e when there is no domlnant propagat|0n alo_ng a
. T line of sight between the transmitter and receiver [8]. §jnc

for determining the distribution of,.;,(q) would be evaluat- . .

: . . e based on FCC regulations [4] there is nho guarantee that there

ing them numerically. However, using the probability-oa!

. . . ould exist a line of sight between the sensing device and the
transformation we are able to approximate the varianceef | ; : 7
o . e ransmitter, it would be a reasonable assumption to modgel th
rth order statistico;.; (z), of any continuous distribution as

fading channel as Rayleigh fading.
(L—r+1)

021 (q) ~ SR (fz (E[qT;L]))72, (31) The distribution ofAvy; = v, — v,_1, whose MGF is given
by (refer to (48)-(50))
where E[q,..], or in other words the expected value ah 1
order statistics, can be approximated by: M(Ay) = P (36)
/52
_ T
Elqp] ~ F* <L+1)’ (32) Hence, it can be concluded thaty, follows a Laplace

distribution [27]. Considering tha}|7{, follows a non-central
denotes the inverse cumulative distribution of Nl sauare distribution witt2 K degrees of freedom and the
non-centrality factor of2A~;, and also the fact thaf\y is
Jon-negative, the ter®D;"" in (53) is computed using the
following

whereF; ! (q)
the input signal. Please note that the above approximatidns
converge af, — oo (see [37, Chapter 3] for proof). The abov
approximations indicate that the sorting operation willzdna
a direct effect on the performance of the proposed algorithm,_, 2 [* Ay
since it will reduce the variance of the data significantyu, 2! = = /AW_O 2 (‘p’ \//\_1) exp (_?> dAm (37)
it can be concluded that the sorting operation will reduee th | ]
effect of noise power fluctuation resulting from the limitedith ¥ = 24, where Ok (a,b) denotes the generalized
observation length. Hence, having a direct effect on thererflarcum Q-function defined by

probability as the test statistic is subject to less vaatBince 1 o 2? 4 a?

- ; . ) (a,b) = —— oKexp | — Tk—1(ax)dx

it is not mathematically feasible to derive the performanch T ek p 2 K-1 :
incorporating the sorting operation we have shown the effec (38)

of the sorting operation in Section V through simulations. The PD for Test Il can be evaluated using (57), where the



p.d.f. of Ay, /A~vge|H1 given by Then, the terrrPDlT2 can be computed by

e e} 00 —w—1

wa/mdﬂml(Oé):/ Bfay,aqalm0 (B, Ba) dB PD2 = LRw) / o ((p’ \//\_2) _AN dA7,.

=0 Nw)? J&5, -0 (1+47)7

- (39) o _ __(45)

(14 a)? Considering considerably Low SNR such thHat> A+, the
integration in (45) can be computed by using Appendix C
and the analysis in [46, Appendix A]. HencBD;"? can be
expressed by:

2 [ 1
PD;F2 = :/ Ok lp, VA2 ) ——————=dA~y,. (40) B w2 _
Y J Ay =0 ( ) (14 Av)? PDlT2 — Bexp ¥ Z Li ﬁ 4+ Lo _E
27 k=0 2

Hence, the ternfPD;'? in (57) given Rayleigh fading is given
by

2

K-1
Once more considering the special case.of= 0, after the +®exp <—%) lz %(05)\2)’C 1F1 <W; k+1; %)1 (46)
differentiation under the hypothesig,, the (*" differential k=1 "
SNR A~; corresponding tay; (see (13)) follows the Laplacewhereq) _ 2w (the full proof can be obtained by using[47,
distribution with the p.d.f. based on the derivation in (26} (25)])_F<,§;1a"y, we can obtain the PD for Test Il by
Furthermore, the average of differential SNRy, can be applying (46) into (57).

computed by

It can be observed from (43) and (46) that the performance

o IN® A_yw_le‘@ of the proposed spectrum sensing technique, in terms of PD,
F(Ay|Hy) = (—) L ' (41) is affected by the average SNR valyesample complexity<
v (-1t and the threshold valug; and )\, and further exponentially
Then, the temPD;fl can be evaluated by effected by the channel ordér Moreover, it can be observed
- w from (53) and (46) that the performance of Test Il improves
PD]! = 1 « / Ox ((p \/)\—1) <ﬂ> much faster with the increase in channel ordefThe effect of
Y(@-D! Ja5,-0 ’ various parameters on the PD of the proposed approach will be
A, —— discussed in detail and illustrated pictorially in SectiyhC.
X exp (—?) dA~;. (42)
Based on the analysis in Appendix C, we can further wrife- Numerical Results and Discussions
(42) into Numerical results based on (29) and (30) for PFA and
- 5 -\ (53) and (57) for PD, are provided to visually demonstrate
PD/ " = 247 exp <m)x the effect of various factors. Fig. 3 illustrates how PD is
SN & - affected by the observation length (latency) in Test I. The
(L) Ly ( —M7 ) (1 + E) results are generated for the configuration where the number
i \2+7 2(2+7) ¥ of sub-carriersM = 64, and the number of clustel8 = 6.
9 w—1 s The threshold\; was fixed for achievinf®FA = 10% with
(—_) L 4 (— 17_ ) the noise uncertainty factor set 20dB (the noise uncertainty
2+79 2(2+7) factor in practical scenarios is typically betwegrnto 2 dB
2 \PB A [10]). The main factor causing noise uncertainty is the tem-
+ | =— exp| ——] X
rs) o (%)
K-1 1

ALy
0.5M)F 1B ( KB: k+1;
)

(]

=1

k
where 1 Fi(.; .;.) denotes the hypergeometric function [45],
and L,,(.) the Laguerre polynomial function defined by

Probability of Detetion

- n z"
Ly(x) = -1 —. 43
@=20r (") (43)
We can obtain the PD for Test | by applying (43) into (53).
Evaluating the PD of Test Il requires the p.d.f of the ratio R e R R
of Ay, /A~;|H,. Based on the derivation in (28), we have
_ aw_lr(2w) (44) Fig. 3. The relationship between the PD and the observation length

fA_vi/A_leﬂl () = I'(B)?2 (1+a)*™’ for M =64 and L = 6.
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Probability of Detection

reflect a fundamental tradeoff between PFA and PD. Further-
more, the effect of the threshold value on both PFA and
] PD can be also observed, since different threshold values
‘‘‘‘‘‘‘‘ were employed to produce the PFA-PD tradeoff. In order to
i have a benchmark and also for performance comparison, the

ocdh -7 N '_g;ggggz:ggz::;ggzgijjo ] ROC curve for conventional energy detection with various
L--7T e | Proposed Techniue 1K~ 19 uncertainty factors (U) are also iIIustratgd. It is obsertteat
08 i 7 7 Enerey etecon U2 dB, k= 10 ] the performange of the energy detectlon severely degrades
oale’ —— By osmcmu B0 | as the uncgrtalnty factor. is mtroduce_d (this pheno_menem_ ha
Optimal Detecttor, K=10 been fully investigated in [10]). While, due to differertia
001 002 003 00s 005 006 007 008 008 01 stage of the proposed technique, it is considerably rotmust t
Frobeablly of eise Alarm uncertainty factor. For the sake of comprehensive perfooaa

comparison, Fig. 5 also illustrates the ROC of the optimal
Fig. 5. Complementary ROC curves of the Test | and it's comparisd#etector in Neyman-Pearson sense [41]. It should be no&td th
with energy detection for various uncertainty factors (the the the optimal detector requires channel gain, noise power and
optimal detector based on Neyman-Pearson critefia= —10dB, the transmitted signal power (which is not a feasible sotuti
L=8andM =64. in practical scenarios). Hence, as expected it deliversebet
performance.

perature variations at the receiver which leads to ina¢eura

noise power measurements. The uncertainty in this paperD|s

Computational Complexity

created by fixing assumed/estimated noise power based ofhe main complexity of the proposed scheme is due to the
the SNR value mentioned, while the real noise power variégllowing stages:
with each realization by a certain degree according to thel) The second-order time average: for the case.of 0,

uncertainty factor. It is observed that the proposed amtroa
features fast convergence rate. For example observingihe p
of PD = 90%, the PD improves by dB in the SNR when the
number of multi-carrier symbol& varies from3 to 5, while
this improvement is as small as approximatelgB when K
varies from20 to 30.

Fig. 4 shows how the channel lengthwould influence the

2)

3)

PD when the observation length is set kb= 10. Take the  4)

point PD = 90% as an example§ dB gain in the SNR can
be observed wheih varies from0 to 4. Furthermore 10 dB
improvement when it varies fron to 12. It is an interesting
result which clearly indicates the channel frequency-dite
gain inherent in the proposed spectrum sensing scheme.
The complementary receiver operating characteristic (ROC
curve for both Test | and Test Il (in Rayleigh fading channel)
are shown in Fig. 5 and Fig. 6 respectively. These Figures

5)

6)

this stage require& x J complex multiplications and
additions.

Discrete Fourier Transform: M —point DFT is
implemented which introduces the complexity by
O(M log(M)).

Sorting: there areB clusters consisting of. elements,
hence, the complexity of this stage IBLO(L).
Differentiation: this stage consists of subtractingrgve
element ofq; from its previous one for each cluster,
hence the computational complexity is given BY)(L).
Linear combination: This would add a further complex-
ity of O(B).

Decision making: Finally the extreme value(s) is se-
lected and compared to the predetermined threshold
value. Consequently adding a complexity factor of
O(L).
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Fig. 7. Comparison of the simulation results and its equivalertig. 8. @ Comparison of the simulation results of the proposed
analytical results for Test I. Furthermore the effect of 8wmting technique with and without the sorting operation and itsivedent

operation is shown. analytical results for Test II.

Resulting in the overall computational complexity: ’*j‘;si‘r ‘ g

O(K?J) +O(Mlog(M)) + B(L +1)O(L) + O(B) + O(L) ;o
47 . !

Note that the above complexity is for the casg = 0.
When employing the “one ballot veto” scheme for arbitrary
ne (see Section IlI-A), the computational complexity is in-
creased by a factor of(M)/(J — M)) (in the worst case
scenario). As it can be observed the last three terms are
negligible in comparison with other terms, the overall céewmp
ity of the proposed scheme can be approximately written by = = Wigner vie based beecton
M [O(K?J) + O(Mlog(M))] /(J — M). This reflects that 19, S R '
the proposed scheme requires a relatively low computdtiona M e T
complexity, making it suitable for practical scenarios,aend
computational efficiency is a key issue.

il !
-A- Cyclostionarity Detection
—0— Proposed Technique Test |
=—{J— Proposed Technique Test Il
+=O~ ' Energy Detection U =3 dB

—O— ' Energy Detection U =0dB
=/~ ' Energy Detection U =1dB
= [0 = Pilot Based Detection U = 2 dB

Probability of Detection

Fig. 9. The performance comparison of the proposed technique,
frequency-domain energy detection, second order cyciostaity,
V. SIMULATION RESULTS ANDDISCUSSIONS pilot based detection and differential energy detectianAKo= 7.

Computer simulations were performed to evaluate the pro-
posed spectrum sensing scheme. The system investigated in
this section has\/ = 2,048 sub-carriers with the sub-carrieraverage SNRs for Test | and Test Il, respectively. We can
spacing of15 kHz (3GPP LTE-advanced system [48]), eacRbserve a very small difference between analytical resuits
frame consists off OFDM blocks with the CP length of Simulation results when the observation length is larganth
J—M = 160, the sampling frequency is the same as the sigrf#{0 symbols duration. The difference becomes large when the
bandwidth 0f30.72 MHz. The carrier frequency is also set apbservation length is less than two symbols duration. This
5 GHz. The communication channel is generated accorditfgmainly caused by the insufficient statistics used in digna
to the WINNER channel model under B2 outdoor scenarRyocessing. Comparing Fig. 7 and Fig. 8 verifies that Test II
[49], and the sensing device is moving at the speed3 ofoutperforms Test I, particularly, when the observatiorgtén
km/h. The SNR is defined by the average received symigl short. This difference is mitigated with the increase of
energy to noise ratio at the sensing device. The threshold @pservation length. We have also shown the effect of the
hypothesis test is carefully chosen so that the PFA is fixed $8rting operation through simulations in Fig. 7 and Fig. 8.
10%. All simulation results were obtained by averaging ovéks it can be observed, the sorting operation can improve the
2,000 Monte Carlo realizations. performance as the observation length is increased. Thés wa

Experiment 1: The objective of this experiment is to examexpected as previously explained in Section Ill-A and Secti
ine the analytical analysis obtained in the previous sastiol V-A.
by comparing them against the simulation results based orExperiment 2: The objective of this experiment is to exam-
the configuration explained above and further to show tlme the proposed scheme with respect to the state-of-the-ar
effect of the sorting operation on the performance of thepectrum sensing approaches. Since, the proposed approach
proposed scheme. Fig. 7 and Fig. 8 demonstrate the prdigabik based on exploiting the second order moment frequency
of detection for different observation lengths given vaso diversity, it is essential to check how much gain is introghlic
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it is affected by the noise uncertainty factor. Therefohe t
performance was evaluated for= 0 dB andU = 2 dB. Fig.

9 shows that the proposed technique is able to outperform
the mentioned technique by at leds$t dB. It should be also
noted that pilot based detection requires synchronizatioh
pilot information while this problem can be overcome in the

Probability Of Detection

3 = 0 - K= 2 OFDM Symbols proposed technique with the implementation of the “onedball
6@ = O = K=7 OFDM Symbol ” H
& 1 ~ A - K= 14 OFDM Symbols veto” policy.
1 = . . . . .
os| 1 S e e Since the detection technique introduced in [51], also ex-
! —— K = 14 OFDM Symbols (Differntial)

! ) ploits the frequency diversity of the channel our main conce
is to observe how much improvement can be delivered by
T S S S S the clustered-based energy detection. Fig. 9 further shioats
-25 -23 -21 -19 -17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 . .
SNR (d8) the proposed approach can outperform the differentialggner
detection by at leass dB in low SNR environments. This

Fig. 10. The effect of the differential and clustering stages on th'(!:'nprovement is mainly due to the clustering, the linear comb

performance of the proposed spectrum sensing technique. nation and the “one ballot veto” policy which are implemehte
It is noteworthy to mention that the clustering operation no

only improves the performance of the proposed techniques bu

also reduces the complexity by a factor@f2M).
due to this exploitation by having the frequency-domairrgne  Experiment 3: The objective of this experiment is to ob-
detection as a benchmark for performance comparison. Td@ve the performance improvement due to the clustering and
threshold setting for energy detection can be found in [Qifferential stages. As it was explained, the main purpose
The simulation performed for energy detection are based ofithe differential stage is to remove the AWGN which is
noise uncertainty factot/ = 0,1,3 dB and the threshold is available in all the frequency bands and to further exploit
based on the assumed/estimated noise power while the t&al frequency diversity, while the clustering operation is
noise power varies with each Monte Carlo realization by 8 remove any possible correlation in the ESD due to the
certain degree depending on the uncertainty factor. Fig.f&ling channel. In order to observe how much improvement
shows the performance comparison when observation lengf#m be achieved when incorporating these two stages (i.e.,
K = 7 symbols. It can be observed that the performanetustering and differential stages), we have set an exggim
of energy detection is considerably dependent on the noigere the proposed technique in Section IlI-A is compared
uncertainty factor. It is further proved in [10] that inceiay to its equivalent without the mentioned two stages. Without
the observation length does not affect the performanceeof thifferential and clustering operations the proposed tighe
energy detection scheme when the the exact noise powetas be thought of as a simplified eigenvalue detection [19]
not known, i.e.U # 0. Fig. 9 also illustrates the performancevhere instead of making decision based on the ratio of the
of the second order cyclostationarity based detection. Thgjenvalues of the covariance matrix of the received sjgnal
proposed approach is able to outperform the second ordes decision is based on the ratio of the maximum and the
cyclostationarity by at least dB when K = 7. Cyclosta- minimum of the ESD of the received signal. This comparison
tionarity based detection relies on the cyclic frequencyhef is possible since, in multi-carrier systems, parallel$raission
received signal to determine existence of a source. Heeeg, dis performed, hence, the DFT decomposition can be consldere
fading at cyclic frequency can have a detrimental effecttsn ias a special case of eigenvalue decomposition. The result of
performance while the proposed technique takes advanfagenis performance comparison for different observatiomytha
this fading to exploit the moment diversity. The performands shown in Fig. 10. As it can be observed we are able to
of the proposed approach is also compared to Wigner-Vilighieve up tol0 dB gain in performance. Furthermore, as
based spectrum sensing [17]. For this purpose, in ordent® haxpected, this gain is more apparent as the observation is
fair comparison, we have modified the original work in [17]ncreased.
to accommodate a SISO environment. As shown in Fig. 9 the
mentioned approach can deliver acceptable performance up t
SNR of —16 dB. However, as the SNR further decreases, the
performance of Wigner-Ville transform based approach alsoln this paper a novel differential energy detection scheme
decreases. This was expected since noise power fluctuafimn multi-carrier systems, which can form fast and reliable
increases such that it makes the edge detection useddétision of spectrum availability even in very low signal-
this approach reluctant. The performance comparison @& ats-noise ratio (SNR) environment has been proposed. The
carried out for pilot based detection [50] and differentiabed underlying initiative of the proposed scheme is applyindeor
energy detection [51]. In order to carry out simulationstfog  statistics onto the clustered differential energy spédeasity
pilot based detection, it is assumed that the pilot symbi@s an order to exploit the channel frequency diversity inhéren
embedded in each OFDM block, which are equally spacédhigh data-rate communications. Specifically, the chiiste
for every 16 or 32 sub-carriers. Since, the mentioned piloperation is utilized to group uncorrelated subcarriet® in
based detection is based on the energy of the pilot symbolssters according to the coherence bandwidth in orderjtyen

VI. CONCLUSION



13

good frequency diversity, and the differential operatippleed are i.i.d.
onto each cluster effectively reduces the impact of noigeun T B _,
tainty, consequently improves the sensing reliabilityohder Test I: PFA= Pr(max(q'[Ho) > A1)
to analytically evaluate the proposed scheme, both theageer =1 — [Fuax@#o) (M)
PD and PFA were derived for Rayleigh fading channels. The
closed-form expressions showed a clear relationship legtwe L
the sensing performance and the cluster size (the indicdtor =1— [Fy, (M)] 7 (52)
diversity gain). It has bee.n shown through.sw.nulatlons 1_hat Furthermore, the PD for Test | can be expressed as
proposed approach provides up 1o dB gain in comparison

to the state-of-the-art spectrum sensing schemes. Test I: PD= Pr(max(Avy|H1) > \1)

=1- [Fmax(ﬁl)|7{1 (Al)}

LPr(max (g’ |Ho)<A1)

L
APPENDIX A =1-]] Fyp. M) (53)
=1 ~——~—"
1-PDJ'?
The moment generating function (MGF) of the output of
the differential process in step S2 in Section Il1-4,,|Ho,
(which is expressed as the product of the MGF of two central

Chi squared random variables shown in (24)) is given by [27]
M(q}|Ho) = M(qis1[Ho) x M(gi|Ho) APPENDIXC
—(1-2) " x (1420 K= (1-4?)7"

48
(48) The Hypothesis for Test Il is based on the ratio of maximum

where M(a) denotes the MGF of random variable and to minimum ofq}|#,, whose CDF can be computed using
t denotes the time-domain index. Hence, (48) indicates that

—
¢;|Ho follows a summation ofi i.i.d. Laplace distributions £, ../ a0y (A2) 2 Pr (%j”‘lo) < )\2)
(with location parameter = 0 and scaling parameter= 2), min(q'[Ho)

whose their MGF functions are given by [27] - Pr(@ > X2, qp, > VM # L&, < qy¥g # 1|Ho)U

M) = < 49 o
— =/
e W0 UPHT s > g £ L < qy[Ho)
where . denotes a random variable following a Laplace — 7L
distribution. Moreover, we know for a fact thaf ;|H, is = Pr(g—f > X, qp, > Q,,Vm # L&q) < G, [Ho)+
non-negative due to the sorting process. Therefore, it @an b gl .
concluded that distribution af, ;|#, can be further simplified | pr( 1L > ), 7 > g vm # L & @, < 7,[Ho). (54)
to summation ofK’ exponential distributions with scale factor qr
0.5. Hence, the probability density function (p.d.f.) of Due tomax / min(q/[Ho) > 0, we can further express (54) as
0.5% X ~texp (—0.5a) 0o A2
fq:"vZI’HO (Oé) ~ (K — 1)' (50) Fmax/min(a’ﬂ—lo) (AQ) = /0 /_0 fﬁ’Lﬁ’l\Ho (avﬂ) da dﬂ
oo rA2f
+/ / fﬁ'L,ﬁ'ﬂHo (o, B)da df + ...
APPENDIXB 0
- + [ faran o (00 B) dB da (55)
Sinceq’ is i.i.d., for 1 < m < L, we would have 0 =0
Frnax(d[#o) (A1) 2 Pr(max(q'|Ho) < \1) OnceFma?(/min(q/|Ho) (A\2) is obtained, the PFA for Test Il
— Pr(q, > M,y > T, ¥ # LIHo) can be easily computed by
UPr(G/Lfl > /\17§/L > ﬁin Ym 75 L — 1|H0) U... Test II: PFA =1 — Fmax/min(§’|7{o)()\2)~ (56)

UPT(qy > A1, qy > @, Ym # 1|Ho)

_ . Furthermore, for Text Il we have
= Pr(q, > M1, q1, > G, Ym # LIHo)

+Pr(qr_1 > M, qp >, Vm #L—1Ho) + ... Test 11 : PD= Pr(max / min(q'[H1) > A2)
+Pr(q) = A1, d) > T, Vm # 1[Ho) =1 = [Fuax(@ /1) (M2)]
L
= [Fayimo )" (51) ()
. . =1- H F(A’YZ/A74¢Z)\H1 (A2) (57)
PFA for Test | can then be evaluated using the cumulative =1

density function (CDF) ofnax(q’|Ho), giveng;|Ho variables 1-PD}?
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Using the recursion for (38), the following result is obtin

Qxk(azx,b)

b

axr

_ b2+ (an)?
2

)

K-1

Iny2-1(azy) + Qx-1(az,b)

[16]

[17]

(18]

[19]

[21]

[22]

[23]

=> (i) e L (axy) Qi (ax, ). (58)
"0 ar
Applying (58) into (42), the integration part can be complutel20]
by
QK(CY(E, )xZBflefpzzz/Q
I;{_l B\" [ B2+ (p%+a2)a?
— Z (_) / (E2B_1_n€_ p2 In(aﬁx)dx-f—
n=0 a z=0
/ xQ(Bfl)expfpzmz/QQl (az, B)dx (59)
x=0

[24]

wherez? = %, p =2, and3 = v/A. Using combination of [25]
Bessel functions and exponentials in [45], the above terams ¢
be evaluated.

1
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—
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