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Abstract

We study the problem of allocating limited feedback reseatcross multiple users in an orthogonal-
frequency-division-multiple-access downlink systemhwgtlow frequency-domain scheduling. Many
flavors of slow frequency-domain scheduling (e.g., pegaisscheduling, semi-persistent scheduling),
that adapt user-sub-band assignments on a slower time-s& being considered in standards such
as 3GPP Long-Term Evolution. In this paper, we develop alfaekl allocation algorithm that operates
in conjunction with any arbitrary slow frequency-domairheduler with the goal of improving the
throughput of the system. Given a user-sub-band assignotergen by the scheduler, the feedback

allocation algorithm involves solving a weighted sum-rataximization at each (slow) scheduling
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instant. We first develop an optimal dynamic-programmiagea algorithm to solve the feedback
allocation problem with pseudo-polynomial complexity iiethumber of users and in the total feedback
bit budget. We then propose two approximation algorithnth womplexity further reduced, for scenarios

where the problem exhibits additional structure.
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I. INTRODUCTION

Orthogonal-frequency-division-multiple-access (OFDM#&the multiple-access technology of
choice for many current and future wireless standards ssi@&&®P Long-Term Evolution (LTE),
IEEE 802.16e (WIMAX) and Long-Term Evolution Advanced (L-F. With the singular goal of
achieving higher throughputs in order to keep pace with tre-growing suite of data-hungry
applications, OFDMA systems typically operate in conjiumttwith a fast frequency-domain
scheduler that allows for aggressive adaptation to thenfadonditions of the channel. Here,
user-sub-band assignments are typically made once evesy 2ms or 5ms depending upon
the standard under consideration. In the quest for hightx ddes, the overhead incurred in
enablingsuch fast frequency-domain scheduling is often ignored.

Primarily, there are two types of overhead that facilitaterischeduling in an OFDMA down-
link system. These are: the overhead incurredi)ircommunicating user-sub-band assignments
and in(ii) collecting channel state information (CSI) from all usessnenonly referred to as the
process of feedback. To address the first issue, recendye thas been an increasing interest
in “slow” frequency-domain scheduling![1]={5] instead ¢§ faster counterpart for applications
where the overhead demands of the latter do not justify ks Ber example, LTE adop{semi-
)persistentscheduling for voice-over-IP applications that typically not have high throughput
demands([[1]+[4]. Here, user-sub-band assignments arelatbacn a slower time-scale while
link adaptation (on the fast time-scale) specifically in seeni-persistent approach, is achieved
through Hybrid Automatic Repeat Request (HARQ) re-tramssions. Li et al.[[6] show that
slow OFDMA scheduling can achieve throughputs close to tleali case in many real-world
scenarios.

Moving on to the implications ofii), we borrow an example of a typical LTE setting recently
provided in Ouyang et al._[23]: In LTE, the smallest unit ohbdaidth that can be assigned to a
user for data transmission is called a resource block, wikiegssentially a group of OFDM sub-
carriers. If we consider a0MHz LTE system withZ = 50 resource blocks shared by = 50

users equipped with standatebit codebooks (modulation/coding tables) at the mobikeshave



a total feedback bandwidth afi’ L = 4 x 50 x 50 = 10kb per sub-frame_ |6]. Given a typical
uplink data rate ofi8kb per sub-frame, this consum®®’% of the uplink capacity, clearly making
feedback bandwidth consumption an important bottlenebks ®bservation, amongst others, has
motivated the development of limited feedback technigifgg[15]. In general, adapting the size
of the codebook (e.g., CSI table at the mobiles) [8]-[10] anb-carrier grouping [11]=[15],
subject to a constraint on the total available feedback Wwattt, are two of the most popular
multi-user limited feedback approaches in the literatimehe former, the size of the codebook
on each OFDMA sub-band, and potentially the codebooks tekms, are periodically chosen
based on the “state” of the network. In the latter, feedbaakuction is achieved through a
grouping technique where one CSI report is generated fooapgof OFDMA sub-bands.

In this paper, we propose a feedback allocation policy thpsrates in conjunction with a
slow frequency-domain scheduler assumed given. In péaticgiven a scheduling assignment
on a slower time-scale, i.e., once evértime slots, the feedback allocation policy decides user
codebook sizes again on the same time-scale. Thus, in thextaf past literature, we focus
on the former limited feedback approach of choosing dynamoidebook sizes as a function
of the network state (e.g., channels, queues, etc.), a gsdbtat we callfeedback allocation
hencefortH, to address the second type of overhead. The differenceebatwur approach and
past work on dynamic codebook selection is that our algoridtdlapts to queue sizes and hence
user applications, in addition to the channel state thegsneralizing earlier methods.

The main contributions of this paper are the following:

1) We propose a throughput-optimal feedback allocationcpahat overlays a given slow
scheduler. The proposed policy takes the form of a weighted-mte maximization
problem that needs to be solved once evéryime slots. Throughput-optimality is with
respect to the space of all possible feedback allocatioicipslwhilefixing the particular
data scheduler of interest.

Efficient algorithmic implementability of these policies a critical design requirement, and
this is the focus of our remaining contributions. Our focsisaligned with several papers over

the last decade, which study the algorithmic aspects of efrased scheduling for specific

10ne can in general consider a more comprehensive feedbladatin policy that includes both codebook-size adapiati

and sub-carrier grouping. However, such policies are beyowedsttope of this paper and a subject for future study.



network structures and resource allocation problems ésge,[24]-[28] and references therein).
Needless to say, the difficulty in solving the weighted sat@maximization problem in each
slot is intricately tied to the resource being optimizedc&wly, significant strides were made by
Tan et al. [27],[28] in solving the joint queue-based schieduand power control problem that
has attracted much interest over the years (see [26] antenefes therein). Here, the possible
transmission rates in each slot come from a continuous meigiduced by all possible power
allocations. The authors [27], [28] solve non-convex poeweamtrol problems (e.g., weighted
sum-rate) accurately and efficiently by using solutionsdiated convex problems (e.g., max-
min rate) in an intelligent manner. Optimality is estabdidrunder many channel settings. While
the lack of convexity is due to interfering users In[[27], 2B the model by Huang et al.
[26], self-noise due to channel estimation error forms these. The authors [26] nevertheless
propose both optimal and sub-optimal approaches with ngrgegrees of complexity. In contrast
to power allocation, in our case, the region of possiblesrateeach slot is discrete and is induced
by all possible splits of the total feedback budget. Thisvadl us to leverage many powerful
tools from the area of combinatorial optimization. With teeception of the work of Ouyang
and Ying [23], the problem of feedback allocations has nanbeonsidered in the past, to the
best of our knowledge.

2) We develop a dynamic programming algorithm that solvesahighted sum-rate feedback
allocation problem with pseudo-polynomial complexity e thumber of users and the total
feedback bit budget. This approach is exact and requiressngtions on the structure
of the weighted sum-rate function.

3) We show that in many practical wireless systems, the vietjeum-rate is non-decreasing
and sub-modular in the feedback budget. Using this obseryawe leverage sub-modular
optimization results from combinatorial optimizationggl19]—[21]) and propose a reduced-
complexity algorithm with an approximation guarantee( bf- %).

4) Multiple-input-single-output (MISO) beamforming isibg considered as a potential trans-
mission mode in the Long Term Evolution standard [1]. Forhssgstems, we show that
when the popular Random Vector Quantization codebook [B3], [34] is used, we are

able to reduce the complexity even further and provide amceqipation guarantee og

The rest of this paper is organized as follows. In SediibnvH, introduce the system model



for feedback allocation and slow data scheduling. In Sadfif we discuss the notion of
throughput-optimality in queueing networks and introdacthroughput-optimal joint feedback
allocation and slow data scheduling policy. In Secfioh I\é solve the optimal online feedback
optimization problem for both objectives while in Sectioghwe investigate methods of reducing
the complexity of the optimal online optimization problem éxploiting more structure in the
objective function. Simulation results are presented ictiSe[VI. Concluding remarks are made
in Section V1.

Notation z;; denotes elemerit, j) of matrix X while z; denotes elemeritof vectorx. Given
matricesX,Y € RP*9, X <Y meansz;; < y,;;,Vi =1,...,p, 7 =1,...,¢. Ry, Ny andN

represent the non-negative real numbers, non-negatiegarg and positive integers respectively.

[I. SYSTEM MODEL

We consider the downlink of a frequency-division-duplexdfA system withL sub-carriers/sub-
bands andK users that operates in slotted-time. The network model ssrdeed below:

Channel State The true supportable rate for uséron sub-band; at timet is given by
wi;[t]. We assume that,;[t] is ergodic and comes from a finite but potentially large sét
We assume that the mobile has perfect knowledge of the chatate {/.;;[t]}}_, in every
time slot. The cumulative distribution function for rate;[t| is given by Pi(u;;[t] =m) =
mmi (i [t]), m € M, whereq; [t] denotes a large-scale fading gain that is dependent on user
position and comes from a finite set[t] € . Users change positions once evéryslots
whereT € {1,2,3,...} denotes the large-scale fading coherence time. For easatation, we
introduce a countet = L%JT to keep track of the slower large-scale fading time-scaée, i
Tmi (i[t]) = 7mi (a[t]) , Vt. For convenience, we also sef,;[t] = 7. (a;[t]) making implicit
the dependence onh and 7. Note that the large-scale coefficient is typically onlytdigce-
dependent and independent of frequency allowing us to draiirtddex; when representing it.
We assume that the base station has perfect knowledge [@f} and all distribution information
{m.i[t]}. Most importantly,t represents the time-scale at which feedback optimizatarss
scheduling assignments are decided.

Traffic model: Each userk € {1,2,..., K}, has a queue of untransmitted packets with
queue-lengthy,[¢] that is maintained at the base station with associatedahmate ).

Feedback model The base station allocates a feedback budgét,[8f bits to userk such
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that 31, b[f] < B where B represents the total limited feedback budget of the systen.
the sub-carriers in our OFDMA system be indexed®y- {1,2,...,L}. Assume that uset

is allocated sub-band¥/[t] C S by the slow scheduling algorithm. Given a budgebgf] bits
by the base station and an assignmifit] of size [Ny [t]| = ny, the user employs a codebook
of size by;[t], j € Ni[f] bits for sub-bandj where) .. by;[t] = bi[t]; {bk;[t]}jen;, represents
the per-sub-band budgets for ugethat are chosen by the user to maximize rate.

Quantized channel state Given a budget ofy,[t] and a sub-band assignmeff[t], the
actual post-quantization rate achieved by useat timet wheret < t < ¢ + 1, on sub-band
j € Ni[t] is denoted byuj, [bx;[f], 1ui;]t]]. Note that the actual achievable rate is determined by
the quantization budgets (along with the codebook of cQutbat are decided on the slower
time-scale indexed by, as well as the true state of the channel at current time

Network state: The network state at timé is given by M[f] = ({mu[t]}5,, {a[t]}E,),
which is a collection of channel distributions and queuegtha on the slower time-scale. In
general, the feedback allocation and slow scheduling ieslimake allocation and assignment
decisions, respectively, faf time slotst < ¢ < ¢+ 1 based on staté/[¢].

Expected rates andvirtual users Let ry;o[f], bi; (8] = Ex,.i [1;1be; (8], 1i;]t]]] denote the
expected rate (through the courselotime slots) for usek on sub-band. The total expected
rate that is achieved by usérgiven a sub-band assignmei,[{] and allocation,[t] is then
given by > .. g Trslow[t], bi;[t]. We make an observation at this point that helps us simplify
the presentation of the results. Since the rate is additvesa sub-bands, and is a function of
a band-independent channel gain, one may consider andzanaty equivalenvirtual system
where the number of usersasgjualto the number of sub-bands. This removes the dependence of
the feedback allocation policy on the assignmeXij$t]. In other words, the equivalent system
would consist of., users assigned tb sub-bands with feedback allocatiofts[f]}5_, and rates
rulau[t], bi[t]]. As for the queue lengths, one can simply “replicate” the esaueue lengtly, [7]
for all virtual usersk’ € Ni[t], i.e., qu[t] = qk[t], VE' € Ni[t]. Once the optimal feedback
allocation {b}[t]}5_, and virtual rates [b;[t]] are computed, we can map back to the original
system by calculating the true rate for ugeas . (o [t], j [t]].

Through the remainder of this paper barring the final sinnutet section, we study the
equivalent system mentioned above where we haugsers assigned té sub-bands. Having

defined all the ingredients of our OFDMA downlink network, weve on to the next section



where we develop the feedback allocation policy that pécadty makes decisions based on the

network state.

[1l. THROUGHPUFOPTIMAL FEEDBACK ALLOCATION WITH SLOW SCHEDULING

In this section, we develop a feedback allocation (codebsin& adaptation) protocol that
when operated in conjunction with a given slow data schadytiolicy, guaranteethroughput-
optimality. This means that given an arrival rate veclqgrif there exists any scheduling policy
that can guarantee bounded expected queue sizes, then sitecaroposed policy, which falls
under the MaxWeight family of policies that was pioneeredTagsiulus and Ephremedis [29].

As mentioned towards the end of the last section, we now hawduml system withl, users
assigned tal, sub-bands with feedback allocatiof, [t]}£_,, rates{r[c[t], by [t]} £_, and
queues{qy[t]}£_,. Through the remainder of this paper, until Secfioh VI, welaee the index
k" by k for convenience, with the implicit understanding that we dealing with virtual users.

The feedback allocation policy is presented below.

Algorithm 1 MaxWeight feedback allocation with slow data scheduling
1: while ¢t > 0 do

if ¢ (modT) =0 then

N

3 Sett =t
4: Solve
{bi[f]} = argmax >0, qelfrelolf], by
w.rt. b, €{0,1,...,B}, Vk 1)
st. SF b <B.
5. end if
6: end while

A few remarks about the above algorithm are in order:
(i) Throughput-optimality The algorithm is throughput-optimal with respect to thexsp of
policies that make feedback allocation and assignmensides once every slots. This means
that if any policy that makes feedback allocation and ass&it decisions once evefly slots
can stabilize a set of arrival rat¢s, }, then so can the proposed policy i (1). Let the region of

rates that can be stabilized by the policy[ih (1) be denote.bhe above notion of throughput



optimality for queueing systems has been used extensindlye literature (see [24], [25], [29],
[30] and references thereifje do not prove throughput-optimality as it follows fronaustiard
Lyapunov techniques that are well-established in the gnguéerature [30].

(i) Computational complexityWhile the optimization problem characterizes optimalfger

mance, solving it exactly may be computationally prohwatiln fact, a brute-force approach to

B+L—1) ) )

solving 1) would incur a complexity o ((“}~;

The final remark forms the basis for the remainder of this paplee brute-force approach
to solving [1) is clearly infeasible from an implementatiperspective. We take up the issue of
complexity starting in Section IV and propose a host of cotaponally-efficient algorithms
to solve the feedback allocation problem (1). We wish tghhght that all algorithmic
developments can be applied to full-buffer (saturatedjesys where scheduling schemes such
as proportional fairnessbecome applicable. This is because most schedulers oésttsolve a

weighted sum-rate maximization problem at each insfarjt [31

V. OPTIMAL FEEDBACK ALLOCATION THROUGH DYNAMIC PROGRAMMING

In Sectionll, we have established that for queue stabilitg are interested in solving the

following online weighted sum-rate maximization problem

maxg,jes ey Gelflralon(d], bel. ()

The form of the functiongr;[ax[t], bx]} would of course depend on the underlying physical
system and is intimately connected to the computationalptexity of the problem. In fact, for
complex modulation/coding schemes the function might drdyavailable as a look-up table.
While the optimization problem characterizes optimal parfance, solving it exactly may be
computationally prohibitive. Thus, the focus of this pap&comes algorithmic. We propose
novel solutions to[(2) through Sectiohs]IV ahd V that expltre natural tradeoffs between
accuracy, complexity and the structure of the weighted satefunction. We start by showing
that by using Dynamic Programming, the exact solution caolitained in pseudo-polynomial

time.

Theorem 1. The online resource allocation problefd (2) can be solvedttyxan time O (LB?).



Proof: Order the users arbitrarilyVe choose to work with the existing order w.l.0.g. For any
given arbitrary weight§w;}, w; > 0, defineA(i, j) 2 wiry [a;, j] to be the weighted rate for user
i given we allocatej bits to this user and definB(k, b) 2 MAXS~E o peny Soiet Wiri[a, bi
to be the maximum weighted sum-rate if we hauats to allocate amongst the firktusers with
R(0,b) = 0. It follows that R(1,b) = A(1,b),b=0,..., B. We can write a recursio®(k,b) =
max,—o_»{R(k—1,b—j)+ A(k,j)}. The optimality of this recursion can be established using
standard induction arguments similar to the two-dimerdi&napsack problem [16]. This rule
gives rise to a table with a total df(b + 1) elements. In order to compute eleméhtd) in the
table, using our recursion, we incur a complexity®fb + 1). Hence, the total complexity can
be calculated a§"r , S>>0 (b +1) = LY7 (b + 1) = LEHER) _ o(1,p?), m

Thus, we have proposed an exact solution using dynamic gmoging, which has pseudo-
polynomiala complexity O (LB?*) and which is applicable tany type of weighted sum-rate
function. Therefore, in contrast to the joint power-control and schied problems in([[26]-+[28]
and owing to the discrete nature of the feedback allocatimblpm we consider in[{2), we
do not require any special channel-induced properties @fadifjective function such as those
imposed on its partial derivatives in Lemraaof [27], in order to find an optimal solution.

Note thatR(K, B) in Theorenil withw; = ¢;, Vi, is equal to[(R) and dynamic programming
essentially gives us a technique to compiReX’, B) by solving smaller sub-problems. The
following toy example withK' = 2 users and a total bit budget &f = 2 bits illustrates a typical
series of computations en route to calculatiR@, 2).

Example (Dynamic programmingrder the two users arbitrarily, say uskfirst followed

by user2. Then, initialize the following weighted rates appropeigtfor b = 0, 1, 2,

R(1,b) = A(1,b) : when userl is allocatedb bits
R(2,b) = A(2,b) : when user is allocatedb bits.

Once initialized, we then compute valig2, 1) = max{R(1,1)+ A(2,0), R(1,0)+ A(2,1)} =

2An algorithm has pseudo-polynomial complexity if its rungitime is a polynomial in the size of the input in unary. The
size of the input to[{2) in unary at Mo&tB Amax + B = O(LB) where Anax = max; ;) A(i, j).
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max{R(1,1), A(2,1)}. Finally, we calculate

R(2,2) = max{R(1,2)+ A(2,0), R(1,1) + A(2,1),
R(1,0) + A(2,2}
= max{R(1,2), R(1,1)+ A(2,1), A(2,2)},
the desired optimal weighted sum-rate with two users andiit
To understand the computational requirements in the coofex real-world system, consider
the LTE example that was presented in the introduction ®ghper. Here, we had the following
parametersZ. = 50, K = 50 with 4-bit modulation/coding tables at the mobiles. To model
the limited feedback constraint, 1e8 = 4cL, ¢ € {1,2,..., K — 1}, which has an intuitive

interpretation of being able to provide full feedback to abstnc users;c = K represents

K

no constraint on feedback resources for this setting. Thefgedback bandwidth of = 7

corresponds to a complexity of roughfyx 10'* operations, which is clearly quite daunting.
Thus, while the dynamic programming approach is indeedl@itdy sufficiently small systems,
we require algorithms with faster running times that mightiéss accurate. This forms the focus

of the remainder of this paper.

V. REDUCED-COMPLEXITY RESOURCE ALLOCATION

In this section, we show that if the weighted sum-rate furdihave additional structure, we
can develop faster algorithms. As is often done for compartatly hard problems, one seeks
efficient but potentially sub-optimal algorithms, but th@oves lower bounds on the performance.
In this vein, we develop more computationally efficient aitfons that approximately solvEl(2),
and provide theoretical lower bounds on their performaiite. long-term performance of these
approximate algorithms in achieving queue stability israbterized by Theorefn 2 below. The
proof is omitted as these are well-known results in queuysiesns.

We say that an algorithm isaapproximation;y € (0, 1], to (T) if it provides a solution[bzlg}
such thaty", gi[f)re[aslf], b5 > ymaxg,yes S arlflrr[axl], bi]. The following theorem is a
generalization of the original result by Tassiulus and Eptedis [29]. It essentially states that

local approximation is consistent with the long-term ohjexs we consider.

Theorem 2.If A € {yw : v € V},v € (0,1], then a~-approximation to the per-instant
scheduling rule{d*[t]} = arg maxg, e Y, qk[t]rr[ow[t], bx] Stabilizes the system.
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Recall from remarki) in Sectior 1l thatV represents the region of rates that are stabilizable
by Algorithm[1. The theorem essentially states that for @imy systems: If we calculate a
~-approximate solution td [2) in every time slot, one can eehiay-fraction of thethroughput
region. This result paves the way for the design of companatly-efficient algorithms, by
constructing approximations t61(2).

In Section[A, we consider weighted sum-rate functions thrat rron-decreasing and sub-
modular in the feedback bit allocation. In short, sub-madty refers todiminishing returns
with respect to the allocation of resources. This is a pitypirat is exhibited quite frequently
by wireless systems in general, e.g., point-to-point cé#pacales logarithmically in transmit
power, achievable rates in multiple antenna precodingegystexhibit diminishing returns in the
size of the codebook [17], [18], etc. In the developments fbléow, we exploit this property in
order to propose greedyfeedback allocation algorithm that has complexiy(B + L)log, L)
with approximation factor of(l — %) Our main contributions are contained in Lemfa 2 and
TheorenB.

In Section[B, we focus on a class of weighted sum-rate funstithat arise in downlink
scenarios where the base station is equipped with multiptenaas and performs transmit
beamforming with quantized beamformer feedback. This is@ufar transmission strategy that
been extensively researched][17],][38]+[35] and adoptea standards such as W-CDMA [32]
and LTE [1]. We show that for this choice of physical layer estie, the weighted sum-rate
maximization problem in[{2) is sub-modular for certain typef beamformer quantizers. We
illustrate the improvement in computational performangeubing the LTE example from the

introduction.

A. Reduced-complexity resource allocation through subdutawity

We begin this section with a quick primer on sub-modular rapation (summarized from
[19]-[21]) that will be useful for our purposes. In keepingttwthe literature, the approach
pursued in this section is graph theoretic in contrast torést of this paper. A sub-modular
function is defined as follows: Lef’ be a finite set an®” represent all its subsets. Then,
F: 2P — R, is anon-decreasingnormalized sub-modularfunction if £'(§) = 0 (normalized),
F(A) < F(B) whenA C B C E (non-decreasing) and (AU {e}) — F(A) > F(BU{e}) —
F(B), VAC BC E ande € E'\ B (sub-modular).
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The following property of sub-modular functions is usefaf bur analysis.

Lemma 1. If F,(-), n=1,..., N, are sub-modular on sef, theanLV:1 w,F,(A), ACEis

a sub-modular function fow, > 0, Vn.

Having provided the definition of sub-modularity along wigh useful property, we now
introduce the kinds of constraint sets that are typicallysidered in the context of sub-modular
optimization:(i) A set system(£,7Z) where £ is a finite set and is a collection of subsets of
E is called anindependence systein() € Z and satisfies ifA C B for B € Z, then A € Z. (ii)
An independence system is calledratriod if it satisfies the following additional property; if
A,B € 7 and|A| < |Bj, then there exists € B \ A such thatA U {e} € Z. (iii) SetZ is a
uniform matroidif Z = {FF C F : |F| < k} for k € N.

The optimization problem that has been considered in théegbof sub-modular functions
and independence systems is

F*:Aer%%x}éEF(A)' 3

Since many NP-hard problems can be reduced to a sub-moduwatidn maximization over
an independence system, significant research has focusgeveloping efficient approximation
algorithms. In particular, the performance of the greedyoathm in solving special cases of
(3) has been extensively studied. Nemhauser et al. [22]idersl problem[(3) over uniform
matroids and showed that the greedy algorithm provid(aB-a%) approximation factor for this
special case. Please refer to Goundan et al. [19], Calinesell [20] and Vondrak [21] for a
summary of related results on sub-modular function opttnan over other families of constraint
sets. The greedy algorithm is presented later in the sertitre context of our specific feedback
allocation problem.

Sub-modularity in feedback allocatiort We now show that the optimal bit allocation problem
in (@) may by posed as a sub-modular maximization over a tmifmatroid when the rates
exhibit sub-modularity. Let; = (U, V, E) be a bipartite graph wher€ containsL user nodes
and V' contains B bit nodes both ordered arbitrarily, i.e[U| = L and |V| = B. Let £
contain the set of all edgeB = {ey, : i = 1,...,Landj = 1,...,B}. Given A C E, we
define | A, 2 {eww € A : k = i}| to represent the number of bits allocated to usere.,
|Al; = b;. The independence system we are interested ih is {A C E : |A| < B} where

B is the total bit budget. By definitiorf is a uniform matroid and furthermor&, is the set
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of all valid allocations since it4 € Z, then>>;_ by = S.r_, |Al, < B and if A ¢ Z, then
SF bk =3.r |Al, = |A| > B. Now the weighted sum-rate maximization problem[ih (2) in

time slott may be re-written as

max(s,jes Yot Ghk [0k [F]; bl

max >k @kl f], be] — ri[ax[d], 0]
st be = |Ale, S |Alk< B, ACE
= maxacr oy Grwlawld], [Alk] — o], 0).

The following result becomes immediate.

Lemma 2. If the functionry a4, by] is non-decreasing and sub-modular in the bit allocathpn=
|Alx, A C E forall usersk = 1,..., L, and channel states; € Q, then>>"_ quri[ov, | Alx] —
rr[ax, 0] is @ normalized, non-decreasing, sub-modular function einsfor all channel states

{a} € Omega®.

Proof: The result follows from Lemmal 1. [ |
Hence, the greedy algorithm can be used to solve the optiitnaldication problem in[{R2) with
approximation factor(1 — 1). The greedy algorithm for the specific case of our bit allwrat

problem in time slot can be written as follows where, (b;) 2 qx (rilou, by + 1] — r[ag, bi])

denote the increase in rate or marginal utility if ugeis given one extra bit.

Algorithm 2 Greedy feedback allocation
1: Setb, = 0,Vk, which is essentially a bit counter for each user

2: Compute marginal utilitie§u(by)}.

3: while >, b, < B do

4:  Sort this list of marginal utilities.

5. Assign a bit to usek* who is on top of this list.
6: Updateb, = by + 1 and re-compute. (by-)

7: end while

We end this section by investigating the complexity of thewbalgorithm in the following

theorem.
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Theorem 3. The greedy algorithm approximates the optimal bit allogatproblem in [(R) to

within a factor of (1 — 1) while incurring complexityO((B + L)log,L).

Proof: Step2 of this algorithm incurs complexity)(Llog,L) for the first iterationb = 1.
Subsequently, every re-sort in Stg¢gostsO(log, L) with a maximum ofB such re-sorts. Thus,
the total complexity isO((B + L)log, L). For the proof of the approximation factor, please refer
to Nemhauser et all_[22]. [ |

In the context of the LTE example introduced earlier, thisamsethat by exploiting the sub-
modular structure in the rates, we reduce the complexityffax 10! to 15 x 10% operations.
Before we move on to the next section, we provide an exampke @afmmon wireless setting
where sub-modularity is exhibited. Consider a traditiopaint-to-point single antenna wire-
less link with ab-bit modulation-coding table at the receiver. The moduolaitoding table is
constructed as follows. Given a non-negative real numbehéninterval[0, ], o >> 0, we
uniformly partition the interval int®2® sub-intervals and implement the quantization scheme
2] = §.ig <@ < (i+1)§, i =0,1,...,2° — 1. Then, for any fixed position-dependent
gain of «, the achievable rate of the system in a fading environmemtbeawritten as

rla,b] = Enllogy(1 + [Valh] ), 4)

where |h|? is a truncatecbxp(1) random variable that has a maximum valuesof-> 0. The
probability density function for such a random variable igeg by fi,2(z) = C(0)exp(—x)
where(C(-) is a normalization factor. Note that this example considetsaditional continuous
fading model. One may obtain its discrete version thereloyaraing with our system model, by
sampling the suppofb, o]. Thus, the rate expression {0 (4) may be treated as an appeiizn
that becomes increasingly accurate as we discretize thmpsgumore finely. For the case = 1,
the rate [(#) can be explicitly computed as
FLE = Clo) N2 5 log, (1+12) ff;j”z% exp(—z)de
= [l (—5)] S0 og, (1+ ) exp (i)

Setting I[j,b] = log, (1+ 92—‘;) the normalized incremental gain with one extra bit can be
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calculated as

|30 u02g b+ 1e 75 4 3 2+ 1, 5)
| = 1o | [T e
by splitting odd and even terms

_ 1o _ o 21 _—je
= [e 226 _ ¢ 25} [Zj_o e Jab log, (1+ 8i]>:|

22
o

Through simple numerical enumeration, one may confirm thatltbit rate gain given above
in (8) decreases over realistic bit sizesbof {1,2,...,25} and hencer[1, 5] is a sub-modular
function. With a little more algebra, one may derive a simisult for the general case with
any arbitrary, non-negative, position-dependent gain

In the next section, we provide another example of a wirelstem that exhibits sub-
modularity. In particular, we consider a class of multipiéesnna wireless links and solve (2) in

the context of these systems.

B. Reduced-complexity resource allocation for MISO system

When the user rates;[«, b] are sub-modular in the bit allocatidnin every channel state
a € ), we use the greedy algorithm in Sectioh A to approximatelyesthe online feedback
allocation problem in[(2) with complexit®((B + L)log,L). In this section, we show thatx 1
MISO quantized transmit diversity systems exhibit sub-oladexpected rates bringing into use
the results from the previous section. Furthermanehe context of these specific transmission
schemeswe develop an approximation algorithm based on convexaétans with a further-
reduced complexity o©(Llog,L) and an approximation guarantee ]Qofor typical operational
signal-to-noise ratios (SNR). Thus, aside from the usugdaich on precision that is typically
omitted from running time calculations, the running timeaafr algorithm no longer depends
on the feedback budgé?. In the example above, the running time is reduced evenduftbom
15 x 10 operations to roughly00 operations.

We begin this section by investigating the effects of lidifeedback on the aforementioned
class of MISO systems. It is well-known that the instantarse8NR for a classical x 1

single-stream beamforming MISO link is given BNR(«)||h|[* whereSNR(«) = 32, P is the



16

transmit power,NN, is the noise power and = [, hz]T, h; € C represents the MISO channel
with zero mean, unit variance complex Gaussian entries. iis thhe example in the previous
section, the analytical rate expressions in this sectierdarived for continuous vector channels,
which are increasingly accurate approximations as we sathplsuppor€? more finely. Recall
from Sectior Il thato € Q2 models the effects of large-scale fading. To achieve thigimmam
instantaneous SNR, the user requires perfect feedback chémnel vectdn. However, feedback
in realistic systems is imperfect due to limited feedbackidmis and quantization, the primary
motivation for this work. We assume that the channel vebtas quantized using the popular
Random Vector QuantizatiqRVQ) technique[17],[34]. This technique is briefly revieshin the
next section when we present simulation results. Recenltsd4 7], [33], [34] bound (upper and
lower) the loss in rate due to quantizationlofwvhen using RVQ codebooks. In particular, both
upper and lower bounds on the rate loss due to quantizationsferk take the forme(ay, )2

for somec(ay) > 0. Motivated by these results, we assume that the post-quaiot rate for user

k in the presence of large-scale fading takes the forfo, b,] = E [log,(1 + SNRy||h|[?)] —

(E [log,(1 4+ SNR;||h[[?)] — E [log,(1 + SNR;||?)]) 27", where we have omitted the depen-
dence ort for brevity. We validate the use of the above approximatioough numerical testing
in the next section for many values af from a typical operational range in a wireless system.

Thus, the optimization in{2) for the x 1 MISO case takes the specific form
max )5 Y- Gk [B2(SNRe)— (B2(SNRe) — 51(SNRy)) 2] (6)
where SNR = SNR(qy,) for short, 5;(SNR) = E [log,(1 + SNRA4|?)] and
F>(SNR) = E [log,(1 + SNR|[h|[*)]

denote the one-tap and two-tap expected rates, respgcfivel Rayleigh fading channel with
the given SNR.

Relaxation and approximation guarantees Through the remainder of the section, we de-
velop an aﬁproximation algorithm to solvd (6) in closedsfowhile incurring a complexity of

O(Llog ,L)3. We provide an approximation guarantee%of

3We recognize that there is an additional storage cogp@bg B).
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Theorem 4. Consider the following continuous relaxation bf (6) fornmdreplacing the discrete
set B with its natural continuous extension and dropping termat tre independent of the

variables{b, }:

by} = i SNR,)2 "%, 7
{bp} = arg > bkiﬂBl’nbkeM;%ﬁl( R) (7)
. +
The solution to this relaxation i§; = {— log, (qk(fgg 57 (SlNRC))} , Wheren* is chosen such
1

that >, b; = B and [z]* = max{z,0}.

Proof: See AppendixCA. [

Next, we comment on the complexity of computing the abovetioaal solution.
Theorem 5. Computing the above solution in Theoreim 4 incurs a complefitO(Llog,L).

Proof: See Appendix_A. [
The following lemma states that weighted sum-rate funciio@) is non-decreasing and sub-
modular on sety = {ey, :i=1,...,L andb=1,..., B}, thereby allowing us to connect and
compare the results in this section with those in the pressgaction on sub-modular functions.
The proof is standard in the literature on sub-modular fionst and follows from the fact that
the fractional relaxation of the weighted sum-rate functi® concave in{b,} over the domain
{[0, BJ¥ : >, bi. < B}. It is hence omitted.

Lemma 3. The weighted sum-rate function inl (6) whéke= |A|,, A C E, F = {ex : i =
1,...,Landb=1,..., B} is non-decreasing and sub-modular on this get

Comparing the results in Theorems 3 did 5, we see that by asguess about the exact
form of the communication system, we are incurring an adaedpdexity cost ofO(Blog,L),
while providing a system-independent approximation goize of (1 — %).

Once we solve fob;, we apply a floor operation in order to enforce the integerstamts,
i.e., we setb; ;v = [bp] if by > 1 andbj ;y, = 0if by < 1. This leads us to the task of

quantifying loss due to integrality, which we do next. We sioler two cases: Fad¥;, > 1, we
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have that

52(Wk)(1 Q*bk,INT)_i_Bl(m) bk INT
B2(SNRy ) (1—2 "% )+ 81 (SNRy )2~
B2 (SNR,) (12" +1) 451 (SNR, )2 %% !

B2(SNR )(1 2% )+51(SNRk>

;% sincel < b} < oo
51 (SNRy)2

v

v

1
5

Similarly for b; < 1 andb; ;yr = 0, we have that

B2(SNRy ) (1—2" . INT)+B1(SNRk) ~bk, INT
) *

B2(SNRy) (12" "k )+81 (SNRy)2 ™~
> 71(SNR1€)7 1 *
2 T5,(5NR.+5: (GNRY) sinceb;, < 1 (9)
_ 1
T 1AGWR) -
21 (o) T

From (8) and[(R), we can compute the approximation factor as

(10)

Thus, the approximation factor critically depends on th&)ra% which essentially repre-

sents the rate gain due an extra tap or antenna. ILFig. 1, menically comput% for a

19r

18f

82(SNR)
8:(SNR)

161

Rate gain

15F
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Fig. 1. Rate gain due to the addition of an extra antenna asaiém of SNR.

typical cellular range of-15dB to 15dB and see tha QESN

SR, < 2 over this range. Combining
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the results in Fig.]1 with (10), we can conclude that the pseporelaxation/rounding algorithm
has an approximation factor (éf.

In summary, the two proposed algorithms exploit the stmectof the feedback allocation
problem in settings such MISO with quantized beamformingdeliver lower complexity than
the optimal dynamic programming approach accompanied hyagees on accuracy. Note that
the accuracy guarantees, namély;- %) for the greedy algorithm an§I for the convex program
are independent of any system parameters such as chartrgicstatotal bit budgeB, etc., and
are hence, a clear measure of worst-case performance. Weoegon to numerical simulations
in the next section, which helps us understand the actuébnpeance against the backdrop of

these worst-case guarantees.

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the greedglfack allocation algorithm
in a MISO downlink network. The simulations serve as a probtancept for the proposed
dynamic feedback allocation approach. As the baseline vasmtroduce a static equal allocation
algorithm that we describe in detail below along with the dsthe simulation setup. Note that
we now revert back (from the virtual system withusers) to the original system witli users,
i.e., the indicest = 1,2, ..., K, now track actual users.

Number of users, OFDMA bands and data scheduling policyThere areK = 4 users in a
10MHz system with a total of. = 8 OFDMA sub-bands. Since the focus of these simulations
(and this paper) is primarily on quantifying the gains of dgmc feedback allocation, the users are
assigned equal amounts of spectrum for data transmisstbe &eginning of the communication
epochthat do not change with time.e., useri is always assigned to band8: — 1, 2:}.

Small-scale fading, average user SNRs and traffic modelThe users are stationary and
have fixed average SNRs through the entire epoch of comntioncaVe consider two av-
erage SNR profiles i) Large asymmetry with average SNR8Ilog,,(SNR;[f]) = —10dB,
101log,,(SNRy[f]) = —8dB, 10log,,(SNR;[f]) = 10dB, 10log,,(SNR,[f]) = 10dB and (ii)
Nearly symmetric with average SNR$ log,,(SNR;[f]) = —1dB, 10log;,(SNR,[{]) = —1dB,
101og;,(SNRs[t]) = 1dB, 101og,,(SNR,[f]) = 1dB. Asymmetric profiles are of interest because
this is the regime where dynamic allocation would arguatldyehmost value. The small-scale

fading channel realizationk in each slot are generated according to the standard complex
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Gaussian distribution. The arrivals are assumed to be rdatestic and symmetric with rates
A = A, Vk.

Feedback budget and baseline equal allocatiormhe feedback budget is set = 12 bits.
The baseline algorithm allocates an equal number of bitsath eiser, i.e.h, = 3, Vk. Each
user in turn distributes these three bits as follows - tws totthe first sub-band it is assigned
and one bit to the second. In other words, the per sub-baadasibn for usel is b,; = 2 and
bre = 1. The allocation is changed evefy= 10 slots.

MISO RVQ codebooks and post-quantization rate For each bit allocatio, we generate
codebookC(b) by choosing two points uniformly at random from the sphéfe For such a
codebookC(b), we compute the ergodic rate ovéd00 standard (zero mean, unit variance),
complex Gaussian channel realizations. We repeat thisriexpet over 100 codebooks and
choose the codebodk*(b) that provides maximum ergodic rate. We repeat this proeeéur
eachb € {0,1,..., B} and create auper-codebookC*(0),...,C*(B)}. Note that the codebook
generation procedure is done once at the beginning of thentoncation epoch. In the previous
section, we proposed

relo, b] = B2(SNR)(1 —27") 4 1 (SNR)2™° (11)

as an approximation for the ergodic rate givehits. In Fig.[2, we comparé_(1.1) with the true
(numerically computed) ergodic rate giverbits at variousSNR values in a typical operational

range. We see thdt (I11) is indeed an accurate approximation.

451

=+ True rate at -10dB
1O Predicted at -10dB

=——#— True rate at -5dB

0dB @ Predicted rate at -5dB

——&— True rate at 0dB

©@ - True rate at 0dB

Expected Rate (bps/Hz)

~&— True rate at 5dB
5dB '@ Predicted rate at 5dB
== True rate at 10dB
% Predicted rate at 10dB

-10dB

0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of feedback bits Number of feedback bits

@) (b)

Fig. 2. Comparison of predicted rafe{11) with true numéiiceomputed ergodic rate given for codebooks* (b)}£_, at
various values oSNR; (a) Low-to-moderat&SNR (b) Moderate-to-higisNR.



21

Having described the simulation setup in detail, we nowgmethe results of our experiments.
We compare the performance of three algorithms — the gregdgmic feedback allocation
algorithm in Algorithm[2, the equal allocation case, and tlase with perfect feedback (i.e.,
where the bit budgeBB = ~o0) — under the two average SNR profiles. The results for SNR
profile with large asymmetry are plotted in Fig. 3. In Hig.)B(ae see that the greedy dynamic

x 10

—— Static equal allocation x 10
9| = ¢ = Dynamic greedy allocation

Perfect Feedback

=
o

T T T
—— Static equal allocation

[| = € = Dynamic greedy allocation

Perfect Feedback

Total expected queue size
Total expected queue size

o P N W N O O N © ©
T T T 1

or————6—& = =
i 2 3 4
Throughput A (kbps)

Throughput A (kbps) 6

€Y (b)
Fig. 3. Throughput under the two feedback schemes withréiffeaverage SNR profiles. The average queue length is negasur
over 10000 iterations; (a) Large asymmetry wiBNR profile{—10, —8, 10, 10}dB (b) Nearly symmetric case witBNR profile
{-1,-1,1,1}dB

allocation outperforms the static equal allocation apphday almostl3% while consuming only

an additionalw = (.88 bits per second of overhead. Furthermore, greedy dynamic
algorithm achieves within.5% of the optimal aIIocaticHﬂhrough dynamic programming thereby
rendering the performance guaranteg bf- %) in Theoren B quite conservative.

In the nearly symmetric case however, the gains due to dynalioication decrease and almost
vanish in the particular experiment that we consider in[3lg), as would be expected. We see
that in this case, the greedy algorithm achieves wi#ii¥t of the optimal.

Thus, with minimal expenditure in overhead, the dynamication approach achieves notable
gains in throughput for asymmetric settings, thereby shgvadonsiderable promise for systems

with larger feedback budgets and a greater degree of asymietraffic loads and channels).

“The optimal weighted sum-rate is at most as large as the velggum-rate with perfect feedback.
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VIlI. CONCLUDING REMARKS

We summarize the algorithmic contributions presented icti&es[IM andlV¥ in Tablé]ll. We
observe from the table that these algorithms explore trdetffs between accuracy, computa-
tional efficiency and the structure of the weighted sum-fatetion. An interesting question and
future direction pertaining to the section on MISO system#/hether such an analysis can be
extended to cover other commonly-deployed multiple ardesmchitectures. Finally, the design

of joint data scheduling and feedback allocation policgeanother direction for future research.

TABLE |

PROPERTIES OF PROPOSED ONLINE FEEDBACK ALLOCATION ALGORITWS

Algorithm |Required structure gn  Complexity Approx.
weighted sum-rate factor
Dynamic None O(LB?) 1

Programming
Greedy Non-decreasing |O((B + L)log,K)|(1— 1)

e

Sub-modular

Convex Non-decreasing O(Llog, L)

SIS

Relaxation Sub-modular
MISO RVQ Systems

In summary, we propose optimal feedback allocation pdideg cellular downlink systems
where the base station has a limited feedback budget. Thislgm is solved using dynamic
programming incurring pseudo-polynomial complexity ire thumber of users and the total bit
budget. When the weighted sum-rate is a non-decreasingnsalodar function, we leverage the
theory of sub-modular function maximization to propose aegly algorithm with polynomial
complexity that has a approximation guarantee(bf— %) For MISO transmit beamforming
physical layer communication schemes with quantized beamndr feedback, we recognize that
the weighted sum-rate function is non-decreasing and sadiufar for RVQ codebooks. More
importantly, it takes a special form that allows us to depedm approximation algorithm based
on convex relaxations that can be solved in closed-formyriimeg lesser complexity than the

greedy algorithm. We connect the performance of the prapapproximate online algorithms



23

to the long-term throughput region of the system.
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APPENDIX A

PROOF OFTHEOREMS[4{H

Proof of Theoreril4The objective function is clearly convex sinze’ is convex and since linear
sums preserve convexity. By studyinig (7) closely, we caa sig/ thab;, is such thatZi:1 by =

B since if this not true, we can increase the bit allocatioratdeast one user thereby decreasing
the objective function. SincB > 0, b, = 0, Vk is in the interior of our constraint s&, which im-
plies that Slater’s constraint for strong duality is sadidfand that the Karush-Kuhn-Tucker (KKT)
conditions are sufficient in nature. The Lagrangian costtion can be written ag (b, Ay, ) =

— Z,ﬁzl qer1(SNRL)27% — N\eby + n (>, b — B) for which the KKT conditions aré; > 0,

Ap >0, bi\p =0, andn* = ¢y (SNRy) (log 2)27% + A;. Since27? is a decreasing function in
b, it follows that if 1" < g7, (SNR,) (log 2), then\; = 0 andb;, = —log, (s rshry ) 19

a valid solution to[(I7). Ify* > qx71(SNRy)(log 2), A; = n* — ¢r1(SNRy)(log 2) andb; = 0.
Hence, we can write the solution s= [— log, <
that) ", by = B.

n* 1
qr(log 2) r1(SNRy)

+
)] wheren* is chosen such

Proof of Theoreni15In order to compute the solution in Theordh 4, we first needgdd
{64 },_, in ascending order wher@, = g,r(SNR;)(log 2). This has complexityO(Llog,L).
Call this sorted sefd,,}. Once sorted, we need to sgt= 0,, for eachm and test feasibility.

Testing feasibility incurgD(L), as it is aL-term addition and scanning through edthincurs
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O(log, L) through the use of binary search. As we incregsemoreb;, terms are set to zero.
Once we locaten, and m, such thatp* = 6,,, is infeasible whilen* = 6,,, is feasible, we
can compute;” in closed-form since it satisfi€s, .. b5, = B. Hence, the total complexity is
O(Llog,L) + O(Llog,L) = O(Llog,L).
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