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Abstract

Orthogonal Matching Pursuit (OMP) is a canonical greedy pursuit algorithm for

sparse approximation. Previous studies of OMP have considered the recovery of a sparse

signal x through Φ and y = Φx + b, where Φ is a matrix with more columns than

rows and b denotes the measurement noise. In this paper, based on Restricted Isometry

Property (RIP), the performance of OMP is analyzed under general perturbations,

which means both y and Φ are perturbed. Though the exact recovery of an almost

sparse signal x is no longer feasible, the main contribution reveals that the support set of

the best k-term approximation of x can be recovered under reasonable conditions. The

error bound between x and the estimation of OMP is also derived. By constructing an

example it is also demonstrated that the sufficient conditions for support recovery of the

best k-term approximation of x are rather tight. When x is strong-decaying, it is proved

that the sufficient conditions for support recovery of the best k-term approximation of

x can be relaxed, and the support can even be recovered in the order of the entries’

magnitude. Our results are also compared in detail with some related previous ones.

Keywords: Compressed Sensing(CS), general perturbations, Orthogonal Matching

Pursuit(OMP), restricted Isometry Property(RIP), strong-decaying signals, support re-

covery.

1 Introduction

Finding the sparse solution of an underdetermined linear equation

y = Φx (1)

is one of the basic problems in some fields of signal processing, where y ∈ C
m andΦ ∈ C

m×n

with m < n. The basic problem (1) has arisen in many applications, including Sparse
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Component Analysis (SCA) [1, 2] and Blind Source Separation (BSS) [3, 4]. Since the

introduction of Compressed Sensing (CS) [5–8], the problem (1) has received significant

attention in the past decade. In the field of CS, y denotes the measurement vector, Φ is

called the sensing matrix, and x is the sparse or almost sparse signal to be recovered.

Various algorithms have been proposed to recover x. They roughly fall into two cate-

gories.

Convex relaxation: Based on linear programming technique, finding the sparse solu-

tion to (1) can be relaxed to a convex optimization problem, also known as Basis Pursuit

(BP) [6]. As for the case of noisy measurements, the problems of Least Absolutely Shrink-

age and Selection Operator (LASSO) [41] and Basis Pursuit De-Noising (BPDN) [42] are

introduced. Algorithms used to complete the convex optimization include Interior-point

Methods [9], Projected Gradient Methods [10], and Iterative Thresholding [11].

Greedy pursuits: Most of these algorithms build up an approximated set of nonzero

locations by making locally optimal choices in each iteration. Several popular ones are

Orthogonal Matching Pursuit (OMP) [12–14], Regularized Orthogonal Matching Pursuit

(ROMP) [15], Compressive Sampling Matching Pursuit (CoSaMP) [16], Subspace Pursuit

(SP) [17], and Iterative Hard Thresholding (IHT) [18].

For the scenario of no noise or perturbation, the recovery process can be formulated as

(N0) x̂ = R(y,Φ, · · · ),

whereR(·) denotes the process of a recovery algorithm, with the inputs listed in the following

brackets, and x̂ denotes the output (i.e. the approximation of the original sparse signal x).

Process of (N0) is non-perturbed, thus the sparse signal can be exactly recovered under

suitable conditions. For example, under certain conditions, BP [19, 20], OMP [21–27],

ROMP [15], CoSaMP [16] and SP [17] all guarantee exact recovery of x.

In practical applications, the measurement vector y is often contaminated by noise.

Thus a perturbed measurement vector in the form of

ỹ = y + b (2)

is considered, where b denotes the measurement noise. In such scenario, the recovery process

can be formulated as

(N1) x̂ = R(ỹ,Φ, · · · ).

Plentiful studies of recovery algorithms including BP [19, 28–31], OMP [25, 26, 28, 31, 32],

ROMP [33], CoSaMP [16], SP [17], IHT [18], and Sequential Orthogonal Matching Pursuit

(SeqOMP) [34] have considered the recovery accuracy in (N1) process. Define the support

set supp(·) as the set composed of the locations of all nonzero entries of a vector. It has been

shown that OMP will exactly recover the support set of a sparse signal x from the perturbed

measurement vector, i.e. supp(x̂) = supp(x), if certain requirements are satisfied with the
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coherence parameter µ (Th.5.1 in [28], Th.3.1 in [32]) or Restricted Isometry Property (RIP)

(Th.2 in [25]). It is worth mentioning that the noise b is assumed to be deterministic and

unknown, and to have a bounded norm (also this paper’s setting). In another common

setting, which is not being handled in this paper, b denotes white Gaussian noise and the

recovery of support set for OMP is discussed based on probability (Th.4 in [31]).

Existing results have mainly focused on the measurement noise, yet results considering

the general perturbations are relatively rare. Here, the general perturbations involve a

perturbed sensing matrix as well as a perturbed measurement vector. Two situations are

considered in this paper from different perspective of views.

The first scenario is from user’s perspective of view. By measuring an unknown system,

one obtains its sensing matrix which is inaccurate. Thus the sensing process is in the form

of

ỹ = Φx+ b, Φ̃ = Φ+E, (3)

with recovery process

(N2) x̂ = R(ỹ, Φ̃, · · · ).

The system perturbation E is introduced because of mismodeling of the system, or the error

involved during system calibration. Since the available sensing matrix is the perturbed Φ̃

instead of Φ, the conditions for recovery are also in terms of the former.

The second scenario is from designer’s perspective of view, which means the system

perturbationE is introduced by physical implementation of a designed system modelΦ [35].

Thus the sensing process is in the form of

ỹ = Φ̃x+ b, Φ̃ = Φ+E, (4)

with recovery process

(N ′
2) x̂ = R(ỹ,Φ, · · · ).

Since the available sensing matrix is the ideal one, the conditions for recovery should be in

terms of Φ in this scenario.

Herman and Strohmer have studied the accuracy of BP solution in (N2) process [36].

Later, Herman and Needell also gave the recovery error of CoSaMP [37]. However, as far as

we know, few works have been done yet on the recovery error or perfect support recovery

of OMP under general perturbations.

Analysis of OMP considering general perturbations and support recovery may benefit

the analysis of other greedy algorithms. In some applications, recovering the support set

other than a more accurate estimation is a fundamental concern (e.g., in the reconstruction

stage of the modulated wideband converter (MWC) [35, 38]). In this paper, a completely

perturbed scenario in the form of (3) is considered and the performance of OMP in (N2)

process is studied. It is shown that under certain RIP based conditions, the locations of k
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largest magnitude entries of an almost sparse signal x can be exactly recovered via OMP.

Furthermore, an upper bound on the relative recovery error is given. It is also demonstrated

that the results generalize the previous study concerning OMP in (N0) process in [23–25,27].

The completely perturbed scenario (4) together with (N ′
2) process is also briefly discussed.

The rest of the paper is organized as follows. Section II gives a brief review of OMP

and RIP, as well as certain necessary assumptions and notations. Section III presents the

main theoretical results on the completely perturbed scenarios. Several extensions are also

presented with respect to special signals. Section IV provides the proofs of the theorems.

Section V discusses some related works. The whole paper is concluded in Section VI. To

make the paper more readable, some proofs are relegated as an appendix in Section VII.

2 Background

2.1 Orthogonal Matching Pursuit (OMP)

The key idea of OMP lies in the attempt to reconstruct the support set Λ of x iteratively by

starting with Λ = ∅. In the lth iteration, the inner products between the columns of Φ and

the residual rl−1 are calculated, and the index of the largest absolute value of inner products

is added to Λ. Here, the residual rl−1 from the former iteration represents the component

of the measurement vector y that cannot be spanned by the columns of Φ indexed by Λ.

In this way, the columns of Φ which are “the most relative” to y are iteratively chosen.

The OMP algorithm is described in Table 1. It is necessary to point out that the version

of OMP in this paper does not require k, which appears throughout the paper, to be an

input. In fact, we are just concerned with the performance of OMP at the kth iteration.

In fact, OMP can be well expressed using y, Φ, Λl, Moore-Penrose pseudoinverse, and

orthogonal projection operator. A detailed analysis has been given in [23]. To introduce

the case of noise and pave way for the proof of main results, a brief review of them is given

as follows.

Let u|Λ denote the |Λ| × 1 vector containing the entries of u indexed by Λ. Define

u(j) as the jth entry of vector u. Let ΦΛ denote the m× |Λ| matrix obtained by selecting

the columns of sensing matrix Φ indexed by Λ. If ΦΛ has full column rank, then Φ
†
Λ =

(ΦT
ΛΦΛ)

−1ΦT
Λ is the Moore-Penrose pseudoinverse of ΦΛ. Let PΛ = ΦΛΦ

†
Λ and P⊥

Λ =

I − PΛ denote the orthogonal projection operator onto the column space of ΦΛ and its

orthogonal complement, respectively. Define AΛ = P⊥
Λ Φ and AΛ = Φ when Λ = ∅, then

AΛ has the same size as Φ. From the theory of linear algebra, any orthogonal projection

operator P obeys P = PT = P 2 and the columns of AΛ indexed by Λ are zeros.

In the lth iteration, we begin with the estimation Λl−1 from the previous iteration. The

discussion below demonstrates the generation of Λl.

In the update step of the previous iteration, which is actually solving a least square
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Table 1: The OMP Algorithm

Input: y, Φ;

Initialization: r0 = y, Λ0 = ∅, l = 0;

Repeat

l = l + 1;

match step:

hl = ΦTrl−1;

identify step:

Λl = Λl−1 ∪ {arg maxj |hl(j)|};
update step:

xl = arg minz:supp(z)⊆Λl ‖y −Φz‖2;
rl = y −Φxl;

Until stop criterion satisfied;

Output: xk.

problem, one has

rl−1 = y −Φxl−1 = y −ΦΛl−1Φ
†
Λl−1y = P⊥

Λl−1y. (5)

In the matching step, one has

hl = ΦTrl−1 = ΦT(P⊥
Λl−1)

TP⊥
Λl−1y = AT

Λl−1r
l−1. (6)

From (5), (6), and the fact that the columns of AΛ indexed by Λ are zeros, it can be

derived that

hl(j) = 0, ∀j ∈ Λl−1. (7)

Therefore arg maxj |hl(j)| /∈ Λl−1, |Λl| = l.

It is important to notice that the above property still holds when y and Φ are replaced

by the contaminated ỹ and Φ̃. To see this, it is calculated that

rl−1 = ỹ − Φ̃xl−1 = ỹ − Φ̃Λl−1Φ̃
†
Λl−1ỹ = P̃⊥

Λl−1ỹ, (8)

hl = Φ̃Trl−1 = Φ̃T(P̃⊥
Λl−1)

TP̃⊥
Λl−1 ỹ = ÃT

Λl−1r
l−1, (9)

where P̃⊥
Λ and ÃΛ are defined by the perturbed sensing matrix Φ̃. Due to the fact that the

columns of ÃΛl−1 indexed by Λl−1 still equal zeros, (7) holds in the completely perturbed

scenario.
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2.2 The Restricted Isometry Property (RIP)

For each integer k = 1, 2, . . . , n, the RIP for any matrix A ∈ C
m×n defines the restricted

isometry constant (RIC) δk as the smallest nonnegative number such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (10)

holds for any k-sparse vector x [39]. It is easy to check that if A satisfies the RIP of order

k1 and k2 with isometry constants δk1 and δk2 , respectively, and k1 ≤ k2, then one has

δk1 ≤ δk2 .

Since the introduction of the RIP, it has been widely used as a tool to guarantee suc-

cessful sparse recovery for various algorithms. For example, for the (N0) process, the RIP

of order 2k with δ2k < 0.03/
√
log k guarantees exact recovery for any k-sparse signal via

ROMP [15]; the RIP of order 3k with δ3k < 0.165 permits SP to exactly recover any k-sparse

signal [17].

However, analyzing the performance of OMP with RIP was relatively elusive before

Davenport and Wakin’s work in [23]. They demonstrated that RIP can be used for a very

straightforward analysis of OMP in (N0) process. It is shown that if y = Φx and x is

a k-sparse signal, then δk+1 < 1
3
√
k
is sufficient for exact recovery of OMP [23] (Th.3.1).

Later, Liu and Temlyakov relaxed the bound to 1
(1+

√
2)
√
k
[24] (Th.5.2). Huang and Zhu

further improved the bound to 1
1+2

√
k
, and they also discussed the performance for the (N1)

process [25]. In [27], it has been proved that 1
1+

√
k
is sufficient for (N0) process, and for

any given k > 1, there exists a sensing matrix with δk+1 = 1/
√
k and a k-sparse signal that

exact recovery via OMP is not guaranteed. Therefore, if one uses the RIP of order k + 1

as a sufficient condition for exact recovery of a sparse signal via OMP, little improvement

is possible. In terms of the number of measurements, for Gaussian or Bernoulli matrices

it was demonstrated in [23] that δk+1 < 1
1+

√
k
requires O(k2 log n

k ) measurements, and the

number is roughly the same as what is required by coherence-based analysis in [21].

2.3 Assumptions and Notations

A vector x ∈ C
n is k-sparse if it contains no more than k nonzero entries. Throughout this

paper, however, the signal to be recovered is not limited to a sparse one. For a non-sparse

signal x, define x(1) ∈ C
n as the k-sparse signal that contains the k largest magnitude

entries of x (i.e. the best k-term approximation of x), and define x(2) = x− x(1). In order

to delineate the compressibility of a general signal x, define

β =
‖x(2)‖2
‖x(1)‖2

, γ =
‖x(2)‖1√
k‖x(1)‖2

.

In this paper, x is assumed to be almost sparse (i.e. β and γ are far less than 1). When

x(2) = 0, one has β = γ = 0, and x is reduced to a sparse signal.
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The notation of strong-decaying sparse signals is introduced by Davenport and Wakin in

[23]. In our work, such concept is extended to general signals termed strong-decaying signals.

Let {x(mj)}1≤j≤n denote the entries of x rearranged in descending order by magnitude.

x is called an α-strong-decaying signal if for all j ∈ {1, 2, . . . n − 1} and x(mj+1) 6= 0,

|x(mj)|/|x(mj+1)| ≥ α, where α > 1 is a constant.

When (N2) or (N
′
2) process is concerned, it is necessary to consider the nature of b and

E, and how they influence the process of OMP. This leads to the following definitions of

relative bounds, which were introduced by Herman and Strohmer in [36].

The symbols ‖·‖2 and ‖·‖(k)2 denote the spectral norm of a matrix and the largest spectral

norm taken over all k-column submatrices, respectively. The noise b and the perturbation

E can be quantified as

‖b‖2
‖Φx‖2

≤ εb,
‖E‖(k)2

‖Φ‖(k)2

≤ ε, (11)

where ‖Φx‖2, ‖Φ‖2, and ‖Φ‖(k)2 are nonzero. These relative upper bounds provide an access

to analyze the influence of b and E, even though the exact forms of them are unknown.

Throughout this paper, it is appropriate to assume that εb and ε are far less than 1.

3 Contributions

In this section, a completely perturbed scenario in the form of (3) is considered and the

performance of OMP in (N2) process is studied. Theorem 1 presents the RIP-based con-

ditions under which the support set of the best k-term approximation of x can be exactly

recovered. In Theorem 2, we construct a sensing matrix and perturbations with which an

almost sparse signal cannot be recovered. The RIC of the matrix is slightly bigger than that

in the conditions of Theorem 1, which indicates that the sufficient conditions in Theorem 1

are rather tight. Several extensions with respect to special signals such as strong-decaying

signals are put forward in Theorem 3 and 4. In Theorem 5, perturbations in the form of

(4) is considered and the performance of OMP in (N ′
2) process is studied. The following

theorems and remarks summarize the main results.

Theorem 1: Suppose that the inputs y and Φ of OMP are contaminated by perturba-

tions in the form of (3), and that the original signal x is almost sparse. Define the relative

perturbations εb and ε as in (11). Let t0 = minj∈supp(x(1)) |x(j)|, and

εh =
1.23

1− ε
(ε+ εb + (1 + εb)(β + γ))‖x(1)‖2. (12)

If Φ̃ satisfies the RIP of order k + 1 with isometry constant

δ̃k+1 < Q(k, εh/t0), (13)

then OMP will recover the support set of x(1) exactly from ỹ and Φ̃ in k iterations, and
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the error between x(1) and the recovered k-sparse signal x̂ can be bounded as

‖x̂− x(1)‖2 ≤ εh
√

1− δ̃k
. (14)

In (13) the function Q(·, ·) is defined as

Q(u, v) =
1√
u+ 1

− 3√
u+ 1

v. (15)

Proof The proof consists of three parts. The former two parts prove that

δ̃k+1 <
1√
k + 1

− 3√
k + 1

‖e‖2
t0

, (16)

where e = Φ̃x(2) −Ex+ b, is a sufficient condition for the support recovery. The last part

then gives an upper bound of ‖e‖2, i.e. εh.
The detailed proof is postponed to Section IV-B.

Remark 1: Theorem 1 reveals that if the RIC of the available sensing matrix Φ̃ is

known to be under a threshold, it is guaranteed that the support set of the best k-term

approximation of a signal can be recovered.

It is of great significance to properly interpret εh/t0 in (13). On one hand, the effects of

b and E are reflected in terms of the worst-case relative perturbation εb and ε, respectively.

Therefore εh represents a worst-case effect from perturbed ỹ and Φ̃. If more information

on b and E is known, it may be possible to estimate a smaller εh. On the other hand, t0 is

the smallest magnitude of nonzero entries in x(1) and represents the capability of a sparse

signal to be recovered against perturbations. Therefore, t0/εh has a natural interpretation

as a lower bound on the minimum component SNR. One can see that the bound on δ̃k+1

increases as t0/eh increases.

Remark 2: Considering (N0) process, Theorem 1 generalizes the results in [23–25, 27].

If vector y and matrix Φ are unperturbed, and x is k-sparse, then (13) reduces to

δk+1 <
1√
k + 1

, (17)

which is exactly the result in [27].

Remark 3: It needs to be pointed out that in order to be well defined, Q(k, εh/t0) should

be greater than zero. Thus one gets

t0 > 3εh. (18)

It means that for the best k-term approximation of an almost sparse signal, the lower

bound on the minimum component SNR should be large enough, so that its support can

be extracted despite various perturbations.

When x is k-sparse and only the measurement vector y is perturbed, two corollaries

can be derived from Theorem 1.
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Corollary 1: Suppose that E = 0 in (3) and that the original signal x is k-sparse. Let

εh = 1.23εb‖x‖2.

If Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 < Q(k, εh/t0), (19)

then OMP will recover the support set of x exactly from ỹ and Φ in k iterations, and the

error between x and the recovered k-sparse signal x̂ can be bounded as

‖x̂− x‖2 ≤
εh√
1− δk

. (20)

Corollary 1′: Suppose that E = 0 in (3) and that the original signal x is k-sparse. If

Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 <
1− τ√
k + 1

, (21)

where τ ∈ (0, 1) is a constant, and

‖b‖2 ≤ τt0/3, (22)

then OMP will recover the support set of x exactly from ỹ and Φ in k iterations, and the

error between x and the recovered k-sparse signal x̂ can be bounded as

‖x̂− x‖2 ≤
‖b‖2√
1− δk

. (23)

Remark 4: Both Corollary 1 and Corollary 1′ concern the conditions for exact recovery

of supp(x) under measurement noise, but they are obtained from different point of views.

In Corollary 1′, the bound of δk+1 is unrelated with the noise for a given τ , while the ℓ2

norm of measurement noise should be under a threshold. A comparison of Corollary 1 with

a similar conclusion [28] (Th.5.1), and a comparison of Corollary 1′ with conclusion [25]

(Th.2) will be given in Section V.

When neither the measurement vector nor the sensing matrix is perturbed, the following

corollary gives sufficient conditions under which the support of the best k-term approxima-

tion of an almost sparse signal can be exactly recovered. A similar conclusion in [40] (Th.3.1)

will be compared with Corollary 2 in Section V.

Corollary 2: Suppose that b = 0, E = 0 in (3), and that the original signal x is almost

sparse. Let

εh = 1.23(β + γ)‖x(1)‖2. (24)

If Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 < Q(k, εh/t0), (25)
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then OMP will recover the support set of x(1) exactly from y and Φ in k iterations, and

the error between x(1) and the recovered k-sparse signal x̂ can be bounded as

‖x̂− x(1)‖2 ≤
εh√
1− δk

. (26)

Inspired by the work [27], the following theorem reveals how tight the RIP-based con-

ditions in Theorem 1 are.

Theorem 2: Consider the completely perturbed scenario (3). For any given positive

integer k ≥ 2, η > 1, constants t0 > 0 and 0 < ξ < t0, there exist an almost sparse signal

x ∈ C
k+1, a sensing matrix Φ ∈ C

(k+1)×(k+1), perturbations E and b such that the smallest

nonzero magnitude of k-sparse x(1) is t0,

ξ = ‖e‖2 = ‖Φ̃x(2) −Ex+ b‖2,

and the perturbed sensing matrix Φ̃ satisfies the RIP of order k+1 with isometry constant

δ̃k+1 ≤
η√
k
−

√
k − 1

k

ξ

t0
. (27)

Furthermore, OMP fails to recover the support set of x(1) from ỹ and Φ̃ in k iterations.

Proof The proof is postponed to Section IV-C.

Compared to [27, Th.3.2], Theorem 2 takes general perturbations as well as non-

sparseness of x into consideration. Setting ξ = 0 and η → 1 in Theorem 2, it reduces

to the result in [27].

Remark 5: It will be shown that the bound (13) is rather tight and little improvement

can be made on it. In the proof of Theorem 1, we first prove that (16) is a sufficient

condition for support recovery of x(1), then estimate ‖e‖2 by ‖e‖2 ≤ εh. Comparing (27)

with (16), these two bounds are both linear decreasing function of ‖e‖2/t0, and as k tends

to infinity, the ratio of their y-intercepts approaches 1 as η → 1, and the ratio of their

slopes approaches 3. As for the upper bound of ‖e‖2, Proposition 3.5 in [16] and triangle

inequality are used. Because the equality of the Proposition 3.5 in [16] is difficult to be

achieved, we assume that x is k-sparse for the sake of briefness. In fact,

‖e‖2 =
‖Φ̃‖(k)2

1− ε
(ε+ εb)‖x‖2

can be satisfied. First, let E = −εΦ, and choose a k-sparse signal x that satisfies ‖Φ̃x‖2 =
‖Φ̃‖(k)2 ‖x‖2. Let b = εbΦx. Then it holds that

‖e‖2 = ‖ −Ex+ b‖2 = ‖(ε+ εb)Φx‖2 = (ε+ εb)
‖Φ̃x‖2
1− ε

=
‖Φ̃‖(k)2

1− ε
(ε+ εb)‖x‖2.

Due to the above two reasons, we show that the bound (13) in Theorem 1 is rather tight.
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For α-strong-decaying signals, the requirement of isometry constant δ̃k+1 can be relaxed,

and the locations can even be picked up in the order of their entries’ magnitude as long as

the decaying constant α is large enough. This is what the following two theorems reveal.

Theorem 3: Suppose that the inputs y and Φ of OMP are contaminated by perturba-

tions as in (3), and that the original signal x is α-strong-decaying. Let

εh =
1.23

1− ε
(ε+ εb + (1 + εb)Cα−k)‖x(1)‖2

and k∗ =
(
∑

k−1
i=0 αi)2

∑
k−1
i=0 α2i

, where C is a constant depending only on α. If Φ̃ satisfies the RIP of

order k + 1 with isometry constant

δ̃k+1 < Q(k∗, εh/t0), (28)

then OMP will recover the support set of x(1) exactly from ỹ and Φ̃ in k iterations, and

the error between x(1) and the recovered k-sparse signal x̂ can be bounded as

‖x̂− x(1)‖2 ≤ εh
√

1− δ̃k
. (29)

Proof The proof is postponed to Section IV-D.

Remark 6: Theorem 3 reveals that the recovery of a strong-decaying signal needs relaxed

requirement of δ̃k+1, and that the larger α is, the easier the requirement of δ̃k+1 can be

satisfied. To see this, notice that for k > 1, Cauchy-Schwarz inequality implies k∗ < k, and

thus

Q(k, εh/t0) < Q(k∗, εh/t0).

Define k∗ = L(α) = (
∑k−1

i=0 αi)2/
∑k−1

i=0 α2i. Because L(α) is a decreasing function of α, the

larger α is, the smaller k∗ is, and the easier the requirement of δ̃k+1 can be satisfied.

Corollary 3: Suppose that the measurement vector and the sensing matrix are unper-

turbed, and that the original signal x is a k-sparse α-strong-decaying one. If Φ satisfies the

RIP of order k + 1 with isometry constant

δk+1 <
1√

k∗ + 1
, (30)

then OMP will recover x exactly from y and Φ in k iterations.

Remark 7: Because k∗ < α+1
α−1 , the sufficient condition (30) can be replaced by

δk+1 <
1

√

α+ 1

α− 1
+ 1

.

Furthermore, if α is far greater than 1, the requirement approximately reduces to δk+1 < 0.5.
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Theorem 4: Suppose that the inputs y and Φ of OMP are contaminated by perturba-

tions as in (3), and that the original signal x is α-strong-decaying. Let

εh =
1.23

1− ε
(ε+ εb + (1 + εb)Cα−k)‖x(1)‖2,

where C is a constant depending only on α. If Φ̃ satisfies the RIP of order k + 1 with

isometry constant

δ̃k+1 <
1

3
− 2εh

3t0
,

and

α ≥ max
{

G(δ̃k+1), 1.2
}

(31)

where

G(u) =
1 + u

1− 3u− 2εh
t0

, (32)

then OMP will recover the support set of x(1) exactly from ỹ and Φ̃ in k iterations, and

the recovery is in the order of the signal entries’ magnitude.

Proof The proof is postponed to Section IV-E.

Based on Theorem 4, the following corollary can be directly derived. A comparison

between this corollary and a similar result in [23] (Th.4.1) will be given in Section V.

Corollary 4: Suppose that y and Φ are unperturbed, and that the original signal x

is a k-sparse α-strong-decaying one. If Φ satisfies the RIP of order k + 1 with isometry

constant

δk+1 <
1

3
,

and

α > max

{

1 + δk+1

1− 3δk+1
, 1.2

}

, (33)

then OMP will recover x exactly from y and Φ in k iterations, and the recovery is in the

order of the entries’ magnitude.

At the end of the main contribution, perturbations in the form of (4) is considered.

Theorem 5: Suppose that the inputs y and Φ of OMP are contaminated by per-

turbations as in (4), and that the original signal x is almost sparse. Define the relative

perturbations ε as that in (11), and εb as:

‖b‖2
‖Φ̃x‖2

≤ εb.

Let

εh = 1.23(ε + εb + εεb + (1 + εb)(1 + ε)(β + γ))‖x(1)‖2.

12



If Φ satisfies the RIP of order k + 1 with isometry constant

δk+1 < Q(k, εh/t0),

then OMP will recover the support set of x(1) exactly from ỹ and Φ in k iterations, and

the error between x(1) and the recovered k-sparse signal x̂ can be bounded as

‖x̂− x(1)‖2 ≤
εh√
1− δk

.

Proof The proof is postponed to Section IV-F.

Remark 8: The definition of εb in Theorem 5 is different from that in Theorem 1. This

is due to the fact that εb denotes the relative measurement noise added to the output of the

system, and the output in this scenario is Φ̃x other than Φx. By comparison of Theorem 1

and 5, it can be seen that their difference comes from the respective definition of εb. Based

on the completely perturbed scenario (4), several results similar to Theorem 2-4 can be

derived, and their proofs are analogous, thus they are not included for simplicity.

4 Proofs

4.1 Lemmas

Before the proofs of the main theorems, two helpful lemmas are given first. Their proofs

are postponed to Appendix.

Lemma 1: Let {xi}1≤i≤l denote l positive variables satisfying xi/xi−1 ≥ α for all

1 < i ≤ l, where α > 1 is a constant. Then the function

f(x1, x2, · · · , xl) =

l
∑

i=1
x2i

(

l
∑

i=1
xi

)2

achieves its minimum value
∑

l−1
i=0 α

2i

(
∑

l−1
i=0 α

i)
2 when xi/xi−1 = α, i = 2, · · · , l.

Lemma 2: Suppose that the inputs y andΦ of OMP are contaminated by perturbations

as in (3), and that the original signal x is an α-strong-decaying one. Let

εh =
1.23

1− ε
(ε+ εb + (1 + εb)Cα−k)‖x(1)‖2.

For the lth iteration, define x∗ ∈ C
n as the signal that contains the entries of x indexed by

supp(x(1)) \ Λl−1 with the rest setting to zeros. If Φ̃ satisfies the RIP of order k + 1 with

13



isometry constant δ̃k+1, one has

|hl(j)− x∗(j)| ≤ δ̃k+1‖x∗‖2 + εh

1− δ̃k+1

(34)

for all j /∈ Λl−1.

4.2 Proof of Theorem 1

Proof First of all, it will be proved that OMP exactly recovers the support set of x(1) in

k iterations. This proof consists of three parts. First, we prove that (16) implies

δ̃k+1 <
1√

k′ + 1
−

√
k′ + 2√
k′ + 1

‖e‖2√
k′t0

(35)

for all 1 ≤ k′ ≤ k. Second, define e = Φ̃x(2) −Ex + b. We prove that (35) is a sufficient

condition for the support recovery in the lth iteration with k′ = k− l+1. At last, an upper

bound of ‖e‖2 is given.

First, define

c1 =
2 +

√
k′

(1 +
√
k)
√
k′t0

, c2 =
2 +

√
k′

(1 +
√
k′)

√
k′t0

, (36)

then it’s easy to check that c1 < c2. According to (16), it can be derived that

δ̃k+1 <
1√
k + 1

− c1‖e‖2 ≤ c2
c1

(

1√
k + 1

− c1‖e‖2
)

=
1√

k′ + 1
−

√
k′ + 2√
k′ + 1

‖e‖2√
k′t0

, (37)

which implies (35).

The proof of the second part works by induction. To begin with, consider the first

iteration where Λ0 = ∅. (3) indicates that

ỹ = (Φ̃−E)x+ b = Φ̃x(1) + e. (38)

Then,

h1 = Φ̃Tỹ = Φ̃T(Φ̃x(1) + e),

which can be rewritten as

h1(i) = 〈Φ̃ei, Φ̃x(1) + e〉,

where 〈·, ·〉 denotes the inner product in Euclidean space and ei denotes the ith natural

basis. Define

H = max
i∈supp(x(1))

|h1(i)|

and U =
∣

∣〈Φ̃x(1), Φ̃x(1) + e〉
∣

∣. On one hand,

U =
∣

∣

∣

∑

x(1)(i)h1(i)
∣

∣

∣
≤ ‖x(1)‖1H ≤

√
k‖x(1)‖2H. (39)

14



On the other hand,

U ≥ ‖Φ̃x(1)‖22 − ‖Φ̃x(1)‖2‖e‖2

≥ (1− δ̃k+1)‖x(1)‖22 −
√

1 + δ̃k+1‖x(1)‖2‖e‖2. (40)

Thus one has

H ≥ 1√
k

(

(1− δ̃k+1)‖x(1)‖2 −
√

1 + δ̃k+1‖e‖2
)

. (41)

For i /∈ supp(x(1)), Lemma 2.1 in [30] implies that

|h1(i)| = |〈Φ̃ei, Φ̃x(1)〉+ 〈Φ̃ei,e〉|
≤ δ̃k+1‖x(1)‖2 + ‖Φ̃ei‖2‖e‖2

≤ δ̃k+1‖x(1)‖2 +
√

1 + δ̃k+1‖e‖2. (42)

Because ‖x(1)‖2 ≥
√
kt0, (35) of k

′ = k together with (41) and (42) indicate that

H > |h1(i)|, ∀i /∈ supp(x(1)),

which guarantees the success of the first iteration.

Now consider the general induction step. In the lth iteration, suppose that all previous

iterations succeed, which means that Λl−1 is a subset of supp(x(1)). Define zl−1 = x(1) −
xl−1, then supp(zl−1) ⊆ supp(x(1)). Because

hl = Φ̃T(ỹ − Φ̃xl−1) = Φ̃T(Φ̃x(1) − Φ̃xl−1 + e),

one has

hl(i) = 〈Φ̃ei, Φ̃zl−1 + e〉.

Define

H = max
i∈supp(x(1))

|hl(i)|

and U =
∣

∣〈Φ̃zl−1, Φ̃zl−1 + e〉
∣

∣. According to (7), it can be derived that

U =
∣

∣

∣

∑

zl−1(i)hl(i)
∣

∣

∣

≤ ‖zl−1|supp(x(1))\Λl−1‖1H
≤

√
k − l + 1‖zl−1‖2H

=
√
k′‖zl−1‖2H. (43)

Following the steps in the proof for the first iteration, and noticing that ‖zl−1‖2 ≥
√
k′t0,

it can be derived from (35) that

H > |hl(i)|, ∀i /∈ supp(x(1)).
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According to (7), hl(i) = 0 for i ∈ Λl−1, which guarantees the success of the lth iteration.

The proof of induction is completed.

Thirdly, an upper bound of ‖e‖2 is given as follows. According to Proposition 3.5 in [16],

‖Φ̃x(2)‖2 ≤
√

1 + δ̃k(‖x(2)‖2 +
‖x(2)‖1√

k
)

=

√

1 + δ̃k(β + γ)‖x(1)‖2,

and

‖Ex‖2 ≤ ‖Ex(1)‖2 + ‖Ex(2)‖2

≤ ‖E‖(k)2 (‖x(1)‖2 + ‖x(2)‖2 +
‖x(2)‖1√

k
)

≤ ε

1− ε

√

1 + δ̃k(1 + β + γ)‖x(1)‖2.

Therefore,

‖e‖2 ≤ ‖Φ̃x(2)‖2 + ‖Ex‖2 + ‖b‖2
≤ ‖Φ̃x(2)‖2 + ‖Ex‖2 + εb‖Φx‖2
≤ (‖Φ̃x(2)‖2 + ‖Ex‖2)(1 + εb) + εb‖Φ̃x(1)‖2

≤
√

1 + δ̃k
1− ε

(ε+ εb + (1 + εb)(β + γ))‖x(1)‖2. (44)

Noticing that δ̃k ≤ 1√
k+1

≤ 0.5, one has ‖e‖2 ≤ εh. Therefore (13) implies (16), which

guarantees the exact recovery of supp(x(1)).

To finish the proof, the recovery error is bounded as follows. Because Λ = supp(x(1)) is

exactly recovered, one has

x̂|Λ = Φ̃
†
Λỹ = Φ̃

†
Λ(Φ̃Λx

(1)|Λ + e) = x(1)|Λ + Φ̃
†
Λe. (45)

Thus

‖x̂− x(1)‖2 ≤ ‖Φ̃†
Λ‖2‖e‖2 ≤ εh

√

1− δ̃k
.

4.3 Proof of Theorem 2

Proof First, we prove that there exist a k-sparse signal x(1) with t0 as its smallest nonzero

entries’ magnitude, a vector e ∈ C
k+1 satisfying ‖e‖2 = ξ, and a perturbed sensing matrix

Φ̃ with

δ̃k+1 ≤
η√
k
−

√
k − 1

k

ξ

t0
(46)
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such that OMP fails to recover the support set of x(1) from Φ̃ and ỹ = Φ̃x(1) + e in k

iterations if η > 1. Let

Φ̃ =

(

Ik×k a1k×1

01×k b

)

, (47)

where a = δ/
√
k and b =

√
1− δ2 are two constants with δ < 1/

√
k. Since

Φ̃TΦ̃ =

(

Ik×k a1k×1

a11×k a2k + b2

)

, (48)

it can be derived that the eigenvalues {λi}k+1
i=1 of Φ̃TΦ̃ are

λi = 1, 1 ≤ i ≤ k − 1, λk = 1− δ, λk+1 = 1 + δ. (49)

Thus for Φ̃, its RIC of order k + 1 satisfies

δ̃k+1 = δ. (50)

Let x(1) = (t011×k, 0)
T and e = (01×k, ξ)

T, then the perturbed measurement vector

ỹ = Φ̃x(1) + e = (t011×k, ξ)
T.

Set

δ =
η
√
k − (ξ/t0)

√

k − η2 + (ξ/t0)2

k + (ξ/t0)2
,

then the matching vector h1 = (t011×k, ηt0)
T, which implies that OMP fails in the first

iteration if η > 1. It is easy to check that

δ ≤ η√
k
−

√
k − 1

k

ξ

t0
.

Second, let Φ = I(k+1)×(k+1), x
(2) = (01×k, ξ/2)

T, b = (01×k, ξ/2)
T, then

E =

(

0k×k a1k×1

01×k b− 1

)

,

and e = Φ̃x(2) −Ex+ b, which completes the proof of Theorem 2.
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4.4 Proof of Theorem 3

Proof The proof of Theorem 3 is similar to that of Theorem 1. For the sake of briefness,

some revisions are made based on the proof of Theorem 1.

First, define

k′∗ =

(

∑k′−1
i=0 αi

)2

∑k′−1
i=0 α2i

.

According to Lemma 1, for any α-strong-decaying and k′-sparse signal u, it holds that

‖u‖1 ≤
√
k′∗‖u‖2. Therefore, (39) and (43) can be replaced by

U ≤ ‖x(1)‖1H ≤ ‖x(1)‖2
√
k′∗H

and

U ≤ ‖zl−1|supp(x(1))\Λl−1‖1H
= ‖x(1)|supp(x(1))\Λl−1‖1H
≤

√
k′∗‖x(1)|supp(x(1))\Λl−1‖2H

≤
√
k′∗‖zl−1‖2H,

respectively. Further, since

‖zl−1‖2 ≥ (

k′−1
∑

i=0

α2i)1/2t0 ≥
√
k′∗t0,

equation (35) can be replaced by

δ̃k+1 <
1√

k′∗ + 1
−

√
k′∗ + 2√
k′∗ + 1

‖e‖2√
k′∗t0

. (51)

Since 1 ≤ k′∗ ≤ k∗, (51) can be inferred by

δ̃k+1 <
1√

k∗ + 1
− 3√

k∗ + 1

‖e‖2
t0

. (52)

Second, an upper bound of β + γ can be given in terms of α as follows

β + γ ≤ |x(mk+1)|((
∑∞

i=0 α
−2i)1/2 +

∑∞
i=0 α

−i/
√
k)

|x(mk+1)|
√

∑k
i=1 α

2i

=
(1− α−2)−1/2 + (

√
k(1− α−1))−1

α(α2k − 1)1/2(α2 − 1)−1/2

= (1 +
1√
k

√

α+ 1

α− 1
)(α2k − 1)−1/2

≤ Cα−k,
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where C is a constant only related to α. Therefore,

‖e‖2 ≤
√

1 + δ̃k
1− ε

(ε+ εb + (1 + εb)(β + γ))‖x(1)‖2

≤
√

1 + δ̃k
1− ε

(ε+ εb + (1 + εb)Cα−k)‖x(1)‖2.

Notice that δ̃k ≤ 1√
k∗+1

≤ 0.5, therefore (28) guarantees exact recovery of supp(x(1)).

4.5 Proof of Theorem 4

Proof By induction it will be shown that (31) guarantees the order of recovery. For the

lth iteration, suppose that all the locations recovered in the previous iterations are in order.

Define x∗ as that in Lemma 2. It will be demonstrated that OMP will choose the largest

entry of x∗ (i.e. x(ml)). According to Lemma 2,

|hl(j)− x∗(j)| ≤ δ̃k+1‖x∗‖2 + εh

1− δ̃k+1

. (53)

It can be calculated from α ≥ 1.2 that

√

1

1− α−2
< 1 +

1

α
.

Thus,

‖x∗‖2 < |x(ml)|(
∞
∑

i=0

α−2i)1/2 < |x(ml)|(1 +
1

α
). (54)

Combining (53) and (54), one has

|hl(ml)| >|x(ml)| −∆,

|hl(mj)| <|x(ml+1)|+∆ ≤ |x(ml)|/α+∆, j ∈ {l + 1, l + 2, . . . , n},

where

∆ =
1

1− δ̃k+1

(δ̃k+1|x(ml)|(1 +
1

α
) + εh).

It is easy to check that |hl(ml)| is greater than |hl(mj)| for j ∈ {l + 1, l + 2, . . . , n}, if (31)
is satisfied.
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4.6 Proof of Theorem 5

Proof For the sake of briefness, we only need to make some revisions based on the proof

of Theorem 1. Noticing that the input Φ is unperturbed and ỹ = Φ̃x + b = Φx(1) +

Φx(2) + Ex + b, δ̃k+1 and e in the proof of Theorem 1 need to be replaced by δk+1 and

Φx(2) +Ex+ b.

Define e = Φx(2) +Ex+ b. An upper bound of ‖e‖2 is given as follows. According to

Proposition 3.5 in [16],

‖Φx(2)‖2 ≤
√

1 + δk(‖x(2)‖2 +
‖x(2)‖1√

k
)

=
√

1 + δk(β + γ)‖x(1)‖2,

and

‖Ex‖2 ≤ ‖Ex(1)‖2 + ‖Ex(2)‖2

≤ ‖E‖(k)2 (‖x(1)‖2 + ‖x(2)‖2 +
‖x(2)‖1√

k
)

= ε
√

1 + δk(1 + β + γ)‖x(1)‖2.

Therefore,

‖e‖2 ≤ ‖Φx(2)‖2 + ‖Ex‖2 + ‖b‖2
≤ ‖Φx(2)‖2 + ‖Ex‖2 + εb‖Φ̃x‖2
≤ (‖Φx(2)‖2 + ‖Ex‖2)(1 + εb) + εb‖Φx(1)‖2
≤ εh,

and

‖x̂− x(1)‖2 ≤ ‖Φ†
Λ‖2‖e‖2 ≤ εh√

1− δk
.

5 Related Works

In this section, Corollary 1, Corollary 1′, Corollary 2, and Corollary 4 are compared

with four related conclusions in previous works.

5.1 Corollary 1 and [28 Th.5.1]

20



[28 Th.5.1]: Suppose that E = 0 in (3) and x is k-sparse. Define the coherence param-

eter µ of Φ as µ = max1≤i,j≤n,i 6=j |G(i, j)|, where G = ΦTΦ. If Φ satisfies

k ≤ 1 + µ

2µ
− 1

µ

‖b‖2
t0

, (55)

then OMP will recover the support set of x exactly and the recovery error can be bounded

as

‖x̂− x‖2 ≤
‖b‖2

√

1− µ(k − 1)
. (56)

If we do not approximate the upper bound of ‖e‖2 in terms of εh in the proof of Theorem

1, Corollary 1 derived from Theorem 1 has a more relaxed expression:

Corollary 1∗: Suppose that E = 0 in (3) and x is k-sparse. If Φ satisfies the RIP of

order k + 1 with isometry constant

δk+1 < Q(k, ‖e‖2/t0) =
1− 3‖b‖2

t0√
k + 1

, (57)

then OMP will recover the support set of x exactly and the error can be bounded as

‖x̂− x‖2 ≤
‖b‖2√
1− δk

. (58)

Although Theorem 5.1 in [28] is coherence-based while Corollary 1∗ is RIC-based, they

both provide conditions for successful support recovery under measurement noise, based on

which the recovery error is further estimated. The comparisons are conducted from two

aspects.

First, consider the ratio of the upper bounds on the recovery error in (58) and (56):

r =

‖b‖2√
1−δk
‖b‖2√

1−µ(k−1)

=

√

1− µ(k − 1)√
1− δk

.

According to Proposition 4.1 in [29], δk ≤ µ(k − 1), and thus r ≤ 1. This means that the

error bound given by Corollary 1∗ is at least as good as that in [28, Th.5.1].

Second, consider the sufficient conditions for successful support recovery of the two

results. Direct comparison between (55) and (57) is difficult since as far as we know, there

is no clear comparison between δk+1 and
√
kµ for arbitrary sensing matrix. For simplicity,

consider the scenario that the sensing matrix is Gaussian, and m, n, and k increase in a

proportional manner, i.e. m/n → ω and k/m → ρ as m → ∞, where ω, ρ ∈ [0, 1] are two

constants. Results in [43] show that there exists a constant δ(ω, ρ) such that δk+1 ≤ δ(ω, ρ)

with high probability. Another result in [22] reveals that µ ≥
√
cm−1 lnn holds with high

probability where c is a constant. Thus
√
kµ ≥

√

cρ ln(ω−1ρ−1k) with high probability.

Inequality (55) implies that

‖b‖2
t0

≤ 1 + µ

2
− µk ≤ 1−√

cρ
√

k ln(ω−1ρ−1k), (59)
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and the following inequality

‖b‖2
t0

≤ 1− δ(ω, ρ)

3
− δ(ω, ρ)

3

√
k (60)

implies (57). Since the bound in (59) decreases with a higher order than that in (60) as k

increases, the sufficient condition (57) is more relaxed in this sense.

5.2 Corollary 1′ and [25, Th.2]

In [25], it is proved that for (N1) process, the support of a k-sparse signal x can be

recovered, provided that

δk+1 <
1

1 + (
√
6 + 2)

√
k

and ‖b‖2 ≤ δk
√
kt0. By comparison, it is shown that Corollary 1′ is at least as good as this

conclusion.

First, let τ satisfy 1
1+(

√
6+2)

√
k
= 1−τ√

k+1
, i.e.

τ =
(
√
6 + 1)

√
k

1 + (
√
6 + 2)

√
k
.

Consider the ratio of the required upper bound of ‖b‖2 in the result of [25] to that in

Corollary 1′:

r =
δk
√
kt0

τt0/3
=

3√
6 + 1

(1 + (
√
6 + 2)

√
k)δk.

It can be concluded from δk ≤ δk+1 < 1
1+(

√
6+2)

√
k
that r < 3√

6+1
< 1, which means that

the requirement of ‖b‖2 in Corollary 1′ is more relaxed.

Second, the requirement of δk+1 in Corollary 1′ is more relaxed. Because τ in Corollary

1′ is optional, it can be chosen small enough that

1

1 + (
√
6 + 2)

√
k
<

1− τ√
k + 1

.

Despite the difference in requirements, the recovery errors given in Theorem 2 of [25]

and Corollary 1′ are the same, since these errors are both derived when the support set of

the sparse signal is perfectly recovered.

5.3 Corollary 2 and [40, Th.3.1]

In [40], the main result concerns the error estimation for OMP. It is proved that

‖x−OMPS x‖22≤2‖x‖2 (σS(x) + 4δ2S(2 + ⌈log2 S⌉)‖x‖2) ,

where x is a non-sparse signal we wish to recover, OMPS x is the estimated solution via

OMP in the Sth iteration, σS(x) is the ℓ2 error between the best S-term approximation
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of x and x, and δ2S is the RIC of order 2S. This conclusion gives an upper bound on the

error between the original signal and the estimated result of any iteration in OMP.

The original signal to be recovered in [40] is non-sparse, and the inputs y and Φ are

assumed non-perturbed. Thus the result actually gives an upper bound on the error between

x and OMPS x for (N0) process. Set S = k, and this result can be rewritten as

‖x− x̂‖22 ≤ 2‖x‖2
(

‖x(2)‖2 + 4δ2k(2 + ⌈log2 k⌉)‖x‖2
)

. (61)

In Corollary 2, the result is

‖x(1) − x̂‖2 ≤
√
1 + δk√
1− δk

(β + γ)‖x(1)‖2. (62)

Before comparison, it is worth mentioning that there are fundamental differences be-

tween the above two conclusions. First, conditions that guarantee the support set recovery

of the best k-term approximation of x is the main concern in Corollary 2, and based on

the successful support recovery, an upper bound on the error is estimated. In the reference,

however, the ℓ2 error is directly given regardless of the support recovery. Sometimes, recov-

ering the support set other than the more accurate estimation is a fundamental concern.

Second, compared with [40], this paper has an apparent limitation: the non-sparse signal

considered in this paper is almost sparse, whereas the one in [40] is arbitrary.

Despite the differences, a tentative comparison of their recovery error estimations is

given as follows. Notice that it is really hard to demonstrate which result is better, since

the result in [40] involves δ2k which does not appear in our work. However, a condition with

δ2k involved is given under which (62) is at least as good as (61). From (62) one has

‖x− x̂‖22 = ‖x(1) − x̂‖22 + ‖x(2)‖22
≤ 1 + 0.5

1− 0.5
(β + γ)2‖x(1)‖22 + ‖x(2)‖22

= (3(β + γ)2 + β2)‖x(1)‖22
≤ 4(β + γ)2‖x(1)‖22. (63)

If

δ2k > (β + γ)2/4, (64)

from (63) one has

‖x− x̂‖22 ≤ 16δ2k‖x(1)‖22 ≤ 16δ2k‖x‖22. (65)

Compared with (61), (65) actually gives a tighter bound.

In fact, the above requirement of δ2k can be written in terms of k:

δ2k ≥ 1

54k
. (66)

Assume nontrivially that β + γ 6= 0. Thus |supp(x(1))| = k and ‖x(1)‖2 ≥
√
kt0. According

to (18) and (24), one has

β + γ ≤ t0

3.69‖x(1)‖2
≤ 1

3.69
√
k
. (67)
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Combining (63), (66) and (67), it holds that

‖x− x̂‖22 ≤
4

3.692k
‖x(1)‖22 ≤ 16δ2k‖x‖22. (68)

5.4 Corollary 4 and [23, Th.4.1]

For (N0) process with k-sparse signal x, Davenport and Wakin proved in [23] that if Φ

satisfies the RIP of order k + 1 with δk+1 < 1/3, and

α >
1 + δk+1(2

√
k − 1− 1)

1− 3δk+1
, I(δk+1), (69)

then OMP will recover x sequentially from y and Φ in k iterations [23].

When x is no longer sparse, and the sensing matrix as well as the measurement vector is

perturbed, Theorem 4 shows that the elements of supp(x) can still be picked up sequentially.

Corollary 4 is derived from Theorem 4. For k > 1, one has 2
√
k − 1 − 1 ≥ 1. Thus, it

can be seen from (33) and (69) that Corollary 4 is at least as good as the conclusion in [23]

when I(δk+1) is greater than 1.2 (i.e. δk+1 > (10
√
k − 1 + 13)−1), and the latter one is

better otherwise.

6 Conclusion

In this paper, considering a completely perturbed scenario in the form of ỹ = Φx + b

and Φ̃ = Φ + E, the performance of OMP in recovering an almost sparse signal (i.e.

x̂ = ROMP(ỹ, Φ̃, · · · )) is studied.
Though exact recovery of the best k-term approximation of x is no longer realistic, The-

orem 1 shows that exact recovery of its support via OMP can be guaranteed under suitable

conditions. Based on RIP, such conditions involve the sparsity, the relative perturbations

of y and Φ, and the smallest nonzero entry of x. Furthermore, the error between the the

best k-term approximation of x and the output x̂ is estimated. This completely perturbed

framework extends the prior work in non-perturbed and measurement-perturbed scenar-

ios. Furthermore, we construct a sensing matrix and perturbations with which an almost

sparse signal cannot be recovered. The RIC of the matrix is slightly bigger than that in the

sufficient conditions of Theorem 1, which indicates that the conditions are rather tight.

In addition, when x is an α-strong-decaying signal, several extensions of Theorem 1

are put forward. Theorem 3 reveals that the requirement in Theorem 1 can be relaxed to

guarantee the exact recovery of support. Theorem 4 demonstrates that if α is large enough,

the support is picked up in the order of its entries’ magnitude. This advantage is of great

significance in practical scenarios, since the larger entries are often more important than

the smaller ones, and recovery in order indicates the algorithm is more stable. In the end,

Theorem 5 discussed the other scenario of general perturbations, which is in the form of

ỹ = Φ̃x + b and Φ̃ = Φ + E, with the recovery process written as x̂ = ROMP(ỹ,Φ, · · · ).
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Notice that several results similar to Theorem 2-4 are available for this scenario, however,

they are not included for simplicity. These results are in comprehensive comparisons with

some previous ones, and conditions under which our results are at least as good as them

are discussed.

Appendix A Proof of Lemma 1

Proof First of all, see {xi | i = 1, 2, · · · , l−m} as l−m constants, and define the function

with variable x ≥ αxl−m

g(x) =

l−m
∑

i=1
x2i + bmx2

(

l−m
∑

i=1
xi + cmx

)2 ,

where bm =
∑m−1

i=0 α2i, cm =
∑m−1

i=0 αi, 1 ≤ m < l. Then we prove g(x) ≥ g(αxl−m).

The proof lies in the fact that g(x) can be written as

g(x) =
bm
c2m

− 2η

c2m

y

(y − θ + η/bm)2
,

where

η =
bm
cm

l−m
∑

i=1

xi, θ =

bm
c2m

(

l−m
∑

i=1
xi

)2

−
l−m
∑

i=1
x2i

2bm
cm

l−m
∑

i=1
xi

,

and y = x+ θ. Because −θ + η/bm > 0, g(x) equals its minimum when

y0 = −θ + η/bm, (70)

which further infers that

x0 = y0 − θ = η/bm − 2θ =
cm
∑l−m

i=1 x2i

bm
∑l−m

i=1 xi
.

Because x0 ≤ xl−m < αxl−m ≤ x and g(x) is an increasing function when x ≥ x0, g(x) ≥
g(αxl−m).

Lemma 1 is proved by induction. To begin with, let m = 1 and fix {xi | i = 1, · · · , l−1},
then the above conclusion implies f(x1, · · · , xl−1, xl) ≥ f(x1, · · · , xl−1, αxl−1).

Furthermore, assume that

f(x1, · · · , xl−m+1, · · · , xl)≥f(x1, · · · , xl−m+1, · · · , αm−1xl−m+1).

The above conclusion gives

f(x1, · · · , xl−m, xl−m+1, · · · , αm−1xl−m+1) ≥f(x1, · · · , xl−m, x, · · · , αm−1x)|x=αxl−m

=f(x1, · · · , xl−m, · · · , αmxl−m).

Therefore, it can be inducted that f(x1, · · · , xl) is no less than f(x1, · · · , αl−1x1), which

concludes the proof.
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Appendix B Proof of Lemma 2

Proof It can be concluded from (8), (9), and (38) that

hl = ÃT
Λl−1P̃

⊥
Λl−1ỹ

= ÃT
Λl−1P̃

⊥
Λl−1(Φ̃x(1) + e)

= ÃT
Λl−1ÃΛl−1x∗ + ÃT

Λl−1P̃
⊥
Λl−1e

= h1 + h2, (71)

where h1 = ÃT
Λl−1ÃΛl−1x∗, h2 = ÃT

Λl−1P̃
⊥
Λl−1e. Because ‖x∗‖0+|Λl−1|+1 ≤ k+1, according

to Lemma 3.3 in [23], for all j /∈ Λl−1, it holds that

|h1(j)− x∗(j)| ≤ δ̃k+1

1− δ̃k+1

‖x∗‖2. (72)

According to Lemma 3.2 in [23], for j /∈ Λl−1,

‖h2(j)‖ = 〈ÃΛl−1ej , P̃
⊥
Λl−1e〉

≤
√

1 + δ̃k+1‖P̃⊥
Λl−1e‖2

≤ 1

1− δ̃k+1

‖e‖2

≤ εh

1− δ̃k+1

. (73)

Notice that the last inequality holds since ‖e‖2 ≤ εh, which has been given in the proof of

Theorem 3. Combining (71), (72), (73), and triangle inequality, one finally gets

|hl(j)− x∗(j)| ≤ |h1(j)− x∗(j)|+ |h2(j)|

≤ δ̃k+1‖x∗‖2 + εh

1− δ̃k+1

.

References

[1] R. Gribonval and S. Lesage, “A survey of sparse component analysis for blind source

separation: principles, perpectives, and new challenges,” Proceedings of ESANN06,

Apr. 2006, pp. 323-330.

[2] Y. Li, A. Cichocki, and S. Amari, “Sparse component analysis for blind source separa-

tion with less sensors than sources,” ICA2003, Apr. 2003, pp. 89-94.

[3] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation using sparse

representations,” Signal Processing, vol. 81, no. 11, Nov. 2001, pp. 2353-2362.

[4] F. Georgiev, F. Theis, and A. Cichocki, “Blind source separation and sparse component

analysis of overcomplete mixtures,” Proceedings of ICASSP04, May 2004, pp. 493-496.

26



[5] D. L. Donoho, “Compressed Sensing,” IEEE Trans. Information Theory, vol. 52, no. 4,

Apr. 2006, pp. 1289-1306.

[6] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal re-

construction from highly incomplete frequency information,” IEEE Trans. Information

Theory, vol. 52, no. 2, Jan. 2006, pp. 489-509.

[7] E. Candès, “Compressive sampling,” Int. Congress of Mathematics, 2006, pp. 1433-

1452.

[8] R. G. Baraniuk. “Compressive Sensing,” IEEE Signal Processing Magazine, vol. 24,

no. 4, Jul. 2007, pp. 118-124.

[9] S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method

for large-scale ℓ1-regularized least squares,” IEEE Journal of Selected Topics in Signal

Processing, vol. 1, no. 4, Dec. 2007, pp. 606-617.

[10] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse

reconstruction: application to Compressed Sensing and other inverse problems,” IEEE

Journal of Selected Topics in Signal Processing, vol. 1, no. 4, Dec. 2007, pp. 586-597.

[11] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for lin-

ear inverse problems with a sparsity constraint,” Communications on Pure and Applied

Mathematics, vol. 57, no. 11, Nov. 2004, pp. 1413-1457.

[12] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods and their ap-

plication to non-linear system identification,” Int. J. Control, vol. 50, no. 5, Nov. 1989,

pp. 1873-1896.

[13] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit:

recursive function approximation with applications to wavelet decomposition,” Conf.

Rec. 27th Asilomar Conf. Sig., Sys., & Comput. , vol. 1, Nov. 1993, pp. 40-44.

[14] G. Davis, S. Mallat, and Z. Zhang, “Adaptive time-frequency decomposition,” Optical

Eng., vol. 33, no. 7, Jul. 1994, pp. 2183-2191.

[15] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery via

regularized orthogonal matching pursuit,” Foundations of Computational Mathematics,

vol. 9, no. 3, 2009, pp. 317-334.

[16] D. Needell and J. A. Tropp, “CoSaMP: iterative signal recovery from incomplete and

inaccurate samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3,

May 2009, pp. 301-321.

[17] W. Dai and O. Milenkovic, “Subspace Pursuit for Compressive Sensing signal recon-

struction,” IEEE Trans. Information Theory, vol. 55, no. 5, May 2009, pp. 2230-2249.

27



[18] T. Blumensath and M. E. Davies, “Iterative hard thresholding for Compressed Sens-

ing,” Applied and Computational Harmonic Analysis, vol. 27, no. 3, Nov. 2009, pp. 265-

274.

[19] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and in-

accurate measurements,” Communications on Pure and Applied Mathematics, vol. 59,

no. 8, Aug. 2006, pp. 1207-1223.

[20] T. T. Cai, L. Wang, and G. Xu, “New bounds for restricted isometry constants,” IEEE

Trans. Information Theory, vol. 56, no. 9, Sept. 2010, pp. 4388-4394.

[21] J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE

Trans. Information Theory, vol. 50, no. 10, Oct. 2004, pp. 2231-2242.

[22] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthog-

onal matching pursuit,” IEEE Trans. Information Theory, vol. 53, no. 12, Dec. 2007,

pp. 4655-4666.

[23] M. A. Davenport and M. B. Wakin, “Analysis of orthogonal matching pursuit using

the restricted isometry property,” IEEE Trans. Information Theory, vol. 56, no. 9,

Sept. 2010, pp. 4395-4401.

[24] E. Liu and V. N. Temlyakov, “Orthogonal super greedy algo-

rithm and applications in compressed sensing,” 2010, available online:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.2996.

[25] S. Huang and J. Zhu, “Recovery of sparse signals using OMP and its variants: conver-

gence analysis based on RIP,” Inverse Problems, vol. 27, no. 3, Mar. 2011.

[26] A. K. Fletcher and S. Rangan, “Orthogonal Matching Pursuit: A Brownian Motion

Analysis,” IEEE Trans. Signal Processing, vol. 60, no. 3, Mar. 2012, pp. 1010-1021.

[27] Q. Mo and Y. Shen, “A remark on the Restricted Isometry Property in Orthogonal

Matching Pursuit,” 2012, available online: http://arxiv.org/abs/1201.2733.

[28] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable Recovery of Sparse Overcomplete

Representations in the Presence of Noise,” IEEE Trans. Information Theory, vol. 52,

no. 1, Jan. 2006, pp. 6-18.

[29] T. T. Cai, G. Xu, and J. Zhang, “On recovery of sparse signals via ℓ1 minimization,”

IEEE Trans. Information Theory, vol. 55, no. 7, July 2009, pp. 3388-3397.

[30] E. J. Candès, “The Restricted Isometry Property and its implications for Compressed

Sensing,” Comptes Rendus Mathematique, vol. 346, no. 9, Feb. 2008, pp. 589-592.

28

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.2996
http://arxiv.org/abs/1201.2733


[31] Z. B. Haim, Y. C. Eldar, and M. Elad, “Coherence-based performance guarantees

for estimating a sparse vector under random noise,” IEEE Trans. Signal Processing,

vol. 58, no. 10, Oct. 2010, pp. 5030-5043.

[32] L. Denis, D. A. Lorenz, and D. Trede, “Greedy solution of ill-posed problems: error

bounds and exact inversion,” Inverse Problems, vol. 25, no. 11, Nov. 2009.

[33] D. Needell and R. Vershynin, “Signal recovery from incomplete and inaccurate measure-

ments via regularized orthogonal matching pursuit,” IEEE Journal of Selected Topics

in Signal Processing, vol. 4, no. 2, Apr. 2010, pp. 310-316.

[34] A. K. Fletcher, S. Rangan, and V. K. Goyal, “On-off random access channels: a com-

pressed sensing framework,” 2009, available online: http://arxiv.org/abs/0903.1022.

[35] M. Mishali and Y. C. Eldar, “From theory to practice: sub-Nyquist sampling of sparse

wideband analog signals,” IEEE Journal of Selected Topics in Signal Processing, vol. 4,

no. 2, Apr. 2010, pp. 375-391.

[36] M. A. Herman and T. Strohmer, “General deviants: an analysis of perturbations in

Compressed Sensing,” IEEE Journal of Selected Topics in Signal Processing, vol. 4,

no. 2, Apr. 2010, pp. 342-349.

[37] M. A. Herman and D. Needell, “Mixed operators in Compressed Sensing,” 2010 44th

Annual Conference on Information Sciences and Systems, Mar. 2010, pp. 1-6.

[38] M. Mishali and Y. C. Eldar, “Reduce and boost: recovering arbitrary sets of jointly

sparse vectors,” IEEE Trans. Signal Processing, vol. 56, no. 10, Oct. 2008, pp. 4692-

4702.

[39] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Information

Theory, vol. 51, no. 12, Dec. 2005, pp. 4203-4215.

[40] P. Bechler and P. Wojtaszczyk, “Error estimates for orthogonal matching pursuit and

random dictionaries,” Constructive Approximation, vol. 33, no. 2, Apr. 2011, pp. 273-

288.

[41] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society, vol. 58, 1996, pp. 267-288.

[42] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”

SIAM Journal of Scientific Computation, vol. 20, 2001, pp. 33-61.

[43] J. Blanchard, C. Cartis, and J. Tanner, “Compressed Sensing: How

sharp is the Restricted Isometry Property,” Apr. 2010, available online at

http://arxiv.org/abs/1004.5026.

29

http://arxiv.org/abs/0903.1022
http://arxiv.org/abs/1004.5026

	1 Introduction
	2 Background
	2.1 Orthogonal Matching Pursuit (OMP)
	2.2 The Restricted Isometry Property (RIP)
	2.3 Assumptions and Notations

	3 Contributions
	4 Proofs
	4.1 Lemmas
	4.2 Proof of Theorem 1
	4.3 Proof of Theorem 2
	4.4 Proof of Theorem 3
	4.5 Proof of Theorem 4
	4.6 Proof of Theorem 5

	5 Related Works
	5.1 Corollary 1 and [28 Th.5.1]
	5.2 Corollary 1' and [25, Th.2]
	5.3 Corollary 2 and [40, Th.3.1]
	5.4 Corollary 4 and [23, Th.4.1]

	6 Conclusion
	A Proof of Lemma 1
	B Proof of Lemma 2

