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Abstract

Max weighted queue (MWQ) control policy is a widely used cross-layer control policy that

achieves queue stability and a reasonable delay performance. In most of the existing literature, it is

assumed that optimal MWQ policy can be obtained instantaneously at every time slot. However, this

assumption may be unrealistic in time varying wireless systems, especially when there is no closed-

form MWQ solution and iterative algorithms have to be applied to obtain the optimal solution. This

paper investigates the convergence behavior and the queue delay performance of the conventional

MWQ iterations in which the channel state information (CSI) and queue state information (QSI) are

changing in a similar timescale as the algorithm iterations. Our results are established by studying

the stochastic stability of an equivalent virtual stochastic dynamic system (VSDS), and an extended

Foster-Lyapunov criteria is applied for the stability analysis. We derive a closed form delay bound of

the wireless network in terms of the CSI fading rate and the sensitivity of MWQ policy over CSI and

QSI. Based on the equivalent VSDS, we propose a novel MWQ iterative algorithm with compensation

to improve the tracking performance. We demonstrate that under some mild conditions, the proposed

modified MWQ algorithm converges to the optimal MWQ control despite the time-varying CSI and

QSI.
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I. INTRODUCTION

Recently, there has been intense research interest studying cross-layer resource allocation of wireless

adhoc networks for delay-sensitive applications. While the CSI indicates the transmission opportunity,

the queue-state-information indicates the urgency of the packets in the queues. A good control policy

(in delay sense) should strike a balance between the opportunity (CSI) and the urgency (QSI) and

the design is highly non-trivial [1]–[6]. One approach, namely the Lyapunov Optimization technique

[5], [6], allows a potentially simple control policy which adapts to the CSI and QSI. Specifically, the

authors in [5], [6] have proven that a max weighted queue (MWQ) throughput optimization solution

can maximize the negative Lyapunov drift in the queue dynamics and it can achieve queue stability1

with reasonable delay performance.

In most of the existing literature, it has been commonly assumed that the MWQ policy can be

solved efficiently at each time slot based on the current realizations of CSI and QSI. However, this

assumption may not be practical for moderate to large scale networks. Specifically, the MWQ solution

requires solving a queue-weighted optimization problem [5], [6] and there is no closed-form solution

in most cases. As a result, iterative algorithms (such as primal dual iterations) have to be used to

obtain the MWQ solution at each time slot. While there is a lot of standard literature establishing

the convergence of the iterative optimization algorithms, these works have assumed that the CSI

and the QSI remains unchanged during the algorithm iterations2. However, for large scale networks,

the algorithm iteration may involve not only the node itself but also over-the-air signaling between

nodes. In this case, the CSI and the QSI may have changed after a few iterations and the existing

convergence results (for static problems) failed to apply in this case of time-varying CSI and QSI.

Furthermore, when the nodes in the adhoc network have limited power and computational resources,

it may not be cost-effective for the node to iterate many times locally at each time slot as well. These

observations motivate us to study the design and delay analysis of MWQ solutions in time varying

wireless adhoc networks.

In this paper, we consider a time-varying wireless adhoc network with power control driven by the

MWQ algorithm. We study how the average delay performance of the MWQ solution is affected by

the time-varying CSI and QSI. Unlike conventional works, we focus on the case where the MWQ

algorithm iteration evolves in a similar timescale as the CSI and QSI dynamics. There are various

first order technical challenges that have to be addressed.

• Nonlinear Stochastic Algorithm Dynamics: One approach is to adopt continuous time con-

1Using the MWQ solution, the system of queues can be stable if the arrival rates are within the stability region [5] of

the systems.
2In other words, it is assumed that the algorithm iteration time scale is much smaller than the CSI / QSI time scale.
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trol theory and model the algorithm dynamics using deterministic ODE [7]–[11]. In [7]–[9],

the authors have considered the convergence behavior of the Foschini-Miljanic power control

algorithm under time varying channels using the linear ordinary differential equation (ODE)

approach. The authors in [10], [11] studied the tracking performance of the linear least mean

square (LMS) algorithms under time varying channels. However, all these works have assumed

linear and deterministic algorithm dynamics and these approaches cannot be easily extended to

our case where the MWQ algorithm iteration is nonlinear and stochastic.

• Coupled Queue Dynamics and Algorithm Dynamics: The evolution of QSI depends on the

control actions of the MWQ algorithm in each time slot. On the other hand, the evolution of the

MWQ algorithm also depends on the time-varying QSI because the MWQ solution is obtained

by solving a queue-weighted optimization. As a result of this mutual coupling, the techniques

in our previous works [12], which considered algorithm tracking performance where control

decisions were made only based on CSI, cannot be easily extended in this case3.

• Delay Analysis and Compensation with Algorithm Tracking Errors: It is also quite challeng-

ing to analyze and compensate for the delay penalty due to the MWQ algorithm tracking errors

on the power control actions. In [5], [6], the authors have derived an average delay bound for

MWQ algorithm with i.i.d. CSI based on the Lyapunov drift analysis. However, this technique

cannot be easily extended to our case when there are tracking errors in the MWQ control actions

and correlations in the CSI evolutions.

In this paper, we adopt a continuous time approach to model the algorithm dynamics of the MWQ

power control iterations. We consider Markovian source arrivals and CSI evolutions so that the

combined CSI, QSI and algorithm dynamics can be modeled by a stochastic differential equation

(SDE). We show that studying the convergence behavior in the algorithm domain is equivalent to

studying the stability property of a virtual stochastic dynamic system (VSDS). Using non-linear

control theory and stochastic Foster-Lyapunov techniques, we establish a bound on delay performance

due to time varying CSI and random source arrivals. Based on the VSDS dynamics, we propose a

modification to the standard MWQ algorithm to compensate for the penalty due to the time-variation in

the wireless adhoc networks. This paper provides a theoretical framework for studying the convergence

of iterative algorithms as well as potential compensation techniques. The convergence analysis of

iterative algorithms have widespread applications in network optimizations [3], [5], [6] and signal

processing [10], [11].

3In the previous work [12], the control actions were made only based on the CSI. However, in this work, we consider CSI

and QSI adaptive control policies and focus on the impact of both the time-varying CSI and QSI on the convergence of the

algorithm. Here, there is a coupled dependency between the control actions (which depends on QSI) and the time-varying

QSI (which depends on the control actions). This coupled dependency makes the problem challenging.
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Figure 1. Network topology. We consider a wireless adhoc network with N nodes and L links. We illustrate here N = 5

and L = 6 as an example. The l-th link transmits the l-th data flow. Transmission flows towards a same destination share

the same frequency band and MUD and SIC are implemented at each receiving node to handle the inter-flow interference.

Notations: AT (aT ) denotes the transpose of matrix (vector) A (a) and AH denotes the complex

conjugate transpose. |x| denotes the absolute value of x and ‖x‖ = maxi{xi} denotes the L∞ norm

of vector x. For a complex variable z, Re [z] denotes its real part and z denotes its complex conjugate.

II. SYSTEM MODEL AND VIRTUAL STOCHASTIC DYNAMIC SYSTEMS

In this section, we shall first introduce the system model of the wireless adhoc network as well as

the MWQ algorithm. Next, we shall introduce the notion of virtual stochastic dynamic system and

establish the equivalence between the convergence behavior of the gradient algorithm and the virtual

stochastic dynamic system.

A. Network Topology, CSI and QSI Models

We consider a wireless adhoc network with N nodes and L links, where each link corresponds to

one transmitting and receiving pair, as illustrated in Fig. 1. Different receiving nodes occupy different

frequency bands, while transmission flows towards a same destination share the same frequency band.

Multiuser detection (MUD) and successive interference cancellation (SIC) are implemented at each

receiving node to handle the inter-flow interference. The maximum achievable transmission rate at

receiving node n is a set of rates µl that satisfy the following conditions [13],

∑
l∈S(n)

µl < log

1 +
∑
l∈S(n)

|hl|2 pl

 ∀S(n) ⊂ Lrev(n) (1)

where Lrev(n) is a collection of links whose destinations are at node n, S(n) are any non-empty

subsets of Lrev(n), hl is the channel fading coefficients of link l and pl is the normalized power

allocated at link l. For example, Fig. 1 illustrates an example adhoc network with N = 5 nodes and
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L = 6 links. Lrev(3) = {1, 2, 5} ,Lrev(4) = {3, 4, 6}. Subscript l represents the link index as well

as the flow index.

We have the following assumptions regarding the channel state (CSI) hl(t).

Assumption 1 (Temporally Correlated CSI Model): The support of the channel state process hl(t)

is assumed to be hl ∈ H = {h ∈ C : |h| ≥ h0} for some positive h0. Furthermore, hl(t) is a

stochastic process described by the following reflective stochastic differential equation (SDE) in [14]

dhl = −1

2
alhldt+ a

1

2

l dwl + dvl, hl ∈ H (2)

where al determines the temporal correlation of hl(t), wl(t) is the standard complex Wiener process

with unit variance, and dvl is the Skorohod reflection [14] term that satisfies dvl(t) ≥ 0 and´∞
0 1{|hl(t)| > h0}dvl(t) = 0. The fading process is independent w.r.t. the link index l.

Note that hl(t) in (2) is a continuous time version of the auto-regressive (AR) process which has

been widely used to model the dynamics of a correlated wireless fading channel [15]. It captures the

CSI variation speed that affects the convergence behavior of the algorithm in a time-varying channel.

It can be shown that the process hl(t) has a stationary distribution.

Incoming data packets randomly arrive at different nodes and are queued according to their

destinations associated with particular transmission links. Let ql(t) and Nl(t) be the current queue

backlog of queue and the number of packets arrived, respectively, at the l-th queue at time t. We

have the following assumptions regarding the bursty arrival process Nl(t).

Assumption 2 (Bursty Source Model): The packet arrival Nl(t) is a Poisson process with intensity

λl. Specifically, Nl(t) follows a probability law given by,

Pr
(
Nl(t+ dt)−Nl(t) = 1

∣∣Nl(t)
)

= λldt.

The queueing dynamics of the wireless adhoc network can be described by the following SDE,

dql = −µldt+ dNl. (3)

The first term in (3) corresponds to the packet departure and the second term corresponds to the

random packet arrival. Using Little’s Law [16], the average delay of the l-th link (l-th flow) is given

by T l = ql/λl, where ql is the average backlog for the l-th queue. As a result, there is no loss of

generality to study the average queue length ql as this is proportional to the average delay. Obviously,

the average queue length (or average delay) of the wireless adhoc network depends on how we allocate

the transmit power pl(t) and data rate µl(t) of each link in the network. In the next section, we shall

briefly review the MWQ algorithm, which is known to be a throughput optimal control (in queue

stability sense).
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B. Queue Stability and Max-Weighted Queue (MWQ) Algorithm

There are different ways to control the power pl(t) and rates µl(t) of the wireless networks but

a reasonable algorithm (in delay sense) should adapt to both the CSI (to capture good transmission

opportunity) and the QSI (to capture the urgency). In particular, we are interested in control policy

that achieves a maximum queue stability region. We now first define the notion of queue stability,

stability region and throughput optimal control.

Definition 1 (Queueing Stability): A queue is called stable if lim supt→∞
1
t

´ t
0 E [‖q(τ)‖] < ∞.

The stability region C is defined as the closure of the set of all the arrival rate vectors {λl} that

can be stabilized under some control algorithm that conforms to the power constraint E [p] ∈ P

[5]. A control policy that is throughput optimal is characterized in the sense that it stabilizes all

the arrival rate vectors {λl} within the stability region C [17]. The throughput optimal policy is

not unique and there are various known methods to achieve the maximum queue stability region.

For technical reasons, we define a convex compact domain P = {p : 0 ≤ p ≤ 2Lλmax/h2
0}. Using

Lyapunov techniques, a throughput optimal (in stability sense) formulation for the power and rate

control actions at each time slot t is given in the following.

Problem 1 (MWQ Formulation):

max
p∈P,µ�0

∑
l [ql(t)µl(t)− V pl(t)] (4)

subject to µ(t) = (µl(t), . . . , µl(t))
T ∈ C(p(t),h(t)) (5)

where the physical layer capacity region C(p(t),h(t)) is a polyhedron defined by the constraints

in (1) for all receiving nodes n. The parameter V acts as a Lagrange multiplier which controls the

tradeoff between the average delay and the average power of the wireless network.

Note that the MWQ optimization problem in (4)-(5) is parameterized by the current CSI h(t) =

{h1(t), . . . , hL(t)} and the QSI q(t) = {q1(t) . . . qL(t)}. As a result, the optimal solution p∗(h(t),q(t))

and µ∗(h(t),q(t)) of the MWQ problem is also parameterized by the CSI and QSI (h(t),q(t)).

Due to the interference coupling in the MWQ problem, there are no closed form solutions for

p∗(h,q) and µ∗(h,q) despite the problem in (4)-(5) being convex. To solve the MWQ problem in

(4)-(5), we first have the following lemma regarding the rate allocation µ̂(p;h,q) given the power.

Lemma 1 (Optimal rate allocation [18]): Let π = {π(1), π(2), . . .π(L)} be a permutation of the

flow indices sorted in descendent order of the QSI ql, i.e. qπ(1) ≥ qπ(2) ≥ · · · ≥ qπ(L). Given a power

allocation p = [p1, p2, . . . , pL] , the optimal rate allocation solution of the MWQ problem in (4)-(5)
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is given by

µ̂π(1) = log
(

1 +
∣∣hπ(1)

∣∣2 pπ(1)

)
(6)

µ̂π(k) = log

(
1 +

k∑
i=1

∣∣hπ(i)

∣∣2 pπ(i)

)
− log

(
1 +

k−1∑
i=1

∣∣hπ(i)

∣∣2 pπ(i)

)
, k = 2, . . . , L (7)

Intuitively, given a power allocation, the optimal rate allocation vector µ̂ = {µ̂1, . . . , µ̂L} is given

by one of the vertices of the polyhedron C(p,h). In addition, the vertices are achieved by the SIC with

decoding order π. As a result, finding the optimal µ̂(p;h,q) is equivalent to a linear programming

problem, which requires L steps of iterations. Hence, we can focus on the power optimization in the

MWQ problem given by

max
p(t)∈P

L(p(t);h(t),q(t)) =

L∑
l=1

ql(t)µ̂l(p(t);h(t),q(t))− V
L∑
l=1

pl(t). (8)

Using an iterative projected gradient search algorithm to find the optimal solution in (8), we derive

the following power control algorithms dynamics [19],

ṗ = κ [∇L (p;h(t),q(t))]Pp (9)

where κ is a step size parameter, and the entry-wide projection operator [�]Pz is defined as [x]Pz := 0,

if z ∈ ∂P is on the boundary of P and z + xdt ∈ P , and [x]Pz := x, otherwise. Hence, the queue

dynamics of the wireless adhoc network under MWQ control is determined by the following coupled

SDEs.

dpl = κ

[
∂

∂pl
L (p;h,q)

]P
pl

(10)

dhl = −1

2
alhldt+ a

1

2

l dwl + dvl (11)

dql = −µ̂l(p;h,q)dt+ dNl, ∀l = 1, . . . , L. (12)

In existing works, the convergence of the gradient algorithm in (9) and the throughput optimality

of the MWQ in (4) are all based on an important assumption that the CSI and the QSI (h,q) remains

constant during the algorithm iterations in (9). However, in practice, this may not be satisfied especially

for fast fading channels and heavy traffic arrivals. In this paper, we are interested in studying the

convergence behavior as well as the throughput and delay penalty of the iterative MWQ algorithm

when the CSI and the QSI are changing at a similar timescale as that of the MWQ iterations.

C. Virtual Stochastic Dynamic Systems

In this subsection, we show that studying the convergence behavior of MWQ algorithm iterations

in (9) and the queue stability can be transformed into an equivalent problem of stochastic stability in a
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Figure 2. An illustration of the algorithm trajectory for solving an MWQ problem with time-varying CSI and QSI. The

dynamics of the CSI and QSI excite the equilibrium p∗(t) to move around, and hence the convergence of p(t) is not

guaranteed.

virtual stochastic dynamic system (VSDS). As a result of this association, we can focus on analyzing

the behavior of the VSDS instead of the original complicated MWQ algorithm dynamics. We first

have a few definitions.

Definition 2 (Equilibrium Point): Given the CSI and QSI parameter (h,q), p∗(h,q) is called an

equilibrium point of the MWQ algorithm dynamics in (9) if ∇L (p∗;h,q) = 0.

When the CSI and QSI (h,q) are quasi-static, the equilibrium point p∗(h,q) is fixed and it has

been shown [19], [20] that the MWQ algorithm iterations in (10) converges to p∗(h,q) after sufficient

iterations. However, when (h,q) are time-varying, the equilibrium point p∗(h,q) is also time-varying

as illustrated in Fig. 2 and it is not known if the MWQ iterations can track the moving target. To

measure the tracking performance, we define the tracking error vector between the MWQ algorithm

trajectory and the moving equilibrium point as below.

Definition 3 (Tracking Error Vector): The tracking error vector of the MWQ algorithm is a vector

difference between the algorithm trajectory p(t) and the target equilibrium point p∗(h(t),q(t)), i.e.,

pe(t) = p(t)− p∗(t).

For a notation convenience, let ψ : (h,q) 7→ p∗(h,q) be a mapping from the current CSI and

QSI (h,q) to the equilibrium point p∗(h,q). From Definition 3, the drift of the tracking error can

be expressed as

dpe = dp− dp∗ (13)

= κ [∇L (p;h,q)]Pp dt− ψq(h,q)dq− ψh(h,q)dh

where ψq(�) = ∂
∂qψ(h,q) and ψh(�) = ∂

∂hψ(h,q) are partial derivatives of the equilibrium point

p∗ = ψ(h,q) over the current QSI q and CSI h. They represent the sensitivity of p∗(h,q) with
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respect to the variations of the CSI and QSI (h,q). The terms ψq(h,q)dq and ψh(h,q)dh represent

the change of the optimal power dp∗ corresponding to the time-varying QSI dq(t) and CSI dh(t),

respectively. Note that, as h is complex, ψh(h,q)dh is defined as ψhl
dhl = ∂ψ

∂xl
dxl + ∂ψ

∂yl
dyl, for

each complex component4 hl = xl + iyl. Taking p = p∗ + pe, we denote

f(pe;h,q) , κ [∇L (pe + p∗;h,q)]Ppe+p∗

as a mapping of the gradient iterations. Using the system dynamics of h(t) and q(t) in (11)-(12), we

construct a stochastic error dynamic system to describe the tracking error process pe(t) as follows.

Definition 4 (Stochastic Error Dynamic System (SEDS)): The stochastic error dynamic system is

characterized by the following SDE

dpe = fe(pe;h,q)dt+ be(pe;h,q)dN(t) + ce(pe; dW(t), dV(t)) (14)

where fe(pe;h,q) = f(pe;h,q)− ψq(�)µ̂(�) + 1
2ψh(�)Ah, be(�) = −ψq(�), and

ce(�) = −ψh(�)(A
1

2dW(t) +dV(t)). A = diag{a1, . . . , aL} is a matrix of CSI correlation coefficient

in (2).

It is known that when the CSI and QSI (h,q) are static, the MWQ algorithm trajectory always

converges to the static equilibrium point p∗(h,q). However, when the CSI and QSI are time-varying

in a similar timescale as the MWQ algorithm iterations, the algorithm convergence is not obvious. To

study the behavior of the algorithm dynamics induced by the time-varying CSI and QSI, we construct

a Virtual Stochastic Dynamic System (VSDS), which combines the overall dynamics of the CSI and

QSI in (11) and (12) with the Stochastic Error Dynamic System (SEDS) in (14) as follows.

Definition 5 (Virtual Stochastic Dynamic System (VSDS)): Let z = (pe,h,q) be a joint system

state. The virtual stochastic dynamic system is characterized by the following coupled SDE,

Z : dz = F (z)dt+B(z)dN + C(z, dW, dV) (15)

where

F (z) =


f(pe;h,q)− ψqµ̂(pe + p∗) + 1

2ψhAh

−1
2Ah

−µ̂(pe + p∗)



B(z) =


−ψq(h,q)

02L×L

IL

 and C(z, dW(t)) =


−ψh(h,q)(A

1

2dW + dV)

A
1

2dW + dV

0L

 .

4The complex derivative for a real value function ψ(h) is defined as ∂ψ
∂h

= 1
2

(
∂ψ
∂x
− i ∂ψ

∂y

)
and ∂ψ

∂h
= 1

2

(
∂ψ
∂x

+ i ∂ψ
∂y

)
,

for h = x+ iy. The Taylor expansion of ψ(h) is thus given by dψ = ∂ψ
∂h
dh+ ∂ψ

∂h
dh = ∂ψ

∂x
dx+ ∂ψ

∂y
dy [21].
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Figure 3. An illustration of the connection between the MWQ algorithm dynamics and Virtual Stochastic Dynamic System

(VSDS). Fig. (a) illustrates the dynamics in the MWQ algorithm domain. The control policies (µ(t),p(t)) from the MWQ

algorithm iterations are driven by the CSI dynamics h(t) and the QSI dynamics q(t). Fig. (b) illustrates the coupled MWQ

iterations, CSI and QSI from the VSDS perspective, where the power tracking error pe(t), the CSI and QSI (h(t),q(t))

are modeled as a joint state of the SDE, which is driven by external stochastic processes Wt and Nt.

Fig. 3 illustrates the inter-connection between the key components in the VSDS. Fig. 3(a) illustrates

the dynamics in the MWQ algorithm domain. Specifically the queueing dynamics q(t) is driven by

the bursty arrival process N(t) as well as the control policy (µ(t),p(t)). At the same time, the

control actions (µ(t),p(t)) are driven by the MWQ algorithm iterations, which depend on the CSI

h(t) and the QSI q(t). Fig. 3(b) illustrates the dynamics in the VSDS domain. The system consists

of the SEDS (driving the tracking error process pe(t) = p(t) − p∗(t)) as well as the CSI h(t) and

QSI q(t) driven by external processes W(t) and N(t).

We show in the following theorem that, studying the convergence behavior of the MWQ algorithm

(9) is the same as studying the stability property of the VSDS in (15). Also, evaluating the stability

of queue backlogs driven by the MWQ algorithm dynamics is equivalent to investigating the stability

property of the system state z(t) in the VSDS.

Theorem 1 (Connections between the MWQ Algorithm Dynamics and the VSDS): The actual queue

trajectory of the MWQ algorithm in (12) is the same as the solution process q(t) in the VSDS in (15).

Furthermore, the power control trajectory of the MWQ algorithm in (10) converges to the equilibrium

p∗(h,q) if and only if the SDE in (14) is globally asymptotically stable at pe = 0, i.e., given any

initial state pe(0) ∈ RL+, limt→∞ Pr (pe(t) = 0) = 1.

Proof: Please refer to Appendix A for the proof.

As a result of Theorem 1, we can focus on the VSDS dynamics in order to study the delay

performance penalty of MWQ due to time varying CSI and QSI. Nevertheless, due to the mutual

coupling of the SDEs in the VSDS, it is still difficult to study its stability behavior. In the rest of the

paper, we will focus on extending the stochastic Foster-Lyapunov method [22] to derive the stochastic

stability results of the VSDS.
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III. PERFORMANCE ANALYSIS OF MWQ ALGORITHM UNDER TIME-VARYING ARRIVALS AND

CHANNELS

In this section, we shall analyze the tracking performance of the MWQ algorithm under time-

varying channels. We bridge the connection between the property of the Lyapunov stochastic drift

and the stochastic stability of the corresponding VSDS. Following this result, we then derive an

expected queue bound under the MWQ algorithm in time-varying channels.

A. Stochastic Stability of Random Process

Let z = (pe,h,q) be a joint state of the VSDS in (15), where pe is the tracking error, h is the

channel coefficient and q is the queue backlog. Denote z(t) as the stochastic process starting from

t = 0 with initial state z(0). We have the following definition of stochastic stability to characterize

the behavior of z(t).

Definition 6 (Stochastic Stability): Given any initial state z(0) ∈ Z , the stochastic process z(t) is

globally stochastically stable, if there exists 0 ≤ D <∞, such that

lim sup
t→∞

1

t

ˆ t

0
E ‖z(t)‖ ≤ D.

Notice that this definition is analogue to the usual concept of stability in deterministic system [23],

whereas, the condition here is taken over a time averaged expectation. This general criteria can be

applied to a non-stationary process, such as a queueing system with different classes of services. In

fact, in this work, we do not require the queue dynamics and the MWQ algorithm trajectory to be

stationary.

Define a Lyapunov function of the state z(t) as V (z) = zHz. We can investigate the evolution of

the Lyapunov function by studying its drift along the state trajectory. Analogue to the discrete-time

one-step conditional Lyapunov drift in [5], we define the continuous time Lyapunov drift generator

as

LV (z(t)) = lim
δ↓0

E [V (z(t+ δ))− V (z(t))|z(t)]

δ
(16)

where the expectation (conditioned on the current state z(t)) is taken over the randomness of the

CSI and the arrival to the QSI. The Lyapunov drift represents the expected evolving direction of the

Lyapunov function V (z) from the current state z(t), and LV (z) is called an infinitesimal estimator

of V (z). As V (z) is a norm-like function [23], the boundedness of the Lyapunov function implies

the boundedness of state z(t) and the dynamics of the Lyapunov function reveals the evolution of

state z(t). For example, when the drift is negative, ‖z(t)‖ is most likely decreasing. The Lyapunov

drift LV (z) can also be derived from the SDE of z(t) as stated in the following lemma.
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Lemma 2 (Continuous-Time Lyapunov Drift [24]): Suppose that there is a d-dimensional stochas-

tic process z(t) described by a SDE

dz = f(z)dt+ g(z)dW + h(z)dN

where W(t) ∈ CL is a standard complex Wiener process and N(t) = (N1(t), . . . , NL(t)) ∈ ZL+ is

a Poisson process with intensities λl, l = 1, . . . , L. For any given Lyapunov function V (z) ∈ C2 :

Z → R+ that has compact support [24], the stochastic Lyapunov drift can be written as

LV (z) = 2
∂V (z)

∂z
f(z) +

1

2
tr
[
g(z)H

∂2V (z)

∂z∂z
g(z) + g(z)

∂2V (z)

∂z∂z
g(z)H

]
+

L2∑
l=1

λl

(
V (z + h(l)(z))− V (z)

)
where h(l)(z) is the l-th column of h(z).

The above lemma establishes a connection between the infinitesimal estimator LV (z) and the

specific SDE. The proof is similar to that in [24] with a notation extension to complex variables

[21]. By exploiting the property of the Lyapunov drift, we can characterize the stochastic stability

of random process z(t) described by the SDE in (15). We summarize the result in the following

theorem.

Theorem 2 (Stochastic Stability from Lyapunov Drift): Suppose the stochastic Lyapunov drift of

the process z(t) satisfies

LV (z) ≤ −a‖z‖+ g(s) (17)

for all z ∈ Z , where a is some positive constant and s(t) is a stochastic process that satisfies

lim sup
t→∞

1

t

ˆ t

0
E [g(s(τ))] dτ ≤ d

for some function g : s 7→ R and d <∞. Then the process z(t) is stochastically stable, and

lim sup
t→∞

1

t

ˆ t

0
E‖z(τ)‖dτ ≤ d

a
.

Proof: Please refer to Appendix B for the proof.

The above result is an extension of the Foster-Lyapunov criteria for continuous time processes

in [22]. If z(t) is a system state that relates to the queue length and the tracking error of the

power variable, the stochastic stability forms an estimation on the queue bound as well as the power

penalty due to the time-varying parameters. The advantage of the Foster-Lyapunov method enables

a qualitative analysis of the VSDS without explicitly solving the SDE. In the following, we shall

illustrate how to construct a Lyapunov drift for the VSDS.
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B. Stability Analysis of the MWQ Algorithm

In this section, we shall apply the stochastic stability analysis method to study the stability of the

VSDS (15). Specifically, according to Lemma 2, the Lyapunov drift for the VSDS (15) is given by5

LV (z) = 2zHF (z) +
1

2
tr
[
2C(z, �)HC(z, �)

]
+

L∑
l=1

λl

[
V (z +B(l))− V (z)

]
≤ 2pTe f(pe;h,q)− 2pTe ψq(h,q)µ̂(pe + p∗) + pTe ψh(h,q)Ah

−hHAh− 2pTe ψq(h,q)λ− 2

L∑
l=1

ql [µ̂l(pe + p∗)− λl]

+tr
(

2
(
A

1

2

)T
ψHh ψhA

1

2 + ψTq ψq

)
+

L∑
l=1

(2al + λl) (18)

where B(l) stands for the l-th column of B(z) and Λ = diag {λ1, . . . , λL} is the arrival matrix.

As illustrated in Theorem 2, negative drift terms in LV (z) are desirable because they can drive

the stochastic state process towards the origin and contribute to stabilization of the VSDS. In the

following, we shall analyze the key terms on the R.H.S. of (18) and discuss their contributions.

Intuitively, a fast MWQ algorithm and a high transmission rate can contribute to driving the LV (z)

negative and we shall elaborate on such properties in the following.

We first define the following, which will be used throughout the analysis. Let Smin(t) = minl

{
|hl(t)|2

}
and Smax(t) = maxl

{
|hl(t)|2

}
be the minimum and maximum channel gains among L transmission

links at time t, respectively. Notice that |hl|2 has stationary distributions and we denote its cumulative

distribution function as Fh(x). Thus Smin and Smax are also ergodic processes with stationary

distributions given by the L-th order statistics as Fmin
S (s) = P(Smin ≤ s) = 1−

[
1− P

(
|h|2 ≤ s

)]L
=

1− [1− Fh(s)]L and Fmax
S (s) = P (Smax ≤ s) = P

(
|h|2 ≤ s

)L
= Fh(s)L.

The following lemma summarizes the contribution of the convergence speed of the MWQ iterations

in (9) to the drift LV (z) in (18).

Lemma 3 (Negative Drift Contribution of Convergence Speed in MWQ Gradient Iteration): Given

any CSI and QSI realizations h(t) = h and q(t) = q � 1, there exists α(Smin, Smax) > 0 that

satisfies6

pTe f(pe;h,q) ≤ −κα‖pe‖2 (19)

for all t ≥ 0, where κ is the step size parameter of the MWQ iterations in (9).

Proof: Please refer to Appendix C for the proof.

5Note that Lemma 2 does not specify the drift for the term dV. However, as the reflection |dV| ≤ |A
1
2 dW|, we can

treat V(t) as A
1
2W(t) and yield an upper bound for LV (z).

6For vectors a = (a1, a2, . . . , aL) and b = (b1, b2, . . . , bL), a � b is defined as ai > bi, ∀i = 1, . . . , L.
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This lemma illustrates that the tracking error term pe contributes to the negative drift (proportional

to κα) in LV (z) in (18). The larger the tracking error ‖pe‖ is, the stronger force the MWQ iterations

will drag the system state p to the optimal p∗, which in turn helps the stabilization of the system.

In fact, the negative drift depends on the MWQ iteration step size κ, which controls the convergence

rate7 of the MWQ iterations under static h and q.

From the Lyapunov drift for VSDS in (18), the transmission rate µ̂(t) also contributes to negative

drift in (18), which in turns help to stabilize the VSDS. Before we quantify the negative drift

contribution, we first discuss several structural properties of the transmission rate at the equilibrium.

Let µ∗ (h,q) = µ̂ (p∗(h,q);h,q) be the transmission rate at the equilibrium point p∗(h,q) (optimal

transmission rate under the MWQ policy). We have the following lemmas about the structural property

of µ∗(h,q) and the actual transmission rate µ̂(t).

Lemma 4 (Structural Properties of the Transmission Rate at Equilibrium): The transmission rate

µ∗(h,q) at the equilibrium p∗(h,q) of the VSDS has the following properties,

L∑
l=1

qlµ
∗
l (h,q) ≥ ||q||min

{
log

(
Smin

V
||q||

)
, Lλmax + log

Smin

|h0|2

}
(20)

and
1

L
min

{
log

(
Smin

V
||q||

)
, Lλmax + log

Smin

|h0|2

}
≤ ‖µ∗ (h,q) ‖ ≤ log

(
Smax

V
‖q‖

)
(21)

for ‖q‖Smin > V .

Proof: Please refer to Appendix D for the proof.

Lemma 5 (Structural Properties of the Actual Rate µ̂(t)): There exists a β > 0 depending on

Smin and Smax, such that, for all t ≥ 0, the actual transmission rate at time t, µ̂(t) = µ̂(p(t);h(t),q(t))

satisfies

‖µ∗(h(t),q(t))‖ − log (1 + β‖pe(t)‖) ≤ ‖µ̂(t)‖ ≤ ‖µ∗(h(t),q(t))‖+ log (1 + β‖pe(t)‖) . (22)

Proof: Please refer to Appendix E for the proof.

Lemma 4 shows that the term
∑
qlµ
∗
l grows faster than ‖q‖ and ‖µ∗(h,q)‖ is lower bounded

with the order log(‖q‖). On the other hand, Lemma 5 illustrates that, although there is a tracking

error pe in the power allocation, a minimum transmission rate is still guaranteed and the rate penalty

due to the tracking error pe is no larger than log (1 + β‖pe‖).

7Note that the MWQ iteration in (9) is expressed in continuous time and a larger κ is always desirable from the perspective

of convergence speed. However, in practice, the MWQ iterations are implemented in discrete time and the corresponding

discrete time step size is given by κτ where τ is the slot duration of iterations. For a given τ , a large κ will speed up the

iteration but also contributes to a larger steady state errors of O(κτ) in the discrete time iterations.
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Based on the properties in Lemma 4-5, we can derive an upper bound of the Lyapunov drift in

(18). Let aA = ‖A‖ = max {al} be the CSI fading rate parameter, where A is the coefficient matrix

of the CSI dynamics defined in (2). Let λmax = ‖Λ‖ = maxl {λl} be the maximum arrival rate

among all the transmission links.

Lemma 6 (Lyapunov Drift Property for VSDS): Suppose there exists constants γq <∞ and γh <

∞, such that ‖ψq(h(t),q(t))‖ ≤ γq, ‖ψh(h(t),q(t))‖ ≤ γh, for all t ≥ 0. In addition, the step size κ

satisfies κ > 2
α max

{
γ2
q , βγq

}
under all h(t). Then the stochastic Lyapunov drift in (18) is bounded

by

LV ≤ − (‖pe‖+ ‖q‖+ ‖h‖) +D(Smin, Smax) (23)

where

D(Smin, Smax) = L(2aA(1 + γ2
h) + γ2

q + λmax) +
1

8aA[1− γ2
haA/(κα)]

+
2γ2

qλ
2
max

κα
+

V

Smin
2Lλmax−1 + g(Smin, Smax) + C

and g(Smin, Smax) is a function bounded for all Smin and Smax.

Proof: Please refer to Appendix F for the proof.

From the above lemma, the Lyapunov drift (18) is increasingly negative for sufficiently large ‖q‖

and ‖h‖ and this negative drift drives the system state back to a trajectory with bounded norm.

This property stabilizes the VSDS. Denote α0 = E
[

1
α

]
, γ0 = E

[
1

8[1−γ2
haA/(κα)]

]
, σ = E[ 1

Smin
] and

g = E [g(Smin, Smax)]. Note that as Smin and Smax are the L-th order statistics of stationary processes

|hl|2, σ and g are bounded above. The stability results of the VSDS can be summarized as follows.

Theorem 3 (Stability of the VSDS): The system state z(t) of VSDS in (15) is stochastically stable

and satisfies

lim sup
t→∞

1

t

ˆ t

0
E [‖z(τ)‖] dτ ≤ L(2aA(1+γ2

h)+γ2
q+λmax)+

γ0

aA
+
α0γ

2
qλ

2
max

κ
+V 2Lλmax−1σ+g. (24)

The above theorem is a direct result of Lemma 6 and Theorem 2. As ‖q‖ ≤ ‖z‖, we can obtain

the average queue bound from the following corollary.

Corollary 1 (Expected Average Queue Bound under Time-varying CSI and QSI ): The expected av-

erage queue bound under MWQ algorithm in time-varying CSI and QSI is given by

lim sup
t→∞

1

t

ˆ t

0
E [‖q(τ)‖] dτ ≤ L(2aA(1+γ2

h)+γ2
q+λmax)+

γ0

aA
+
α0γ

2
qλ

2
max

κ
+V 2Lλmax−1σ+g. (25)

The result shows the upper bound of the average worst case queue (corresponding to the worst case

delay) of the network. The bound depends on several important parameters, namely the CSI fading

rate aA, and the sensitivities of the equilibrium p∗(h,q) w.r.t. h and q, (γh, γq).
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Figure 4. A numerical illustration of the average queue bound (for the worst queue) in (25) versus the CSI fading rate aA.

The numerical result is under L = 4 links and maximum arrival rate λmax = 1, and different assumptions of sensitivity

parameters γh and γq . The numerical queue bound is increasing with the CSI fading rate aA, the parameters γh and γq .

Fig. 4 gives a numerical illustration of the theoretical queue bound in (25) under L = 4 links,

maximum arrival rate λmax = 1, various CSI fading rates aA, and sensitivity parameters γh and γq.

Note that the delay bound increases w.r.t. γh and γq. Note that the delay bound increases w.r.t. γh,

γq and at both large and small fading speed (aA). For large aA, there is the penalty of the increased

tracking error due to time varying CSI. For small al, the delay increases because the CSI may be

stuck at a poor state for quite a long time.

IV. ADAPTIVE COMPENSATION FOR THE MWQ ALGORITHM IN TIME-VARYING ARRIVALS AND

CHANNELS

Based on the stochastic dynamics modeled by the VSDS, we consider modifying the gradient MWQ

iterations in (9) to reduce the penalty induced by time varying CSI and QSI. Specifically, we introduce

a compensation term to improve the stochastic dynamics of the VSDS in (15). This corresponds to

a compensation term in the MWQ algorithm to offset the effect from the time-varying CSI and QSI.

The overall compensated MWQ algorithm is shown to have a better convergence robustness w.r.t.
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time varying CSI and QSI both analytically and numerically.

A. A Proposed Algorithm with Compensation Term

We have shown in Section II-C that the dynamics of tracking error pe(t) can be modeled by a

stochastic error dynamic system in (14), which consists of a drift term fe(�) and diffusion terms be(�)

and ce(�; dW). Without the diffusion terms, the SEDS eventually converges to the origin, as fe(�)

contributes a negative drift to the infinitesimal estimator LV (pe), where we define the Lyapunov

function as V (pe) = pTe pe. However, with the presence of the diffusion terms, the system dpe =

fe(pe;h,q)dt is disturbed from the equilibrium at pe = 0 and the state pe is driven away from

the origin. The magnitude of be(�) and ce(�) reflect the chance and intensity that the state pe(t) is

being disturbed. Based on this observation, one way to stabilize pe(t) is to offset the diffusion terms

be(�) and ce(�) in the SEDS dynamics in (14). Equivalently, this corresponds to modifying the MWQ

algorithm iterations in (9) to compensate for the effects of time varying CSI and QSI. From the error

tracking vector dpe in (13), we would like to compensate the movement of the optimal target dp∗(t)

so that the resulting SEDS becomes dpe = κ [∇L (pe + p∗;h,q)]Ppe
dt. In this ideal case, the pe

will converge to 0. However, the challenge is that we do not have an exact expression for dp∗(t)

during the iteration because we do not have closed form expression of the equilibrium p∗(t). We

shall propose an indirect method of estimating the compensation term.

Since the MWQ problem in (8) is convex, p∗ is the optimum if and only if there exists λ∗ � 0,

such that

∇L(p∗;h,q) + λ∗ = 0 (26)

λ∗l p
∗
l = 0 ∀l = 1, . . . , L. (27)

We denote the above system of equations (KKT conditions) as Φ(x∗;h,q) = 0, where x∗ = (p∗,λ∗).

Note that x∗ is unique for a convex problem. Using implicit function theorem and assuming ∂Φ
∂x∗ is

non-singular, we have

dx∗ =

 dp∗

dλ∗

 = −
(
∂Φ

∂x∗

)−1 ∂Φ

∂q
dq− 2Re

[(
∂Φ

∂x∗

)−1 ∂Φ

∂h
dh

]
. (28)

As a result, we obtain dp∗ = ϕ̂q(p
∗,λ(p);h,q)dq + Re [ϕ̂h(p∗,λ(p);h,q)dh], where the vector-

valued functions ϕ̂q(p∗; �) and ϕ̂h(p∗; �) are the rows for primal variable dp∗ from −
(
∂Φ
∂x∗

)−1 ∂Φ
∂q

and −2
(
∂Φ
∂x∗

)−1 ∂Φ
∂h in (28), respectively. Thus the MWQ iterations with compensation is given by

ṗ = [κ∇L(p;h(t),q(t))− ϕ̂q(p,λ(p);h(t),q(t))dq− Re [ϕ̂h(p,λ(p);h(t),q(t))dh]]Pp (29)

where ϕ̂q(�)dq and Re [ϕ̂h(�)dh] are compensation terms. Here, we use the current algorithm state

p(t) as an approximation of the target equilibrium p∗(t) and λ is computed via the KKT conditions
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in (26)-(27). The compensation term can be interpreted as an estimation on how the target equilibrium

p∗ is moving according to the time-varying CSI and QSI (dh, dq). When p is close to p∗ (i.e., pe

is small), the estimation ϕ̂(p,λ(p); dh, dq) on dp∗ is accurate. Thus the compensation term helps

further reduce the tracking error and the algorithm would eventually converge to the equilibrium

p∗. We shall investigate the convergence behavior of the compensation algorithm in the following

subsection.

B. Performance Analysis for the Compensation Algorithm

Suppose the functions ϕ̂q(p; �) and ϕ̂h(p; �) are Lipschitz continuous, i.e., there exists positive

constants Lq, Lh <∞, such that ‖ϕ̂q(p; �)− ϕ̂q(p∗; �)‖ ≤ Lq‖p−p∗‖ and ‖ϕ̂h(p; �)− ϕ̂h(p∗; �)‖ ≤

Lh‖p−p∗‖, for all p ∈ RL+. Let µmax be the maximum transmission rate that the system can support

and α > 0 be defined in (19) uniformly for all CSI realization h. The following theorem provides a

sufficient condition to the convergence of the compensation algorithm.

Theorem 4 (Convergence of the Compensation Algorithm): Provided that the step size parameter

κ satisfies,

κ >
1

α

[
(µmax + λmaxL)Lq +

1

2
L2
q +

1

2
aAL

2
h

]
for all t ≥ 0. Then the MWQ iterations with compensation in (29) asymptotically tracks the moving

equilibrium point p∗(t) with no errors, i.e., ∀ε > 0,

lim
t→0

Pr [‖p(t)− p∗(t)‖ < ε] = 1.

Proof: Please refer to Appendix G for the proof.

Theorem 4 shows that when a large enough step size κ is available, the compensation algorithm can

converge to the equilibrium point p∗(t), and there is no performance penalty due to the time-varying

CSI and QSI. The convergence is affected by the parameters L, aA, Lh and Lq, where L is number

of transmission links in the network (the system dimension), aA is the CSI variation rate of the whole

network, and Lh and Lq represent the sensitivity of the equilibrium point p∗(t) w.r.t. the time-varying

CSI and QSI. On the other hand, for conventional gradient iteration in (9), the algorithm cannot have

pe → 0 no matter how large the iteration step size κ is used. This is due to the fact that the target

equilibrium p∗(t) is moving due to the time-varying CSI and QSI.

Remark 1 (Interpretation of the results): In practice, we would like to implement the modified

MWQ iteration in (29) on discrete time. The iterations of (29) can be written as

p(t+ τ) = {p(t) + κτ∇L(p(t);h(t),q(t))− ϕ̂q(�)4q(t)− Re [ϕ̂h(�)4h(t)]}Pp
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in discrete time where 4x(t) = x(t+ τ)− x(t) and τ is the time step. In this case, the overall error

between p(t) and p∗(t) is contributed by (a) algorithm convergence error and (b) steady state error.

While Theorem 4 suggests that a large step size κ is always desirable from the algorithm convergence

error perspective, the above analysis did not consider the steady state error (due to constant step size)

o(κτ) associated with discrete-time implementation. The overall impacts of steady state errors and

tracking errors will be demonstrated in the numerical results section.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we shall simulate the tracking performance of the conventional MWQ iteration and

the proposed compensated MWQ iteration in time-varying channels. We also demonstrate the delay

performance for the two MWQ iterations under various CSI fading rates. We consider a wireless

ad-hoc network with 5 nodes and 6 links as depicted in Fig. 1. The l-th link transmits the l-th

data flow. Transmission flows towards a same destination share the same frequency band and SIC

is implemented at each receiving node to handle the inter-flow interference. The CSI hl for each

link is modeled by a unit variance Markov process described by the SDE in (2). Data arrivals are

modeled by continuous time Poisson processes with rate λ = 20 packets/second. All the algorithms

are implemented in discrete-time iterations with simulation time step 1 ms and the queueing system

was run over a time duration T = 100 min. The delay performance of the conventional MWQ

iterations in (9) and the modified MWQ iterations with compensation in (29) are compared against

the following reference baselines.

• Baseline 1 - Constant Power Allocation: At each time slot, fixed power P is allocated to each

link and the transmission rate is computed by (6)-(7).

• Baseline 2 - Throughput Optimal Power Allocation: The throughput optimal power control

is computed by solving the MWQ problem in (4)-(5) to obtain the target equilibrium p∗(h,q)

at each time slot t.

A. Power Tracking Performance of the MWQ Iterations

Fig. 5 captures the power control algorithm trajectory p(t) versus time at a CSI fading rate of

aA = 200. The algorithms update on every τ = 1 ms time slot and the step size is chosen to be

0.5 (corresponding to κ = 500 sec−1 for continuous-time trajectory). Throughout the simulation,

the average delay is measured as T l ≈ 500 ms. As illustrated, the target equilibrium p∗1(t) changes

significantly over time due to the time varying CSI. The conventional MWQ iterations pMWQ,1(t)

fail to track the moving target p∗1(t) accurately but the trajectory of the compensated MWQ iterations

pcom,1(t) can track the moving target quite well.
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Figure 5. The power control algorithm trajectory p(t) versus time at a CSI fading rate aA = 200 and packet arrival

rate λ = 20 packets/second. The algorithms update on every τ = 1 ms time slot with step size 0.5 (corresponding to

κ = 500 sec−1). The average delay is measured to be T l ≈ 500 ms. As illustrated, the target equilibrium p∗1(t) changes

significantly over time due to the time varying CSI. The conventional MWQ iterations pMWQ,1(t) fail to track the moving

target p∗1(t) accurately but the trajectory of the compensated MWQ iterations pcom,1(t) can track the moving target quite

well.

Fig. 6 illustrates the average tracking error of the power trajectory p(t) versus the fading rate aA.

The average tracking error of the power trajectory is defined as e = 1
T

´ T
0 ‖p(t) − p∗(t)‖dt. It is

shown that the average tracking error of conventional MWQ iterations increases with the fading rate

aA. On the other hand, the tracking error of the modified MWQ iterations (with compensations) is

much smaller8 than that of the conventional MWQ iterations.

B. Power-Delay Tradeoff Performance

Fig. 7 illustrates the per-node average power versus the average delay at different fading rates.

Note that along each curve, we have different values of V , which acts as a tradeoff parameter for

power-delay tradeoff. Small V corresponds to small delay and vice versa. Observed that to maintain

the same average delay of 2 seconds, the conventional MWQ iterations require 2.3 dB more power

8Note that the tracking error shown is the overall error obtained using discrete-time iterations, which include the errors due

to algorithm convergence and steady state errors (due to constant discrete time step size). From Theorem 4, the algorithm

convergence error tends to zero for the modified MWQ but there is a steady state error in Fig. 6 due to the constant step

size in discrete time implementation.
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Figure 6. The average tracking error of the power trajectory p(t) versus the fading rate aA under packet arrival rate λ = 20

packets/second. The algorithms update on every τ = 1 ms time slot with step size 0.5 (corresponding to κ = 500 sec−1).

The average tracking error of conventional MWQ iterations increases with the fading rate aA. On the other hand, the

tracking error of the modified MWQ iterations (with compensations) is much smaller than that of the conventional MWQ

iterations. Note that the error consists of contributions from both the algorithm convergence error and steady state error due

to constant step size (in discrete time). From Theorem 4, the algorithm convergence error of the modified MWQ converges

to zero but there is still residual steady state error.

than the throughput optimal scheme. On the other hand, the proposed modified MWQ algorithm

with compensation suffers from a very small power penalty (< 1dB) compared with baseline 2 (the

throughput optimal scheme). Furthermore, as the CSI fading rate aA increases, the conventional MWQ

iterations eventually require as much power as baseline 1 (constant power allocation) does, while the

proposed modified MWQ algorithm with compensation still has a reasonable power gain compared

to baseline 1.

VI. CONCLUSIONS

In this paper, we have analyzed the convergence behavior and the queue delay performance of the

conventional MWQ iterations in a wireless adhoc network, in which the CSI and the QSI are changing

in a similar timescale as the algorithm iterations. We first show that the algorithm convergence can

be captured by studying the stochastic stability of an equivalent virtual stochastic dynamic system
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Figure 7. The per-node average power versus the average delay at different fading rate. Observed that to maintain the

same average delay of 2 seconds, the conventional MWQ iterations require 2.3 dB more power than the throughput optimal

scheme. On the other hand, the proposed modified MWQ algorithm with compensation suffers from a very small power

penalty (< 1dB) compared with baseline 2 (the throughput optimal scheme). Furthermore, as the CSI fading rate aA increases,

the conventional MWQ iterations eventually require as much power as baseline 1 (constant power allocation) does, while

the proposed modified MWQ algorithm with compensation still has a reasonable power gain compared to baseline 1.

(VSDS). By extending the Foster-Lyapunov criteria, we established the technical conditions for queue

stability and derived the associated queue bounds. Based on these analyses, we have proposed a novel

adaptive MWQ algorithm with a predictive compensation to counteract the effects of the time varying

CSI and QSI. We have demonstrated that with some mild conditions, the modified MWQ iterations

(with compensation) can converge to the moving target power p∗(t) despite the time varying CSI

and QSI. Finally, simulation results demonstrated the performance gain of the proposed algorithm in

both the network delay performance and the tracking error of the power trajectory.

APPENDIX A

CONNECTIONS BETWEEN THE OPTIMIZATION ALGORITHMS AND THE VSDS

In this section, we give a brief introduction to the Lyapunov method for algorithm convergence

analysis, which motivates us to connect the algorithm trajectory to the VSDS.
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We focus on gradient-based methods that are widely used for computing the optimal resource

allocations in wireless communication networks and are well-suited for implementations across a

distributed network. The gradient method searches the optimum point x∗ of the objective function

L(x) following

ẋ =
dx

dt
= κ

[
∂L
∂x

]T
.

Here we study the convergence behavior by constructing the tracking error dynamics of the algorithm

trajectory. Define the tracking error xe = x−x∗ and substitute it into the above dynamics, we obtain

ẋe = κ

[
∂L(xe + x∗)

∂xe

]T
, f(xe). (30)

Hence the convergence analysis is transferred to stability analysis [23] of the virtual error dynamic

system (30) at the origin xe = 0.

A classic method to study the stability of a dynamic system is via the Lyapunov theory [23]. We

first construct a Lyapunov function which has the following properties,

V (xe)→∞, as ‖xe‖ → ∞, and V (xe)→ 0, as ‖xe‖ → 0.

The Lyapunov theory says, if V̇ (xe) < 0 for all xe ∈ Rn\{0}, then the dynamic system ẋe = f(xe)

is asymptotically stable at the origin xe = 0 [23].

Note that, the objective function L(x;h(t), q(t)) we focus on in this paper has stochastic time-

varying parameters h(t) and q(t), which may evolve in a similar timescale to the algorithm trajectory.

We tackle this problem by constructing the VSDS from the algorithm dynamics, and extending the

Foster-Lyapunov criteria (in Theorem 2). We show the connection between the algorithm trajectory

and the VSDS in the following.

Proof of Theorem 1: Note that the VSDS in (15) consists of three components, pe, h and q, where

the dynamics of h(t) and q(t) are just the same as (11) and (12). We only need to show that the

dynamics of pe(t) in the VSDS in (15) implies the MWQ power control algorithm dynamics of p(t)

in (10). Equivalently, we need to show

p(t) = pe(0) +

ˆ t

0
dpe(τ) + p∗(t)

to be the solution of (10). On the other hand, by the definition of tracking error (Definition 3),

pe(0) +
´ t

0 dpe(τ) + p∗(t) = pe(t) + p∗(t) = p(t). Therefore, by substituting pe(t) + p∗(t) with

p(t) in the VSDS in (15), we see that the trajectory q(t) in the VSDS is just the same as that in

(12).

To prove the second part of the theorem, we consider that there is no disturbance applied to the

SEDS in (14) by considering dN ≡ 0 and dW ≡ 0. Equivalently, we take dh = 0 and dq = 0 in

(13). The SDE of pe(t) in (14) reduces to

dpe = κ [∇L (pe + p∗;h,q)]+pe+p∗ dt. (31)
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By the definition of equilibrium point (Definition 2), pe → 0 corresponds to ∇L → 0. Hence the

origin is an equilibrium to the SDE in (14). On the other hand, if the origin is an equilibrium to

(31), p∗ = ψ(h,q) must be the equilibrium to the dynamics of the power control algorithm in (10).

Hence, we complete the proof.

APPENDIX B

PROOF OF THEOREM 2

Proof: Define a sequence of stopping time tn = inf {t ≥ 0 : z(t) ≥ n}. By Dynkin’s formula

[25],

0 ≤ V (z(tn)) ≤ V (z(0)) + E
[ˆ tn

0
(−a‖z(τ)‖+ g(s(τ))) dτ

]
.

Hence we have

E
[ˆ tn

0
a‖z(τ)‖dτ

]
≤ V (z(0)) + E

[ˆ tn

0
g(s(τ))dτ

]
Exchanging the order of integration and expectation, we have

1

tn

ˆ tn

0
E‖z(τ)‖dτ ≤ 1

tn

V (z(0))

a
+

1

tn

ˆ tn

0
E [g(s(τ))] dτ

Taking limit on both sides, we obtain

lim sup
n→∞

1

tn

ˆ tn

0
E‖z(τ)‖dτ ≤ lim sup

n→∞

(
1

tn

V (z(0)

a
+

1

tn

ˆ tn

0

1

a
E [g(s(τ))]

)
≤ d

a
.

Notice that tn →∞ as n→∞, and V (z(0)) is bounded. Thus the result holds.

APPENDIX C

PROOF OF LEMMA 3

Proof: According to Lemma 1, the optimization problem (8) can be written as

max
p∈P

qπ(1) log
(
1 + |hπ(1)|2pπ(1)

)
(32)

+qπ(2)

[
log
(

1 +
∣∣hπ(1)

∣∣2 pπ(1) +
∣∣hπ(2)

∣∣2 pπ(2)

)
− log

(
1 + |hπ(1)|2pπ(1)

)]
+ . . .

+qπ(L)

[
log

(
1 +

L∑
i=1

∣∣hπ(i)

∣∣2 pπ(i)

)
− log

(
1 +

L−1∑
i=1

∣∣hπ(i)

∣∣2 pπ(i)

)]
−

L∑
i=1

V pπ(i)

for a certain permutation π, where qπ(k−1) ≥ qπ(k), for k = 2, . . . , L. As the objective function

L(p;h,q) is a combination of logarithmic functions, it can be verified that L(p;h,q) is strictly

concave in p and ∇2L(p;h,q) < 0. In addition, as the domain P is compact and under the condition

that qπ(i) ≥ 1, there exists a positive constant α(Smin, Smax) > 0 depending only on the channel

gain parameters Smin(t) and Smax(t), such that the Hessian of L(p;h,q) satisfies ∇2L � −αI for

all p ∈ P .
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Based on this observation, we obtain,

pTe f(pe;h,q) = pTe f(0+;h,q) + pTe

ˆ 1

0
∇f(ξpe;h,q)dξpe (33)

= pTe f(0+;h,q) + pTe

ˆ 1

0
κ∇2L(ξpe + p∗(h,q);h,q)dξpe (34)

≤ −
ˆ 1

0
ακ‖pe‖2dξ (35)

= −ακ‖pe‖2

where pTe f(0+;h,q) = (p − p∗)T∇L(p∗(h,q);h,q) ≤ 0 is the optimality condition for p∗(h,q)

in the optimization problem (8). The equality (33)is from Taylor expansion of the gradient iteration

function f(�), the second equality (34) is from the fact that ∇f = ∇2L, since f = ∇L, and the

inequality (35) is from ∇2L � −αI derived above. Hence we proved the result.

APPENDIX D

PROOF OF LEMMA 4

Proof: We first consider a time division MWQ policy. At each time slot, only the link is selected

for transmission and the policy is given in the following [6].

1) Find a link l̂ such that

l̂ = arg max
l=1,...,L

{
ql log(1 + |hl|2 pl)− V pl

}
(36)

2) Power allocation: the power p is allocated according to

p̃l =


(
ql
V −

1
|hl|2

)P
p̃l

l = l̂

0 otherwise
(37)

where the projection yields p̃l̂ = max{0,min{ql/V − 1/ |hl|2 , 2Lλmax/h2
0}}.

3) Rate allocation: the rate µ is allocated according to

µ̃l =


log

(
1 +

(
ql|hl|2
V − 1

)P
p̃l

)
l = l̂

0 otherwise
(38)

Note that the above policy is the solution of the following optimization problem,

maximize
∑
ql log(1 + |hl|2 pl)− V

∑
pl (39)

subject to only one link is activated.
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As a result, the optimum queue-weighted sum transmission rate for the time division policy is

L∑
l=1

qlµ̃l = ql̂ log

1 +

(
ql̂
∣∣hl̂∣∣2
V

− 1

)P
p̃l̂

 ≥ qm log

1 +

(
qm |hm|2

V
− 1

)P
pm


=

 0

qm min
{

log
(
|hm|2
V qm

)
, Lλmax + log |hm|2

|h0|2

} ‖q‖ |hm|2 ≤ V

‖q‖ |hm|2 > V

≥

 0

‖q‖min
{

log
(
Smin

V ‖q‖
)
, Lλmax + log Smin

|h0|2

} ‖q‖Smin ≤ V

‖q‖Smin > V

(40)

where qm = ‖q‖ stands for the queue that has the largest backlog (i.e., m = arg maxl {ql}). The

optimal utility for the time division policy is then given by (40) for ‖q‖Smin > V where Pt =∑
p̃l = pl̂ is the total power.

Since, with the same objective, the optimization domain of the time division MWQ problem (39)

is just a subset of that of the original MWQ problem in (4), the MWQ problem (4) yields a utility

U∗ =
∑
qlµ
∗
l − V

∑
p∗l ≥ Ũ . To evaluate the queue-weighted utility

∑
qlµ
∗
l , we consider the

following two cases.

Case 1: When
∑
p∗l ≥ Pt =

∑
p̃l, it is obvious that, for ‖q‖Smin > V ,∑

qlµ
∗
l ≥

∑
qlµ̃l ≥ ‖q‖min

{
log

(
Smin

V
‖q‖

)
, Lλmax + log

Smin

|h0|2

}
.

Case 2: When
∑
p∗l < Pt, we let V

′
=

∑
p∗l
Pt

V < V . Note that decreasing the tradeoff parameter V

will increase the power allocation and hence increase the queue-weighted utility
∑
qlµ
∗
l . Specifically,

the optimal utility becomes

U∗ =
∑

qlµ
∗
l − V

∑
p∗l =

∑
qlµ
∗
l − V

′
Pt ≥

∑
qlµ̃

′

l − V
′
Pt ≥

∑
qlµ̃

′

l − V
′∑

p̃
′

l

as

p̃
′

l =


(
ql
V ′
− 1
|hl|2

)P
p̃
′
l

≥ p̃l = Pt l = l̂

0 otherwise

where µ̃
′

l and p̃
′

l are the solutions to the time division MWQ problem (39). Hence
∑
qlµ
∗
l ≥

∑
qlµ̃

′

l ≥

‖q‖ log
(
Smin

V ′
‖q‖

)
≥ ‖q‖min

{
log
(
Smin

V ‖q‖
)
, Lλmax + log Smin

|h0|2

}
, for ‖q‖Smin > V .

Combining the above two cases, we prove the inequality (20).

In addition, as L‖q‖‖µ∗‖ ≥
∑L

l=1 qlµ
∗
l ≥ ‖q‖min

{
log
(
Smin

V ‖q‖
)
, Lλmax + log Smin

|h0|2

}
, we have

‖µ∗‖ ≥ 1
L min

{
log
(
Smin

V ‖q‖
)
, Lλmax + log Smin

|h0|2

}
, for ‖q‖Smin > V . Similarly, we can get ‖µ∗‖ ≤

log
(
Smax

V ‖q‖
)
. Hence we prove inequality (21).
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APPENDIX E

PROOF OF LEMMA 5

Proof: According to (7) in Lemma 1, µ̂π(k) = log (ρk(p)) under some permutation π, where

ρk(p) =
1 +

∑k
i=1

∣∣hπ(i)

∣∣2 pπ(i)

1 +
∑k−1

i=1

∣∣hπ(i)

∣∣2 pπ(i)

.

Notice that ρk(p) is a ratio of two polynomials. In addition, the coefficients
∣∣hπ(i)

∣∣2 are bounded by

Smin and Smax. Hence ρk(p) is Lipschitz continuous, i.e., there exists 0 < βk < ∞ depending on

Smin and Smax such that

‖ρk(p)− ρ(p∗)‖ ≤ βk‖p− p∗‖ = βk‖pe‖.

Therefore, as ρk(�) ≥ 1, assuming ρk(p) ≥ ρ(p∗), we have

‖µ̂π(k)(p)− µ̂π(k)(p
∗)‖ = log (ρk(p))− log (ρk(p

∗))

= log

(
1 +

ρk(p)− ρk(p∗)
ρk(p∗)

)
≤ log

(
1 +

βk‖pe‖
ρk(p∗)

)
≤ log (1 + βk‖pe‖) .

Similarly, when ρk(p) < ρ(p∗), we have

‖µ̂π(k)(p)− µ̂π(k)(p
∗)‖ = log (ρk(p

∗))− log (ρk(p))

= log

(
1 +

ρk(p
∗)− ρk(p)

ρk(p)

)
≤ log

(
1 +

βk‖pe‖
ρk(p)

)
≤ log (1 + βk‖pe‖) .

Hence ‖µ̂(p) − µ̂(p∗)‖ ≤ log (1 + β‖pe‖), where β = maxk={1,...,L} βk. Using the triangular

inequality, we obtain

‖µ̂(p∗)‖ − log (1 + β‖pe‖) ≤ ‖µ̂(p)‖ ≤ ‖µ̂(p∗)‖+ log (1 + β‖pe‖)

that leads to the result.

APPENDIX F

PROOF OF LEMMA 6

Proof: From Lemma 1 and 5, we have∑
qlµ̂l(t) ≥

∑
ql [µ

∗
l − log (1 + β‖pe‖)]+

≥
∑

qlµ
∗
l −

∑
ql log (1 + β‖pe‖)

≥ ‖q‖min

{
log

(
Smin

V
‖q‖

)
, Lλmax + log

Smin

|h0|2

}
− L‖q‖ log (1 + β‖pe‖)

From the optimality condition [26] for a convex problem, we also have pTe f(pe;h,q) ≤ 0 for all

pe. According to the proof of Lemma 4 in Appendix D, two cases for q(t) should be considered.
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Case 1: ‖q‖Smin > V . The stochastic Lyapunov drift (18) can be written as

LV (z) ≤ −2κα‖pe‖2 + 2γq‖pe‖ log

(
Smax

V
‖q‖

)
+ 2γq‖pe‖ log (1 + β‖pe‖)

+γhaA‖pe‖‖h‖ − aA‖h‖2 + 2γqλmax‖pe‖+ 2L‖q‖ log (1 + β‖pe‖)

−2‖q‖min

{
log

(
Smin

V
‖q‖

)
, Lλmax + log

Smin

|h0|2

}
+ 2L‖q‖λmax + C (41)

where

tr
(

2
(
A

1

2

)T
ψThψhA

1

2 + ψTq ψq

)
+

L∑
l=1

(2al + λl) ≤
L∑
l=1

2al
(
1 + γ2

h

)
+ Lγ2

q +

L∑
l=1

λl

≤ L(2aA(1 + γ2
h) + γ2

q + λmax)

, C

To find the upper bound of the R.H.S. of (41), we divide it into 2 parts as follows.

I1 = −κα‖pe‖2 + 2γqλmax‖pe‖ − ‖q‖min

{
log

(
Smin

V
‖q‖

)
, Lλmax + log

Smin

|h0|2

}
+Lλmax‖q‖+ 2γhaA‖pe‖‖h‖ − 2aA‖h‖2 + C,

I2 = −κα‖pe‖2 + 2γq‖pe‖ log

(
Smax

V
‖q‖

)
+ 2γq‖pe‖ log (1 + β‖pe‖) + Lλmax‖q‖

+2L‖q‖ log (1 + β‖pe‖)− ‖q‖min

{
log

(
Smin

V
‖q‖

)
, Lλmax + log

Smin

|h0|2

}
.

(1) With some calculations, it is not difficult to show that I1 ≤ −‖h‖+
γ2
qλ

2
max

κα + V
Smin

2Lλmax−1 +

1
8aA[1−γ2

haA/(kα)] + C, for κ > 2
α max

{
γ2
q , βγq

}
.

(2) Denote g1(Smin, Smax) = max{‖pe‖,‖q‖} {I2 + (‖pe‖+ ‖q‖)}. We can easily find that g1 is

bounded above for all Smin and Smax in the domain9. Note that an upper bound expression for g1

is always obtainable, since it is only a simple bivariate programming problem. Therefore, we obtain

I2 ≤ − (‖pe‖+ ‖q‖) + g1(Smin, Smax).

As a result, we have

LV ≤ − (‖pe‖+ ‖q‖+ ‖h‖) +
γ2
qλ

2
max

κα
+

V

Smin
2Lλmax−1

+
1

8aA[1− γ2
haA/(kα)]

+ g1(Smin, Smax) + C.

Case 2: ‖q‖Smin ≤ V . Here we have ‖q‖ ≤ V
Smin

. From the property in Appendix D, the stochastic

9To show a real valued function f(x, y) is bounded above, we start from a point (x0, y0) in the domain and proceed to

show that, by substituting with y = x0 + β(y − y0), f(x, y(x;β)) is bounded above uniformly for every β ∈ R. It can be

verified that f(x, y(x;β)) satisfies this condition in our case.
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Lyapunov drift (18) can be written as

LV (z) ≤ −2κα‖pe‖2 + 2γq‖pe‖ log (SmaxSmin) + 2γq‖pe‖ log (1 + β‖pe‖) + γhaA‖pe‖‖h‖

+2γqλmax‖pe‖ − aA‖h‖2 +
V

Smin
log (1 + β‖pe‖) +

V

Smin
Lλmax + C

≤ − (‖pe‖+ ‖h‖) + g2(Smin, Smax) +
γ2
qλ

2
max

κα

+
V

Smin
Lλmax +

1

8aA[1− γ2
haA/(kα)]

+ C

≤ − (‖pe‖+ ‖h‖) + J0 +
γ2
qλ

2
max

κα
+

V

Smin
Lλmax

+
1

8aA[1− γ2
haA/(kα)]

+ C − ‖q‖+
V

Smin

where

g2(Smin, Smax) = max{−κα‖pe‖2 + 2γq‖pe‖ log (SmaxSmin)

+2γq‖pe‖ log (1 + β‖pe‖) +
V

Smin
log (1 + β‖pe‖)}.

Therefore, we have [since C = L(2aA(1 + γ2
h) + γ2

q + λmax)]

LV (z) ≤ − (‖pe‖+ ‖q‖+ ‖h‖) + L(2aA(1 + γ2
h) + γ2

q + λmax)

+
γ2
qλ

2
max

κα
+

V

Smin
2Lλmax−1 +

1

8aA[1− γ2
haA/(kα)]

+ g(Smin, Smax)

where g(Smin, Smax) = max {g1(Smin, Smax), g1(Smin, Smax)}.

APPENDIX G

PROOF OF THEOREM 4

Proof: Consider the virtual error dynamic system

dpe = κ∇pL (µ̂(p),p;h,q) dt+ (ϕ̂q(p; �)− ϕ̂q(p∗; �)) dq + Re (ϕ̂h(p; �)dh− ϕ̂h(p∗; �)dh)

=

[
κ∇pL (µ̂(p),p;h,q)− µ(t) (ϕ̂q(p; �)− ϕ̂q(p∗; �))−

1

2
Re [(ϕ̂h(p; �)− ϕ̂h(p∗; �))Ah]

]
dt

+ (ϕ̂q(p; �)− ϕ̂q(p∗; �)) dN(t) + Re
[
(ϕ̂h(p; �)− ϕ̂h(p∗; �))A

1

2dW(t)
]
.
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Taking the Lyapunov function as V (pe) = 1
2p

T
e pe. The Lyapunov drift is defined as LV (pe) =

limδ↓0
1
δ {E [V (pe(t+ δ)) |pe(t)]− V (pe(t))}. Note that E [hl] = 0. The drift can be derived into

LV (pe) = pTe f(pe; �)− pTe µ(t) (ϕ̂q(p; �)− ϕ̂q(p∗; �)) +

L∑
l=1

λlp
T
e

(
ϕ̂(l)
q (p; �)− ϕ̂(l)

q (p∗; �)
)

+
1

2
tr
[
(ϕ̂q(p; �)− ϕ̂q(p∗; �))T (ϕ̂q(p; �)− ϕ̂q(p∗; �))

]
+

1

2
tr
[(
A

1

2

)T
(ϕ̂h(p; �)− ϕ̂h(p∗; �))T (ϕ̂h(p; �)− ϕ̂h(p∗; �))A

1

2

]
≤ −κα‖pe‖2 + µmaxLq‖pe‖2 + λmaxLLq‖pe‖2 +

1

2
L2
q‖pe‖2 +

1

2
aAL

2
h‖pe‖2

= −ρ‖pe‖2

where ρ = −κα+ µmaxLq + λmaxLLq + 1
2L

2
q + 1

2aAL
2
h > 0. Hence from the asymptotic stochastic

stability results given in [25] we have proven the theorem.
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