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Abstract

In this work, a Bayesian approximate message passing #igois proposed for solving the multiple
measurement vector (MMV) problem in compressive sensimggtiich a collection of sparse signal vec-
tors that share a common support are recovered from undplsdmoisy measurements. The algorithm,
AMP-MMYV, is capable of exploiting temporal correlationstimee amplitudes of non-zero coefficients, and
provides soft estimates of the signal vectors as well as tiienlying support. Central to the proposed
approach is an extension of recently developed approximassage passing techniques to the amplitude-
correlated MMV setting. Aided by these techniques, AMP-MMdffers a computational complexity that
is linear in all problem dimensions. In order to allow for @uiatic parameter tuning, an expectation-
maximization algorithm that complements AMP-MMYV is debed. Finally, a detailed numerical study
demonstrates the power of the proposed approach and iisypartsuitability for application to high-

dimensional problems.

. INTRODUCTION

As the field of compressive sensing (CS) [1]-[3] maturessaeshers have begun to explore numerous
extensions of the classical sparse signal recovery prgliewhich a signal with few non-zero coefficients
is reconstructed from a handful of incoherent linear meamants. One such extension, known as
the multiple measurement vector (MMV) problem, generalizes the sparse signal recoverysiogle
measurement vector (SMV), problem to the case where a group of measurementrgsets been obtained

from a group of signal vectors that are assumed to be joipidyse, sharing a common support. Such a
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problem has many applications, including magnetoenceghabhy([4], [5], direction-of-arrival estimation
[6] and parallel magnetic resonance imaging (pMRI) [7].

Mathematically, giverl” length-\/ measurement vectors, the traditional MMV objective is tcoker
a collection of length™V sparse vectorgx®}._,, when M < N. Each measurement vectay, is
obtained as

y(t) — Aw(t) + e(t)7 t = 17 B 7T, (1)

where A is a known measurement matrix aeéf) is corrupting additive noise. The unique feature of
the MMV problem is the assumption of joint sparsity: the supmf each sparse signal vectaf is
identical. Oftentimes, the collection of measurementmectorm a time-series, thus we adopt a temporal
viewpoint of the MMV problem, without loss of generality.

A straightforward approach to solving the MMV problem is teedk it apart into independent SMV
problems and apply one of the many SMV algorithms. While $mghis approach ignores valuable
temporal structure in the signal that can be exploited twigeimproved recovery performance. Indeed,
under mild conditions, the probability of recovery failucan be made to decay exponentially as the
number of timestep&’ grows, when taking into account the joint sparsity [8].

Another approach (e.g..1[9]) to the joint-sparse MMV prablés to restate[{1) as the block-sparse
SMV model

y=DAzx+e

T

(2)

whereg 2 [y y@ " 2 2 [207 . 2@ &2 [V D], andD(4) denotes a

block diagonal matrix consisting df' replicates ofA. In this casex is block-sparse, where the'

block (forn =1, ..., N) consists of the coefficientsc,, znyn, - . ., 7,4 (r—1)n }- EQuivalently, one could
express[{il) using the matrix model
Y =AX +E, ®3)

whereY £ [y ... yD], X £ [z, ... 2D], andE £ [eV,...,eT)]. Under the matrix model,
joint sparsity in[(1) manifests as row-sparsityXh. Algorithms developed for the matrix MMV problem
are oftentimes intuitive extensions of SMV algorithms, dhdrefore share a similar taxonomy. Among
the different techniques that have been proposed are mmigad-minimization methods [5][ [10]=[12],
greedy pursuit methods|[5], [13], [14], and Bayesian meshj@d, [15]-[18]. Existing literature suggests
that greedy pursuit techniques are outperformed by mixadirminimization approaches, which in turn
are surpassed by Bayesian methads [15]] [18].



In addition to work on the MMV problem, related work has beanfgrmed on a similar problem
sometimes referred to as thdyhamic CS’ problem [19]-{23]. The dynamic CS problem also shares the
trait of working with multiple measurement vectors, butt@sl of joint sparsity, considers a situation in
which the support of the signal changes slowly over time.

Given the plethora of available techniques for solving theWiproblem, it is natural to wonder what,
if any, improvements can be made. In this work, we will prityaaddress two deficiencies evident in the
available MMV literature. The first deficiency is the inatyilof many algorithms to account for amplitude
correlations in the non-zero rows (XEI Incorporating this temporal correlation structure is @jmot
only because many real-world signals possess such steudiut because the performance of MMV
algorithms is particularly sensitive to this structure, [Bl4], [15], [18], [24]. The second deficiency is
that of computational complexity: while Bayesian MMV algbms appear to offer the strongest recovery
performance, it comes at the cost of increased complexiyive to simpler schemes, such as those based
on greedy pursuit. For high-dimensional datasets, the tmiity of Bayesian techniques may prohibit
their application.

Our goal is to develop an MMV algorithm that offers the besboth worlds, combining the recovery
performance of Bayesian techniques, even in the presersgbsfantial amplitude correlation and apriori
unknown signal statistics, with the linear complexity #oglof greedy pursuit methods. Aiding us in
meeting our goal is a powerful algorithmic framework knoveagproximate message passing (AMP),
first proposed by Donoho et al. for the SMV CS problém [25].ttnaarly SMV formulations, AMP was
shown to perform rapid and highly accurate probabilistieience on models with known i.i.d. signal
and noise priors, and i.i.d. randos matrices[[25],[[26]. More recently, AMP was extended to theck-
sparse SMV problem under similar conditions|[27]. Whilesthiock-sparse SMV AMP does solve a
simple version of the MMV problem via the formulatidd (2)dibes not account for intra-block amplitude
correlation (i.e., temporal correlation in the MMV modedRecently, Kim et al. proposed an AMP-based
MMV algorithm that does exploit temporal amplitude corti&la [16]. However, their approach requires
knowledge of the signal and noise statistics (e.g., syagiwer, correlation) and uses matrix inversions
at each iteration, implying a complexity that grows supedirly in the problem dimensions.

In this work, we propose an AMP-based MMV algorithm (hencéfaeferred to as AMP-MMV)
that exploits temporal amplitude correlation and learres gflgnal and noise statistics directly from the

data, all while maintaining a computational complexityttiggows linearly in the problem dimensions.

INotable exceptions includ& [1L6],[12], arid [18], which ésitly model amplitude correlations.



In addition, our AMP-MMV can easily accomodate time-varyimeasurement matriced®), implicit
measurement operators (e.g., FAT)), and complex-valued quantities. (These latter scenaiosr in,
e.g., digital communication [28] and pMRI [29].) The key tarapproach lies in combining the “turbo
AMP” framework of [30], where the usual AMP factor graph isgmented with additional hidden
variable nodes and inference is performed on the augmeattdrfgraph, with an EM-based approach
to hyperparameter learning. Details are provided in Sesfi® V| and[\.

In Section[V], we present a detailed numerical study of AMRWI that includes a comparison
against three state-of-the-art MMV algorithms. In ordeestablish an absolute performance benchmark,
in Section[ll we describe a tight, oracle-aided perforneatawer bound that is realized through a
support-aware Kalman smoother (SKS). To the best of our ledye, our numerical study is the first in
the MMV literature to use the SKS as a benchmark. Our numlestcay demonstrates that AMP-MMV
performs near this oracle performance bound under a widgerahproblem settings, and that AMP-MMV
is especially suitable for application to high-dimensiopeoblems. In what represents a less-explored
direction for the MMV problem, we also explore the effectsneéasurement matrix time-variation (cf.
[6]). Our results show that measurement matrix time-vamatan significantly improve reconstruction

performance and thus we advocate the use of time-varyinguneaent operators whenever possible.

A. Notation

Boldfaced lower-case letters, e.g,,denote vectors, while boldfaced upper-case letters, 4,gdenote
matrices. The lettet is strictly used to index a timestep=1,2,...,T, the lettern is strictly used to
index the coefficients of a signal,= 1, ..., N, and the lettem is strictly used to index the measurements,
m =1,..., M. The superscript) indicates a timestep-dependent quantity, while a sugptseithout
parentheses, such 4sindicates a quantity whose value changes according to stgoeithmic iteration
index k. Subscripted variables such :a%) are used to denote thé" element of the vectar(). Them!"
row of the matrixA is denoted bya] , and the transpose (conjugate transposefAby(A™). An M-by-

M identity matrix is denoted by ,,, a length/V vector of ones is given by, andD(a) designates a
diagonal matrix whose diagonal entries are given by the efesnof the vectoa. Finally, CN'(a; b, C)
refers to the complex normal distribution that is a functadrthe vectora, with meanb and covariance

matrix C.



Il. SIGNAL MODEL

In this section, we elaborate on the signal model outline8antiorlll, and make precise our modeling
assumptions. Our signal model, as well as our algorithm, vél presented in the context of complex-
valued signals, but can be easily modified to accommodatevaksed signals.

As noted in Sectiofl I, we consider the linear measuremenei@), in which the signak® ¢ CN
at timestept is observed ag(") € CM through the linear operatad € CM*N, We assume=(*) ~
CN(0,021,,) is circularly symmetric complex white Gaussian noise. We Hs= {n|x§f) # 0} to
denote the indices of the time-invariant support of the aligwhich is assumed to be suitably sparse,

e, |S| <M

Our approach to specifying a prior distribution for the sigm({x®}~_,), is motivated by a desire
to separate the suppod, from the amplitudes of the non-zero, or “active,” coeffitee To accomplish

this, we decompose each coefficierﬁi) as the product of two hidden variables:

3zl —0), sn =1,
e =s,-00 o pals,, 0)) = (1) “
5($n )7 Sn = O’

wheres,, € {0,1} is a binary variable that indicates support set membersm'pﬂﬁf) € C is a variable
that provides the amplitude of coefficie:nif). Whens,, = 0, x,(f) =0 andn ¢ S, and whens,, = 1,
mﬁf) = Hﬁf) andn € S. To model the sparsity of the signal, we treat eaghas a Bernoulli random
variable with Pfs,, =1} 2 )\, < 1.

In order to model the temporal correlation of signal amplés, we treat the evolution of amplitudes
over time as stationary first-order Gauss-Markov randontgsses. Specifically, we assume tlﬂgf

evolves according to the following linear dynamical systeodel:
o) = (1= )0 ™" = )+ awfl) + ¢, (5)

where( € C is the mean of the amplitude proces@,(,t) ~ CN(0,p) is a circularly symmetric white
Gaussian perturbation process, and [0, 1] is a scalar that controls the correlation®f’ across time.
At one extremep = 0, the random process is perfectly correla(ééf) = 9,@‘1)), while at the other
extreme, = 1, the amplitudes evolve independently over time. Note thatitinary support vectos, is

independent of the amplitude random proce{ﬁf) L, which implies that there are hidden amplitude

2If the signal being recovered is not itself sparse, it is asilithat there exists a known basis, incoherent with the imesaent
matrix, in which the signal possesses a sparse represgmtsltithout loss of generality, we will assume the undedysignal

is sparse in the canonical basis.



“trajectories”,{e,(f) T |, associated with inactive coefficients. Consequeﬂﬁgl,should be thought of as
the conditional amplitude oﬁf), conditioned ons,, = 1.
Under our model, the prior distribution of any signal coedfit, x,(f), is a Bernoulli-Gaussian or

“spike-and-slab” distribution:
() = (1= Xa)d(2ll)) + XCN (2!); ¢, 0%), (6)

where§(-) is the Dirac delta function and? £ 22 is the steady-state variance &f’. We note that

when )\, < 1, (@) is an effective sparsity-promoting prior due to thenpaonass atz,(f) =0.

Ill. THE SUPPORFAWARE KALMAN SMOOTHER

Prior to describing AMP-MMYV in detail, we first motivate thgpe of inference we wish to perform.
Suppose for a moment that we are interested in obtaining &mim mean square error (MMSE)
estimate of{x(®}7_,, and that we have access to an oracle who can provide us \gitsuiportS. With
this knowledge, we can concentrate solely on estima{'m@ }le, since, conditioned o, an MMSE
estimate of{#)}”_| can provide an MMSE estimate ¢f:(")}”_,. For the linear dynamical system of
(B), the support-aware Kalman smoother (SKS) provides fipeagriate oracle-aided MMSE estimator
of {#}7 | [B1]. The state-space model used by the SKS is:

0" = (1 —-a)0" Y +ac1, + aw®, (7)
y® = AD(s)0Y + eV, (8)

® is the MMSE estimate returned by the

SKS, then an MMSE estimate af®) is given byz® — D(s)0".

where s is the binary support vector associated withIf 6

The state-space modéll (7])] (8) provides a useful interfpoat®df our signal model. In the context of
Kalman smoothing, the state vect®t" is only partially observable (due to the action®fs) in (8)).
SinceD(s)0® = z(®), noisy linear measurements of!) are used to infer the sta#®). However, since
only those@ﬁf) for which n € S are observable, and thus identifiable, they are the only ariese
posterior distributions will be meaningful.

Since the SKS performs optimal MMSE estimation, given krealgle of the true signal support, it
provides a useful lower bound on the achievable performaheay support-agnostic Bayesian algorithm

that aims to perform MMSE estimation ¢} .
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Fig. 1: Factor graph representation of the decompositiop(af 8, s|y) in (@).

IV. THE AMP-MMV A LGORITHM

In Sectior(Il, we decomposed each signal coefﬁcief{lf, as the product of a binary support variable,
sn, and an amplitude variabl&‘)ﬁ). We now develop an algorithm that infers a marginal posterio
distribution on each variable, enabling both soft estioratind soft support detection.

The statistical structure of the signal model from Secfibbelcomes apparent from a factorization of
the posterior joint pdf of all random variables. Recallingnfi (2) the definitions ofy andz, and defining

0 similarly, the posterior joint distribution factors as lfaws:

T M N
p(@,0,sly) « [] (H p(y|20) T o(@D16%0, sa)p(6 161 71) ) Hp (sn); 9)
t=1 \m=1 n=1

where « indicates equality up to a normalizing constant, an(dn |0,(10)) = p(eﬁl)). A convenient
graphical representation of this decomposition is giveralfgctor graph [32], which is an undirected
bipartite graph that connects the pdf “factors” bf (9) witietvariables that make up their arguments.
The factor graph for the decomposition ¢f (9) is shown in Blig.The factor nodes are denoted by
filled squares, while theariable nodes are denoted by circles. In the figure, the signal variableesat

timestept, {xﬁf are depicted as lying in a plane, or “frame”, with succes$mmes stacked one

n=11
after another. Since during inference the measuren@ﬁ,@s} are known observations and not random
variables, they do not appear explicitly in the factor graphe connection between the frames occurs
through the amplitude and support indicator variablesyidinog a graphical representation of the temporal
correlation in the signal. For visual clarity, the$é§f)}f:1 and s,, variable nodes have been removed
from the graph for the intermediate index but should in fact be present at every index 1,..., N.

The factor nodes in Fid] 1 have all been assigned alphalzdtadd; the correspondence between these



Factor Distribution Functional Form
g’ (@) p(y2)  CN(yiial2,0?)

£ (:r,(t) Q(t)) p(:rsf)|sn, %) 5(:765;5) - snﬁgf))
fin (n) p(sn) (1= 2 ()™
d» (o)) p(65") CN(05)5¢,0%)
d2(0,6570)  p(oP1eS ) eN (695 (1 — )6 Y + ag,a?p)

TABLE I: The factors, underlying distributions, and furarial forms associated with the signal model of Sedfibn II.

labels and the distributions they represent, as well asuhetibnal form of each distribution, is presented
in Table(].

A natural approach to performing statistical inference osigmal model that possesses a convenient
factor graph representation is through a message passjagtam known as belief propagation [33]. In
belief propagation, the messages exchanged between ¢edmexdes of the graph represent probability
distributions. In cycle-free graphs, belief propagati@m de viewed as an instance of the sum-product
algorithm [32], allowing one to obtain an exact posteriorrgimaal distribution for each unobserved
variable, given a collection of observed variables. Whenftittor graph contains cycles, the same rules
that define the sum-product algorithm can still be appliedydver convergence is no longer guaranteed
[32]. Despite this, there exist many problems to which lobplief propagatiori [34] has been successfully
applied, including inference on Markov random fields| [39pRC decoding[36], and compressed sensing
[25], [30], [37]-[40].

We now proceed with a high-level description of AMP-MMYV, algaithm that follows the sum-
product methodology while leveraging recent advances issage approximation [25]. In what follows,

we user,_,(-) to denote a message that is passed from notiea connected node

A. Message Scheduling

Since the factor graph of Figl 1 contains many cycles thezeaarumber of valid ways to schedule, or
sequence, the messages that are exchanged in the graphll\desaiibe two message passing schedules
that empirically provide good convergence behavior aralgtitforward implementation. We refer to these
two schedules as thgarallel message schedule and theserial message schedule. In both cases, messages
are first initialized to agnostic values, and then iterdgivexchanged throughout the graph according to
the chosen schedule until either convergence occurs, orxdmam number of allowable iterations is
reached.

Conceptually, both message schedules can be decomposddlintdistinct phases, differing only in



which messages are initialized and the order in which thesgdhare sequenced. We label each phase
using the mnemonicénto), (within), (out), and (across). In phase(into), messages are passed from
the s,, and Hﬁf) variable nodesnto frame ¢. Loosely speaking, these messages convey current beliefs
about the values of and8®. In phasegwithin), messages are exchanggithin framet, producing an
estimate ofr(!) using the current beliefs abostand® together with the available measurements.

In phase(out), the estimate ofc*) is used to refine the beliefs abositand 8) by passing messages
out of framet. Finally, in phase(across), messages are sent fro@&t) to either&,(f“) or Hﬁf_l), thus
conveying informatioracross time about temporal correlation in the signal amplitudes.

The parallel message schedule begins by performing ghasg in parallel for each frame=1,...,T
simultaneously. Then, phagwithin) is performed simultaneously for each frame, followed by sgha
(out). Next, information about the amplitudes is exchanged betwke different timesteps by performing
phase(across) in the forward direction, i.e., messages are passed ﬁﬁ?’nto 97(12), and then from9,(f)
to 97(13), proceeding untiHﬁLT) is reached. Finally, phagecross) is performed in the backward direction,
where messages are passed consecutively ﬁ‘g% down to Gﬁf). At this point, a single iteration of
AMP-MMV has been completed, and a new iteration can commetating with phaséinto). In this
way, all of the available measuremeng") T, are used to influence the recovery of the signal at each
timestep.

The serial message schedule is similar to the parallel sthatkcept that it operates on frames in a
sequential fashion, enabling causal processing of MMV agrBeginning at the initial timestep= 1,
the serial schedule first performs phdiseo), followed by phaseéwithin) and(out). Outgoing messages
from the initial frame are then used in phaseross) to pass messages fro@&l) to 97(12). The messages
arriving at 97(12), along with updated beliefs about the value ©pfare used to initiate phad@nto) at
timestept = 2. Phaseqwithin) and (out) are performed for fram&, followed by another round of
phase(across), with messages being passed forwarcﬂfta. This procedure continues until pha@eit)
is completed at fram@". Until now, only causal information has been used in prodga@stimates of
the signal. If the application permits smoothing, then ragespassing continues in a similar fashion, but
with messages now propagating backward in time, i.e., ngessare passed froHﬁLT) to HﬁlT_l), phases
(into), (within), and(out) are performed at fram& — 1, and then messages move fnﬁ&?_l) to 9,?‘2).

The process continues until messages arriv@ﬁla\t at which point a singldorward/backward pass has

been completed. We complete multiple such passes, ragiitia smoothed estimate of the signal.
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Fig. 2: A summary of the four message passing phases, imgjudiessage notation and form.

B. Implementing the Message Passes

Space constraints prohibit us from providing a full deiivatof all the messages that are exchanged
through the factor graph of Fig] 1. Most messages can beeatkhy straightforward application of the
rules of the sum-product algorithm. Therefore, in this sabtion we will restrict our attention to a
handful of messages in tHgvithin) and (out) phases whose implementation requires a departure from
the sum-product rules for one reason or another.

To aid our discussion, in Fig.]2 we summarize each of the fdwasps, focusing primarily on a
single coefficient index at some intermediate frante Arrows indicate the direction that messages are
moving, and only those nodes and edges participating in acpkar phase are shown in that phase.
For the (across) phase we show messages being passed forward in time, andaagniéphic for the
corresponding backwards pass. The figure also introdueesidiation that we adopt for the different
variables that serve to parameterize the messages. Ceatidbles, e.g;\”) and;?), are accented with
directional arrows. This is to distinguish variables assed with messages moving in one direction
from those associated with messages moving in another. €oroBlli message pdfs, we show only the
nonzero probability, .9\, = vy, s, (Sn = 1).

Phasgwithin) entails using the messages transmitted fmmnd@,(f) to f,(f) to compute the messages
that pass betweeﬂgf) and the{gfﬁ)} nodes. Inspection of Fif] 2 reveals a dense interconneb&omeen
the {xﬁf)} and {gﬁ,ﬁ)} nodes. As a consequence, applying the standard sum-pragastto compute

the Vg&,?—m;”(') messages would result in an algorithm that required theuatiah of multi-dimensional
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integrals that grew exponentially in number in bdthand M. Since we are strongly motivated to apply
AMP-MMV to high-dimensional problems, this approach isalg infeasible. Instead, we turn to a
recently developed algorithm known approximate message passing (AMP).

AMP was originally proposed by Donoho et dl. [25] as a mesgaagsing algorithm designed to
solve the noiseless SMV CS problem known as Basis Purstiit [(z||; s.t.y = Ax), and was subse-
guently extended [26] to support MMSE estimation under /@aussian-noise-corrupted observations
and generic signal priors of the forp(x) = [[p(z,) through an approximation of the sum-product
algorithm. In both cases, the associated factor graph Iaetical to that of thgwithin) segment of
Fig.[2. Conventional wisdom holds that loopy belief progamgaonly works well when the factor graph
is locally tree-like. For general, non-spardematrices, thgwithin) graph will clearly not possess this
property, due to the many short cycles betweenquﬁé and gﬁ,ﬁ) nodes. Reasoning differently, Donoho
et al. showed that the density of connections could provefisal, if properly exploited.

In particular, central limit theorem arguments suggedt tiva messages propagated from ghenodes
to thez,, nodes under the sum-product algorithm can be well-appratéchas Gaussian when the problem
dimensionality is sufficiently high. Moreover, the comgida of these Gaussian-approximated messages
only requires knowledge of the mean and variance of the surdyet messages from ths, to the g,,
nodes. Finally, whenA,,,,,|> scales ag)(1/M) for all (m,n), the differences between the variances of
the messages emitted by thg nodes vanish ad/ grows large, as do those of thg, nodes when
N grows large, allowing each to be approximated by a singleyraon variance. Together, these sum-
product approximations yield an iterative thresholdingoaithm with a particular first-order correction
term that ensures both Gaussianity and independence inetfi@ual error vector over the iterations.
The complexity of this iterative thresholding algorithm deminated by a single multiplication by
and A" per iteration, implying a per-iteration computational to$ O(MN) flops. Furthermore, the
state-evolution equation that governs the transient hkeha? AMP shows that the number of required
iterations does not scale with eith&f or NV, implying that the total complexity is itset® (M N) flops.

AMP’s suitability for the MMV problem stems from several Gderations. First, AMP’s probabilistic
construction, coupled with its message passing implertientanakes it well-suited for incorporation as
a subroutine within a larger message passing algorithmhénMMV problem it is clear thap(z) #
Hp(azgf)) due to the joint sparsity and amplitude correlation striestand therefore AMP does not appear
to be directly applicable. Fortunately, by modeling thisisture through the hidden variablesand 8,

we can exploit the conditional independence of the signaffimients: p(z|s, 8) = Hp(mg”sn,@,(f)).
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In particular, we replace thp(mff)) that AMP traditionally expects Witfn/fgt)_mgf)(.), the most recent
message moving into th@vithin) segment of Fig[]2. This message represents a “local priorﬁ:ﬁ@n

given the current belief about the hidden variabslgsandeﬁf), and assumes the Bernoulli-Gaussian form

Vyo_ygo (@) = (1= 70)3(a0) + 7OCN (@05 €, ). (10)

n

This “local prior” determines the AMP soft-thresholdingnfitions defined in({D1) {{D4) of Tablelll.
The derivation of these thresholding functions closelyofes those outlined in[20], which considered
the special case of a zero-mean Bernoulli-Gaussian prior.

Beyond the ease with which AMP is included into the larger sage passing algorithm, a second
factor that favors using AMP is the tremendous computatieffeciency it imparts on high-dimensional
problems. Using AMP to perform the most computationallyeitgsive message passes enables AMP-
MMV to attain a linear complexity scaling in all problem dimsons. To see why this is the case, note
that the(into), (out), and (across) steps can be executed #(N) flops/timestep, while AMP allows
the (within) step to be executed i@ (M N) flops/timestep (seé (A4) { (A8) of Tablg Il). Since these
four steps are executefl(T') times per AMP-MMYV iteration for both the serial and paralfebssage
schedules, it follows that AMP-MMV's overall complexity @(TMN)H

A third appealing feature of AMP is that it is theoreticallglMvgrounded; a recent analysis [40] shows
that, for Gaussiam in the large-system limit (i.elf, N — oo with M/N fixed), the behavior of AMP
is governed by a state evolution whose fixed points, whenugnigorrespond to MMSE-optimal signal
estimates.

After using AMP to implement phasg@vithin), we must pass messages out of framia order to
update our beliefs about the valuessofand8®) in the (out) phase. Applying the sum-product algorithm

rules to compute the messagjaw_wm(') results in the expression

exact L (01) 2 (1 = TDVCN(0; Pnt, 1) + TICN (0D bty 1), (11)

VfT(Lt)_Ngth)
which is an improper distribution due to the constant (V\ngt)) term CN(0; ¢y, ). This behavior is a

consequence of the conditional signal modél (4). In paaicwhens,, = 0, xﬁf) provides no information

3The primary computational burden of executing AMP-MMV itwes performing matrix-vector products witA and A™,
allowing it to be easily applied in problems where the measiant matrix is never stored explicitly, but rather is inmpénted
implicitly through subroutines. Fast implicil operators can provide significant computational savingsigh-dimensional
problems; implementing a Fourier transform as a fast Fourensform (FFT) subroutine, for example, would drop AMP-
MMV’s complexity from O(TMN) to O(TN log, N).
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% Define soft-thresholding functions:
O]
Lo) A o)L Yn otEn
Fre(61¢) 2 (14 me(50)) 7 (P o) (oY)
G . 2 (1 . -1 127(:)6 . F . 2 D2
nt (@5 ¢) = (1+ vnt(¢5¢)) G + vnt (95 0)[Fn(g;c)|?  (D2)
Fri(8i¢) £ ZFni(6,0) = LGni(ds0) (D3)
(8N /(D)
Tt (5 ¢) & (1;% ) ()
B 12y () * () ()2
_ [enl1ol 4 Tehdt e —clén |
X exp ( |: c(w(f)+c) ]) (D4)
% Begin passing messages. . .
fort=1,...,7,Vn:
% Execute the (into) phase. ..
—=(t")
() _ An: l'lw# ™ 7 (A1)
(1=Xpn)- Ht/;,gp(l 7"n )+>\n Ht/;gp
s = )
7(L) = W (AZ)

- O

gf) — 7(175) . ( % + Zﬁ)) (A3)
% Initialize AMP related variables . .

Ym : zlt—y(t) Vn:pl, =0, andct =100-N 2

% Execute the (within) phase using AMP . ..
fore=1,...,1,Vn,m:

;t = Z 1 Azt + K (Ad)
lu‘?rltl = F”t(d)ntvct) (A5)
v = Gm<¢>in;cz’> (A6)
C;H =02+ M Zn 1 ;7:1 (A7)
Zirirtl = ys;i) - aml‘?l + mr 7];, 1 Fr( ntvct) (A8)

end
28 = It o Store current estimate of z (A9)
% Execute the (out) phase. ..
(¢ () I 1

( )= (1 + (1 =® >7nt(¢£t’ct+1)> (A10)
=) =X
(€ 0%)) = taylor_approx(=", 61, ! (A12)
% Execute the (across) phase from G(t) to G(t“) .
—(t+1) _ =0 5 OO
Nn =(1-a) <W> (Z(t) + (t)> +aC (A12)
S(t+1) _ o mPeY) 2
REHD — (1 a) (m) +a2p (A13)

end

TABLE II: Message update equations for executing a singlevéod pass using the serial message schedule.

about the value o@ﬁf). Roughly speaking, the ter@W (0; ¢,,¢, ¢;) corresponds to the distribution éff)
conditioned on the casg, = 0.

As a means of circumventing the improper message pdf abogewil regard our original signal
model, in whichs,, € {0,1}, as the limiting case of a signal model in whigh € {¢,1} with ¢ — 0.

For any fixed, positive:, v m( ) is given by the proper pdf

=

VI g0 (00) = (1= Q(FD)) CN(0; Lo, ) + QL) CN(0): furs o), (12)
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where

2
A em

Q) = (s (13)

Equation [(IR) is a binary Gaussian mixture density. Wherk 1, the first Gaussian component is
extremely broad, and conveys little information about tlegible value oﬂﬁf). The second component
is a more informative Gaussian whose meap, and varianceg;, are determined by the product of the
messages{ugg)_mgf)(-)}]vazl. The relative mass assigned to each Gaussian componentixctioh of
the incoming activity probability?ﬁf) (see[(1D)). Note that the limiting case @f-) is a simple indicator

function:
0 ifo<wm<l,
lim Q(7) = _ (14)
1 fr=1
When implementing AMP-MMV, we therefore fix at a small positive value, e.gs,= 1 x 1077, If
desired,[(IR) could then be used as the outgoing messageyaothis would present a further difficulty.
Propagating a Gaussian mixture along a given edge wouldt iasan exponential growth in the number
of mixture components that would need to be propagated aluhgequent edges. To avoid this outcome,
we collapse our binary Gaussian mixture to a single Gaussianponent, an approach sometimes referred
to asGaussian sum approximation [41], [42]. Since, fore < 1, () behaves nearly like the indicator
function in [14), one of the two Gaussian components willdgfly have negligible mass. For this reason,
collapsing the mixture to a single Gaussian appears judtfia
To carry out the collapsing, we perform a second-order Tadoies approximation of log y}'}?f’_}es) (9,(?)
with respect toﬂﬁf) about the pointbntH This provides the mearf(,,f), and variancezﬁif), of the single
Gaussian that serves 8BS0 40 (+). (See FiglR.) In AppendixJA we summarize the Taylor appration
procedure, and in Tablelll provide the pseudocode fungtayor_approx, for computinggff) andzZ,(f).
With the exception of the messages discussed above, alethaiming messages can be derived using
the standard sum-product algorithm rules|[32]. For coremce, we summarize the results in Table I,
where we provide a pseudocode implementation of a singleaiar pass of AMP-MMV using the serial

message schedule.

V. ESTIMATING THE MODEL PARAMETERS

The signal model of Sectidnl Il depends on the sparsity paemsig\, })\_,, amplitude parameters

n=11

a, andp, and noise variance?. While some of these parameters may be known accurately ffirdon

“For technical reasons, the Taylor series approximatioreifopmed inR? instead ofC.
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function (E 12) = taylor_approx(w, ¢, c)

% Define useful variables:
a®e2(1-Q(m) (T1)
asQn) (T2)
b2 =|(1— LygP? (T3)
02 -2 (1 - Lyg, (T4)
0222 (1 - Lyg, (T5)
% Compute outputs:

4: (a e Y taataZe®)c T6
¥ e2a2e—b +aa(52+17lc02)+a2 b (T6)
€ = ¢ — SPp I ua (T7)
5 z_gw ae— [+a (T8)
E=¢&r +sz (T9)
return (5, w)

TABLE Ill: Pseudocode function for computing a single-Gsias approximation of(12).

information, it is likely that many will require tuning. This end, we develop an expectation-maximization
(EM) algorithm that couples with the message passing proeedescribed in Sectidn TV3A to provide
a means of learning all of the model parameters while simatiasly estimating the signal and its
supports.

The EM algorithm [[48] is an appealing choice for performireygmeter estimation for two primary
reasons. First and foremost, the EM algorithm is a wellisdicand principled means of parameter
estimation. At every EM iteration, the data likelihood ftino is guaranteed to increase until convergence
to a local maximum of the likelihood function occufs [43].rRoultimodal likelihood functions, local
maxima will, in general, not coincide with the global maximuikelihood (ML) estimator, however a
judicious initialization can help in ensuring the EM algbm reaches the global maximum [44]. Second,
the expectation step of the EM algorithm relies on quasstitieat have already been computed in the
process of executing AMP-MMV. Ordinarily, this step cotigiés the major computational burden of any
EM algorithm, thus the fact that we can perform it essentitdl free makes our EM procedure highly
efficient.

We letT' £ {)\, ¢, a,p,02} denote the set of all model parameters, andIletdenote the set of
parameter estimates at t&" EM iteration. Here we have assumed that the binary suppditator
variables share a common activity probability,i.e., P{s, = 1} = \ ¥n. For all parameters excepf
we uses and@ as the so-called “missing” data of the EM algorithm, while & we usez.

For the first iteration of AMP-MMV, the model parameters angialized based on either prior signal

knowledge, or according to some heuristic criteria. Usimgse parameter values, AMP-MMV performs



16

either a single iteration of the parallel message scheduleg single forward/backward pass of the
serial message schedule, as described in Sdcfiod IV-A. dpopleting this first iteration, approximate
marginal posterior distributions are available for eaclhefunderlying random variables, e.g(g:,(f)@),
p(snlY), andp(eﬁf)\y). Additionally, belief propagation can provide pairwisénjoposterior distributions,
e.g.,p(eﬁf),eﬁf_l)@), for any variable nodes connected by a common factor nodg A8h these
marginal, and pairwise joint, posterior distributions,istpossible to perform the iterative expectation
and maximization steps required to maximjzgy|T") in closed-form. We adopt a Gauss-Seidel scheme,

performing coordinate-wise maximization, e.g.,
ML — argmax E, 6ly |log (Y, s, 0; )\,Fk\{)\k})‘@,Fk} ,
)\ )

wherek is the iteration index common to both AMP-MMV and the EM aligfom.

In Table[TM we provide the EM parameter update equations forsignal model. In practice, we found
that the robustness and convergence behavior of our EM guoeavere improved if we were selective
about which parameters we updated on a given iteration. ample, the parametetsandp are tightly
coupled to one another, since {/a?)w,(f_l)} = o?p. Consequently, if the initial choices of and p are
too small, it is possible that the EM procedure will overcemgate on the first iteration by producing
revised estimates of both parameters that are too largs. |@ads to an oscillatory behavior in the EM

updates that can be effectively combated by avoiding upgdidotha and p on the same iteration.

V1. NUMERICAL STUDY

In this section we describe the results of an extensive nicalestudy that was conducted to explore
the performance characteristics and tradeoffs of AMP-MMMTLAB codeH was written to implement
both the parallel and serial message schedules of Sécfid) #long with the EM parameter estimation
procedure of SectioplV.

For comparison to AMP-MMV, we tested two other Bayesian atgms for the MMV problem,
MSBL [15] and T-MSBIH [18], which have been shown to offer “best in class” perfangce on the
MMV problem. We also included a recently proposed greedwprittym designed specifically for highly
correlated signals, subspace-augmented MESSA-MUSIC), which has been shown to outperform

MMV basis pursuit and several correlation-agnostic greedyhods([14]. Finally, we implemented the

®Code available &t ece.osu.eds¢hniter/turboAMPmmv.
6Code available &t dsp.ucsd.edmhilin/Software.html.

"Code obtained through personal correspondence with author


ece.osu.edu/~schniter/turboAMPmmv
dsp.ucsd.edu/~zhilin/Software.html
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% Define key quantities obtained from AMP-MMV at iteration k:

Elsnl7] = Ll T )
MY I, AP+ (-Am) [T, (1—7 )
—1
o 2 var{6l) |y} = (% + =t + %) (Q2)
B B O )
i) & 05[] = o) (ng + &5+ %) (@3)
o) A var{xﬁf) |y} % See (BE) of Table[l
MSf) E[mgf) 9] % See (AD) of Table[l
% EM update equations:
ARFL = % 25:1 E[Snm] (ED)
N(T— - ~
<k+1 - ( (;[; ) + (O.];r)k> ((0.2)k Z 1“5})
+ X YN e (@) - (1= Ml Y)) (E2)
ok Hl = m( — VOZ 1 8N(T — 1):) (E3)
where:
b2 2 5T, S Re{E6 60 |g]}
~ef () — i) ¢ky =Y — P

2 2T, SN o) 1D+l + 1Y
—2me{E[0S "0V 9]}
=(t)

P = ey T T 0 + 02
+(@4)?[¢H2 - 2(1 - ak)re{El0L 0]}
—2akRe{iP* ¢k} + 207 (1 — aF)Re{ Al TV ¢F)
+(1—a G ~(t— 1)+| ~(t— 1)‘ ) (E4)
o2 Rt o L (thl ly® — Ap®|2 + 1£v<t)> (E5)

TABLE IV: EM algorithm update equations for the signal mogelrameters of Sectidn] Il.

support-aware Kalman smoother (SKS), which, as noted inic€dl] provides a lower bound on the
achievable MSE of any algorithm. To implement the SKS, we tadvantage of the fact thgt, z, and@

are jointly Gaussian when conditioned on the suppargnd thus Figldl becomes a Gaussian graphical
model. Consequently, the sum-product algorithm yieldsexdisform expressions (i.e., no approximations
are required) for each of the messages traversing the grdyeinefore, it is possible to obtain the desired
posterior means (i.e., MMSE estimates®f despite the fact that the graph is loopy[46, Claim 5].

In all of our experiments, performance was analyzed on syitilly generated datasets, and averaged
over 250 independent trials. Since MSBL and T-MSBL were derived fealtvalued signals, we used
a real-valued equivalent of the signal model described icti®@e[ll, and ran a real-valued version of
AMP-MMV. Our data generation procedure closely mirrors ¢ime used to characterize T-MSBL [n [18].
Unless otherwise stated, the measurement matrices were@Gaussian random matrices with unit-norm
columns,T = 4 measurement vectors were generated, the stationary gari@nthe amplitude process

was set ab? £ 22 =1, and the noise variance? was set to yield an SNR df5 dB.
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Three performance metrics were considered throughoutesis.tThe first metric, which we refer to

as the time-averaged normalized MSE (TNMSE), is defined as

) — )
™) H2 ’

A

TNMSE(z, %) }:Hm

wherez(® is an estimate oft(. The second metric, intended to gauge the accuracy of treveesd
support, is the normalized support error rate (NSER), wisdtefined as the number of indices in which
the true and estimated support differ, normalized by theinality of the true suppor§. The third and
final metric is runtime, which is an important metric givere threvalence of high-dimensional datasets.
The algorithms were configured and executed as follows: taimbsupport estimates for MSBL,
T-MSBL, and AMP-MMV, we adopted the technique utilized [n8[1of identifying the K amplitude
trajectories with the largegb norms as the support set, whelie2 |S|. Note that this is an optimistic
means of identifying the support, as it assumes that an egaadvides the true value k. For this
reason, we implemented an additiomah-oracle-aided support estimate for AMP-MMYV that consisted
of those indices: for which p(s,|y) > % In all simulations, AMP-MMV was given imperfect knowledge
of the signal model parameters, and refined the initial patamchoices according to the EM update
procedure given in TableTV. In particular, the noise vacimwas initialized ab? = 1 x 1073. The
remaining parameters were initialized agnostically usamgple heuristics that made use of sample
statistics derived from the available measuremantgquation[(A9) of Tabl€]l was used to produ;@é),
which corresponds to an MMSE estimateagf) under AMP-MMV’s estimated posterioqﬂx,(f)@). In
the course of running simulations, we monitored the restiduargy,Z?:l ly® — A&®|2, and would
automatically switch the schedule, e.g., from parallelédad, and/or change the maximum number of
iterations whenever the residual energy exceeded a norsnea-dependent threshold. The SKS was
given perfect parameter and support knowledge and was tilrcanvergence. Both MSBL and T-MSBL
were tuned in a manner recommended by the codes’ author$BC was given the true value df,
and upon generating an estimate of the supgrea conditional MMSE signal estimate was produced,
e.g.z") = E[z®|S,y®)].

A. Performance Versus Sparsity, M /K

As a first experiment, we studied how performance changesfaaaion of the measurements-to-
active-coefficients ratio)/ /K. For this experimentN.= 5000, M = 1563, andT = 4. The activity
probability, \, was swept over the rande.096, 0.22], implying that the ratio of measurements-to-active-

coefficients,M /K, ranged froml.42 to 3.26.
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a=0.1| N=5000,M=1563, T=4, SNR =25dB a=0.1 | N=5000, M=1563, T =4, SNR =25 dB a=0.1 | N=5000, M =1563, T =4, SNR = 25 dB
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Fig. 3: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBMSBL, SA-MUSIC, AMP-MMV, and the SKS versus
MIK. Correlation coefficient — o = 0.90.

In Fig.[3, we plot the performance when the temporal cori@iadf the amplitudes id — o = 0.90.
For AMP-MMYV, two traces appear on the NSER plot, with themarker corresponding to th€-largest-
trajectory-norm method of support estimation, and thenarker corresponding to the support estimate
obtained from the posterion¥ s, |y). We see that, whed//K > 2, the TNMSE performance of both
AMP-MMV and T-MSBL is almost identical to that of the oracdéded SKS. However, wheh / K < 2,
every algorithm’s support estimation performance (NSE€jrddes, and the TNMSE consequently grows.
Indeed, when\//K < 1.50, all of the algorithms perform poorly compared to the SK$@igh T-MSBL
performs the best of the four. We also note the superior NS&Rpnance of AMP-MMV over much of
the range, even when usings,, |y) to estimateS (and thus not requiring apriori knowledge &f). From
the runtime plot we see the tremendous efficiency of AMP-MKVer the region in which AMP-MMV is
performing well (and thus not cycling through multiple capifiations in vain), we see that AMP-MMV's
runtime is more than one order-of-magnitude faster tharV&/SIC, and two orders-of-magnitude faster
than either T-MSBL or MSBL.

In Fig.[4 we repeat the same experiment, but with increasquli@miie correlationl — o = 0.99. In
this case we see that AMP-MMV and T-MSBL still offer a TNMSErfeemance that is comparable to
the SKS whenM /K > 2.50, whereas the performance of both MSBL and SA-MUSIC has diegra
across-the-board. Whel/ /K < 2.5, the NSER and TNMSE performance of AMP-MMV and T-MSBL
decay sharply, and all the methods considered perform paorinpared to the SKS. Our finding that
performance is adversely affected by increased tempore¢lation is consistent with the theoretical and
empirical findings of [[8], [[14], [[15], [[1B]. Interestingljthe performance of the SKS shows a modest
improvement compared to Figl 3, reflecting the fact that tbever temporal variations of the amplitudes

are easier to track when the support is known.
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Fig. 4: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBMSBL, SA-MUSIC, AMP-MMV, and the SKS versus
M/K. Correlation coefficient — « = 0.99.
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Fig. 5: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBMSBL, SA-MUSIC, AMP-MMV, and the SKS versus
T. Correlation coefficient 1 e« = 0.90.

B. Performance \Versus T'

In a second experiment, we studied how performance is affeby the number of measurement

vectors,T’, used in the reconstruction. For this experiment, we used 5000, M = N/5, andA = 0.10

(M/K = 2). Figure[® shows the performance with a correlation ef o = 0.90. Comparing to Figl13,

we see that MSBL's performance is strongly impacted by tliiced value ofM. AMP-MMV and

T-MSBL perform more-or-less equivalently across the ran§d’, although AMP-MMV does so with

an order-of-magnitude reduction in complexity. It is imsting to observe that, in this problem regime,

the SKS TNMSE bound is insensitive to the number of measunernertors acquired.
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Fig. 6: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBMSBL, SA-MUSIC, AMP-MMV, and the SKS versus
SNR. Correlation coefficient — o = 0.95.

C. Performance Versus SNR

To understand how AMP-MMV performs in low SNR environmenig&g conducted a test in which
SNR was swept frond dB to 25 dBIJ)The problem dimensions were fixed &t= 5000, M = N/5, and
T = 4. The sparsity rate), was chosen to yield//K = 3 measurements-per-active-coefficient, and the
correlation was set at — o = 0.95.

Our findings are presented in F[g. 6. Both T-MSBL and MSBL aepewithin5 - 10 dB of the SKS
in TNMSE across the range of SNRs, while AMP-MMV operates dB from the SKS when the SNR
is at or belowl0 dB, and approaches the SKS in performance as the SNR eleVégesalso note that
using AMP-MMV'’s posteriors ons,, to estimate the support does not appear to perform much worse
than theK-largest-trajectory-norm method for high SNRs, and show$ight advantage at low SNRs.
The increase in runtime exhibited by AMP-MMYV in this expeént is a consequence of our decision
to configure AMP-MMV identically for all experiments; ourifialization of the noise variance;?, was
more than an order-of-magnitude off over the majority of 8%¥R range, and thus AMP-MMV cycled
through many different schedules in an effort to obtain amrdalistic) residual energy. Runtime could

be drastically improved in this experiment by using a morprapriate initialization ofo>.

D. Performance Versus Undersampling Rate, N/M

As mentioned in Sectiold I, one of the principal aims of CS iseéduce the number of measurements

that must be acquired while still obtaining a good solutibnthe MMV problem, dramatic reductions

8In lower SNR regimes, learning rules for the noise varianee kmown to become less reliable [15].[18]. Still, for high-
dimensional problems, a sub-optimal learning rule may leéepable to a computationally costly cross-validationceidure. For
this reason, we ran all three Bayesian algorithms with anlegrrule for the noise variance enabled.
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Fig. 7: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBMSBL, SA-MUSIC, AMP-MMV, and the SKS versus
undersampling ratelV/M. Correlation coefficient — o« = 0.75.

in the sampling rate are possible. To illustrate this, in. ligve present the results of an experiment in
which the undersampling factaN /M, was varied fron®d to 25 unknowns-per-measurement. Specifically,
N was fixed at5000, while M was varied.A was likewise adjusted in order to keeg/K fixed

at 3 measurements-per-active-coefficient. In Hify. 7, we see MBBL quickly departs from the SKS
performance bound, whereas AMP-MMV, T-MSBL, and SA-MUSK€ able to remain close to the bound
when N/M < 20. At N/M = 25, both AMP-MMV and SA-MUSIC have diverged from the bound,
and, while still offering an impressive TNMSE, they are arfprmed by T-MSBL. In conducting this
test, we observed that AMP-MMV'’s performance is strongidtio the number of smoothing iterations
performed. Whereas for other tesissmoothing iterations were often sufficient, in scenarioth & high
degree of undersampling, (e.dv/M > 15), 50 — 100 smoothing iterations were often required to obtain
good signal estimates. This suggests that messages musgthe@nged between neighboring timesteps

over many iterations in order to arrive at consensus in sévemderdetermined problems.

E. Performance Versus Signal Dimension, N

As we have indicated throughout this paper, a key consideratf our method was ensuring that it
would be suitable for high-dimensional problems. Our ca@xijpy analysis indicated that a single iteration
of AMP-MMYV could be completed irfO(T'N M) flops. This linear scaling of the complexity with respect
to problem dimensions gives encouragement that our atgorithould efficiently handle large problems,
but if the number of iterations required to obtain a solutgpows too rapidly with problem size, our
technique would be of limited practical utility. To ensufeat this was not the case, we performed an
experiment in which the signal dimensiaN, was swept logarithmically over the ranf@0, 10000]. M

was scaled proportionally such thisly M = 3. The sparsity rate was fixed at= 0.15 so thatM /K = 2,
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Fig. 8: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBMSBL, SA-MUSIC, AMP-MMV, and the SKS versus
signal dimension)N. Correlation coefficieni — « = 0.95.

and the correlation was set at- a = 0.95.

The results of this experiment are provided in Fifj. 8. Sdvie@tures of these plots are of interest.
First, we observe that the performance of every algorithmpraves noticeably as problem dimensions
grow from N = 100 to N = 1000, with AMP-MMV and T-MSBL converging in TNMSE performance to
the SKS bound. The second observation that we point out {sAtlP-MMV works extremely quickly.
Indeed, a problem withV7" = 40000 unknowns can be solved accurately in just ungerseconds.
Finally, we note that at small problem dimensions, AMP-MM/riot as quick as either MSBL or SA-
MUSIC, however AMP-MMV scales with increasing problem dims@gns more favorably than the other
methods; atV = 10000 we note that AMP-MMV runs at least two orders-of-magnitudstér than the

other techniques.

F. Performance With Time-Varying Measurement Matrices

In all of the previous experiments, we considered the stahifMV problem [1), in which all of the
measurement vectors were acquired using a single, commasurenent matrix. While this setup is
appropriate for many tasks, there are a number of practmalcations in which a joint-sparse signal is
measured through distinct measurement matrices.

To better understand what, if any, gains can be obtained &timersity in the measurement matrices,
we designed an experiment that explored how performancédfested by the rate-of-change of the
measurement matrix over time. For simplicity, we considexdirst-order Gauss-Markov random process
to describe how a given measurement matrix changed over Specifically, we started with a matrix
whose columns were drawn i.i.d. Gaussian as in previousrexpents, which was then used as the

measurement matrix to collect the measurements at timestep. At subsequent timesteps, the matrix
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Fig. 9: A plot of the TNMSE (in dB), NSER, and runtime of AMP-Miand the SKS versus rate-of-change of the measurement
matrix, 5. Correlation coefficient — o = 0.99.

evolved according to

AD = (1-p) A 4 sUu®), (15)

whereU® was a matrix whose elements were drawn i.i.d. Gaussian, avitariance chosen such that
the column norm ofA® would (in expectation) equal one.

In the test,3 was swept over a range, providing a quantitative measurbeofate-of-change of the
measurement matrix over time. Clearly,= 0 would correspond to the standard MMV problem, while
£ =1 would represent a collection of statistically independaeisurement matrices.

In Fig.[@ we show the performance whénh = 5000, N/M = 30, M/K = 2, and the correlation is
1 —a = 0.99. For the standard MMV problem, this configuration is effeely impossible. Indeed, for
£ < 0.03, we see that AMP-MMV is entirely failing at recovering theysal. However, oncé ~ 0.08,
we see that the NSER has dropped dramatically, as has the ENKSces > 0.10, AMP-MMV is
performing almost to the level of the noise. As this experitrhould hopefully convince the reader, even
modest amounts of diversity in the measurement processrasiecaccurate reconstruction in operating

environments that are otherwise impossible.

VIlI. CONCLUSION

In this work we introduced AMP-MMV, a Bayesian message pagaigorithm for solving the MMV
problem [1) when temporal correlation is present in the #oge#s of the non-zero signal coefficients.
Our algorithm, which leverages Donoho, Maleki, and Montés@MP framework [25], performs rapid
inference on high-dimensional MMV datasets. In order t@ald&h a reference point for the quality of
solutions obtained by AMP-MMV, we described and implemdritee oracle-aided support-aware Kalman

smoother (SKS). In numerical experiments, we found a rarfgprablems over which AMP-MMV
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performed nearly as well as the SKS, despite the fact that MM/ was given crude hyperparameter
initializations that were refined from the data using an efg&®n-maximization algorithm. In comparing
against two alternative Bayesian techniques, and one gremthnique, we found that AMP-MMV
offers an unrivaled performance-complexity tradeoff,tigaftar in high-dimensional settings. We also
demonstrated that substantial gains can be obtained in & Mroblem by incorporating diversity
into the measurement process. Such diversity is partigularportant in settings where the temporal

correlation between coefficient amplitudes is substantial

APPENDIXA

TAYLOR SERIES APPROXIMATION OFI/}A(% o0

In this appendix we summarize the procedure used to colldmsdinary Gaussian mixture df_(12),
JT(?;’ 95:)(0,@), to a single Gaussiam, , em( ) CN(H,(f 75),12:)). For simplicity, we drop the:
and (¢) sub- and superscripts.

Let 6, = Re{0}, let 6; = Jm{#}, and letp, and ¢; be defined similarly. Define
9(0:,0;) = V?gde(er + j0i),
= (1= Q7)) CN (0 + jbi; 2, 5¢) + Q(T) CN (6 + jbi; b, €)
f~(97"7 02) £ — logg(eTa 02)

Our objective is to approximatg(6,., 6;) using a two-dimensional second-order Taylor series expans
£(6,.6;), about the point:

v - of
FOr0) = F6r.6) + 6~ 60) o)+ (6~ ) 90
"lo=¢ 0=o
1 2 f 0°f 2 O*F
+§ |:(9r - Qbr) 6—92 + (97" - Qbr)( ¢2) (99 (99 (92 - sz) (992 .
0=¢ tlo=¢
It can be shown that, for Taylor series expansions about die p, ae ae = O(e? and‘ae2 327{ =

O(£?). Sincee < 1, it is reasonable to therefore adopt a further approximadiod assum%%gei =0

and gef = gTJ; With this approximation, note that

exp(—f(8;,6)) o< CN (6, + j6i; €,9),
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with
oA a2f_
¢:28—93 ) (16)
0=¢
> A 1~ of . 1 of
§= ¢r—§¢xaer +J ¢z—§7/)><a—9i . (7)

The pseudocode functiomaylor_approx, that computed (16)[(17) given the parametersz'j'bide(-) is
provided in TabldTIl.
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