
264 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

Particle Based Smoothed Marginal MAP Estimation
for General State Space Models

Saikat Saha, Member, IEEE, Pranab Kumar Mandal, Arunabha Bagchi, Yvo Boers, and Johannes N. Driessen

Abstract—We consider the smoothing problem for a general
state space system using sequential Monte Carlo (SMC) methods.
The marginal smoother is assumed to be available in the form of
weighted random particles from the SMC output. New algorithms
are developed to extract the smoothed marginal maximum a
posteriori (MAP) estimate of the state from the existing marginal
particle smoother. Our method does not need any kernel fitting
to obtain the posterior density from the particle smoother. The
proposed estimator is then successfully applied to find the un-
known initial state of a dynamical system and to address the issue
of parameter estimation problem in state space models.

Index Terms—Maximum a posteriori, particle smoother, sequen-
tial monte carlo, unknown initial conditions.

I. INTRODUCTION

C ONSIDER a state-space model

(1)

(2)

where is the (unobserved) state with initial density
and is the measurement at time step . The process noises

, are assumed to be independent. So are the
measurement noises . Furthermore, is as-
sumed to be independent of . In this model, we assume that
the probability density functions for and are known. The
main problem related to model (1)–(2) is concerned with es-
timating the unknown state given the set of measurements

. The complete solution is, of course, given
by the posterior probability density function , which
reflects all knowledge about the current state . However, for
a general nonlinear dynamic system, this posterior is often ana-
lytically intractable, but can be successfully approximated using
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a SMC approach, also known as a particle filter. In such an ap-
proach the posterior is approximated by a cloud of weighted
particles, whose empirical measure closely approximates the
true posterior distribution for large (see, e.g., [1]–[4]).
In this article1, we focus on the smoothing problem, that is,

to estimate based on the measurements , where .
In particular, we develop algorithms using SMC technique to
calculate the smoothed (marginal) MAP estimate, , given
by

(3)

where is the (smoother) posterior density.
Only a limited number of methods exists in the literature that

deal with the MAP estimation from the Monte Carlo based par-
ticle approximation. The main difficulty in obtaining the MAP
lies in extracting the posterior density, whose maximizer is to
be found, from the particle filter/smoother. Authors in [6], [7]
use the particle with the maximum weight as the MAP estimate.
This, however, does not necessarily represent the true MAP (the
mode or maximizer of the posterior density) and it can actually
be far from it ([8]–[10]; see also the example in Sections III.A
of this article). The main reason behind this is, of course, the
fact that the weights do not represent the (posterior) density at
the particle-value.
The method proposed in [11] can be used if one is interested

in the MAP sequence estimates of the whole path, , up to
the current time . It uses the collection of all the particles up to
the current time to form a trellis representation of the state space
and subsequently, run a so-called Viterbi algorithm to find the
path in the trellis with the highest posterior density. This, being
a (joint) MAP of , is however not necessarily the same as
the marginal MAP of , in which we are interested.
In this article we use the existing Monte Carlo based particle

approximations of the marginal smoother density
to provide the marginal MAP estimate. The more commonly
used such marginal particle smoother in the literature is the
so-called forward-backward smoother (see, for example, [12]).
This smoother reuses the support points (particles) generated
during the forward (filtering) pass and only recalculates the
weights during the backward (smoothing) pass to derive the
smoother approximation. To avoid the reliance on the particles
from the forward phase, the two-filter smoother has been
envisaged in [13]–[15], where one combines samples from
particle filter in the forward direction with those from a so
called “backward information filter” to produce the (weighted)
cloud representation of . As mentioned earlier, the

1Part of the results were presented in EUSIPCO 2008 [5].
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crux of the problem lies in constructing the posterior density
from the weighted cloud representation of the distribution. As
is known, one classic approach is the kernel method, where a
kernel is fitted around each particle to approximate the pos-
terior density [16]. The main drawback of this method is that
it requires the user to choose a kernel bandwidth parameter.
The density estimate is very sensitive to this parameter and the
choice of an “optimal” value is not at all obvious ([17], [18]).
Also, the kernel method is more suitable in a static set up than
in a dynamic set up, which is the case for us. In the latter case,
with the kernel density approach, one needs to go through the
“optimal” selection of the bandwidth at each time-step (with
each new-coming data). The time aspect will only increase if
the sate-vector is multidimensional because one will then need
to select an “optimal” bandwidth for each dimension.
The novel contribution of this article is to estimate the MAP,

given by (3), using only the available (weighted) particle rep-
resentation of the marginal smoother , that is to say
that, without requiring any exogenous method such as kernel
fitting and thereby avoiding completely the process of choosing
a non-obvious “optimal” parameter. The proposed method is
simple yet elegant and uses the power of Monte Carlo samples,
namely that it can be used to approximate very effectively an
integral with respect to the density from which the samples are
drawn. The idea is based on the fact that, even though the MAP
estimate cannot be computed as integrals with respect to the pos-
terior density, the posterior smoother density of
evaluated at any point can be expressed as an integral with
respect to the posterior smoother density of .
We should note that it is not our goal to compare the dif-

ferent existing particle smoothers as estimates of the true pos-
terior . Neither do we claim that MAP is superior to
other estimators, such as the minimum mean squared estimator
(MMSE). MAP estimates are, however, known to be useful [8]
when the posterior is multimodal, which appears in a natural
manner in many real life applications, e.g., in terrain aided nav-
igation [19] and in target tracking problems [20]–[22]. When
smoothing is also essential one would need a MAP smoother.
For instance, consider the fingerprinting localization in wireless
network based on received signal strength (RSS) measurements
[23]. In such a situation, a so called radio map is constructed
off-line using RSS measurements at different (known) locations
by drive tests. The ground vehicle locations are in turn, deter-
mined by the inexpensive global positioning system (GPS) and
inertial navigation system (INS) fusion platform, available in
modern cars. However, the main problem with these systems
are the frequent GPS outage in urban environment and the drift
in INS error that grows with time. For the above problems,
smoothing is shown to improve the position estimation [24],
[25]. Moreover, due to multi-path propagations and non-line-of-
sight (NLOS) conditions, observation error for GPS signal is
typically non Gaussian, which often leads to multimodal poste-
rior. So smoothed marginal MAP estimator can be a good candi-
date for such an application. Another potential application is the
ground target tracking or road map extraction from smoothed
tracks [26].
The rest of the article is organized as follows. We describe in

Section II the proposed methodologies to obtain the MAP for

both the particle smoother mentioned above. In Section II.A
we first review briefly the method used to obtain the particle
smoother based on forward-backward smoothing. Subse-
quently, we describe how to obtain the MAP and demonstrate
the performance of this MAP estimator through a generic
nonlinear time series model. The same is done for two filter
smoothing in Section II.B. Section III deals with the applica-
tions of the proposed marginal MAP smoother. We begin, in
Section III.A, by validating the proposed estimator based on
forward-backward particle smoother using a linear Gaussian
model. We also confirm in this example that the particle with
the maximumweight does not represent the true MAP estimator
(mode of the posterior density). In Section III.B, the proposed
MAP smoother is applied to estimate the unknown initial
state of a given dynamic system, which is subsequently used
in Section III.C in connection with the parameter estimation
problem of a dynamic system. Finally, we conclude the article
in Section IV.

II. PARTICLE BASED SMOOTHED MARGINAL
MAP ESTIMATOR (PS-MAP)

As mentioned earlier, our starting point in this article is that
there already exists a (weighted) particle cloud for the mar-
ginal smoother. Based on the weighted cloud representation, we
calculate the smoothed marginal density and subsequently, ex-
tract the MAP from it. We start with the most commonly used
forward-backward smoother and then describe our algorithm
for the two filter smoother. We emphasize once again that our
purpose is not to compare these different smoothing methods.
Rather we focus on extracting the marginal MAP from the avail-
able particle cloud generated by either of these methods.

A. Forward-Backward Smoothing (FBS)

The marginal smoother by forward-backward algorithm is
based on the relationship (see, e.g., [12])

(4)

where, and are the filtering density
and one step ahead predictive density respectively, at time
. Thus, starting with , one can recursively obtain

from . Using the above recursion, the
marginal smoothing distribution can now be approximated by
the weighted particle cloud as described, for example, in [13].
Here, one starts with the forward filtering pass for computing
the filtered distribution at each time step using the particle filter
as

(5)

where denotes the Dirac delta mass located at . Then
one performs the backward smoothing pass as given by (4) to
approximate the smoothing distribution

(6)
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where the smoothing weights are obtained through the fol-
lowing backward recursion:

(7)

with . It is important to note that the forward-back-
ward smoother keeps the same particle support as used in fil-
tering step and re-weights the particles to obtain the approx-
imated particle based smoothed distribution. Thus, success of
this method crucially hinges on the filtered distribution having
supports where the smoothed distribution is significant.
To obtain the smoothed marginal MAP, one needs the pos-

terior density from the above cloud representation.
Here, we proceed as follows. Using the Bayes’ rule, one can
write the one step ahead predictive density in (4) as

(8)

Then (4) becomes

Making use of the particle representation of , given
by (6), and subsequently approximating the above integration
by a Monte Carlo integration method, one obtains

(9)

Further approximating the filtered density from
the running particle filter [8] as

(10)

we can rewrite (9) as

(11)

The smoothed marginal density, is obtained at any
support point and the corresponding MAP estimate can then
be extracted by finding the location of its global maximum. At

this point, one can in principle, employ any standard optimiza-
tion technique to arrive at the MAP estimate. In general, how-
ever, this maximization step is nontrivial due to the possible
multimodalities arising from the nonGaussian nature of the pos-
terior.
Following the argument, as used in [11], that the particles

form a randomized adaptive grid approximation of the values
of the posterior, we select the particle at which the density is the
highest as the MAP, i.e.,

(12)

where is the number of particles used at each time step. By
using (7), the estimator can be further simplified to

(13)

where the filtered density at the particle cloud
can be evaluated during the forward filtering step [8]

as

(14)

Since in (14) is independent of , to obtain
, one can replace in (13) by the unnormalized

filtered density

(15)

The summary of the procedure is presented in Algorithm 1.

Algorithm 1: FBS marginal MAP

Input:
1. FBS initialization:

a) set (known)
b) draw
c) compute and normalize

2. run FBS
3. available FBS output: ,

where
4. estimate the marginal MAP using (13) and (15)

a) for ,

b) for ,
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Fig. 1. Ground truth and smoothed marginal MAP outputs.

We note here that a numerical problem may arise in evalu-
ating (13) if the filtered weights attached to some particles are
very small. This may happen when the “particle degeneracy”
occurs. This problem can be effectively addressed using a com-
bination of efficient importance proposal (see, e.g., [27]) along
with resampling steps.
To demonstrate the computation of FBS based smoothedmar-

ginal MAP, we consider the nonlinear time series model:

(16)

(17)

where and with initial prior
. The above model is highly nonlinear and

when the measured data is (large) positive, state density may
become symmetric bimodal. In fact, this model has become a
de facto benchmark problem in the particle filtering community
due to the attractive nonlinear and/or non Gaussian characteris-
tics (see e.g., [1], [9], [2]). For this nonlinear problem,we use the
“Exact Moment matching (EMM) proposal” as in [28] during
forward filtering step with particle sample size and

. The smoothed marginal MAP outputs along with the
ground truth for is shown in Fig. 1.

B. Two-Filter Smoothing (TFS)

We describe, in this section, how the smoothed marginal
MAP can be obtained from the particle cloud generated by the
generalized two-filter smoother. We start with a brief descrip-
tion of how two filter particle smoother is obtained. For this,
we follow [13].
In the two-filter smoother framework, the so-called backward

information filter is calculated sequentially from
as

(18)

As noted by [13], is not a probability density func-
tion in and actually, its integral over may not even be
finite. The smoothing algorithm in [14], [15] assumes implic-
itly that . However, if this assumption
does not hold, SMC based methods, which can only approx-
imate finite measures, will not work anymore. To avoid this,
“generalized two-filter smoothing” has been proposed by [13],
where the smoothing distributions are computed through a com-
bination of forward filter and an auxiliary probability distribu-
tion in argument . This auxiliary density is defined
through a sequence of artificial distributions as

It then follows from (18) that

(19)

This in turn, is used to generate recursively the weighted particle
representation of the backward information filter

(20)

The marginal smoother is then computed by com-
bining the outputs of the forward filter (FF) and the backward
information filter (BIF) as

(21)

Evaluating the integral in (21) by Monte Carlo integration using
the forward filter cloud one obtains

(22)

Finally, the particle cloud representation is obtained using the
cloud from the backward filter:

(23)

where

(24)

Thus, in essence the particles from the forward filter are used to
re-weight those from the backward filter so that they represent
the marginal smoother distribution. We refer the readers to the
original article by [13] for more details.
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Algorithm 2: TFS marginal MAP

Input:
1. FF initialization:

a) set (known)
b) draw
c) compute and normalize

2. run FF for
3. available FF output:
4. BIF initialization:

a) obtained by

resampling
5. select for
6. run BIF for
7. available BIF output:
8. TFS output:

a) (from (23)–(24)) for

b) for where

9. estimate the marginal MAP (using (28) and (25)) as

Now we describe how to derive the smoothing density from
the particle smoother obtained as above. Note that using (20)
one can rewrite (19) as

(25)

It then follows from (22) that

(26)

The required smoothed marginal MAP can now be obtained by
maximizing the unnormalized smoothing density, given by the
right hand side of (26). Furthermore, when this maximization is
done along the particles , we have

Fig. 2. Ground truth and smoothed marginal MAP outputs.

From (24) and (25) this reduces to

(27)

Hence, the required MAP can be obtained as

(28)

where is evaluated using (25). A summary of the
procedure is presented in Algorithm 2. We now demonstrate
the computation of TFS based smoothed marginal MAP on
the same time series model as given in (16)–(17) with particle
sample size and .We use the EMMproposal
during forward filtering step. For this example, we select the ar-
tificial density to be a time-invariant density as in
[13], but approximated by a mixture of two Gaussian densities

. For calculating
, a long sample path is simulated using

(16) and then the Gaussian mixture is fitted to the empirical
measure , where
is the burn-in period. We select and .
Next we use an EM like algorithm ([29], with ) to select
the parameters of the mixture. Starting with

and ,
the final estimates are obtained as

and
. The backward proposal is taken to be a

Gaussian approximation of the optimal backward proposal
. This is obtained as follows. We first approx-

imate the joint distribution of and by a Gaussian
distribution with matching moments up to second order, calcu-
lated numerically over 50 Monte Carlo runs. From the theory
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of multivariate Gaussian, it then follows that is
Gaussian. The smoothed marginal MAP outputs along with the
ground truth for is shown in Fig. 2.

III. NUMERICAL EXAMPLES

A. Validation of the FBS Based Smoothed Marginal MAP and
Comparison With Other Estimators

In this section we validate the proposed MAP estimator2. We
do this on the basis of a linear-Gaussian model. In particular,
we verify numerically that the proposed estimator converges to
the true MAP (the analytical solution), given by the Kalman
smoother. For this we consider a simplified one dimensional
target tracking [20] problem where a nearly constant velocity
model is used for the state dynamics. We use the state vector

, where the scalar variables and denote the
position and velocity, respectively, of the target and is the
measurement at time step . The discrete time state space model
is given by:

(29)

(30)

Here is the measurement scan interval, and are
the process and measurement noises, respectively, given by

and . The noise sequences are
serially independent and also independent of each other. The
initial state is assumed to be distributed according to a zero
mean Gaussian random variable with a diagonal covariance

matrix . For the simulation we have used .

Since the above state space model is linear Gaussian, the
exact smoothed marginal MAP can be obtained analytically
using a Kalman smoother running on the same data. For the
particle filter, we use state transition density as proposal with
resampling at every step. Next, we compute the smoothed
marginal MAP using different number of particles and compare
them with the exact smoothed marginal MAP as obtained from
the Kalman smoother. The accuracy of the proposed MAP is
assessed in terms of the root mean square error (RMSE), given
by

(31)

where is the number of Monte Carlo runs, is our proposed
estimate of a desired quantity (say position or velocity ) at
time for -th (Monte Carlo) run and is the corresponding
output from the Kalman smoother. The mean and standard de-
viation (Std) of the RMSE values (over the time steps)
against different number of particles are shown in Table I below:
The results indicate that with increasing number of particles,

the RMSE values converge to a limit. It should not be surprising
that the limit is not zero. From the definition (31) it is clear

2We stress again our assumption that the particle cloud representation is
given to us. Thus any specific particle filter implementation is irrelevant to our
problem formulation.

TABLE I
RMSE AS A FUNCTION OF NUMBER OF PARTICLES USED

Fig. 3. RMSE position error.

that even if the MAP estimates converge to the true MAP, the
RMSE would not converge to zero. Since both the MAP esti-
mate and the true MAP are time dependent and stochastic, it
would converge, under ergodicity conditions, to some sort of
standard deviation of the error of the estimate, which is deter-
mined by the variances of the noise processes. From the con-
vergence of RMSE values we conclude that the errors of the
estimates remain within bound.
For the sake of completeness, we also compare the perfor-

mance of the proposed smoothed marginal MAP (PS MAP)
with that of the smoother particle with the maximum weight
(PS MW). We use a particle smoother with particles.
We estimate the (squared) errors of the estimators with respect
to the exact smoothed marginal MAP (Kalman smoother). The
root mean squared position and velocity errors over 30 Monte
Carlo runs and over 30 time steps are shown in Figs. 3 and 4,
respectively. We see in Fig. 3 that the RMSE of the position
estimates when using the PS-MW is quite far off as compared
to that of the PS-MAP. This is a clear indication that the PS
MW estimator does not represent the true marginal MAP. On
the other hand, Fig. 4 shows that the two estimators behave al-
most similarly for the velocity component of the RMSE, with
PS MW performing a bit worse than PS MAP.
Next, we apply our marginal smoother MAP estimator to es-

timate the unknown initial condition of the state. Subsequently,
using the same approach, we have addressed parameter esti-
mation problems by considering the parameter as an additional
state.

B. Estimation of (Unknown) Initial Condition

1) Linear Model: We consider the following

(32)

(33)
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Fig. 4. RMSE velocity error.

TABLE II
MEAN AND VARIANCE OF ESTIMATED INITIAL STATE

TABLE III
MEAN AND VARIANCE OF ESTIMATED INITIAL STATE

Fig. 5. Simulated state (Xsyn), MAP and mean of the marginal smoothed pos-
terior for the first 10 time steps.

with and . The initial state
is assumed to be unknown (constant). The simulated data

is generated starting with . To esti-
mate the unknown initial state , we start with initial prior

where denotes uniform probability
density function with lower bound and upper bound respec-
tively. We use particles and the optimal proposal
as given in [2] in the forward filtering step. The estimate of

the initial unknown state is taken as the MAP of 3.
The mean and variance of the estimator over 30 Monte Carlo
runs are shown in Table II. The result shows that the smoothed
initial density peaks around the true initial state, even though
we have started with a pretty wide uniform initial prior.
Though not needed for this exercise, we have nonetheless

calculated for all , the proposed MAP for the
smoothed marginal density and the corresponding
mean. We notice in the simulations that the MAP and the mean
of the smoothed marginal density at a given time step are the
same, as expected for a linear Gaussian model.
2) Nonlinear Model: Here, we consider the nonlinear

time series model as given in (16)–(17). The simulated data
is generated starting with . As in the

previous case, we start with initial prior .
For this nonlinear problem, we use the EMM proposal during
forward filtering step with particle sample size . The
estimate of the initial unknown state is given by the particle
based MAP of . We repeat this MAP state estimate
for 30 Monte Carlo runs. The mean and variance of the esti-
mator are shown in Table III. The result in Table III is really
remarkable as we can see by comparing with Table II. Even
for highly nonlinear model as considered above and with wide
uniform initial prior, the result is almost as good as in linear
case. Of course the variance is somewhat larger, but that is to
be expected given the highly nonlinear nature of the problem.
It is also interesting to study the behavior of the smoother

when the initial distribution is supported on a larger interval.
Starting with , we have calculated for all

, the proposed MAP for the smoothed mar-
ginal density and the corresponding mean. These es-
timates for the first 10 time steps for a particular realization are
shown in Fig. 5 while the corresponding filtered and smoothed
pdfs (unnormalized versions) for are shown in Fig. 6. We
notice that the filtered as well as the smoothed pdf are bimodal
with (local) peaks around the true initial state, and
its reflected value . In the filtered version both peaks are
equally high (suggesting the inability of the filter to decide be-
tween these two values), whereas in the smoothed version, the
peak at is much higher. This shows the improved perfor-
mance of the smoother in comparison with the filtered density.
Furthermore, although the dominant mode of the smoother den-
sity is very close to the true initial state , the contri-
bution from the weaker mode, shifts the smoothed mean away
from (as seen in Fig. 5, the smoothed mean is near 8 here).
This further strengthens the justification of using the MAP in
such a scenario.

C. Parameter Estimation

One of the common approaches of estimating a parameter in
a state-space model is to augment the parameter as an extra state
with a small artificial dynamics and then take the filtered esti-
mate as the estimate of the parameter. The artificial evolution,
however, in effect, renders the fixed parameter into a slowly

3With an uniform prior , note from (13) that for estimating the initial
condition, we are essentially picking the (smoothed) particle with the highest
weight. However, with other choice of prior, the estimate (i.e., the smoothed
marginal MAP) is different from the particle with highest weight.
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Fig. 6. (Unnormalized) posterior probability density functions for the initial
state (filtered: and smoothed: ).

TABLE IV
TRUE PARAMETER, MEAN AND STANDARD DEVIATION OF THE

ESTIMATED PARAMETER

varying one. As a result, the variance of the filtered estimate of
the parameter increases over time [30], which limits the preci-
sion of the resulting estimate. Looking from another perspective
at this augmented framework, one may observe that only the ini-
tial augmented state is not corrupted by artificial noise.
Hence in our approach, we consider the marginal smoother of

the initial augmented state to be the estimate of the true (fixed)
parameter. It is expected that as more and more observations
are available, the smoothed estimate would converge to the true
parameter value. We proceed here with the following dynamic
system:

(34)

(35)

where is a fixed unknown parameter, are the unobserv-
able state with (known) initial prior density and are
the observation. The process noises are assumed to be in-
dependent of the measurement noises . We start with the
usual procedure of augmenting the state space by treating the
parameter as additional state. Note that the dimension of the
state increases by the numbers of parameters augmented. Now
the augmented state space can be written as

(36)

(37)

(38)

with , which is unknown here. Now, using notation
and , where

denotes vector transpose, the above model can be rewritten as

TABLE V
TRUE PARAMETER, MEAN AND STANDARD DEVIATION OF THE

ESTIMATED PARAMETER

for some and . We estimate the initial state vector using
marginal the MAP smoother. The corresponding estimation for
the augmented state is taken as the estimated parameter. We
consider the following two numerical examples for this param-
eter estimation approach. We begin with a linear example:

(39)

(40)

with and and (unknown) true
parameter . We take . Note
that is independent of . With , we started
with . We use particles and state
transition density as our proposal during forward filtering step.
The mean and the standard deviation of the estimator of over
30 Monte Carlo runs are shown in Table IV. Although the as-
sumption of uniform initial prior is radically different from the
knowledge of exact initial condition (parameter), we see the pa-
rameter estimate to be quite good.
Next we consider the following nonlinear example:

(41)

(42)

where and . The true parameter is
. With known , we started with

. We use particles and state
transition density as proposal during forward filtering step. We
set . The estimate of for 30 Monte Carlo runs
is shown in Table V. As remarked after Table IV, we see the
same pattern in a nonlinear problem as well. We observed that
this estimation procedure works quite well even in nonlinear
cases. However, the computational burden with the growing
memory requirement is a major stumbling block here. Addition-
ally, when the number of parameters is large, the dimension of

also increases and the effective exploration of the state
space in region where the joint probability of is high, be-
comes difficult with a finite number of (relatively small) sam-
ples.

IV. CONCLUSION

In this article we have considered the problem of estimating
the smoothedmarginalMAP , given by (3), of unobserved
from all the observations, , up to time , where

follow a general state space model, given by (1)–(2).
In doing so, we assume that a marginal particle smoother for
the posterior already exists. The naive choice of the
particle with maximum (smoothed) weight does not represent
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the true MAP estimator as observed by the authors in [8] and
[9]; and confirmed further by the example in Section III.A. The
newly proposed estimator for the marginal smoother MAP is
based on the theoretically sound fact that the posterior density
evaluated at any arbitrary point can be expressed as an inte-
gral with respect to the posterior density from the “previous”
time-step. The proposed method is self-sufficient in the sense
that it does not need any exogenousmethod such as kernel fitting
and thereby avoiding the non-obvious and computationally ex-
pensive choice of the optimal kernel bandwidth. The algorithm
corresponding to the most commonly used forward-backward
particle smoother is developed in Section II.A and that for the
two filter smoother in Section II.B. We have performed a quick
validation of the proposed estimator (using forward-backward
smoother) in Section III.A. Here we have considered a linear
Gaussian model for which the true MAP is given by the Kalman
smoother. A numerical comparison of our estimator with the
true MAP suggests that as the number of particle increases the
proposedMAP estimates stay close to the true MAPs (the errors
remain within bound). After the successful validation step we
have applied the proposed MAP estimator to find the unknown
initial state of a given dynamical system (Section III.B). We no-
tice that even for highly nonlinear model with wide uniform ini-
tial prior the result is very good. This is subsequently applied
(Section III.C) to address the parameter estimation problem in
dynamical systems. We observe reasonably good results in this
application as well.
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