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Abstract—In this paper, we derive Hybrid, Bayesian and
Marginalized Cramér-Rao lower bounds (HCRB, BCRB and
MCRB) for the single and multiple measurement vector Sparse
Bayesian Learning (SBL) problem of estimating compressible
vectors and their prior distribution parameters. We assumethe
unknown vector to be drawn from a compressible Student-t prior
distribution. We derive CRBs that encompass the deterministic
or random nature of the unknown parameters of the prior
distribution and the regression noise variance. We extend the
MCRB to the case where the compressible vector is distributed
according to a general compressible prior distribution, ofwhich
the generalized Pareto distribution is a special case. We use the
derived bounds to uncover the relationship between the compress-
ibility and Mean Square Error (MSE) in the estimates. Further,
we illustrate the tightness and utility of the bounds through
simulations, by comparing them with the MSE performance of
two popular SBL-based estimators. It is found that the MCRB
is generally the tightest among the bounds derived and that
the MSE performance of the Expectation-Maximization (EM)
algorithm coincides with the MCRB for the compressible vector.
Through simulations, we demonstrate the dependence of the MSE
performance of SBL based estimators on the compressibilityof
the vector for several values of the number of observations and
at different signal powers.

Index Terms—Sparse Bayesian learning, mean square error,
Cramér-Rao lower bounds, expectation maximization.

I. I NTRODUCTION

Recent results in the theory of compressed sensing have gen-
erated immense interest in sparse vector estimation problems,
resulting in a multitude of successful practical signal recovery
algorithms. In several applications, such as the processing of
natural images, audio, and speech, signals are not exactly
sparse, butcompressible, i.e., the magnitudes of the sorted
coefficients of the vector follow a power law decay [1]. In
[2] and [3], the authors show that random vectors drawn
from a special class of probability distribution functions(pdf)
known ascompressible priorsresult in compressible vectors.
Assuming that the vector to be estimated (henceforth referred
to as the unknown vector) has a compressible prior distribution
enables one to formulate the compressible vector recovery
problem in the Bayesian framework, thus allowing the use of
Sparse Bayesian Learning (SBL) techniques [4]. In his seminal
work, Tipping proposed an SBL algorithm for estimating the
unknown vector, based on the Expectation Maximization (EM)
and McKay updates [4]. Since these update rules are known
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to be slow, fast update techniques are proposed in [5]. A
duality based algorithm for solving the SBL cost function
is proposed in [6], andℓ1 − ℓ2 based reweighting schemes
are explored in [7]. Such algorithms have been successfully
employed for image/visual tracking [8], neuro-imaging [9],
[10], beamforming [11], and joint channel estimation and data
detection for OFDM systems [12].

Many of the aforementioned papers study the complexity,
convergence and support recovery properties of SBL based
estimators (e.g., [5], [6]). In [3], the general conditionsre-
quired for the so-called instance optimality of such estimators
are derived. However, it is not known whether these recovery
algorithms are optimal in terms of the Mean Square Error
(MSE) in the estimate or by how much their performance
can be improved. In the context of estimatingsparsesignals,
Cramér-Rao lower bounds on the MSE performance are de-
rived in [13]–[15]. However, to the best of our knowledge,
none of the existing works provide a lower bound on the
MSE performance ofcompressiblevector estimation. Such
bounds are necessary, as they provide absolute yardsticks for
comparative analysis of estimators, and may also be used as a
criterion for minimization of MSE in certain problems [16].In
this paper, we close this gap in theory by providing Cramér-
Rao type lower bounds on the MSE performance of estimators
in the SBL framework.

As our starting point, we consider a linear Single Measure-
ment Vector (SMV) SBL model given by

y = Φx+ n, (1)

where the observationsy ∈ R
N and the measurement matrix

Φ ∈ R
N×L are known, andx ∈ R

L is the unknown
sparse/compressible vector to be estimated [17]. Each com-
ponent of the additive noisen ∈ R

N is white Gaussian,
distributed asN (0, σ2), where the varianceσ2 may be known
or unknown. The SMV-SBL system model in (1) can be
generalized to a linear Multiple Measurement Vector (MMV)
SBL model given by

T = ΦW +V. (2)

Here, T ∈ R
N×M represents theM observation vectors,

the columns ofW ∈ R
L×M are theM sparse/compressible

vectors with a common underlying distribution, and each
column ofV ∈ R

N×M is modeled similar ton in (1) [18].
In typical compressible vector estimation problems,Φ is

underdetermined (N < L), rendering the problem ill-posed.
Bayesian techniques circumvent this problem by using a prior
distribution on the compressible vector as a regularization, and
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Figure 1. Graphical model for SBL: Two stage hierarchical model with
the compressible vector taking a conditional Gaussian distribution and the
hyperparameters taking an Inverse Gamma distribution. Thenoise is modeled
as white Gaussian distributed, with the noise variance modeled as determin-
istic/random and known or unknown.
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Figure 2. Summary of the lower bounds derived in this work when noise
variance is assumed to be known.

computing the corresponding posterior estimate. To incorpo-
rate a compressible prior in (1) and (2), SBL uses a two-stage
hierarchical model on the unknown vector, as shown in Fig. 1.
Here,x ∼ N (0,Υ), where the diagonal matrixΥ contains the
hyperparametersγ = [γ1, . . . , γL]

T as its diagonal elements.
Further, an Inverse Gamma (IG)hyperprior is assumed for
γ itself, because it leads to a Student-t prior on the vectorx,
which is known to be compressible [4].1 In scenarios where the
noise variance is unknown and random, an IG prior is used for
the distribution of the noise variance as well. For the system
model in (2), every compressible vectorwi ∼ N (0,Υ), i.e.,
theM compressible vectors are governed by a commonΥ.

It is well known that the Cramér-Rao Lower Bound (CRLB)
provides a fundamental limit on the MSE performance of
unbiased estimators [19] for deterministic parameter esti-
mation. For the estimation problem in SBL, an analogous
bound known as the Bayesian Cramér-Rao Bound (BCRB) is
used to obtain lower bounds [20], by incorporating the prior
distribution on the unknown vector. If the unknown vector
consists of both deterministic and random components, Hybrid
Cramér-Rao Bounds (HCRB) are derived [21].

In SBL, the unknown vector estimation problem can also
be viewed as a problem involving nuisance parameters. Since
the assumed hyperpriors are conjugate to the Gaussian likeli-
hood, the marginalized distributions have a closed form and
the Marginalized Cramér-Rao Bounds (MCRB) [22] can be
derived. For example, in the SBL hyperparameter estimation
problem,x itself can be considered a nuisance variable and
marginalized from the joint distribution,pY,X|γ(y,x|γ), to
obtain the log likelihood as

log

∫

x

pY,X|Γ(y,x|γ)dx =
−(log |Σy|+ yTΣ−1

y y)

2
, (3)

whereΣy = σ2IN×N +ΦΥΦT [23].
The goal of this paper is to derive Cramér-Rao type lower

bounds on the MSE performance of estimators based on the

1The IG hyperprior is conjugate to the Gaussian pdf [4].

HCRB from BCRB from MCRB from

γ: deterministic
x: random
σ2: random

γ: random
x: random
σ2: random

γ: deterministic
x: marginalized
σ2: deterministic

θ = [γT ,xT , σ2]T

p(y;γ, σ2)p(y,x, σ2,γ)p(y,x, σ2;γ)

Figure 3. Different modeling assumptions and the corresponding bounds
derived in this work when noise variance is assumed to be unknown.

SBL framework. Our contributions are as follows:

• Under the assumption of known noise variance, we derive
the HCRB and the BCRB for the unknown vectorθ =
[xT ,γT ]T , as indicated in the left half of Fig. 2.

• When the noise variance is known, we marginalize nui-
sance variables (γ or x) and derive the corresponding
MCRB, as indicated in the right half of Fig. 2. Since the
MCRB is a function of the parameters of the hyperprior
(and hence is an offline bound), it yields insights into
the relationship between the MSE performance of the
estimators and the compressibility ofx.

• In the unknown noise variance case, we derive the
BCRB, HCRB and MCRB for the unknown vectorθ =
[xT ,γT , σ2]T , as indicated in Fig. 3.

• We derive the MCRB for a general parametric form of
the compressible prior [3] and deduce lower bounds for
two of the well-known compressible priors, namely, the
Student-t and generalized double Pareto distributions.

• Similar to the SMV-SBL case, we derive the BCRB,
HCRB and MCRB for the MMV-SBL model in (2).

Through numerical simulations, we show that the MCRB on
the compressible vectorx is the tightest lower bound, and that
the MSE performance of the EM algorithm achieves this bound
at high SNR and asN → L. The techniques used to derive
the bounds can be extended to handle different compressible
prior pdfs used in literature [2]. These results provide a
convenient and easy-to-compute benchmark for comparing the
performance of the existing estimators, and in some cases, for
establishing their optimality in terms of the MSE performance.

The rest of this paper is organized as follows. In Sec. II,
we provide the basic definitions and describe the problem
set up. In Secs. III and IV, we derive the lower bounds for
the cases shown in Figs. 2 and 3, respectively. The bounds
are extended to the MMV-SBL signal model in Sec. V. The
efficacy of the lower bounds is graphically illustrated through
simulation results in Sec. VI. We provide some concluding
remarks in Sec. VII. In the Appendix, we provide proofs for
the Propositions and Theorems stated in the paper.

Notation: In the sequel, boldface small letters denote vec-
tors and boldface capital letters denote matrices. The symbols
(·)T and| · | denote the transpose and determinant of a matrix,
respectively. The empty set is represented by∅, and Γ(·)
denotes the Gamma function. The functionpX(x) represents
the pdf of the random variableX evaluated at its realization
x. Also, diag(a) stands for a diagonal matrix with entries on
the diagonal given by the vectora. The symbol∇θ is the
gradient with respect to (w.r.t.) the vectorθ. The expectation
w.r.t. a random variableX is denoted asEX(·). Also,A � B
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denotes thatA−B is positive semidefinite, andA⊗B is the
Kronecker product of the two matricesA andB.

II. PRELIMINARIES

As a precursor to the sections that follow, we define the
MSE matrix and the Fisher Information Matrix (FIM) [19],
and state the assumptions under which we derive the lower
bounds in this paper. Consider a general estimation problem
where the unknown vectorθ ∈ R

n can be split into sub-
vectorsθ = [θT

r , θT
d ]

T , whereθr ∈ R
m consists ofrandom

parameters distributed according to a known pdf, andθd ∈
R

n−m consists ofdeterministicparameters. Let̂θ(y) denote
the estimator ofθ as a function of the observationsy. The
MSE matrixEθ is defined as

Eθ , EY,Θr

[

(θ − θ̂(y))(θ − θ̂(y))T
]

, (4)

where Θr denotes the random parameters to be estimated,
whose realization is given byθr. The first step in obtaining
Cramér-Rao type lower bounds is to derive the FIMIθ [19].
Typically, Iθ is expressed in terms of the individual blocks of
submatrices, where the(ij)th block is given by

Iθij , −EY,Θr [∇θi∇
T
θj

log pY,Θr;Θd
(y, θr ; θd)]. (5)

In this paper, we use the notationIθ to represent the FIM
under the different modeling assumptions. For example, when
θr 6= ∅ andθd 6= ∅, Iθ represents a Hybrid Information Matrix
(HIM). When θr 6= ∅ andθd = ∅, Iθ represents a Bayesian
Information matrix (BIM). Assuming that the MSE matrixEθ

exists and the FIM is non-singular, a lower bound on the MSE
matrix Eθ is given by the inverse of the FIM:

Eθ �
(
Iθ
)−1

. (6)

It is easy to verify that the underlying pdfs considered in
the SBL model satisfy the regularity conditions required for
computing the FIM (see Sec. 5.2.3 in [22]).

We conclude this section by making one useful observation
about the FIM in the SBL problem. An assumption in the
SMV-SBL framework is thatx andn are independent of each
other (for the MMV-SBL model,T andW are independent).
This assumption is reflected in the graphical model in Fig. 1,
where the compressible vectorx (and its attributeγ) and the
noise componentn (and its attributeσ2) are on unconnected
branches. Due to this, a submatrix of the FIM is of the form

Iθγξ = −EX,Y,Γ,Ξ

[
∇γ∇ξ

{
log pY|X,Ξ(y|x, ξ)

+ log pX,Γ(x,γ) + log pΞ(ξ)}] , (7)

where there are no terms in which bothγ and ξ = σ2 are
jointly present. Hence, the corresponding terms in the above
mentioned submatrix are always zero. This is formally stated
in the following Lemma.

Lemma 1:When θi = γ and θj = σ2, the (ij)th block
matrix of the FIM Iθ given by (5) simplifies toIθij = 0L×1,
i.e., to an all zero vector.

III. SMV-SBL: L OWER BOUNDS WHENσ2 IS KNOWN

In this section, we derive lower bounds for the system model
in (1) for the scenarios in Fig. 2, where the unknown vector is
θ = [xT ,γT ]T . We examine different modeling assumptions
on γ and derive the corresponding lower bounds.

A. Bounds from the Joint pdf

1) HCRB for θ = [xT ,γT ]T : In this subsection, we
consider the unknown variables as a hybrid of a determin-
istic vectorγ and a random vectorx distributed according
to a Gaussian distribution parameterized byγ. Using the
assumptions and notation in the previous section, we obtain
the following proposition.

Proposition 1: For the signal model in (1), the HCRB on
the MSE matrixEθ of the unknown vectorθ = [xT ,γT ]T

with the parameterized distribution of the compressible signal
x given by N (0,Υ), and with γ modeled as unknown and
deterministic, is given byEθ � (Hθ)−1, where

Hθ ,

[
Hθ(x) Hθ(x,γ)

(Hθ(x,γ))T Hθ(γ)

]

=

[(
ΦTΦ
σ2 +Υ−1

)

0L×L

0L×L diag(2γ2
1 , 2γ2

2 , . . . , 2γ2
L)

−1

]

. (8)

Proof: See Appendix A.
Note that the lower bound on the estimate ofx depends

on the prior information through the diagonal matrixΥ. In
the SBL problem, the realization of the random parameterγ

has to be used to compute the bound above, and hence, it
is referred to as an online bound. Also, the lower bound on

the MSE matrix ofx is Eθ �
(

ΦTΦ
σ2 +Υ−1

)−1

, which is
the same as the lower bound on the error covariance of the
Baye’s vector estimator for a linear model (see Theorems 10.2
and 10.3 in [19]), and is achievable by the MMSE estimator
whenΥ = diag(γ1, . . . , γL) is known.

2) BCRB forθ = [xT ,γT ]T : For deriving the BCRB, a
hyperprior distribution is considered onγ, and the resultingx
is viewed as being drawn from a compressible prior distribu-
tion. The most commonly used hyperprior distribution in the
literature is the IG distribution [4], whereγi, i = 1, 2, . . . , L
are distributed asIG

(
ν
2 ,

ν
2λ

)
, given by

pΓ(γi) ,
(

Γ
(ν

2

))−1 ( ν

2λ

) ν
2

γ
(− ν

2−1)
i exp

{

−
ν

2λγi

}

, (9)

whereγi ∈ (0,∞), ν, λ > 0. Using the definitions and nota-
tion in the previous section, we state the following proposition.

Proposition 2: For the signal model in (1), the BCRB on
the MSE matrixEθ of the unknown random vectorθ =
[xT ,γT ]T , where the conditional distribution of the compress-
ible signalx|γ is N (0,Υ), and the hyperprior distribution on
γ is

∏L
i=1 IG

(
ν
2 ,

ν
2λ

)
, is given byEθ � (Bθ)−1, where

Bθ ,

[
Bθ(x) Bθ(x,γ)

(Bθ(x,γ))T Bθ(γ)

]

=

[(
ΦTΦ
σ2 + λIL×L

)

0L×L

0L×L
λ2(ν+2)(ν+7)

2ν IL×L

]

. (10)

Proof: See Appendix B.
It can be seen fromBθ that the lower bound on the MSE

of γ̂(y) is a function of the parameters of the IG prior onγ,
i.e., a function ofν andλ, and it can be computed without the
knowledge of realization ofγ. Thus, it is an offline bound.
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B. Bounds from Marginalized Distributions

1) MCRB for θ = [γ]: Here, we derive the MCRB for
θ = [γ], whereγ is an unknown deterministic parameter.
This requires the marginalized distributionpY;γ(y;γ), which
is obtained by consideringx as a nuisance variable and
marginalizing it out of the joint distributionpX,Y;γ(x,y;γ),
to obtain (3). Sinceγ is a deterministic parameter, the pdf
pY;γ(y;γ) must satisfy the regularity condition in [19]. We
have the following theorem.

Theorem 1:For the signal model in (1), the log likeli-
hood function log pY;γ(y;γ) satisfies the regularity condi-
tions in [19]. Further, the MCRB on the MSE matrixEγ

of the unknown deterministic vectorθ = [γ] is given by
Eγ � (Mγ)−1, where the(ij)th element ofMγ is given
by

M
γ
ij =

1

2
(ΦT

j Σ
−1
y Φi)

2, (11)

for 1 ≤ i, j ≤ L, whereΦi is the ith column of Φ, and
Σy = σ2IN×N +ΦΥΦT , as defined earlier.
Proof: See Appendix C.

To intuitively understand (11), we consider a special case of
ΦTΦ = NIN×N , and use the Woodbury formula to simplify
Σ−1

y , to obtain the(ii)th entry of the matrixMγ as

M
γ
ii = 2

(
σ2

N
+ γi

)−2

. (12)

Hence, the error inγi is bounded asEγ
ii ≥ 2

(
σ2

N + γi

)2

. As

N → ∞, the bound reduces to2γ2
i , which is the same as the

lower bound on the estimate ofγ obtained as the lower-right
submatrix in (8). For finiteN , the MCRB is tighter than the
HCRB.

2) MCRB for θ = [x]: In this subsection, we assume a
hyperprior onγ, which leads to a joint distribution ofx andγ,
from whichγ can be marginalized. Further, assuming specific
forms for the hyperprior distribution can lead to a compressible
prior on x. For example, assuming an IG hyperprior onγ
leads to anx with a Student-t distribution. Sampling from
a Student-t distribution with parametersν andλ results in a
ν-compressiblex [2]. The Student-t prior is given by

pX(x) ,

(
Γ((ν + 1)/2)

Γ(ν/2)

)L(
λ

πν

)L
2

L∏

i=1

(

1 +
λx2

i

ν

)− ν+1
2

,

(13)
wherexi ∈ (−∞,∞), ν, λ > 0, ν represents the number of
degrees of freedom andλ represents the inverse variance of
the distribution. Using the notation developed so far, we state
the following theorem.

Theorem 2:For the signal model in (1), the MCRB on the
MSE matrixEx of the unknown compressible random vector
θ = [x] distributed as (13), is given byEx � (Mx)−1, where

Mx =
ΦTΦ

σ2
+

λ(ν + 1)

(ν + 3)
IL×L. (14)

Proof: See Appendix D.
We see that the bound derived depends on the parameters

of the Student-t pdf. From [3], the prior is“somewhat”
compressible for2 < ν < 4, and (14) is nonnegative and

bounded for2 < ν < 4, i.e., the bound is meaningful in the
range ofν used in practice. Note that, by choosingλ to be
large (or the variance ofx to be small), the bound is dominated
by the prior information, rather than the information from the
observations, as expected in Bayesian bounds [19].

It is conjectured in [22] that, in general, the MCRB is tighter
than the BCRB. Analytically comparing the MCRB (14) with
the BCRB (8), we see that for the SBL problem of estimating
a compressible vector, the MCRB is indeed tighter than the
BCRB, since
(
ΦTΦ

σ2
+

λ(ν + 1)

(ν + 3)
IL×L

)−1

�

(
ΦTΦ

σ2
+ λIL×L

)−1

.

The techniques used to derive the bounds in this subsection
can be applied to any family of compressible distributions.In
[3], the authors propose a parametric form of the Generalized
Compressible Prior (GCP) and prove that such a prior is com-
pressible for certain values ofν. In the following subsection,
we derive the MCRB for the GCP.

C. General Marginalized Bounds

In this subsection, we derive MCRBs for the parametric
form of the GCP. The GCP encompasses the double Pareto
shrinkage type prior [24] and the Student-t prior (13) as its
special cases. We consider the GCP onx as follows

pX(x) , KL
L∏

i=1

(

1 +
λ |xi|

τ

ν

)−(ν+1)/τ

, (15)

where xi ∈ (−∞,∞), τ, ν, λ > 0, and the normalizing

constantK , τ
2

(
λ
ν

)1/τ Γ((ν+1)/τ)
Γ(1/τ)Γ(ν/τ) . When τ = 2, (15)

reduces to the Student-t prior in (13), and whenτ = 1, it
reduces to a generalized double Pareto shrinkage prior [24],
[25]. Also, the expression for the GCP in [3] can be obtained
from (15) by settingλ = 1, and definingν , s − 1. The
following theorem provides the MCRB for the GCP.

Theorem 3:For the signal model in (1), the MCRB on the
MSE matrixEθ

τ of the unknown random vectorθ = [x], where
x is distributed as the GCP in (15), is given byEθ

τ � (Mθ
τ )

−1,
where

Mθ
τ =

ΦTΦ

σ2
+ Tτ , (16)

whereTτ = τ2(ν+1)
(ν+τ+1)

(
λ
ν

)2/τ Γ( ν+2
τ )Γ(2− 1

τ )
Γ( 1

τ )Γ(
v
τ )

IL×L.

Proof: See Appendix E.
It is straightforward to verify that forτ = 2, (16) reduces to

the MCRB derived in (14) for the Student-t distribution. For
τ = 1, the inverse of the MCRB can be reduced to

Mθ
τ =

ΦTΦ

σ2
+

λ2(ν + 1)2

ν(ν + 2)
IL×L. (17)

In Fig. 4, we plot the expression in (16). We observe that,
in general, the bounds predict an increase in MSE for higher
values ofτ . Also, for given value ofN , the lower bounds
at different signal to noise ratios (SNRs) converge as the
value of τ increases, indicating that increasingτ renders the
bound insensitive to the SNR. The lower bounds also predict
a smaller value of MSE for a lower value ofν.
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Figure 4. Behavior of the MCRB (16) for the parametric form ofthe GCP,
as a function ofτ , ν, N and noise varianceξ.

Thus far, we have presented the lower bounds on the MSE
in estimating the unknown parameters of the SBL problem
when the noise variance is known. In the next section, we
extend the results to the case of unknown noise variance.

IV. SMV-SBL: L OWER BOUNDS WHENσ2 IS UNKNOWN

Let us denote the unknown noise variance asξ = σ2. In the
Bayesian formulation, the noise variance is associated with
a prior, and since the IG prior is conjugate to the Gaussian
likelihood pY|X,Ξ(y|x, ξ), it is assumed thatσ2 ∼ IG(c, d)
[4], i.e., ξ = σ2 is distributed as

pΞ(ξ) ,
dc

Γ(c)
ξ(−c−1) exp

{

−
d

ξ

}

; ξ ∈ (0,∞), c, d > 0.

(18)
Under this assumption, one can marginalize the unknown

noise variance and obtain the likelihoodp(y|x) as

p(y|x) ,
∫∞

ξ=0
p(y, ξ|x)dξ

=
(2d)cΓ(N

2 +c)
Γ(c)(π)N/2

(
(y −Φx)T (y −Φx) + 2d

)−(N
2 +c)

,(19)

which is a multivariate Student-t distribution. It turns out that
the straightforward approach of using the above multivariate
likelihood to directly compute lower bounds for the various
cases given in the previous section is analytically intractable,
and that the lower bounds cannot be computed in closed form.
Hence, we compute lower bounds from thejoint pdf, i.e., we
derive the HCRB and BCRBs for the unknown vectorθ =
[xT ,γT , ξ]T with the MSE matrixEθ

ξ defined by (4).2 Using
the assumptions and notation from the previous sections, we
obtain the following proposition.

Proposition 3: For the signal model in (1), the HCRB on
the MSE matrixEθ

ξ of the unknown vectorθ = [θ′T , ξ]T ,
where θ′ = [xT ,γT ]T , with the distribution of the com-
pressible vectorx given by N (0,Υ), whereγ is modeled
as a deterministic or as a random parameter distributed as

2We use the subscriptξ to indicate that the error matrices and bounds are
obtained for the case of unknown noise variance.

∏L
i=1 IG

(
ν
2 ,

ν
2λ

)
, andξ is modeled as a deterministic param-

eter, is given by(Hθ
ξ )

−1, where

Hθ
ξ =

[
Hθ′

0L×1

01×L
N
2ξ2

]

. (20)

In the above expression, with a slight abuse of notation,Hθ′

is the FIM given by (8) whenγ is unknown deterministic and
by (10) whenγ is random.
Proof: See Appendix F.

The lower bound on the estimation ofξ matches with known
lower bounds on noise variance estimation (see Sec. 3.5 in
[19]). One disadvantage of such a bound onξ̂(y) is that
the knowledge of the noise variance is essential to compute
the bound, and hence, it cannot be computed offline. Instead,
assigning a hyperprior toξ would result in a lower bound that
only depends on the parameters of the hyperprior, which are
assumed to be known, allowing the bound to be computed
offline. We state the following proposition in this context.

Proposition 4: For the signal model in (1), the HCRB on
the MSE matrixEθ

ξ of the unknown vectorθ = [θ′T , ξ]T ,
where θ′ = [xT ,γT ]T , with the distribution of the vec-
tor x given by N (0,Υ), where γ is modeled as a deter-
ministic parameter or as a random parameter distributed as
∏L

i=1 IG
(
ν
2 ,

ν
2λ

)
, and with the random parameterξ distributed

asIG(c, d), is given by(Hθ
ξ )

−1, where

Hθ
ξ =

[

Hθ′

0L×1

01×L
c(c+1)(N/2+c+3)

d2

]

. (21)

In (21), Hθ′

is the FIM given in (8) whenγ is unknown
deterministic and by (10) whenγ is random.
Proof: See Appendix G.

In SBL problems, a non-informative prior onξ is typically
preferred, i.e., the distribution of the noise variance is modeled
to be as flat as possible. In [4], it was observed that a non-
informative prior is obtained whenc, d → 0. However, as
c, d → 0, the bound in (21) is indeterminate. In Sec. VI,
we illustrate the performance of the lower bound in (21) for
practical values ofc andd.

A. Marginalized Bounds

In this subsection, we obtain lower bounds on the MSE of
the estimator̂ξ(y), in the presence of nuisance variables in the
joint distribution. To start with, we consider the marginalized
distributions ofγ and ξ, i.e., pY;γ,ξ(y;γ, ξ) where both,γ
and ξ are deterministic variables. Since the unknowns are
deterministic, the regularity condition has to be satisfiedfor
θ = [γT , ξ]T . We state the following theorem.

Theorem 4:For the signal model in (1), the log likelihood
function log pY;γ,ξ(y;γ, ξ) satisfies the regularity condition
[19]. Further, the MCRB on the MSE matrixEθ

ξ of the
unknown deterministic vectorθ = [γT , ξ]T is given by
Eθ

ξ � (Mθ
ξ )

−1, where

Mθ
ξ ,

[
Mθ

ξ (γ) Mθ
ξ (γ, ξ)

Mθ
ξ (ξ,γ) Mθ

ξ (ξ)

]

, (22)
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where the (ij)th entry of the matrixMθ
ξ (γ) is given by

(Mθ
ξ (γ))ij = 1

2

{
(ΦT

j Σ
−1
y Φi)

2
}

, andMθ
ξ (ξ) = 1

2Tr(Σ−2
y ).

Further, (Mθ
ξ (γ, ξ))i = (Mθ

ξ (ξ,γ))i =
ΦT

i Σ−2
y Φi

2 , i, j =
1, 2, . . . , L.
Proof: See Appendix H.

Remark: From the graphical model in Fig. 1, it can be
seen that the branches consisting ofγi andξ are independent
conditioned onx. However, whenx is marginalized, the nodes
ξ andγi are connected, and hence, Lemma 1 is no longer valid.
Due to this, the lower bound onγ depends onξ and vice versa,
i.e., Mθ

ξ (γ) andMθ
ξ (ξ) depend on bothξ andΥ = diag(γ)

throughΣy = ξIN×N +ΦΥΦT .
Thus far, we have presented several bounds for the MSE

performance of the estimatorŝx(y), γ̂(y) and ξ̂(y) in the
SMV-SBL framework. In the next section, we derive Cramér-
Rao type lower bounds for the MMV-SBL signal model.

V. L OWER BOUNDS FOR THEMMV-SBL

In this section, we provide Cramér-Rao type lower bounds
for the estimation of unknown parameters in the MMV-
SBL model given in (2). We consider the estimation of the
compressible vectorw from the vector of observationst,
which contain the stacked columns ofW andT, respectively.
In the MMV-SBL model, each column ofW is distributed
as wi ∼ N (0,Υ), for i = 1, . . .M , and the likelihood is
given by

∏M
i=1 pT|Wi,Ξ(ti|wi, ξ), wherepT|WiΞ(ti|wi, ξ) =

N (Φwi, ξ) andξ = σ2. The modeling assumptions onγ and
ξ are the same as in the SMV-SBL case, given by (9) and
(18), respectively [18].

Using the notation developed in Sec. II, we derive the
bounds for the MMV SBL case similar to the SMV-SBL cases
considered in Secs. III and IV. Since the derivation of these
bounds follow along the same lines as in the previous sections,
we simply state results in Table I.

Bound Derived Expression

HCRB on γ̂(y) Hθ

M
= diag

(

M

2γ2
i

)

, i = 1, 2 . . . , L

BCRB on γ̂(y) Bθ

M
=

λ2(ν+2)(M+ν+6)
2ν

IL×L

MCRB on γ̂(y) Mθ

M
= [Mθ

ij ],

whereMθ

ij = M
2
(ΦT

j Σ−1
y Φi)2

HCRB on ŵ(y) Hθ

M
=

(

Φ
T
Φ

σ2 +Υ−1
)

⊗ IM×M

BCRB on ŵ(y) Bθ

M
=

(

Φ
T
Φ

σ2 + λIL×L

)

⊗ IM×M

HCRB on ξ̂(y) Hθ

M,ξ
=

(

MN
2ξ2

)

BCRB on ξ̂(y) Bθ

M,ξ
=

c(MN
2

+c+3)(c+1)

d2

MCRB on [γ̂(y)T , ξ̂(y)]T Mθ

M,ξ
= M ×Mθ

ξ

Table I
CRAMÉR-RAO TYPE BOUNDS FOR THEMMV-SBL CASE.

We see that the lower bounds onγ̂(y) andξ̂(y) are reduced
by a factor of M compared to the SMV case, which is
intuitively satisfying. It turns out that it is not possibleto obtain
the MCRB onw in the MMV-SBL setting, since closed form
expressions for the FIM are not available.

In the next section, we consider two popular algorithms for
SBL and graphically illustrate the utility of the lower bounds.
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Figure 5. Decay profile of the sorted magnitudes ofi.i.d. samples drawn
from a Student-t distribution.

VI. SIMULATIONS AND DISCUSSION

The vector estimation problem in the SBL framework typ-
ically involves the joint estimation of the hyperparameterand
the unknown compressible vectorx. Since the hyperparameter
estimation problem cannot be solved in closed form, iterative
estimators are employed [4]. In this section, we consider the
iterative updates based on the EM algorithm first proposed in
[4]. We also consider the algorithm proposed in [6] based on
the Automatic Relevance Determination (ARD) framework.
We plot the MSE performance in estimatingx, γ and ξ
with the linear model in (1) and (2), for the EM algorithm,
labeledEM, and the ARD based Reweightedℓ1 algorithm,
labeledARD-SBL. We compare the performance of the es-
timators against the derived lower bounds.

We simulate the lower bounds for a random underde-
termined (N < L) measurement matrixΦ, whose entries
are i.i.d. and standard Bernoulli({+1,−1}) distributed. A
compressible signal of dimensionL is generated by sampling
from a Student-t distribution with the value ofν ranging
from 2.01 to 2.05, which is the range in which the signal is
“somewhat” compressible, for high dimensional signals [3].
Figure 5 shows the decay profile of the sorted magnitudes of
L = 1024 i.i.d. samples drawn from a Student-t distribution
for differentν and with the value ofE(x2

i ) fixed at10−3.

A. Lower Bounds on the MSE Performance ofx̂(y)

In this subsection, we compare the MSE performance of
the ARD-SBL estimator and the EM based estimatorx̂(y).
Figure 6 depicts the MSE performance ofx̂(y) for different
SNRs andN = 750 and 1000, with ν = 2.01. We compare
it with the HCRB/BCRB derived in (8), which is obtained by
assuming the knowledge of the realization of the hyperparam-
etersγ. We see that the MCRB derived in (14) is a tight lower
bound on the MSE performance at high SNR andN .

Figure 7 shows the comparative MSE performance of the
ARD-SBL estimator and EM based estimator as a function
of varying degrees of freedomν, at an SNR of40 dB and
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Figure 6. The MSE performance ofx̂(y) and the corresponding MCRB and
BCRB, as a function of SNR, withν = 2.01.
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Figure 7. The MSE performance ofx̂(y) and the corresponding MCRB and
BCRB, as a function ofν, with SNR =40 dB.

N = 1000 and 750. As expected, the MSE performance of
the algorithms is better at low values ofν since the signal
is more compressible, and the MCRB and BCRB also reflect
this behavior. The MCRB is a tight lower bound, especially
for high values ofN . Figure 8 shows the MSE performance of
the ARD-SBL estimator and EM based estimator as a function
of N , at an SNR of40 dB and for two different values ofν.
The MSE performance of the EM algorithm converges to that
of the MCRB at higherN .

B. Lower Bounds on the MSE Performance ofγ̂(y)

In this subsection, we compare the different lower bounds
for the MSE of the estimator̂γ(y) for the SMV and MMV-
SBL system model. Figure 9 shows the MSE performance
of γ̂(y) as a function of SNR andM , whenγ is a random
parameter,N = 1000 andν = 2.01. In this case, it turns out
that there is a large gap between the performance of the EM
based estimate and the lower bound.
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Figure 8. The MSE performance ofx̂(y) and the corresponding MCRB and
BCRB, as a function ofN , with SNR =40 dB.
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Figure 9. The MSE performance of̂γ(y) and the corresponding HCRB, as
a function of SNR, withN = 1000.

Whenγ is deterministic, we first note that the EM based ML
estimator forγ is asymptotically optimal and the lower bounds
are practical for large data samples [19]. The results are listed
in Table II. We see that forL = 2048 andN = 1500, the
MCRB and BCRB are tight lower bounds, with MCRB being
marginally tighter than the BCRB. However, asM increases,
the gap between the MSE and the lower bounds increases.

C. Lower Bounds on the MSE Performance ofξ̂(y)

In Fig. 10, we compare the lower bounds on the MSE of
the estimator̂ξ(y) in the SMV and MMV-SBL settings, for
different values ofN andM . Here,ξ is sampled from the IG
pdf (18), with parametersc = 3 andd = 0.2.

Whenξ is deterministic, the EM based ML estimator forγ

is asymptotically optimal and the lower bounds are practical
for large data samples [19]. Table III lists the MSE values of
ξ̂(y), the corresponding HCRB and MCRB for deterministic
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SNR(dB) 10 20 30 40

M = 1
MSE 0.054 0.053 0.051 0.050

MCRB 0.052 0.051 0.050 0.049
BCRB 0.049 0.049 0.049 0.049

M = 50
MSE 0.0450 0.039 0.035 0.030

MCRB ×10−2 0.12 0.11 0.10 0.09
BCRB×10−3 0.977 0.977 0.977 0.977

Table II
VALUES OF THEMSE OF THE ESTIMATORγ̂(y), THE MCRB AND THE

BCRB, FORθd = [γ] AS A FUNCTION OFSNR,FORN = 1500.
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Figure 10. The MSE performance of̂ξ(y) and its HCRB, as a function
of N .

but unknown noise variance, while the true noise variance is
fixed at10−3. We see that forL = 2048 andN = 1500, the
MCRB is marginally tighter than the HCRB. However, when
the noise variance is random, we see from Fig. 10 that there
is a large gap between the MSE performance and the HCRB.

N 1500 1600 1700 1800

M = 1
MSE ×10−8 0.736 0.663 0.636 0.592
MCRB×10−8 0.380 0.340 0.307 0.279
HCRB×10−8 0.133 0.125 0.118 0.111

M = 50
MSE ×10−9 0.930 0.892 0.866 0.847

MCRB×10−10 0.680 0.652 0.614 0.573
HCRB×10−10 0.267 0.250 0.235 0.222

Table III
VALUES OF THEMSE OF THE ESTIMATORξ̂(y), THE MCRB AND THE

HCRB FORθd = [ξ], AS A FUNCTION OFN .

VII. C ONCLUSION

In this work, we derived Cramér-Rao type lower bounds on
the MSE, namely, the HCRB, BCRB and MCRB, for the SMV-
SBL and the MMV-SBL problem of estimating compressible
signals. We used a hierarchical model for the compressible
priors to obtain the bounds under various assumptions on
the unknown parameters. The bounds derived by assuming
a hyperprior distribution on the hyperparameters themselves
provided key insights into the MSE performance of SBL and

the values of the parameters that govern these hyperpriors.
We derived the MCRB for the generalized compressible prior
distribution, of which the Student-t and Generalized Pareto
prior distribution are special cases. We showed that the MCRB
is tighter than the BCRB. We compared the lower bounds with
the MSE performance of the ARD-SBL and the EM algo-
rithm using Monte Carlo simulations. The numerical results
illustrated the near-optimality of EM based updates for SBL,
which makes it attractive for practical implementations.

APPENDIX

A. Proof of Proposition 1

Using the graphical model of Fig. 1 in (5),

Hθ(x) , −EY,X;γ

[
∇2

x log pY,X;γ(y,x;γ)
]

= −EY,X;γ

[

∇x

(
ΦT (y −Φx)

σ2
−Υ−1x

)]

=
ΦTΦ

σ2
+Υ−1. (23)

Similarly, it is straightforward to show that
∇x∇γ log pY,X;γ(y,x;γ) = diag

(
x1

γ2
1
, x2

γ2
2
, . . . , xL

γ2
L

)

.
Sincexi are zero mean random variables,

Hθ(γ,x) = −EY,X;γ [∇γ∇x log pY,X;γ(y,x;γ)] = 0L×L,

Hθ(γ) = −EY,X;γ

[
∇2

γ(log pY|X(y|x) + log pX;γ(x;γ))
]
.

Now, sincelog pX;γ(x;γ) =
∑L

i=1 log pX;γ(xi;γi), we get,

∂2 log pX;γ(x;γ)

∂γi∂γj
=

{
1

2γ2
i
− x2

i

γ3
i

if i = j

0 if i 6= j.
(24)

Taking −EX;γ(·) on both sides of the above equation and
noting thatEX;γ(x

2
i ) = γi, we obtain

Hθ(γ) = diag

(

−EX;γ

[
∂2 log pX;γ(x;γ)

∂γ2
i

])

= diag

([
1

2γ2
1

, . . . ,
1

2γ2
L

])

. (25)

This completes the proof.

B. Proof of Proposition 2

Using the graphical model of Fig. 1 in (5),

Bθ(x) , −EY,X,Γ

[
∇2

x log pY,X,Γ(y,x;γ)
]

= −EY,X,Γ

[

∇x

(
ΦT (y −Φx)

σ2
−Υ−1x

)]

= EΓ

[
ΦTΦ

σ2
+Υ−1

]

(26)

=
ΦTΦ

σ2
+ EΓ

[
Υ−1

]
. (27)

The expression forEΓ

[
Υ−1

]
w.r.t. γi is given by,

EΓ

[
1

γi

]

= Kγ

∫ ∞

γi=0

γ
(− ν

2−2)
i exp

{

−
ν

2λγi

}

dγi (28)

= Kγ

Γ
(
ν
2 + 1

)

(
ν
2λ

) ν
2+1

∫ ∞

γi=0

IG
(ν

2
+ 1,

ν

2λ

)

dγi

︸ ︷︷ ︸

=1

= λ, (29)
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sinceKγ =
(

ν
2λ

)ν/2 (
Γ
(
ν
2

))−1
. Hence, the overall bound is

given by

Bθ(x) =
ΦTΦ

σ2
+ λIL×L. (30)

Using the graphical model of Fig. 1 in (5), forθ =
[xT ,γT ]T , Bθ(γ) is defined as

Bθ(γ) , −EY,X,Γ

[
∇2

γ

(
log pY|X(y|x)

+ log pX|Γ(x|γ) + log pΓ(γ)
)]

. (31)

Since the expressions forlog pX|Γ(x|γ) and log pΓ(γ) are
separable and symmetric w.r.t.γi, the off-diagonal terms of
Bθ(γ) are zero, and it is sufficient to evaluate the diago-

nal terms−EY,X,Γ

(
∂2(log pX|Γ(x|γ)+log pΓ(γ))

∂γ2
i

)

. Differentiat-
ing the expression w.r.t.γi twice,

∂2
(
log pX|Γ(x|γ) + log pΓ(γ)

)

∂γ2
i

= −
(ν + 1)

2γ2
i

+
ν

λγ3
i

. (32)

The expression for−EΓ

[

− (ν+1)
2γ2

i
+ ν

λγ3
i

]

is given by

EΓ

[
(ν+1)
2γ2

i
− ν

λγ3
i

]

= Kγ

∞∫

γi=0

[
(ν+1)γ−2

i

2 −
νγ−3

i

λ

]

γ
(− ν

2 −1)
i exp{− ν

2λγi
}dγi, (33)

whereKγ =
(

ν
2λ

)ν/2 (
Γ
(
ν
2

))−1
. After some manipulation, it

can be shown that the above integral reduces to

−EΓ

[

−
(ν + 1)

2γ2
i

+
ν

λγ3
i

]

=
λ2(ν + 2)(ν + 7)

2ν
. (34)

Thus, the(ij)th component ofBθ(γ,x) is given by

(Bθ(γ,x))ij =
∂2 log pX|Γ(x|γ)

∂γi∂xi
= −

xi

γ2
i

, (35)

and Bθ(x,γ) = (Bθ(γ,x))T . Since EX|Γ(xi) = 0,
Bθ(γ,x) = 0L×L. This completes the proof.

C. Proof of Theorem 1

To establish the regularity condition, the first order deriva-
tive of the log likelihoodlog pY;γ(y;γ) is required. This, in

turn, requires the evaluation of∂ log |Σy|
∂γj

and
∂yTΣ−1

y y

∂γj
. Using

the chain rule for differentiation [26], we have

∂ log |Σy|

∂γj
= Tr

{(
∂ log |Σy|

∂Σy

)T
∂Σy

∂γj

}

= Tr
{
(Σ−1

y )TΦjΦ
T
j

}
= ΦT

j Σ
−1
y Φj . (36)

Here, we have used the identity∇X log |X | = X−1 [26] and
results from vector calculus [26] to obtain∂Σy

∂γj
= ΦjΦ

T
j ,

whereΦj is the j th column of Φ. Similarly, the derivative
of yTΣ−1

y y can be obtained as

∂yTΣ−1
y y

∂γj
= Tr

{(
∂yTΣ−1

y y

∂Σ−1
y

)T
∂Σ−1

y

∂γj

}

= −ΦT
j Σ

−1
y yyTΣ−1

y Φj , (37)

and hence,

∂

∂γj
log pY;γ(y;γ) =

ΦT
j Σ

−1
y yyTΣ−1

y Φj − ΦT
j Σ

−1
y Φj

2
.

(38)
TakingEY;γ(·) on both the sides of the above equation,

EY;γ

[
∂

∂γj
log pY;γ(y;γ)

]

=
ΦT

j Σ
−1
y

{
EY;γ(yy

T )
}
Σ−1

y Φj − ΦT
j Σ

−1
y Φj

2
= 0, (39)

sinceEY(yyT ) = Σy. Hence, the pdf satisfies the required
regularity constraint.

Now, the MCRB forθ = [γ] is obtained by computing the
second derivative of the log likelihood, as follows:

−
∂2

∂γi∂γj
log pY,γ(y;γ)

=
1

2

∂

∂γi
(ΦT

j Σ
−1
y Φj − (ΦT

j Σ
−1
y y)2)

=
1

2
Tr
{
ΦjΦ

T
j (−Σ−1

y ΦiΦ
T
i Σ

−1
y )
}

− (ΦT
j Σ

−1
y y)Tr







(

∂(ΦT
j Σ

−1
y y)

∂Σ−1
y

)T
∂Σ−1

y

∂γi







= −
1

2

(
ΦT

j Σ
−1
y Φi

) (
ΦT

i Σ
−1
y Φj

)

+
(
ΦT

j Σ
−1
y y

) (
yTΣ−1

y Φi

) (
ΦT

i Σ
−1
y Φj

)
. (40)

Taking−EY;γ(·) on both the sides of the above expression,

(Mγ)ij , −EY;γ

[
∂2 log pY;γ(y;γ)

∂γi∂γj

]

=
(ΦT

j Σ
−1
y Φi)

2

2
, (41)

as stated in (11). This completes the proof.

D. Proof of Theorem 2

The proof follows from the proof for Theorem 3 in Ap-
pendix E by substitutingτ = 2.

E. Proof of Theorem 3

The MCRB for estimation of the compressible random
vector withθ = [x] is given by

Mx = −EY,X[∇2
x log pY,X(y,x)]

= −EY,X[∇2
x log pY|X(y|x) +∇2

x log pX(x)]. (42)

The first term above is given by

−EY,X

[
∇2

x log pY|X(y|x)
]
= −EY,X

[

∇x
ΦT (y−Φx)

σ2

]

= −EY,X

[
−ΦTΦ

σ2

]

= ΦTΦ
σ2 . (43)

Note thatpX(x) is not differentiable if any of its compo-
nentsxi = 0. However, the measure ofxi = 0 is zero since
the distribution is continuous, and hence, this condition can
be safely ignored. Now,

∂ log pX(x)

∂xi
=







−
(ν+1)λxτ−1

i

(ν+λxτ
i )

if xi > 0

(−1)τ
(ν+1)λxτ−1

i

(ν+(−1)τλxτ
i )

if xi < 0.
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First, we consider the case ofxi > 0. Differentiating the above
w.r.t. xi again, we obtain

∂2

∂x2
i

log pX(x) =
−(ν + 1)λ(τ − 1)xτ−2

i

(ν + λxτ
i )

+
λ2τ(ν + 1)x2τ−2

i

(ν + λxτ
i )

2 . (44)

Taking−EX(·) on both sides of the above equation, we get

− EX

(
∂2

∂x2
i

log pX(x)

)

=
K(ν + 1)λ

ν

∫ ∞

0







(τ − 1)xτ−2
i

(

1 +
λxτ

i

ν

) ν+τ+1
τ

−
λτx2τ−2

i

ν
(

1 +
λxτ

i

ν

) ν+2τ+1
τ







dxi.

(45)

The above can be simplified using the transformationti =
λxτ

i

ν

and using
∫∞

0
tu−1

(1+t)u+v dt =
Γ(u)Γ(v)
Γ(u+v) , we get

− EX

(
∂2

∂x2
i

log pX(x)

)

=
K(ν + 1)(τ − 1)

τ

(
λ

ν

)1/τ

Γ

(

1−
1

τ

){

Γ
(
ν+τ+2

τ

)
− 1

τ Γ
(
ν+2
τ

)

Γ
(
v+2τ+1

τ

)

}

for xi > 0.

(46)

For the case ofxi < 0 also, the expression reduces to the
integral given in (45). Hence, we have

− EX

(
∂2

∂x2
i

log pX(x)

)

=
K(ν + 1)2(τ − 1)

τ(ν + τ + 1)

(
λ

ν

)1/τ

(

Γ
(
τ−1
τ

)
Γ
(
ν+2
τ

)

Γ
(
v+τ+1

τ

)

)

. (47)

Substituting the expression forK in the above, we get

− EX

(
∂2

∂x2
i

log pX(x)

)

=
τ2(ν + 1)

(ν + τ + 1)

(
λ

ν

)2/τ

Γ
(
ν+2
τ

)
Γ
(
2− 1

τ

)

Γ
(
1
τ

)
Γ
(
v
τ

) . (48)

Combining the expression above and (43), we obtain the
MCRB in (17).

F. Proof of Proposition 3

In this case, we defineθ′ = [xT ,γT ]T and hence,
θ = [θ′T , ξ]T . In order to compute the HCRB,
we need to find Hθ

ξ (ξ), Hθ
ξ (θ

′) and Hθ
ξ (θ

′, ξ). We
have log pY,X;γ,ξ(y,x;γ, ξ) = log pY|X;ξ(y|x; ξ) +
log pX;γ(x;γ), where ξ = σ2. Using (5), the submatrix
Hθ

ξ (θ
′) = Hθ′

, i.e., the same as computed earlier in (8)
when γ is unknown deterministic and by (10) whenγ is
random. Hence, we focus on the block matrices that occur
due to the additional parameterξ. First, Hθ

ξ (ξ) is computed

as in Sec. 3.6 in [19], from which,−EY,X;ξ

[

− N
2ξ2

]

= N
2ξ2 .

From Lemma 1, it directly follows thatHθ
ξ (γ, ξ) = 0L×1.

Using (5), we computeHθ
ξ (x, ξ) as follows:

Hθ
ξ (x, ξ) = EX(EY|X;ξ(Φ

Ty −ΦTΦx)). (49)

SinceEY|X;ξ(y) = Φx, EX(ΦT (Φx) − ΦTΦx) = 0L×1.
This completes the proof.

G. Proof of Proposition 4

In this case, we defineθ , [θ′T , ξ] and θ′ , [xT ,γT ]T .
In order to compute the HCRB, we need to findHθ

ξ (ξ),
Hθ

ξ (θ
′) andHθ

ξ (θ
′, ξ). Using (5), the expression forHθ

ξ (θ
′)

is the same as computed earlier in (8) whenγ is unknown
deterministic and by (10) whenγ is random. Sinceξ is
random, the expectation has to be taken over the distribution
of ξ also, and hence,

Hθ
ξ (ξ) = −EY,X,Ξ

[
∂2

∂ξ2
(log pY|X,Ξ(y|x, ξ)

+ log pΞ(ξ))] = EΞ

(
N/2− c− 1

ξ2
+

2d

ξ3

)

. (50)

The above expectation is evaluated as

Hθ
ξ (ξ) =

(N/2−c−1)dc

Γ(c)

∞∫

ξ=0

ξ−2ξ(−c−1) exp

{

−
d

ξ

}

dξ +

2d(c+1)

Γ(c)

∞∫

ξ=0

ξ−3ξ(−c−1) exp
{

− d
ξ

}

dξ =
c(c+1)(N

2 +c+3)
d2 .(51)

To find the other components of the matrix, we compute
Hθ

ξ (θ
′, ξ) = (Hθ

ξ (ξ, θ
′))T , which consists ofHθ

ξ (γ, ξ) and
Hθ

ξ (x, ξ). From Lemma 1,Hθ
ξ (γ, ξ) = 0L×1. Using the

definition of Hθ
ξ (x, ξ), from (49) and sincepΞ(ξ) is not a

function ofxi, we see thatHθ
ξ (x, ξ) = (Hθ

ξ (ξ,x))
T = 0L×1.

Thus, we obtain the FIM given by (21).

H. Proof of Theorem 4

First, we show that the log likelihoodlog(pY;γ,ξ(y;γ, ξ))
in (3) satisfies the regularity condition w.r.t.ξ. Differentiating
the log likelihood w.r.t.ξ and taking−EY;γ,ξ(·) on both the
sides of the equation,

∂
∂ξ log(pY;γ,ξ(y,γ, ξ)) =

1
2

∂
∂ξ (− log |Σy| − yTΣ−1

y y)

= − 1
2

[
Tr(Σ−1

y )− Tr(yyT (Σ−1
y Σ−1

y ))
]
, (52)

EY;γ,ξ

[
Tr(− 1

2Σ
−1
y ) + 1

2Tr(yyT (Σ−1
y Σ−1

y ))
]

= 1
2

[
Tr(Σ−1

y )− Tr(Σ−1
y )
]
= 0. (53)

Hence, the regularity condition is satisfied. From (41), we

have (Mθ
ξ (γ))ij = −

(ΦT
j Σ−1

y Φi)
2

2 . To obtain Mθ
ξ (ξ), we

differentiate (52) w.r.t.ξ to obtain

∂2

∂ξ2
(log pY;γ,ξ(y;γ, ξ)) =

1

2
Tr(Σ−2

y )− Tr(yyT (Σ−3
y )). (54)

Taking−EY;γ,ξ(·) on both sides of the above equation,

Mθ
ξ (ξ) = −EY;γ,ξ

[
1
2Tr(Σ−2

y )− Tr(yyT Tr(Σ−3
y ))

]

= Tr(Σ−2
y )− 1

2Tr(Σ−2
y ) = 1

2Tr(Σ−2
y ). (55)
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The vectorMθ
ξ (γ, ξ) is found by differentiating (38) w.r.t.ξ

and taking the negative expectation:

(Mθ
ξ (γ, ξ))i

= EY;γ,ξ

[

∂

∂ξ

(

ΦT
i Σ

−1
y Φi − ΦT

i Σ
−1
y yyTΣ−1

y Φi

2

)]

=
1

2
ΦT

i Σ
−2
y Φi. (56)

Since Mθ
ξ (ξ,γ) = (Mθ

ξ (γ, ξ))
T , the ith term of

(Mθ
ξ (ξ,γ))i = 1

2Φ
T
i Σ

−2
y Φi. The MCRB Mθ

ξ can now be
obtained by combining the expressions in (41), (55) and (56);
this completes the proof.
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http://www.dauwels.com/Justin/PhD.htm

[23] D. Wipf, J. Palmer, and B. Rao, “Perspectives on sparse Bayesian
learning,” in Advances in NIPS, vol. 16, 2004.

[24] A. Armagan, D. Dunson, and J. Lee, “Generalized double Pareto
shrinkage,”Arxiv preprint arXiv:1104.0861, Aug. 2011.

[25] S. Balakrishnan and D. Madigan, “Priors on the variancein
sparse Bayesian learning; the demi-Bayesian Lasso,”Online:
http://www.stat.columbia.edu/ madigan/PAPERS/recentPapers.html,
2009.

[26] K. Petersen and M. Pedersen, “The matrix cookbook,”Online:
http://matrixcookbook.com, 2008.

Ranjitha Prasad received the B.E. degree in Elec-
tronics and Communication Engineering from Na-
tional Institute of Engineering, Mysore, India, in
2004, and the M.S. degree in Electrical Engineering,
Indian Institute of Technology Madras, Chennai,
India, in 2009. From July 2004-2006, she worked
as a senior design engineer at Tata Elxsi, Bangalore,
India. She is currently working towards the Ph.D de-
gree at the Department of Electrical Communication
Engineering, Indian Institute of Science, Bangalore,
India. Her research interests include signal process-

ing for communications, adaptive filter theory, sparse Bayesian learning and
compressive Sensing.

Chandra R. Murthy (S’03–M’06 – SM’11) re-
ceived the B.Tech. degree in Electrical Engineering
from the Indian Institute of Technology Madras,
Chennai, India, in 1998, the M.S. and Ph.D. degrees
in Electrical and Computer Engineering from Purdue
University, West Lafayette, IN and the University
of California, San Diego, CA, in 2000 and 2006,
respectively.

From 2000 to 2002, he worked as an engineer for
Qualcomm Inc., San Jose, CA, where he worked on
WCDMA baseband transceiver design and 802.11b

baseband receivers. From Aug. 2006 to Aug. 2007, he worked asa staff
engineer at Beceem Communications Inc., Bangalore, India on advanced
receiver architectures for the 802.16e Mobile WiMAX standard. In Sept.
2007, he joined as an assistant professor at the Department of Electrical
Communication Engineering at the Indian Institute of Science, Bangalore,
India, where he is currently working. His research interests are in the areas
of Cognitive Radio, Energy Harvesting Wireless Sensors andMIMO systems
with channel-state feedback. He is currently serving as an associate editor for
the IEEE Signal Processing Letters.


