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Abstract—In this paper, we derive Hybrid, Bayesian and
Marginalized Cramér-Rao lower bounds (HCRB, BCRB and
MCRB) for the single and multiple measurement vector Sparse
Bayesian Learning (SBL) problem of estimating compressitd
vectors and their prior distribution parameters. We assumethe
unknown vector to be drawn from a compressible Student: prior
distribution. We derive CRBs that encompass the determinisc
or random nature of the unknown parameters of the prior
distribution and the regression noise variance. We extendhie
MCRB to the case where the compressible vector is distributé
according to a general compressible prior distribution, ofwhich
the generalized Pareto distribution is a special case. We aghe
derived bounds to uncover the relationship between the compss-
ibility and Mean Square Error (MSE) in the estimates. Further,
we illustrate the tightness and utility of the bounds throuch
simulations, by comparing them with the MSE performance of
two popular SBL-based estimators. It is found that the MCRB
is generally the tightest among the bounds derived and that
the MSE performance of the Expectation-Maximization (EM)
algorithm coincides with the MCRB for the compressible vecobr.
Through simulations, we demonstrate the dependence of the &
performance of SBL based estimators on the compressibilityf
the vector for several values of the number of observationsral
at different signal powers.

Index Terms—Sparse Bayesian learning, mean square error,
Cramér-Rao lower bounds, expectation maximization.

I. INTRODUCTION

to be slow, fast update techniques are proposed in [5]. A
duality based algorithm for solving the SBL cost function
is proposed in [6], and; — /5 based reweighting schemes
are explored in [7]. Such algorithms have been successfully
employed for image/visual tracking [8], neuro-imaging,[9]
[10], beamforming [11], and joint channel estimation anthda
detection for OFDM systems [12].

Many of the aforementioned papers study the complexity,
convergence and support recovery properties of SBL based
estimators (e.g., [5], [6]). In [3], the general conditiores
quired for the so-called instance optimality of such estora
are derived. However, it is not known whether these recovery
algorithms are optimal in terms of the Mean Square Error
(MSE) in the estimate or by how much their performance
can be improved. In the context of estimatisigarsesignals,
Cramér-Rao lower bounds on the MSE performance are de-
rived in [13]-[15]. However, to the best of our knowledge,
none of the existing works provide a lower bound on the
MSE performance oftcompressiblevector estimation. Such
bounds are necessary, as they provide absolute yardsticks f
comparative analysis of estimators, and may also be used as a
criterion for minimization of MSE in certain problems [16ih
this paper, we close this gap in theory by providing Cramér-
Rao type lower bounds on the MSE performance of estimators
in the SBL framework.

Recent results in the theory of compressed sensing have gerf’S our starting point, we consider a linear Single Measure-
erated immense interest in sparse vector estimation prahle Ment Vector (SMV) SBL model given by

resulting in a multitude of successful practical signabresry
algorithms. In several applications, such as the procgssin

y =®x+n, 1)

natural images, audio, and speech, signals are not exagflyere the observations € RY and the measurement matrix
sparse, butompressiblei.e., the magnitudes of the sortedp < RN*L gre known, andx € RZ is the unknown
coefficients of the vector follow a power law decay [1]. Insparse/compressible vector to be estimated [17]. Each com-
[2] and [3], the authors show that random vectors drawghnent of the additive noisea € RY is white Gaussian,
from a special class of probability distribution functiofsif) gistributed as\/(0, o), where the variance? may be known
known ascompressible priorsesult in compressible vectors.or ynknown. The SMV-SBL system model in (1) can be

Assuming that the vector to be estimated (henceforth ®ederfyeneralized to a linear Multiple Measurement Vector (MMV)
to as the unknown vector) has a compressible prior distahut sg| model given by

enables one to formulate the compressible vector recovery

problem in the Bayesian framework, thus allowing the use of

T=3W+V. )

Sparse Bayesian Learning (SBL) techniques [4]. In his samin )

work, Tipping proposed an SBL algorithm for estimating thlere, T € RY** represents thel/ observation vectors,
unknown vector, based on the Expectation Maximization (EMfj€ columns ofW & R are the)M sparse/compressible
and McKay updates [4]. Since these update rules are knoW#ftors with a common underlying distribution, and each
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column of V.€ RV*M is modeled similar ta in (1) [18].

In typical compressible vector estimation problends,is
underdeterminedN < L), rendering the problem ill-posed.
Bayesian techniques circumvent this problem by using a prio
distribution on the compressible vector as a regularinaod
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Figure 1. Graphical model for SBL: Two stage hierarchicaldelowith

the compressible vector taking a conditional Gaussiaribision and the Figure 3.  Different modeling assumptions and the corresipanbounds
hyperparameters taking an Inverse Gamma distribution.rbige is modeled Jerived in this work when noise variance is assumed to be avakn

as white Gaussian distributed, with the noise variance teddas determin-

istic/random and known or unknown.

SBL framework. Our contributions are as follows:

@ « Under the assumption of known noise variance, we derive

' the HCRB and the BCRB for the unknown vec@r=

{| x: marginalized || 'x: random [xT, 471", as indicated in the left half of Fig. 2.

:|[MCRB from p(y:~)|[MCRB from p(y,x . . . L .

; « When the noise variance is known, we marginalize nui-

: sance variablesy( or x) and derive the corresponding

Figure 2.  Summary of the lower bounds derived in this work mvheise MCRB’_aS mdlca,ted in the right half of Fig. 2. Since the

variance is assumed to be known. MCRB is a function of the parameters of the hyperprior

(and hence is an offline bound), it yields insights into

the relationship between the MSE performance of the

estimators and the compressibility of

In the unknown noise variance case, we derive the

BCRB, HCRB and MCRB for the unknown vectér=

[xT, 4T, 0%, as indicated in Fig. 3.

o We derive the MCRB for a general parametric form of
the compressible prior [3] and deduce lower bounds for
two of the well-known compressible priors, namely, the
Studentt and generalized double Pareto distributions.

~: deterministic :
x: random

HCRB from p(y,x;~)

~: random
x: random
BCRB from p(y,x,~)

~: deterministic

~: marginalized J

computing the corresponding posterior estimate. To in@orp
rate a compressible prior in (1) and (2), SBL uses a two-stage®
hierarchical model on the unknown vector, as shown in Fig. 1.
Here,x ~ N (0, Y), where the diagonal matriX contains the
hyperparametersy = [y1,...,7.]? as its diagonal elements.
Further, an Inverse Gamma (IGyperprior is assumed for
~ itself, because it leads to a Studermgrior on the vectox,
which is known to be compressible [4]n scenarios where the - )
noise variance is unknown and random, an IG prior is used for® Similar to the SMV-SBL case, we derive the BCRB,
the distribution of the noise variance as well. For the syste ~ CRB and MCRB for the MMV-SBL model in (2).
model in (2), every compressible vecte; ~ A(0,Y), i.e., Through numerical simulations, we show that the MCRB on
the M compressible vectors are governed by a comrfon the compressible vector is the tightest lower bound, and that

It is well known that the Cramér-Rao Lower Bound (CRLB}he MSE performance of the EM algorithm achieves this bound
provides a fundamental limit on the MSE performance @t high SNR and asv — L. The techniques used to derive
unbiased estimators [19] for deterministic parameter- esthe bounds can be extended to handle different compressible
mation. For the estimation problem in SBL, an analogouior pdfs used in literature [2]. These results provide a
bound known as the Bayesian Cramér-Rao Bound (BCRB)dgnvenient and easy-to-compute benchmark for comparing th
used to obtain lower bounds [20], by incorporating the prigrerformance of the existing estimators, and in some cases, f
distribution on the unknown vector. If the unknown vecto@stablishing their optimality in terms of the MSE perforroan
consists of both deterministic and random components,ilybr The rest of this paper is organized as follows. In Sec. II,
Cramér-Rao Bounds (HCRB) are derived [21]. we provide the basic definitions and describe the problem

In SBL, the unknown vector estimation problem can alsget up. In Secs. Il and IV, we derive the lower bounds for
be viewed as a problem involving nuisance parameters. Sitbé cases shown in Figs. 2 and 3, respectively. The bounds
the assumed hyperpriors are conjugate to the Gaussiair likafe extended to the MMV-SBL signal model in Sec. V. The
hood, the marginalized distributions have a closed form agfficacy of the lower bounds is graphically illustrated tingh
the Marginalized Cramér-Rao Bounds (MCRB) [22] can b&mulation results in Sec. VI. We provide some concluding
derived. For example, in the SBL hyperparameter estimati6@marks in Sec. VII. In the Appendix, we provide proofs for
problem, x itself can be considered a nuisance variable atide Propositions and Theorems stated in the paper.
marginalized from the joint distributionyy x|~ (y,x|7v), to Notation: In the sequel, boldface small letters denote vec-
obtain the log likelihood as tors and boldface capital letters denote matrices. The sianb
Tl ()T and|-| denote the transpose and determinant of a matrix,
—(log[%y| +y %, Y)7 (3) respectively. The empty set is represented (hyand I'(-)

2 denotes the Gamma function. The functipg(x) represents

whereS, = 02Iy, v + ®Y®T [23]. the pdf of the random variabl& evaluated at its realization

The goal of this paper is to derive Cramér-Rao type lowér Also, diaga) stands for a diagonal matrix with entries on

bounds on the MSE performance of estimators based on tHg diagonal given by the vectar. The symbolVy is the
gradient with respect to (w.r.t.) the vect@r The expectation

1The IG hyperprior is conjugate to the Gaussian pdf [4]. w.r.t. a random variabl& is denoted a&x (-). Also, A = B

log/py,xm(y,XIv)dx =



denotes thaA — B is positive semidefinite, and ® B is the A. Bounds from the Joint pdf

Kronecker product of the two matrice’s and B. 1) HCRB for @ — [x7,~7]T: In this subsection, we

[I. PRELIMINARIES consider the unknown variables as a hybrid of a determin-

As a precursor to the sections that follow, we define tHgtic vectory and a random vectox distributed according
MSE matrix and the Fisher Information Matrix (FIM) [19],t0 @ Gaussian distribution parameterized y Using the
and state the assumptions under which we derive the lov@ssumptions and notation in the previous section, we obtain
bounds in this paper. Consider a general estimation probléig following proposition.
where the unknown vectof € R"™ can be split into sub-  Proposition 1: For the signal model in (1), the HCRB on
vectors = [#7, 6717, whered, € R™ consists ofrandom the MSE matrixE® of the unknown vectof = [x",~v"]"
parameters distributed according to a known pdf, @ade  Wwith the parameterized distribution of the compressibygpal
R"~" consists ofdeterministicparameters. Leé(y) denote x given by A(0, Y), and with~ modeled as unknown and
the estimator of9 as a function of the observations The deterministic, is given byg? = (H?)~*, where
MSE matrix E? is defined as

0 & ~ ~ T HG A He(x) He(xa’Y) _
B’ 2Eyve, [(0-00)0-00)"] @ S\t B | T
where ©,. denotes the random parameters to be estimated, (@:f + -1 Or«r
whose realization is given b@,.. The first step in obtaining 0,1 diag 272, 292, ..., 292)"! ;)

Cramér-Rao type lower bounds is to derive the AIR[19].
Typically, I is expressed in terms of the individual blocks oProof: See Appendix A.
submatrices, where th@;)" block is given by Note that the lower bound on the estimatexofdepends

6 A T ) on the prior information through the diagonal matfix In

L = —Eve.[VoVo, logpy.0.0.(y, 6::6a)]. (3) the SBL problem, the realization of the random parameter
In this paper, we use the notatidfi to represent the FIM has to be used to compute the bound above, and hence, it
under the different modeling assumptions. For exampleywhg referred to as an online bound. Also, the lower bound on
0, # () and@, +# (), I represents a Hybrid Information Mat,r'xthe MSE matrix ofx is E° = q>T_2<1> Lyt _which is
(HIM). When 6, # () and8, = 0, 1° represents a Bayesian o
Information matrix (BIM). Assuming that the MSE mati®
exists and the FIM is non-singular, a lower bound on the M
matrix E® is given by the inverse of the FIM:

the same as the lower bound on the error covariance of the

S%aye’s vector estimator for a linear model (see Theorem3 10.
and 10.3 in [19]), and is achievable by the MMSE estimator

. whenY = diagy1,...,vr) is known.

E® - (1°) . (6)  2) BCRB for@ = [x7,~7]7: For deriving the BCRB, a

It is easy to verify that the underlying pdfs considered ifyPerprior distribution is considered en and the resulting
the SBL model satisfy the regularity conditions required fdS viewed as being drawn from a compr_essm_JIe prior d'f:’t”bu'
computing the FIM (see Sec. 5.2.3 in [22]). t_|on. The .most commoqu gsed hyperprior Q|str|but|on in the
We conclude this section by making one useful observatiBF?rat,ure, is the IG d|ftr|5utlon [4], where;,i = 1,2,..., L
about the FIM in the SBL problem. An assumption in th&re distributed agg (5, 35) given by
SMV-SBL framework is thak andn are independent of each N I N
i o 2 (=31 v
other (for the MMV-SBL modelT andW are independent). pr(v:) = (F (—)) (—) Vi exp § — , (9)
) S . . B 2 2\ 207
This assumption is reflected in the graphical model in Fig. 1,
where the compressible vectar(and its attributey) and the where~; € (0,00), v, X > 0. Using the definitions and nota-
noise componenh (and its attributes?) are on unconnectedtion in the previous section, we state the following profiosi
branches. Due to this, a submatrix of the FIM is of the form Proposition 2: For the signal model in (1), the BCRB on
H ] —
I:é = —Exvyrz [V7V§ {10ng\X,E(Y|X7 £) thi MTSI; matrix EY of thfe_ unkn(_)wq ra_ndom vectof) = _
| | 7 [x*,~4*]*, where the conditional distribution of the compress
+logpx.r(x,7) +logp=(§)}], @ iple signalx|+ is V(0, Y), and the hyperprior distribution on
where there are no terms in which bothand ¢ = o° are ~ is [1-, 76 (%, %), is given byE® > (B®)~!, where
jointly present. Hence, the corresponding terms in the abov

mentioned submatrix are always zero. This is formally state BO 2 { ?H(X) B"ex,’Y)] _
in the following Lemma. (B(x,v))"  BO(v)
Lemma 1:When ; = v and 8; = o2, the (ij)" block (¢T<1>
. L S + I 0
matrix of the FIMI® given by (5) simplifies tal?, = 0,1, o’ foxck , Lk (10)
. v A (v+2)(v+7)
i.e., to an all zero vector. Orxr —— I«

I1l. SMV-SBL: L OWERBOUNDS WHENo? IS KNOWN Proof: See Appendix B.

. . . ]
In this section, we derive lower bounds for the system mode|'t can be seen fronB® that the lower bound on the MSE

in (1) for the scenarios in Fig. 2, where the unknown vector & 7(y) is a function of the parameters of the IG prior on
0 = [x7,~7)T. We examine different modeling assumptions€ & function ofv and, and it can be computed without the

on ~ and derive the corresponding lower bounds. knowledge of realization ofy. Thus, it is an offline bound.



B. Bounds from Marginalized Distributions bounded for2 < v < 4, i.e., the bound is meaningful in the

1) MCRB for@ = [4]: Here, we derive the MCRB for fange ofv used in practice. Note that, by choosingto be
6 = [v], where~ is an unknown deterministic parameterarge (orthe.variance.oito be small), the pound is.dominated
This requires the marginalized distributipr.~ (y; ~), which by the prior information, rather than _the information fronet
is obtained by consideringe as a nuisance variable andPbservations, as expected in Bayesian bounds [19].
marginalizing it out of the joint distributiopx v (x,y; ), Itis conjectured in [2_2] that, in gengral, the MCRB is tlg’n_te
to obtain (3). Sincey is a deterministic parameter, the pdfhan the BCRB. Analytically comparing the MCRB (14) with
Py~ (y;y) must satisfy the regularity condition in [19]. wethe BCRB (E_i), we see that for the S_BL_ problem of estimating
have the following theorem. a compressible vector, the MCRB is indeed tighter than the
Theorem 1:For the signal model in (1), the log likeli- BCRB, since
hood .fUI']CtionlongW(y;’y) satisfies the regularity condi- 3T®  Av+1) -1
tions in [19]. Further, the MCRB on the MSE matri” o (v +3) Irnxr

of the unknown deterministic vect®? = [v] is given by
EY = (M7Y)~!, where the(ij)" element ofM” is given The techniques used to derive the bounds in this subsection

by can be applied to any family of compressible distributidns.
MY — }((I)Tz_lq).)g (11) [3], the authors propose a parametric form of the Genedlize
EEEPAN A Compressible Prior (GCP) and prove that such a prior is com-
for 1 < i,j < L, where®; is the i column of ®, and pressible for certain values of In the following subsection,
%, = o?Iyxn + ®Y BT, as defined earlier. we derive the MCRB for the GCP.

Proof: See Appendix C.

To intuitively understand (11), we consider a special cdse @. General Marginalized Bounds
®7® = NIy, n, and use the Woodbury formula to simplify
¥, !, to obtain the(ii)™ entry of the matrixM"~ as

—

o2

T ® !
( +)\IL><L) .

In this subsection, we derive MCRBs for the parametric
form of the GCP. The GCP encompasses the double Pareto
o2 -2 shrinkage type prior [24] and the Studénprior (13) as its
M) =2 (W + %) (12) special cases. We consider the GCPxoas follows

9 L 0T —(v+1)/7
Hence, the error iny; is bounded ad), > 2 ("—; + %-) . As px(x) 2 KM (1 + %) ; (15)
N — oo, the bound reduces ty?, which is the same as the =1
lower bound on the estimate of obtained as the lower-right where z; € (—o0,00),7,7,A > 0, and the normalizing
submatrix in (8). For finiteV, the MCRB s tighter than the constantk 2 I (%)”T FF&(/V;)L% When 7 = 2, (15)
HCRB. reduces to the Studentprior in (132), and whenr = 1, it

2) MCRB for@ = [x]: In this subsection, we assume &educes to a generalized double Pareto shrinkage prior [24]
hyperprior ony, which leads to a joint distribution of andv, [25]. Also, the expression for the GCP in [3] can be obtained
from which~ can be marginalized. Further, assuming specifitom (15) by setting\ = 1, and definingr £ s — 1. The
forms for the hyperprior distribution can lead to a compitees following theorem provides the MCRB for the GCP.
prior on x. For example, assuming an IG hyperprior gn  Theorem 3:For the signal model in (1), the MCRB on the
leads to anx with a Student distribution. Sampling from MSE matrixE? of the unknown random vectér= [x], where
a Student distribution with parameters and A results in a x is distributed as the GCP in (15), is givenBf = (M%)~ 1,

v-compressiblex [2]. The Student: prior is given by where .,
L V1 o' P
oo 2 (D =D/2) (A Eﬁ Ly A o M7 = —— + T, (16)
EE T ) \w) o) 2
=t whereT. — 2w+ A2/ (2)(2—7) 4
(13) T (v+TH1) (l/) F(%)F(%) LxL-

wherez; € (—o00,0), v, A > 0, v represents the number ofProof: See Appendix E.
degrees of freedom ankl represents the inverse variance of It is straightforward to verify that for = 2, (16) reduces to
the distribution. Using the notation developed so far, vegest the MCRB derived in (14) for the Studehtdistribution. For

the following theorem. 7 =1, the inverse of the MCRB can be reduced to
Theorem 2:For the signal model in (1), the MCRB on the T 2 2
' ) o @' A(v+1)
MSE matrix E* of the unknown compressible random vector M = Ir«r- a7

o? v(v +2)
In Fig. 4, we plot the expression in (16). We observe that,

0 = [x] distributed as (13), is given bg* = (IM*)~!, where
_®Te  Av+1)

Mx > I r. (14) in general, the bounds predict an increase in MSE for higher
g (v +3) values ofr. Also, for given value ofN, the lower bounds
Proof: See Appendix D. at different signal to noise ratios (SNRs) converge as the

We see that the bound derived depends on the parametaisie of 7 increases, indicating that increasingenders the
of the Student- pdf. From [3], the prior is“somewhat” bound insensitive to the SNR. The lower bounds also predict
compressible foR < v < 4, and (14) is nonnegative anda smaller value of MSE for a lower value of



v ]_[Z.Lzl_Ig (%.95), and¢ is modeled as a deterministic param-
eter, is given by(Hg)*l, where

10°

B - E He/ 0
‘‘‘‘‘ H? = {0 e (20)
I -~ A ] 1xL 282
= _ In the above expression, with a slight abuse of notatldf,
8 ol a zv:Z-OSvNﬂSOvi:wj | is the FIM given by (8) whery is unknown deterministic and
4 " v =205 N=750§=10" .
. ST |ev=zosn= 10002107 | | by (10) when+ is rgndom.
10 v —A—v=205,N=1000, = 107" Proof: See Appendix F.
. - _ — 101 . . .
s X”iﬁﬁiﬁiﬁﬁii& The lower bound on the estimation ©matches with known
07y v = 2,001, N = 1000, £ = 10°1 lower bounds on noise variance estimation (see Sec. 3.5 in
T A v=2001, N =1000, £ = 10" [19]). One disadvantage of such a bound &fy) is that
Wls 2 25 s as 4 45 5 55 6 the knowledge of the noise variance is essential to compute

GOP parameter 7 the bound, and hence, it cannot be computed offline. Instead,

assigning a hyperprior t would result in a lower bound that
only depends on the parameters of the hyperprior, which are
assumed to be known, allowing the bound to be computed
offline. We state the following proposition in this context.

Proposition 4: For the signal model in (1), the HCRB on
Thus far, we have presented the lower bounds on the M@fa MSE matrixE? of the unknown vecto® = 6", ¢]7,

in estimating the unknown parameters of the SBL problefphere 9 — [x”,~T]T, with the distribution of the vec-
when the noise variance is known. In the next section, g given by A/(0, Y), where~ is modeled as a deter-
extend the results to the case of unknown noise variance. minjstic parameter or as a random parameter distributed as
12, ZG (%, %), and with the random parametgdistributed
IV. SMV-SBL: LOWERBOUNDS WHENG? IS UNKNOWN  asZG(c,d), is given by(H?)~!, where

Let us denote the unknown noise variance as 2. In the

Figure 4. Behavior of the MCRB (16) for the parametric formtloé GCP,
as a function ofr, v, N and noise variance.

Bayesian formulation, the noise variance is associateti wit 6 _ H? 0rx1

. . . . . . H£ c(c+1)(N/2+c+3) | - (21)
a prior, and since the IG prior is conjugate to the Gaussian ' O1xp, ————pF——

likelihood py |x =(y|x,&), it is assumed that? ~ ZG(c,d) )

[4], i.e., € = o2 is distributed as In (21), H? is the FIM given in (8) whemny is unknown

e d deterministic and by (10) whef is random.
p=(£) £ mg(ﬂ:—l) exp {_E} . £€(0,00), ¢c,d>0. Proof: See Appendix G. _ _ _ _ _
¢ (18) In SBL problems, a non-informative prior @his typically
\Hﬁeferred, i.e., the distribution of the noise variance &leled
to be as flat as possible. In [4], it was observed that a non-
informative prior is obtained whean,d — 0. However, as
p(ylx) £ [Zop(y, Ex)dE ¢,d — 0, the bound in (21) is indeterminate. In Sec. VI,
(2d)°T (X +c) . (¥ te) we illustrate the performance of the lower bound in (21) for
= r(c)(ﬂ)zzv/z_ ((y —®x)" (y — ®x) + 2d) *7(19) practical values of: andd.

which is a multivariate Studertdistribution. It turns out that
the straightforward approach of using the above multiteriaa. Marginalized Bounds
likelihood to directly compute lower bounds for the various

cases given in the previous section is analytically intralg,

Under this assumption, one can marginalize the unkno
noise variance and obtain the likelihop@y|x) as

In this subsection, we obtain lower bounds on the MSE of

and that the lower bounds cannot be computed in closed fofm¢ estimatot (y), in the presence of nuisance variables in the

Hence, we compute lower bounds from fbént pdf, i.e., we joint distribution. To start with, we consider the margirati

derive the HCRB and BCRBs for the unknown vectbr= distributions ofy 6?”.0' E "e".pYW’f(y;.%g) where both,y

x”,~7,€]” with the MSE matrixE? defined by (47 Using and ¢ are deterministic variables. Since the unknowns are
3 ) f .

the assumptions and notation from the previous sections, gfeierm%nlst}c,vt\?e :e?ulant); clzlonc_i|t|ort1hhas to be satisfien
obtain the following proposition. = [y",¢]". We state the following theorem.

Proposition 3: For the signal model in (1), the HCRB on_ I neorem 4:For the signal model in (1), the log likelihood
the MSE matrixE® of the unknown vectof — [G/T’g]T, function log py.~,¢(y; 7, &) satisfies the regula_rlty condition
where &' — [xT,~T|”, with the distribution of the com- [19]. Further, the MCRB on the MSE matrik? of the

- RS
pressible vector given by A'(0,Y), where~ is modeled ur;kgownedie}ermk:mstm vectof = [y,¢]" is given by
as a deterministic or as a random parameter distributed g = (M¢) ™, where

2We use the subscrigt to indicate that the error matrices and bounds are M¢ 2
obtained for the case of unknown noise variance. €

: (22)



where the (i) entry of the matring('y) is given by ,

ME()i; = 5 {(0] 2, @)}, and ME(¢) = 3Tr(%, ). )
Further, (MZ(v,€))i = (M2(6,7)); = ", ij =
1,2,...,L.

Proof: See Appendix H.

Remark: From the graphical model in Fig. 1, it can be
seen that the branches consistingypfand ¢ are independent
conditioned orx. However, wherx is marginalized, the nodes
& and~; are connected, and hence, Lemma 1 is no longer valid.
Due to this, the lower bound epdepends oy and vice versa,
i.e., M2(y) andM?(¢) depend on botlf and Y = diag(v)
through®, = Iy« n + Y7,

Thus far, we have presented several bounds for the MSE
performance of the estimatoss(y), 4(y) and £(y) in the
SMV-SBL framework. In the next section, we derive Cramér-
Rao type lower bounds for the MMV-SBL signal model.

Sorted Magnitude of Co-efficients

; ; ; ;
400 600 800 1000
Length of the Compressible Vector L

I
200 1200

Figure 5. Decay profile of the sorted magnitudesi.ofl. samples drawn

V. LOWERBOUNDS FOR THEMMV-SBL from a Student- distribution.

In this section, we provide Cramér-Rao type lower bounds
for the estimation of unknown parameters in the MMV-

SBL model given in (2). We consider the estimation of the

compressible vectow from the vector of observations,

which contain the stacked columnsW andT, respectively.
In the MMV-SBL model, each column oW is distributed
asw; ~ N(0,Y), fori = 1,... M, and the likelihood is
given by [[.=, pryw, =(ti|wi, §), whereppw,=(ti|w;, &)
N(®w;,€) and¢ = 2. The modeling assumptions enand

V1. SIMULATIONS AND DISCUSSION

The vector estimation problem in the SBL framework typ-
ically involves the joint estimation of the hyperparametad
the unknown compressible vecter Since the hyperparameter
estimation problem cannot be solved in closed form, iteeati
estimators are employed [4]. In this section, we consider th
iterative updates based on the EM algorithm first proposed in

¢ are the same as in the SMV-SBL case, given by (9) an]. We also consider the algorithm proposed in [6] based on

(18), respectively [18].

the Automatic Relevance Determination (ARD) framework.

Using the notation developed in Sec. Il, we derive th@/e plot the MSE performance in estimating ~ and ¢
bounds for the MMV SBL case similar to the SMV-SBL casegith the linear model in (1) and (2), for the EM algorithm,
considered in Secs. Il and IV. Since the derivation of thesgheled EM and the ARD based Reweighted algorithm,
bounds follow along the same lines as in the previous sextiofbeled ARD- SBL. We compare the performance of the es-

we simply state results in Table I.

| Bound Derived | Expression |
HCRB on4(y) HY, =diag( ;05 ), i=1,2....L
A A2 M+v
BCRB on(y) BY = AL O,

MY, = [Mg’j],

M —1
whereM? = ZL (15 19;)?

MCRB on4(y)

HCRB onw(y) HY, = (‘1’:;" + T*1> ®Inxm
BCRB onw(y) B, = (2% + M) ® s
HCRB oné(y) HS, . = (%
BCRB oné(y) B, = W
MCRB on [¥(y)T, £(y)]” M, =M xM?
Table |

CRAMER-RAO TYPE BOUNDS FOR THEMMV-SBL CASE.

We see that the lower bounds 61y) andé(y) are reduced

timators against the derived lower bounds.

We simulate the lower bounds for a random underde-
termined (V < L) measurement matri, whose entries
are i.i.d. and standard Bernoullf{+1,—1}) distributed. A
compressible signal of dimensidnis generated by sampling
from a Student- distribution with the value ofv ranging
from 2.01 to 2.05, which is the range in which the signal is
“somewhat” compressible, for high dimensional signals [3].
Figure 5 shows the decay profile of the sorted magnitudes of
L = 1024 i.i.d. samples drawn from a Studentistribution
for different and with the value of(z?) fixed at103.

A. Lower Bounds on the MSE Performancex¢§)

In this subsection, we compare the MSE performance of
the ARD-SBL estimator and the EM based estimatgy).
Figure 6 depicts the MSE performancefy) for different
SNRs andN = 750 and 1000, with v = 2.01. We compare
it with the HCRB/BCRB derived in (8), which is obtained by

by a factor of M compared to the SMV case, which isassuming the knowledge of the realization of the hyperparam

intuitively satisfying. It turns out that it is not possititeobtain
the MCRB onw in the MMV-SBL setting, since closed form
expressions for the FIM are not available.

etersy. We see that the MCRB derived in (14) is a tight lower
bound on the MSE performance at high SNR avd
Figure 7 shows the comparative MSE performance of the

In the next section, we consider two popular algorithms f@&kRD-SBL estimator and EM based estimator as a function

SBL and graphically illustrate the utility of the lower bais

of varying degrees of freedom, at an SNR 0f40 dB and
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Figure 6. The MSE performance &f{y) and the corresponding MCRB and
BCRB, as a function of SNR, witer = 2.01. Figure 8. The MSE performance &{y) and the corresponding MCRB and

BCRB, as a function ofV, with SNR =40 dB.
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Figure 7. The MSE performance &f{y) and the corresponding MCRB and

BCRB, as a function of, with SNR =40 dB. Figure 9. The MSE performance éf(y) and the corresponding HCRB, as

a function of SNR, withN = 1000.

N = 1000 and 750. As expected, the MSE performance of
the algorithms is better at low values of since the signal ~ When~ is deterministic, we first note that the EM based ML

is more compressible, and the MCRB and BCRB also reflegstimator fory is asymptotically optimal and the lower bounds
this behavior. The MCRB is a tight lower bound, especiallsire practical for large data samples [19]. The results atedi
for high values ofN. Figure 8 shows the MSE performance ofn Table Il. We see that fol. = 2048 and N = 1500, the
the ARD-SBL estimator and EM based estimator as a functiz’mCRB and BCRB are tight lower bounds, with MCRB being
of N, at an SNR ofi0 dB and for two different values af. marginally tighter than the BCRB. However, a$ increases,
The MSE performance of the EM algorithm converges to théite gap between the MSE and the lower bounds increases.
of the MCRB at higherV.
C. Lower Bounds on the MSE Performancet )
B. Lower Bounds on the MSE Performanceygf) In Fig. 10, we compare the lower bounds on the MSE of
In this subsection, we compare the different lower boundse estimatoré(y) in the SMV and MMV-SBL settings, for
for the MSE of the estimatofy(y) for the SMV and MMV- different values ofV and M. Here,¢ is sampled from the IG
SBL system model. Figure 9 shows the MSE performaneelf (18), with parameters = 3 andd = 0.2.
of 4(y) as a function of SNR and/, when~ is a random  When¢ is deterministic, the EM based ML estimator for
parameterN = 1000 andr = 2.01. In this case, it turns out is asymptotically optimal and the lower bounds are prattica
that there is a large gap between the performance of the Ed large data samples [19]. Table 1lI lists the MSE values of
based estimate and the lower bound. é(}’), the corresponding HCRB and MCRB for deterministic



[ SNR(dB) | [ 10 [ 20 | 30 [ 40 |

MSE 0.054 | 0.053 | 0.051 | 0.050

M=1 MCRB 0.052 0.051 | 0.050 | 0.049
BCRB 0.049 | 0.049 | 0.049 | 0.049

MSE 0.0450 | 0.039 | 0.035 | 0.030

M =50 MCRB x10—2 0.12 0.11 0.10 0.09
BCRBx10—3 0.977 | 0.977 | 0.977 | 0.977

Table 11

VALUES OF THEMSE OF THE ESTIMATORY(y), THE MCRB AND THE
BCRB,FORO, = [y] AS A FUNCTION OFSNR,FORN = 1500.

= 10_2§\.—A~_A__A_§2
Rvyd : : A
g :
= —%—EM,M=1
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Number of Observations N
Figure 10. The MSE performance é{y) and its HCRB, as a function

of N.

but unknown noise variance, while the true noise variance
fixed at10~2. We see that fol, = 2048 and N = 1500, the
MCRB is marginally tighter than the HCRB. However, when
the noise variance is random, we see from Fig. 10 that there

1000

the values of the parameters that govern these hyperpriors.
We derived the MCRB for the generalized compressible prior
distribution, of which the Studeritand Generalized Pareto
prior distribution are special cases. We showed that the BICR

is tighter than the BCRB. We compared the lower bounds with
the MSE performance of the ARD-SBL and the EM algo-
rithm using Monte Carlo simulations. The numerical results
illustrated the near-optimality of EM based updates for SBL
which makes it attractive for practical implementations.

APPENDIX
A. Proof of Proposition 1
Using the graphical model of Fig. 1 in (5),

H(x) £ —-Eyxo [V2log py xiv (¥, % 7)]
T (y —®
= —Eyxs [vx (M_T—lx)}
g
TP
= —+X! (23)
g
Similarly, it is straightforward to show that
ViVylogpy xin(y,x37) = diag( 5, T3, ..., TF

Sincez; are zero mean random variablés,

He(%x) = —Ev x:y [v'rvx 10gPY,X;'r(YaX;’7)] =0LxzL,

H(v)

Now, sincelog px;(x;vy) = Zle log px.,(xi;7:), we get,
if i =3

1 z?
= 297 7
0 if 7 7.

Taking —Ex.~(-) on both sides of the above equation and
dting thatEx .., (+2) = ~;, we obtain

2 .
H () onag(_EXW [%ﬁxw)
i

= —Evy x~ [Vi(logPY\x(ﬂX) +log px(x7))] -

82 log PX;~y (X; 7)

24
07;0v; @4

is a large gap between the MSE performance and the HCRB. . 1 1
| [ N [ 1500 [ 1600 | 1700 | 1800 , M L
MSE x10-° | 0.736 | 0.663 | 0.636 | 0502 ] | Mis completes the proof,
M=1 MCRBx10—° | 0.380 | 0.340 | 0.307 | 0.279 "
HCRBx10~® | 0.133 | 0.125 | 0.118 | 0.111 B. Proof of Proposition 2
MSE x10—7 | 0.930 | 0.892 | 0.866 | 0.847 ; ; ; ;
M = 50 MCRBx10=T" 1 0.680 1 0.652 1 0.614 1 0.673 Using the graphical model of Fig. 1 in (5),
HCRBx10~1 | 0.267 | 0.250 | 0.235 | 0.222 Ba(x) A —EY,X,P [vi 10gpv,x,r(y,xr‘/)}
T (y — dx)
Table Il _ y !
VALUES OF THEMSE OF THE ESTIMATORE (y), THE MCRB AND THE = “Byxr [v" < o2 T xﬂ
HCRBFOR#,; = [£], AS A FUNCTION OF N. 3T
= Er [ =+ rl} (26)
TP
= +Er [XY71]. 27
VII. CONCLUSION o? r ¥ @7
In this work, we derived Cramér-Rao type lower bounds oh€ €xpression foEr [X~1] wrt. v; is given by,
the MSE, namely, the HCRB, BCRB and MCRB, for the SMV- 1 * (~z-2) v
SBL and the MMV-SBL problem of estimating compressible T ol B K, T eXP )~ dvi (28)
signals. We used a hierarchical model for the compressible F7(1;+ 1) o
priors to obtain the bounds under various assumptions on = K7277+1/ e (K +1, i) dv;
the unknown parameters. The bounds derived by assuming (%)? 7 =0 2 2)
a hyperprior distribution on the hyperparameters theneselv -1
provided key insights into the MSE performance of SBL and = A (29)



since K., = (%)'//2 (r (%)),1. Hence, the overall bound isand hence,

given by TS TS0 GTE10.
0 e’ i10gPYw(.‘>’;7) e TR e Bt i

§ (38)

Using the graphical model of Fig. 1 in (5), fa# = TakingEy.,(-) on both the sides of the above equation,
[x”,~T]", B?(y) is defined as )

Ev.~ | =— 1o . ;
B?(v) = ~Ev xr [V} (log py x (v[x) Y oy, 8Py ()
+ log px v (x[7) +logpr(v))] - BD) % {Ev, (")} B, - 9TE, e

=0, (39)
Since the expressions fdbgpxr(x|y) andlogpr(y) are - 2 o )
separable and symmetric w.r4;, the off-diagonal terms of SINC€Ev (yy") = X,. Hence, the pdf satisfies the required
B(~) are zero, and it is sufficient to evaluate the diagdg€gularity constraint.

92 (log px 1 (x|7)+log pr (7)) . - Now, the MCRB for@ = [v] is obtained by computing the
hal terms—IEy_x_,p CEH ) Differentiat- - g0 :ond derivative of the log likelihood, as follows:
ing the expression w.r.ty; twice,
82
0 (logpxr(x|y) +logpr(v)) _ (v+1) v 32 vy, log py ~(y; )
a7} 2v; M "o . .
=-—(2]%,'®; — (] %, 'y)?)
The expression for-Er [— (;j}) + /\—:3 is given by 21‘9%’ Y Y
' ' = -Tr{o;07 (-x,'9,07% 1)}
(v+1) 2 J*y y i Sy
EF |: 7 U3:| =K
2 A% B Ty—11\ © gy1—1
T [erva? _e®] (-5-1) — (@], y)Tr 0, %, y) ) 9%,
J [ o | Y exp{ - o5, (39) 52y o1 .
vi=0
— 1 Ty —1 Ts —1
whereK., = (%)"/2 (r (%)),1. After some manipulation, it 75 (@72, 10;) (272, ))
can be shown that the above integral reduces to +(07sly) (yT'E, ') (872, 3;). (40)

_Ep {_ v+1) v } _ X+ +7) (34) Taking —Ey.,(-) on both the sides of the above expression,

272 3 2u _

! i (M), &~y | 2108Pv (Vi) ] _ (@7%, )’ (41)
Thus, the(ij)™ component oB? (v, x) is given by * v 070, 2 ’

82 log px|r(x|7) ; as stated in (11). This completes the proof.
(Bg(’y’x))ij = 8’Y+ = _?a (35)
e i D. Proof of Theorem 2

ar;d B(x,y) = (Ba(%x))T- Since Ex;r(z;)) = 0,  The proof follows from the proof for Theorem 3 in Ap-
B®(v,x) = 0rxz. This completes the proof. pendix E by substituting = 2.

E. Proof of Theorem 3

The MCRB for estimation of the compressible random
vector with@ = [x] is given by

C. Proof of Theorem 1

To establish the regularity condition, the first order deriv
tive of the log likelihoodlog py.(y;~) is required. This, in

Ts—1
turn, requires the evaluation 8£%2 =+l and el af%’ Y Using  M*=—Eyx[V2logpy x(y,x)]

. . . 7 J
the chain rule for differentiation [26], we have = —Ey x[V2log pyx(y|x) + VZlogpx (x)]. (42)
Olog[By| _ o, { (8log |2y|)T 82y} The first term above is given by
o ox v T (y—®x
K o Y . ’YJT . —Ey x [V2Zlogpyx(y|x)] = —Evy x {Vx%}
= Tr{(zy ) D;P; } = o5 3%, ;. (36) _3T® 37
=-Eyx [ = } =25 (43)

Here, we have used the identifyx log |X| = X' [26] and _ _ . . .
results from vector calculus [26] to obtai%% = 0,97, Note thatpx (x) is not differentiable if any of its compo-
J

where ; is the j* column of &. Similarly, the derivative tnheemj'ﬁr':b (t)"o:q\;vi\:)enrt"rt]hi msegiltjjrieﬁc: ?hl'z Zc?)rr?d'stl'nancec
T -1 : istribution i inuous, , thi iti
of y* 3 "y can be obtained as

be safely ignored. Now,

ayTijly oyTs-1y T(’)E*] (v+D)AzT ! .
78%‘- =Tr ( o ) Myj dlogpx(x) ) — (v+Az7) ) if 2;>0
Oz, oy (DAl T
= IS s e, (37) CU ey T ool
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First, we consider the case ®f > 0. Differentiating the above  From Lemma 1, it directly follows thaH?('y,g) =07x1.

w.r.t. z; again, we obtain Using (5), we computﬁg(x,g) as follows:
8?2 log pc () — DA = 1)a7 2 H?(x,¢) = Ex (Eyx(®"y — " ®x)). (49)
i x(x) = -
Ox} (v +Az]) - Since By x.(y) = ®x, Ex(®7(®x) — Tdx) = 0.
Nr(v+ D™ This completes the proof.
—5—. (44)
(v + Az])

tG. Proof of Proposition 4

Taking —Ex (-) on both sides of the above equation, we ge -
In this case, we defin@ = [6'" ,¢] and @’ = [xT, ~T|T.

T 0? log px (x) ) = K(v+1)A In order to compute the HCRB, we need to fiﬂﬂg(f),
X\ 922 sPx B v HY(6') andHZ(6',¢). Using (5), the expression fdd?(6’)
is the same as computed earlier in (8) whens unknown
o0 (T_l)gcif—2 )\mff—2 deterministic and by (10) wher is random. Since¢ is
0 o\ T ===z da;. random, the expectation has to be taken over the distributio
(1 + %) v (1 + %) of ¢ also, and hence,
(45) o 62
R o HIO = Bvixz | g lormvealyid
The above can be simplified using the transformatjoa =+ ¢
. oo pu—l _ (w)T'(v) N/2—c—1 2d
and using, o 4 = Trg,) » We get +logp=(€))] = E= <7/ 520 + 5—3) . (50)
0? K+ 1)(r—1) (A7 ion |
—Ex <F logpx(x)) _ ( )( ) <_> The above expectation is evaluated as
xT; T v 00
T (xkr+2) _ 1p (v+2 0 _ (N/2—c—1)d° —2¢(—c—1) _@
p(io DIEEED) —TED L o oo HY(¢) = /s ¢ exp{ cfar
T (=22 =
(46) (et P e c(e+1) (Y 4c+3
| e [ gt exp { g ag = LT ()
For the case oft; < 0 also, the expression reduces to the £=0
integral given in (45). Hence, we have To find the other components of the matrix, we compute
H?(0',¢) = (H?(¢,6)T, which consists offI?(~,¢) and
2 2 1/-,— ’ 13 ’ 1 3 )
—Ex (a—Qlogpx(x)> _ K@+ 1) 1) <i> Hé(x,g). From Lemma 1,H?(v,£) = Orxi. Using the
Iz T(v+7+1) v definition of HY(x,¢), from (49) and sincep=(¢) is not a

T T

(1“ (=T (V_+2)> @) function of z;, we see thaH? (x,¢) = (H2(¢,x))" = 0rx1.

T (u+7+1) Thus, we obtain the FIM given by (21).
Substituting the expression fdt in the above, we get H. Proof of Theorem 4
92 P2w+1) [\ 2/7 First, we show that the log likelihoolbg(py .~.¢(y; 7, §))
- Ex (W log px(x)> = [CET =S (;) in (3) satisfies the regularity condition w.rét. Differentiating

the log likelihood w.r.t£ and taking—Ey,,.¢(-) on both the

r (VTH) r (2 - l) (48) sides of the equation,

T

FETE)

aif log(pYQ’%f (Y7 v, 5)) = %%(— log |Ey| _ yTijly)

Combining the expression above and (43), we obtain the _ Ca
MCRB in (17). “ =~z [TM(3,1) - Trloy" (2,5, ))], - (52)
y Evoye [Tr(=33,1) + 5Tr(yy" (5,15, 1)]
F. Proof of Proposition 3 _ % [Tr(E;l) _ Tr(E;l)] —o. (53)
In this case, we defin@’ = [x7,~47]T and hence, _ o -

0 - [G,T ¢7. In order to compute the HCRB Hence, the regularity coTnd|t1|0n2|s satisfied. From (41), we

- ’ ' ’ O3 D, .
we need to find HY(¢), HZ(9') and HY(6',¢). We have (M{(v));; = —%- To obtain M?(¢), we
have logpy xiv.e(y.x:7,6) = logpyixe(ylxi€) + differentiate (52) w.r.t§ to obtain

log px.~(x;7), Where ¢ = 2. Using (5), the submatrix 2 1 o s

HY(0') = H?, ie., the same as computed earlier in (SW(longmE(y;%f)) =5 Tr(%,7) — Trlyy™ (£,7)). (54)

when ~ is unknown deterministic and by (10) whenp is . ) )

random. Hence, we focus on the block matrices that occl@KiNd —Ev~.&() on both sides of the above equation,
. . PN

duet\ to the adq|t|onal paramet?r First, H¢ (€) |; comr;\tjted ME(€) = ~Eyiy.e [LTH(E;2) — Tr(yy"Tr(S;, %))

as in Sec. 3.6 in [19], from which; Ey x;¢ [_W} = 5z =Tr(Z;2) - LTr(2,2) = $Tr(Z,2). (55)

-2
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